
HAL Id: hal-01263247
https://hal.science/hal-01263247v1

Submitted on 17 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Guiding testers’ hands in monitoring tools : application
of testing approaches on SIP

Xiaoping Che, Huu Nghia Nguyen, Stephane Maag, Fatiha Zaidi

To cite this version:
Xiaoping Che, Huu Nghia Nguyen, Stephane Maag, Fatiha Zaidi. Guiding testers’ hands in monitor-
ing tools : application of testing approaches on SIP. 27th IFIP International Conference on Testing
Software and Systems (ICTSS), Nov 2015, Sharjah and Dubai, United Arab Emirates. pp.105-123,
�10.1007/978-3-319-25945-1_7�. �hal-01263247�

https://hal.science/hal-01263247v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Guiding Testers’ hands in monitoring tools: Application
of Testing Approaches on SIP

Xiaoping Che1, Stephane Maag2, Huu Nghia Nguyen3, and Fatiha Zaı̈di4

1 School of Software Engineering, Beijing Jiaotong University, Beijing, China
2 Telecom SudParis, CNRS UMR 5157, 9 rue Charles Fourier, 91011 Evry Cedex, France

3 Montimage EURL, 39 rue Bobillot, 75013 Paris, France
4 Universite Paris-Sud XI, CNRS UMR 8623, Bat 650, 91405 Orsay Cedex, France
xpche@bjtu.edu.cn, stephane.maag@telecom-sudparis.eu,

huunghia.nguyen@me.com, fatiha.zaidi@lri.fr

Abstract. The importance and impact of testing are becoming crucial and strate-
gic for the deployment and use of software and systems. Several techniques have
been defined all along the protocol testing process, that allow validating multiple
facets of a protocol implementation in particular its conformance to the standard-
ized requirements. Among these testing techniques, the ones denoted as passive
are currently often applied. Indeed, there are non intrusive and based on network
observations. In this paper, we intend to help and guide the protocol testers regard-
ing their testing choices by considering the functional protocol properties to check,
and the analysis of testing verdicts obtained by applying passive testing tools. We
propose a compared analysis of the application of two efficient passive testing
methodologies through the study of the Session Initiation Protocol. The results
analysis demonstrates that depending on the properties to test, the way to model
them, the way of testing (on-line/off-line), the available testing time resources,
tradeoffs are needed. Thus, this analysis aims at guiding the testers when tackling
the passive testing of communication protocols.

Keywords: Formal Methods; Passive Testing; Monitoring; SIP

1 Introduction

While todays communications are essential and a huge set of services is available
online, computer networks continue to grow and novel communication protocols are
continuously being defined and developed. De facto, protocol standards are required to
allow different systems to interwork. Though these standards can be formally verified
[?], the developers may produce some errors leading to faulty implementations. That is
the reason why their implementations must be tested. Testing is mainly known as the
process of checking that a system possesses a set of desired properties and behaviour. Its
importance and impact are becoming crucial and strategic for the future deployment and
use of software and systems. This can be noticed through the numerous works on testing
areas provided by the research communities of course [?] but also by the industry [?]
and the standardization institutes [?].

Several techniques have been defined all along the protocol testing process. The
main approaches are based on formal models in order, first, to automate the different test

2 Xiaoping Che, Stephane Maag, Huu Nghia Nguyen, and Fatiha Zaı̈di

phases but also to ease the development and improvement of network protocols. Applying
formal techniques allow to validate multiple facets of a protocol implementation such as
their reliability, scalability, security, and in particular its conformance to the standardized
requirements [?]. These techniques are mainly split in two categories: Active and Passive
techniques. While the active ones require a stimulation of the Implementation Under
Test (IUT) and an important testing architecture, the passive ones tackled in this work are
based on the observation of input and output events of an implementation under test at
run-time. Basically, passive testing techniques are applied whenever the state of an IUT
cannot be controlled by means of test sequences either because access to the interfaces
of the system is unavailable or a reset of the IUT is undesired. The term “passive” means
that the tests do not disturb the natural run-time of a protocol as the implementation
under test is not stimulated. The trace, i.e. the record of the event observation, is then
compared to the expected behaviour of the IUT allowing to check its conformance.

When testing the implementation of a network protocol, its behaviour is defined either
by a formal model or by a set of expected functional properties. In this current work,
we consider formal properties to design the expected behaviour of an implementation
under test. However, based on the IUT functionalities, the architecture, the system in
which it will be integrated, a tester is faced towards the testing methodology to follow,
the way to extract relevant protocol properties, how to express them, which tool to
apply, etc. Depending on the properties to check, the languages to model them, their
expressiveness and the network monitored, the met difficulties could be diverse and the
test verdicts different as well. In this paper, we therefore intend to help and guide the
protocol testers regarding their testing choices by considering the functional properties to
check, and the analysis of testing verdicts obtained by applying testing tools. We propose
a compared analysis of the application of two efficient passive testing methodologies by
taking into account not only the control parts of the protocol messages but also the data
parts. Further, the two chosen techniques proceed differently: on-line versus off-line.
The studied comparison is performed through the study of an IP Multimedia Subsystem
(IMS) based protocol (the Session Initiation Protocol - SIP). Some traces and formal
properties are used as inputs of two open source tools. The results analysis aims at
guiding the testers when tackling the passive testing of communication protocols.

Our main contributions are the following:

– The study of two different passive testing approaches on a common network protocol.
Based on the same traces sets and functional properties extracted from the SIP
standard, the techniques/tools are applied on a real IMS test bed.

– A study of the expressiveness of the languages used to model the functional prop-
erties. This allows notably to help the testers when designing certain kinds of
properties.

– The analysis and understanding of both sets of obtained test verdicts. Depending on
some contexts, it allows to raise false negatives and to reduce inconclusive verdicts.

– To help guiding the protocol testers while choosing some passive testing techniques
for a specific system under test.

The remainder of the paper is organized as follows. Both passive testing approaches:
Datamon and Prop-tester are described in the Section 2. We herein also define the main
concepts of protocol messages and traces. In Section 3, the experiments are performed on

Guiding Testers’ hands in monitoring tools 3

a real IMS platform from which traces are collected and formal SIP properties checked
on these execution traces. The results analysis are provided in Section refDiscussion and
discussions allowing to guide the testers are given. Section 5 depicts the related works
on the passive testing area and we conclude in Section 6 with future works mentioned.

2 Basics

In this section, we introduce the general definition of messages and traces in communi-
cation protocols. Then, the syntax and semantics of Datamon and Prop-tester are briefly
described with the expression equivalence of both tools.

2.1 Message & Trace

A message in a communication protocol is, using the most general possible view, a
collection of data fields belonging to multiple domains. Data fields in messages are
usually either atomic or compound, i.e. they are composed of multiple elements (e.g. a
URI sip: name@domain.org). Due to this, we also divide the types of possible domains
in atomic, defined as sets of numeric or string values5, or compound, as follows.

Definition 1. A compound value v of length k > 0, is defined by the set of pairs
{(li, vi) | li ∈ L ∧ vi ∈ Di ∪ {ε}, i = 1...k},where L = {l1, ..., lk} is a predefined set
of labels and Di are data domains, not necessarily disjoint.

In a compound value, in each element (l, v), the label l represents the functionality
of the piece of data contained in v. The length of each compound value is fixed, but
undefined values can be allowed by using ε (null value). A compound domain is then
the set of all values with the same set of labels and domains defined as 〈L,D1, ..., Dk〉.
Notice that, Di being domains, they can also be either atomic or compound, allowing
for recursive structures to be defined. Finally, given a network protocol P , a compound
domain Mp can generally be defined, where the set of labels and element domains derive
from the message format defined in the protocol specification. A message of a protocol
P is any element m ∈Mp.

A trace is a sequence of messages of the same domain (i.e. using the same protocol)
containing the interactions of an entity of a network, called the point of observation
(P.O), with one or more peers during an indeterminate period of time (the life of the P.O).

Definition 2. Given the domain of messages Mp for a protocol P . A trace is a sequence
Γ = m1,m2, ... of potentially infinite length, where mi ∈Mp.

Definition 3. Given a trace Γ = m1,m2, ..., a trace segment is any finite sub-sequence
of Γ , that is, any sequence of messages ρ = mi,mi+1, ...,mj−1,mj(j > i), where ρ
is completely contained in Γ (same messages in the same order). The order relations
{<,>} are defined in a trace, where for m,m′ ∈ ρ,m < m′ ⇔ pos(m) < pos(m′)
and m > m′ ⇔ pos(m) > pos(m′) and pos(m) = i, the position of m in the trace
(i ∈ {1, ..., len(ρ)}).

5 Other values may also be considered atomic, but we focus here, without loss of generality, to
numeric and strings only.

4 Xiaoping Che, Stephane Maag, Huu Nghia Nguyen, and Fatiha Zaı̈di

2.2 Datamon

A syntax based on Horn clauses is used to express properties. The syntax is closely
related to that of the query language Datalog, described in [?], for deductive databases,
however, extended to allow for message variables and temporal relations. Both syntax
and semantics are described in the current section.

Syntax. Formulas in this logic can be defined with the introduction of terms and atoms,
as defined below.

Definition 4. A term is either a constant, a variable or a selector variable. In BNF:
t ::= c | x | x.l.l...l where c is a constant in some domain (e.g. a message in a trace), x is
a variable, l represents a label, and x.l.l...l is called a selector variable, and represents
a reference to an element inside a compound value, as defined in Definition 1.

Definition 5. An atom is defined as A ::= p

k︷ ︸︸ ︷
(t, ..., t) | t = t | t 6= t where t is a term

and p(t, ..., t) is a predicate of label p and arity k. The symbols = and 6= represent the
binary relations “equals to” and “not equals to”, respectively.

In this logic, relations between terms and atoms are stated by the definition of clauses.
A clause is an expression of the form A0 ← A1 ∧ ... ∧An, where A0, called the head
of the clause, has the form A0 = p(t∗1, ..., t

∗
k), where t∗i is a restriction on terms for the

head of the clause (t∗ = c | x). A1 ∧ ... ∧An is called the body of the clause, where Ai

are atoms.
A formula is defined by the following BNF:

φ ::= A1 ∧ ... ∧An | φ→ φ | ∀xφ | ∀y>xφ
| ∀y<xφ | ∃xφ | ∃y>xφ | ∃y<xφ

where A1, ..., An are atoms, n ≥ 1 and x, y are variables. Some more details regarding
the syntax are provided in the following:

– The→ operator indicates causality in a formula, and should be read as “if-then”
relation.

– The ∀ and ∃ quantifiers, are equivalent to its counterparts in predicate logic. However,
as it will be seen on the semantics, here they only apply to messages in the trace.
Then, for a trace ρ, ∀x is equivalent to ∀(x ∈ ρ) and ∀y<x is equivalent to ∀(y ∈
ρ; y < x) with the ‘<’ indicating the order relation. These type of quantifiers are
called trace temporal quantifiers.

Semantics. The semantics used in our work is related to the traditional Apt-Van Emdem-
Kowalsky semantics for logic programs [?], from which an extended version has been
provided in order to deal with messages and trace temporal quantifiers.

Based on the above described operators and quantifiers, we provide an interpretation
of the formulas to evaluate them to > (‘Pass’), ⊥ (‘Fail’) or ‘?’ (‘Inconclusive’). We
formalize properties by using the syntax above described and the truth values {>,⊥,?}
are provided to the interpretation of the obtained formulas on real protocol execution
traces. Due to the space limitation, we will not go into details of the semantics. However,
the interesting reader can refer to [?] in which all the algorithms are defined.

Guiding Testers’ hands in monitoring tools 5

2.3 Prop-tester

Prop-tester was presented in [?] to verify SOAP messages exchanged between Web
services. It is an online passive testing tool relying on XML Query processor. In this
section we introduce briefly some of its notions and adapt them to be able to verify SIP
messages. Let us start with definition of a message.

Definition 6. Given a finite set of names O, of labels L, and of atomic data values
D, a message m takes the form: o(l1 = v1, . . . , ln = vn), where o ∈ O represents
the name of the message. The composite data of the message is represented by a set
{l1 = v1, . . . , ln = vn}, rewritten as (l̄ = v̄) for short, in which each field of this data
structure is pointed by a label li ∈ L and its value is vi ∈ D.

We define a candidate event (CE) e/φ as a set of messages e that satisfy some
predicate φ that represents either functional conditions or non-functional conditions,
e.g., conditions of QoS. The predicate can be omitted if it is true. As the SIP response
messages do not contain operation names but status code numbers, we then extend our
definitions with empty operation name and any operation name by ε and ∼ respec-
tively. For example, the INVITE(requestURI = x)/(x = “sip:ua2@CA.cym.com”)
represents any INVITE message whose requestURI is “sip:ua2@CA.cym.com”, while
the ∼ (method = x)/(x 6= “ACK”) represents the any message except ACK, and the
ε(statusCode = x)/(x ≥ 200 ∧ x < 300) represents any 2xx response.

Definition 7. A property is described by the form:

P ::= Context
d−→ Consequence (positive)

P ::= Context
d−→ ¬Consequence (negative)

where d > 0 is an integer, Context is a sequence of CEs, and Consequence is a set
of CEs.

This definition allows to express that if the Context is satisfied then the Consequence
should or should not (depending on the formula type P or ¬P) be validated after at
most d messages. The Context is satisfied when all of its CEs are satisfied while the
Consequence is satisfied when there exists at least one CE which is satisfied and, the
Consequence is not satisfied when all of its CEs are not satisfied.

Semantics of a Prop-tester property are given by its evaluation on a trace segment.
A verdict is emitted if and only if the context of property is satisfied. If there is no
non-functional conditions, the verdict is either Pass or Inconclusive depending on the
consequence is satisfied or not respectively. The Fail verdict is emitted only if the
consequence is not satisfied and there exists a message which violates a non-functional
condition of the consequence.

The evaluation of a property on an arbitrary (potential infinite) trace Γ is relied
on its evaluation on a segment of Γ as above. In a property, a later CE may depend
on a former one, consequently, the verification of a message may require the presence
of its precedence. Since we can forward only read data in a continuous stream mode,
we need to create buffer which contains some segment of messages stream, what we
call a window. A created window contains firstly messages validating the context of
the property and the d next messages in Γ . Once a window is created, the verification
process on the window can start in parallel with the other created windows.

6 Xiaoping Che, Stephane Maag, Huu Nghia Nguyen, and Fatiha Zaı̈di

3 Experiments

3.1 Description of the tools

For the experiments, traces were obtained from SIPp [?]. SIPp is an Open Source
implementation of a test system conforming to the IMS, and it is also a test tool and
traffic generator for the SIP protocol, provided by the Hewlett-Packard company. It
includes a few basic user agent scenarios (UAC and UAS) and establishes and releases
multiple calls with the INVITE and BYE methods. It can also read custom XML scenario
files describing from very simple to complex call flows (e.g. subscription including
SUBSCRIBE and NOTIFY events). It also supports IPv6, TLS, SIP authentication,
conditional scenarios, UDP retransmissions, error robustness, call specific variable, etc.
SIPp can be used to test many real SIP equipments like SIP proxies, B2BUAs and SIP
media servers. The traces obtained from SIPp contain all communications between the
client and the SIP core. Based on these traces and properties extracted from the SIP RFC,
tests were performed using our above mentioned methodologies and tools. And all the
experiments have been performed on one laptop (2.5GHz Intel Core i5 with 4GB RAM).

Datamon. The testing framework of Datamon6 is implemented by using Java. It is
composed of three main modules: 1) Filtering and conversion of collected traces; 2)
Evaluation of tests; and 3) Evaluation of formulas. Figure 1 shows the way the modules
interact and the inputs and outputs from each one. The trace processing module takes the
raw traces collected from the network exchange, and it converts the messages from the
input format. In our particular implementation, the input trace format is PDML, an XML
format that can be obtained from Wireshark traces. The purpose of the module is to
convert each packet in the raw trace into a data structure (a compound value) conforming
to the definition of a message. This module also performs filtering of the trace in order
to only take into account messages of the studied protocol.

The test evaluation module receives input of a passive test, as well as a trace from the
trace processing module, and produces a verdict from the satisfaction results of the test
and conditional formulas. The formula evaluation module receives a trace and a formula,
along with the clause definitions and returns a set of satisfaction results for the query in
the trace, as well as the messages and variable bindings obtained in the process.

6 The implementation and the files used for the experiments can be found at http://www-public.
it-sudparis.eu/∼maag/Datamon/web/Datamon.html

Fig. 1. Testing framework of Datamon

http://www-public.it-sudparis.eu/~maag/Datamon/web/Datamon.html
http://www-public.it-sudparis.eu/~maag/Datamon/web/Datamon.html

Guiding Testers’ hands in monitoring tools 7

Fig. 2. Testing framework of Prop-tester

Prop-tester. The architecture of Prop-tester7 is depicted on Figure 2. The property to be
tested is translated into an XQuery such that it returns false iff the property is violated,
and true iff the property is validated. A parser8 is constructed to parse the log file
captured by SIPp tool in pcap format. It extracts necessary information, then writes
these information into an opened pipeline between the tester and the parser, where it will
be verified by an XQuery processor. The properties to be tested in XQuery form will
be executed by MXQuery processor on the XML pipeline supplying by the parser. A
verdict is emitted as soon as it is found.

3.2 Architecture of SIP

The IMS (IP Multimedia Subsystem) is a standardized framework for delivering IP multi-
media services to users in mobility. It was originally intended to deliver Internet services
over GPRS connectivity. This vision was extended by 3GPP, 3GPP2 and TISPAN stan-
dardization bodies to support more access networks, such as Wireless LAN, CDMA2000
and fixed access network. The IMS aims at facilitating the access to voice or multimedia
services in an access independent way to develop the fixed-mobile convergence. Further,
the IMS makes now part of the LTE core network for the voice and visio over LTE.

Fig. 3. Core functions of IMS framework

7 The tool is freely available at https://github.com/nhnghia/prop-tester
8 https://github.com/nhnghia/pcap2xml

https://github.com/nhnghia/prop-tester
https://github.com/nhnghia/pcap2xml

8 Xiaoping Che, Stephane Maag, Huu Nghia Nguyen, and Fatiha Zaı̈di

The core of IMS network consists on the Call Session Control Functions (CSCF)
that redirect requests depending on the type of service, the Home Subscriber Server
(HSS), a database for the provisioning of users, and the Application Server (AS) where
the different services run and interoperate. Most communications with the core network
and between the services are done using the Session Initiation Protocol [?]. Figure 3
shows the core functions of the IMS framework and the inherent protocols.

The Session Initiation Protocol (SIP) is an application-layer protocol that relies
on request and response messages for communication, and it is an essential part for
communication within the IMS framework. Messages contain a header which provides
session, service and routing information, as well as a body part (optional) to complement
or extend the header information. Several RFCs have been defined to extend the protocol.
These extensions are used by services of the IMS such as the Presence service [?] and
the Push to-talk Over Cellular (PoC) service [?].

3.3 Properties

In the experiments, a set of properties are tested through Datamon and Prop-tester, in
order to analyse their functionality and performance under different conditions.

Property 1. Initially, a simple conformance property “For every request there must be a
response” is tested.

As Table 1 shows, Datamon and Prop-tester obtain the same number of ‘Pass’ and
non-pass verdicts. Since a finite segment of an infinite execution is being tested in our
experiments, it is not possible to declare a ‘Fail’ verdict in Datamon and Prop-tester, for
the indeterminacy that testers do not know if it may become a ‘Pass’ in the future. As a
result, they treat the non-pass verdicts as ‘Inconclusive’ verdicts. In this simple property,
there is no essential difference between the results returned by Datamon and Prop-tester.

Property 2 . Therefore, a more complex conformance property “For successfully es-
tablished sessions, every INVITE request should be responded with a 200 response” is
tested for delving deeper into the differentiation between the tools.

The results shown in Table 2 illustrate that a difference between mechanisms can
result on evaluation times. Although both tools still obtain the same number of ‘Pass’
and non-pass verdicts, it can be observed that Prop-tester takes much less evaluation
time than Datamon, especially when handling numerous messages. As introduced in

Table 1. For every request there must be a response

Trace #Messages
Datamon Prop-tester

#Pass #Fail #Inc. Time(s) #Pass #Fail #Inc. Time(s)
1 500 153 0 2 1.652 153 0 2 1.103
2 1000 297 0 0 1.518 297 0 0 1.487
3 2000 575 0 0 3.071 575 0 0 2.246
4 4000 1189 0 1 7.506 1189 0 1 3.190
5 8000 2376 0 1 11.365 2376 0 1 5.480
6 16000 4796 0 1 25.942 4796 0 1 10.106
7 32000 9593 0 0 43.105 9593 0 0 18.728
8 64000 19252 0 1 88.578 19252 0 1 37.128
9 128000 38468 0 1 182.305 38468 0 1 70.390

Guiding Testers’ hands in monitoring tools 9

Table 2. For successfully established sessions, every INVITE request should be responded with a
200 response

Trace #Messages
Datamon Prop-tester

#Pass #Fail #Inc. Time(s) #Pass #Fail #Inc. Time(s)
1 500 57 0 11 1.700 57 0 11 1.058
2 1000 119 0 22 4.038 119 0 22 1.385
3 2000 248 0 53 13.505 248 0 53 2.114
4 4000 459 0 123 46.358 459 0 123 2.782
5 8000 926 0 233 180.388 926 0 233 5.019
6 16000 1842 0 440 658.148 1842 0 440 8.476
7 32000 3667 0 905 2559.239 3667 0 905 14.542
8 64000 7230 0 1911 7510.563 7230 0 1911 28.735
9 128000 14511 0 3767 28187.956 14511 0 3767 56.579

previous sections, Prop-tester introduces a predefined distance value d into its evaluation
process for instantly concluding verdicts. With the help of this value, Prop-tester will
omit comparisons with messages beyond this distance.

Conversely, Datamon has to compare all the following messages till the end of a
trace, in order to confirm the non-existence of a target message. However, the mechanism
used in Prop-tester raises a question: How will Prop-tester react if target messages appear
after the predefined distance d?

Property 3. Before answering to the question, a related property relevant to time “For
each INVITE request, the response should be received within 16s” is tested for verifying
the extensibility of both monitoring tools.

Time relevant properties can be seen as performance requirements which are different
from the conformance requirements tested above, having the ability to test performance
requirements is a crucial step for monitoring tools to extend its functionality. Not surpris-
ingly, as Table 3 shows, both tools can test this performance property and they obtain
the same results. Nevertheless, non-pass verdicts are concluded as ‘Fail’ verdicts which
is different from testing the previous conformance requirements. Because when testing
such performance requirements with timing constraint, there is no indeterminacy in
the trace. Definite verdicts (‘Pass’ or ‘Fail’) should be emitted, rather than indefinite
ones (‘Inconclusive’). That is notably the reason why the reader will notice that the
results are here similar to the ones obtained with Property 2 in the way that all ‘Incon-

Table 3. For each INVITE request, the response should be received within 16s

Trace #Messages
Datamon Prop-tester

#Pass #Fail #Inc. Time(s) #Pass #Fail #Inc. Time(s)
1 500 57 11 0 1.098 57 11 0 1.043
2 1000 119 22 0 3.192 119 22 0 1.383
3 2000 248 53 0 9.841 248 53 0 1.870
4 4000 459 123 0 35.214 459 123 0 2.765
5 8000 926 233 0 131.578 926 233 0 4.533
6 16000 1842 140 0 486.181 1842 440 0 8.069
7 32000 3667 905 0 1728.003 3667 905 0 14.512
8 64000 7230 1911 0 7286.181 7230 1911 0 28.321
9 128000 14511 3767 0 30804.213 14511 3767 0 56.817

10 Xiaoping Che, Stephane Maag, Huu Nghia Nguyen, and Fatiha Zaı̈di

Table 4. Every 2xx response for INVITE request must be responded with an ACK

Trace #Messages
Datamon Prop-tester

#Pass #Fail #Inc. Time(s) #Pass #Fail #Inc. Time(s)
1 500 57 0 0 1.241 57 0 0 24.805
2 1000 119 0 0 3.884 119 0 0 50.570
3 2000 248 0 0 12.102 248 0 0 103.088
4 4000 459 0 0 45.365 459 0 0 199.890
5 8000 926 0 0 181.758 926 0 0 400.920
6 16000 1842 0 0 658.033 1831 0 11 796.477
7 32000 3666 0 1 2631.765 3588 0 79 1617.233
8 64000 7217 0 13 7501.719 6931 0 299 3204.401
9 128000 14493 0 18 28616.957 13868 0 643 6216.099

clusive’ verdicts of Property 2 are now ‘Fail’. Besides, Prop-tester still takes the lead in
evaluation time.

Property 4. Back to figuring out the answer raised in Property 2, a more complicated
property “Every 2xx response for INVITE request must be responded with an ACK”
is tested.

Different from previous properties, obvious discrepancies between the verdicts
returned from Datamon and Prop-tester can be observed from Table 4. Take a closer look
at trace 6, all the ‘Inconclusive’ verdicts reported from Prop-tester are caused by missing
‘ACK’ responses. In fact, these ‘ACK’ responses do exist in the trace, but appear after
the predefined d in Prop-tester. Consequently Prop-tester treats these ‘missing’ ‘ACK’
responses as ‘Inconclusive’ verdicts could be considered as false negatives. The false
negatives also occur in trace 7, 8 and 9 due to the same reason.

These phenomena answer to the question raised in Property 2: the mechanism
used in Prop-tester would lead to inconclusive verdicts if the predefined distance d is set
improperly. In contrast, owing to its rigorous mechanism for obtaining verdicts, Datamon
does not have such problems but its evaluation times are still far behind Prop-tester.

Property 5. Furthermore, a sophisticated conformance property “No session can be
initiated without a previous registration” is tested for exploring the functionality of both
tools in depth.

Besides different mechanisms, the diverse logic used for formalizing properties in
both tools affect testing results likewise. As shown in Table 5, Datamon appears its

Table 5. No session can be initiated without a previous registration

Trace #Messages
Datamon

#Pass #Fail #Inc. Time(s)
1 500 56 0 1 10.318
2 1000 114 0 5 41.272
3 2000 243 0 5 165.090
4 4000 457 0 2 660.361
5 8000 912 0 14 2531.445
6 16000 1840 0 2 10565.782
7 32000 3659 0 8 40439.623
8 64000 7225 0 5 160578.492
9 128000 14506 0 5 593073.968

Guiding Testers’ hands in monitoring tools 11

potentiality on formalizing and testing sophisticated properties which Prop-tester can
not handle. Although the evaluation times seem a bit high, it has to be noticed that the
low performance of evaluation is due to memory limitation of the computer we used. If
a more powerful server is applied, the evaluation times will be apparently reduced to
satisfying numbers.

4 Discussions and testers’ guidance

In this section, we will first point out the drawbacks and advantages of each approach
according to different evaluation criteria. Then, we will give some advices to the tester
to guide him depending on his testing objectives.

– The two approaches are property-based passive testing techniques. The properties
are checked on the real execution traces. The Datamon tool is based on definition of
Horn clauses which are closely related to the query Datalog language. Such formulas
are made of atoms and terms. Formulas with quantifiers and data can be defined.
Prop-tester is based on if then clause where the quantifiers are implicit and data can
also be expressed. The main difference relies on the distance used by Prop-tester.
Prop-tester is clearly an on-line testing tool and it is why such a distance is needed to
buffer the traces. Regarding expressiveness issue, such a distance can be a drawback.
Indeed, if the distance is not explicitly stated in the requirements, the distance is
an artefact used by the testing method. In this case, if the trace does not satisfy the
property because of the distance, an inconclusive verdict is emitted. On the contrary,
if the distance is a constraint of the requirement, a fail verdict should be emitted.
Concerning the property 4 that needs to verify a triple of SIP messages with a partial
order between them (m1 ≤ m2 ≤ m3), Prop-tester is not able to express it. For
that purpose, a combinatorial numbers of properties has to be written, in this case
50 properties. Moreover, Prop-tester, as an online tool, is not able to express the
property 5 which is a complex property that relates to a behaviour occurred in the
past of the trace.
Except this difference, we demonstrate that the properties expressed by both tools
are LTL+FO equivalent because the part of the formula related to the distance is

Fig. 4. Different cases, ReqA, ResB represent for a request and its response respectively.

12 Xiaoping Che, Stephane Maag, Huu Nghia Nguyen, and Fatiha Zaı̈di

always true. The properties equivalence is not shown in this paper for lack of room.
Interested readers can refer to the technical report [?].

– One interesting feature of the Prop-tester tool is that negative property can be written.
We can specify what should never occur in the system. For that purpose, prop-tester
negates positive property.

– Both approaches have different complexity. In Datamon, the algorithm uses a recur-
sive procedure to evaluate formulas, coupled with a modification of SLD (Selective
Linear Definite-clause) resolution algorithm [?] for evaluation of Horn clauses. In
the work, it is shown that the worst-case time complexity for a formula with k quan-
tifiers is O(nk) to analyse the full trace, where n is the number of messages in the
trace. Although the complexity seems high, this corresponds to the time to analyse
the complete trace, and not for obtaining individual solutions, which depends on
the type of quantifiers used. For instance for a property ∀xp(x), individual results
are obtained in O(1), and for a property ∀x∃yq(x, y), results are obtained in the
worst case in O(n). Finally, it can also be shown that a formula with a ‘→’ operator,
where Q are quantifiers

Q . . .Q︸ ︷︷ ︸
k

(Q . . .Q︸ ︷︷ ︸
l

(A1 ∧ . . . ∧Ap) → Q . . .Q︸ ︷︷ ︸
m

(A′1 ∧ . . . ∧A′q))

has a worst-case time complexity of O(nk+max(l,m)), which has advantages with
respect to using formulas without the ‘→’ operator. For instance, evaluation of the
formula ∀x(∃yp(x, y) → ∃zq(z)) has a complexity of O(n2), while the formula
∀x∃y∃z(p(x, y) ∧ q(z)) has a complexity of O(n3) in the worst case [?].

For Prop-tester, the complexity to verify of a property 〈e1, . . . , ek〉
d−→ {e′1, . . . , e′m}

on a trace containing n messages is as follows. Prop-tester forwards only read data
in a continuous stream mode. The verification is done on a buffer which contains
some fragments of message streams, what we call a window. The window size is
k + d. There are n− k windows. The complexity is O((n− k) ∗ (k + d)). Since
k and d are constant and usually highly smaller than n, the complexity would be
O(n) . In the worst case where one wants buffer the entire trace, i.e., d ≥ n− k, the
complexity is O(n2).
The better complexity of Prop-tester is demonstrated in the experiments that have
been conducted. Prop-tester is very performant in time to evaluate the properties.

– The Datamon tool has been designed to perform off-line analysis. Indeed, execution
traces are recorded and afterwards analysed while Prop-tester is mainly efficient to
perform on-line analysis during the real execution of the system. To perform on-line
testing, the tool needs to have good performance and as consequence to give rapid
answer for the verification process. The efficiency of Prop-tester is dependent on the
efficiency of the XQuery engine that it relies on.

– Concerning the conformance verdicts emitted by both tools, there exist some dif-
ferences in their accuracy. To exhibit this point, we illustrate it with Figure 4. For
the case 1, the distance d of the Prop-tester tool has no impact on the verdict as d is
greater than the distance p between the request and its response. As for case 2, it
proves the deduction we had in the experiments. When the distance d is shorter than
p, Prop-tester emits ‘Inconclusive’ verdicts.
For the cases 3 to 5, when timing constraints are expressed by the properties, both
tools can emit different verdicts depending on the time requirement t and the size of

Guiding Testers’ hands in monitoring tools 13

the trace n, as illustrated in Table 6. In case 3, it is almost the same case as case 1.
The distance d does not influence on the verdict if d is greater than the distance
p and the time requirement t, both tools return a ‘Fail’ verdict when the timing
constraint is violated. However, in case 4, when the distance d is shorter than t
and p, Prop-tester will emit ‘Inconclusive’ verdicts while Datamon still can detect
the response and emit definite verdicts. For case 5, let us assume that the response
resB is present in the trace but will appear after the captured trace. For Datamon, if
resB appears after n, it will issue a ‘Fail’ verdict even if the timing constraint is not
violated. Contrarily, with Prop-tester a ‘Fail’ verdict can be emitted if the time is
elapsed during the d distance otherwise it will emit an ‘Inconclusive’ verdict.

We have mentioned the advantages and drawbacks of each approach and their related
tools. What is important to point out is for what purpose each tool has been designed.
Datamon is clearly well suited for off-line analysis of a system while Prop-tester is
very efficient for on-line analysis. Regarding this main feature, the drawbacks and
advantages are closely related. As already pointed out above, the expressiveness is better
for Datamon. Indeed, the off-line analysis allows to express complex properties and even
properties that express constraints on the past of the trace. Obviously, for an on-line
analysis which analyses the stream in a forward manner and with the form of if then
clause of Prop-tester such properties cannot be expressed. Moreover, always due to the
form of its properties, properties expressing relations with several variables (more than
two) cannot be expressed by Prop-tester. Furthermore, Prop-tester needs for its on-line
analysis to determine a d distance. Such a distance can be seen as a constraint of the
requirements and in this case, the verdicts will be impacted. Otherwise, it must not have
an impact on the verdict as it represents an implementation constraint needed by the
approach to limit the stream to be analysed. A very important strength of Prop-tester
relies on its performance which is of very important interest to test complex system in a
continuous way.

Both tools are complementary. Indeed, for a rapid analysis of the running system, the
main behaviours of a system can be tested as the expressiveness is not always an issue
for some tested systems. It can help to fix rapidly an erroneous system by providing rapid
feedback of discrepancy between the system and what it is expected to do. Meanwhile,
Datamon can be used as a background tool to carefully analyse recorded system traces
and by having more complex properties that can be checked.

To conclude, Prop-tester can be used as an off-line tool and in this case, the d distance
is no longer used in the expression of the property and as a consequence some limitations

Table 6. Verdicts of tools under different cases, case 1 and 2 are tested through property 1, case 3
to 5 are tested through property 3.

Case
Datamon Prop-Tester

#Pass #Fail #Inc. Time(s) #Pass #Fail #Inc. Time(s)
1 1 0 0 1.382 1 0 0 2.509
2 1 0 0 1.750 0 0 1 2.562
3 0 1 0 1.022 0 1 0 2.665
4 1 0 0 0.939 0 0 1 2.485
5 0 1 0 0.939 0 0 1 2.485

14 Xiaoping Che, Stephane Maag, Huu Nghia Nguyen, and Fatiha Zaı̈di

can be overcome. The form of the properties can also be modified in order to increase
the expressiveness. Concerning Datamon, this tool is clearly not designed to be an
on-line tool.

5 Related Work

Formal testing methods have been used for years to prove correctness of implementations
by combining test cases evaluation with proofs of critical properties. In [?][?] the authors
present a description of the state of the art and theory behind these techniques. Within
this domain, and in particular for network protocols, passive testing techniques have to
be used to test already deployed platforms or when direct access to the interfaces is not
available. Some examples of these techniques using Finite State Machine derivations have
been used in the past which are described in [?][?]. Most of these techniques consider
only control portions, in [?][?][?], data portion testing is approached by evaluation
of traces by use of EEFSM (Event-based Extended Finite State Machine), SEFSM
(Simplified Extended Finite State Machine) and IOTS (Input-Output Transition Systems)
models. They focus on testing correctness in the specification states and internal variable
values. Our approach, although inspired by it, is different in the sense that we test critical
properties directly on the trace without any generation or specification of state models of
the tested protocol or functional properties. A study of the application of invariants to an
IMS service was also presented by us in [?][?].

In [?], the authors defined a methodology for the definition and testing of time
extended invariants, where data is also a fundamental principle in the definition of
formulas and a packet (similar to a message in our work) is the base container data.
In this approach, the satisfaction of the packets to certain events is evaluated, and

properties are expressed as e1
When,n,t−−−−−−→ e2, where e1 and e2 are events defined as a set

of constraints on the data fields of packets, n is the number of packets where the event
e2 should be expected to occur after finding e1 in the trace, and t is the amount of time
where event e2 should be found on the trace after (or before) event e1. This work served
as an inspiration for both approaches described in the current document, however we
improved it by allowing the definition of formulas that test data relations and causality
between multiple messages/packets.

Although closer to runtime monitoring, the authors of [?] propose a framework
for defining and testing security properties on Web Services using the Nomad [?]
language, based on previous works by the authors of [?]. As a work on web services,
data passed to the operations of the service is taken into account for the definition
of properties, and multiple events in the trace can be compared, allowing to define,
for instance, properties such as “Operation op can only be called between operations
login and logout”. Nevertheless, in web services, operations are atomic, that is, the
invocation of each operation can be clearly followed in the trace, which is not the case
with network protocols where operations depend on many messages and sometimes on
the data associated with the messages.

Further, other recent works like [?] present distributed passive testing frameworks
aiming at simplifying and automating service testing. And, techniques based on “geomet-

Guiding Testers’ hands in monitoring tools 15

ric approaches” [?] have been used in continuous distributed monitoring for analyzing
the behaviors of communication protocols.

Besides, some researchers presented a tool for exploring online communication
and analyzing clarification of requirements over the time in [?]. It supports managers
and developers to identify risky requirements. Another interesting tool is PTTAC [?]
which automatizes a formal framework to perform passive testing for systems where
there is an asynchronous communications channel between the tester and the system.
We should also cite the recent extension of PASTE [?] that performs passive testing of
communication systems with temporal constraints associated to performance and delays.
Though these tools are interesting, they need specific state models or do not allow to
analyze data payloads.

6 Conclusion and Perspectives

In this paper, we described two passive testing approaches to test efficiently, in a non
intrusive way, the main properties of a communicating protocol, the Session Initiation
Protocol. The approaches and their associated freely available tools, Datamon and Prop-
tester, allow to test real execution traces provided by SIPp. Both approaches are based
on formal definition of desired properties to be tested. The performances and accuracy
of verdicts for both tools are dependent on the expressiveness of properties and also on
the techniques used, i.e. off- or on-line techniques. The approaches can be used by a
tester in a complementary way. In one hand, Prop-tester can be used to have rapid testing
answer on some properties to be tested and it can be launched in a continuous way to
analyse the execution traces. On the other hand, Datamon, as a back-end tool, can be
used to test more intensively the protocol with the definition of complex properties on
the recorded traces.

As an immediate perspective line, we expect to integrate more smoothly both tech-
niques in order to provide to testers more accurate verdicts, by reducing the number of
inconclusive verdicts. Moreover, both tools can take advantage of each other and then
improve for one its expressiveness and for the other its performances. Such improve-
ments can be reached by learning from each technique. Prop-tester has been used for its
first time in the testing of such communicating protocol. We expect to promote the use
of such tools to other real-life protocols.

References

1. 9646-1, I.: Information technology - open systems interconnection - conformance testing
methodology and framework - part 1: General concepts. Tech. rep., ISO (January 1994)

2. Abiteboul, S., Hull, R., Vianu, V.: Datalog and Recursion. Addison-Wesley, 2nd edn. (1995)
3. Alliance, O.M.: Internet messaging and presence service features and functions. Tech. rep.,

OMA (2005)
4. Alliance, O.M.: Push to talk over cellular requirements. Tech. rep., OMA (2006)
5. Apt, K., Van Emden, M.: Contributions to the theory of logic programming. Journal of the

ACM (JACM) 29(3), 841–862 (1982)
6. Camacho-Magrinan, M.A., Merayo, M.G., Medina-Bulo, I.: PTTAC: Passive Testing Tool for

Asynchronous Systems. In: Proc. of SITIS. pp. 223–229 (2014)

16 Xiaoping Che, Stephane Maag, Huu Nghia Nguyen, and Fatiha Zaı̈di

7. Cao, T.D., Phan-Quang, T.T., Félix, P., Castanet, R.: Automated Runtime Verification for Web
Services. In: Proc. of ICWS. pp. 76–82 (2010)

8. Che, X., Maag, S., Nguyen, H.N., Zaı̈di, F.: Guiding testers’ hands in monitoring tools
/ Appendix: Expression equivalence of the two approaches. Tech. Rep. RR15001-RS2M,
Institut Mines-Telecom / Telecom SudParis (August 2015)

9. Cuppens, F., Cuppens-Boulahia, N., Sans, T.: Nomad: A Security Model with Non Atomic
Actions and Deadlines. In: Proc. of CSFW. pp. 186–196 (2005)

10. Emden, M.V., Kowalski, R.: The semantics of predicate logic as a programming language.
Journal of the ACM 23(4), 733–742 (1976)

11. ETSI/ES 201 873-1: Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 1: TTCN-3 Core Language, v3.2.1. Tech. rep., ETSI (2007)

12. European Telecommunications Standards Institute / ETSI TS 134 123-3: Universal mobile
telecommunications system (umts); user equipment (ue) conformance specification; part 3:
Abstract test suite (ats). Tech. rep., ETSI (June 2013)

13. Hewlett-Packard: SIPp. http://sipp.sourceforge.net/ (2004)
14. Hierons, R.M., Krause, P., Luttgen, G., Simons, A.J.H.: Using Formal Specifications to

Support Testing. ACM Computing Surveys 41(2), 176 (2009)
15. Hierons, R.M., Merayo, M.G., Núñez, M.: Passive Testing with Asynchronous Communica-

tions. In: Proc. of FMOODS/FORTE. pp. 99–113 (2013)
16. Knauss, E., Damian, D.: V:Issue:lizer: Exploring requirements clarification in online commu-

nication over time. In: Proc. of ICSE. pp. 1327–1330 (2013)
17. Lalanne, F., Maag, S.: A formal data-centric approach for passive testing of communication

protocols. IEEE/ACM Transations on Networking 21(3), 788–801 (2013)
18. Lalanne, F., Maag, S., de Oca, E.M., Cavalli, A.R., Mallouli, W., Gonguet, A.: An Automated

Passive Testing Approach for the IMS PoC Service. In: Proc. of ASE. pp. 535–539 (2009)
19. Lazerson, A., et al.: Monitoring Distributed Streams Using Convex Decompositions. VLDB

Endowment 8(5), 545–556 (Jan 2015)
20. Lee, D., Miller, R.: Network protocol system monitoring - a formal approach with passive

testing. IEEE/ACM Transactions on Networking 14(2), 424–437 (2006)
21. Lee, D., Netravali, A.N., Sabnani, K.K., Sugla, B., John, A.: Passive Testing and Applications

to Network Management. In: Proc. of ICNP. pp. 113–119 (1997)
22. Li, Z., Jin, Y., Han, J.: A Runtime Monitoring and Validation Framework for Web Service

Interactions. In: Proc. of ASWEC. pp. 70–79 (2006)
23. Lopez, J., Maag, S., Morales, G.: Behavior evaluation for trust management based on formal

distributed network monitoring. World Wide Web pp. 1–19 (2015)
24. Merayo, M.G., Núñez, A.: Passive testing of communicating systems with timeouts. Informa-

tion & Software Technology 64, 19–35 (2015)
25. Miller, R.: Passive Testing of Networks using a CFSM Specification. In: Proc. of IPCCC. pp.

111–116 (1998)
26. Morales, G., Maag, S., Cavalli, A.R., Mallouli, W., de Oca, E.M., Wehbi, B.: Timed Extended

Invariants for the Passive Testing of Web Services. In: Proc. of ICWS. pp. 592–599 (2010)
27. Nguyen, H.N., Poizat, P., Zaı̈di, F.: Online Verification of Value-Passing Choreographies

through Property-Oriented Passive Testing. In: Proc. of HASE. pp. 106–113 (2012)
28. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley,

M., Schooler, E.: Sip: Session initiation protocol (2002)
29. Ural, H., Xu, Z.: An efsm-based passive fault detection approach. In: Proc. of TestCom/FATES.

pp. 335–350 (2007)
30. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches.

Software Testing, Verification and Reliability 22, 297–312 (August 2012)
31. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice and

experience. ACM Computing Surveys 41, 19:1–19:36 (October 2009)

	Guiding Testers' hands in monitoring tools: Application of Testing Approaches on SIP

