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Abstract. Hardware accelerators are classic scientific coprocessors in HPC ma-
chines. However, the number of CPU cores on the mother board is increasing and
constitutes a non negligible part of the total computing power of the machine.
So, running an application both on an accelerator (like a GPU or a Xeon-Phi de-
vice) and on the CPU cores can provide the highest performance. Moreover, it
is now possible to include different accelerators in a machine, in order to sup-
port and to speedup a larger set of applications. Then, running an application
part on the most suitable device allows to reach high performance, but using all
unused devices in the machine should permit to improve even more the perfor-
mance of that part. However, the overlapping of computations with inter-device
data transfers is mandatory to limit the overhead of this approach, leading to com-
plex asynchronous algorithms and multi-paradigm optimized codes. This article
introduces our research and experiments on cooperation between several CPU
and both a GPU and a Xeon-Phi accelerators, all included in a same machine.

1 Introduction and objectives

Hardware accelerators have become classical scientific coprocessors but they still need
a CPU to control the entire machine. Also, current standard CPU have a significant
number of cores and computing power. Using both CPU and accelerator cores seems
an interesting way to achieve the maximal computing speed on a computing node. But
using both the CPU and accelerators leads to frequently transfer intermediate results
between all those devices. So, asynchronous data transfers, overlapped with computa-
tions, are required to obtain significant speedups compared to mono-device executions.

In this study, we consider hybrid computing nodes: each node hosting one or more
CPU, one GPU and one Xeon-Phi, allowing one to choose the most adapted architecture
for each application, or application module. However, once the most adapted device has
been identified for a computation in an algorithm, it may be interesting to cooperatively
use any other kind of computing device available in the machine to concurrently pro-
cess that computation, and then to increase the overall performance. In order to ease
the use of our multi-devices and multi-architectures machines, we developed a generic
parallel algorithmic scheme achieving an overlapping of data transfers with computa-
tions between two or three devices (simultaneously), for 2D stencil applications. This
generic scheme has been implemented and optimized for GPU and Xeon-Phi devices,
considering the specific features of their programming models and API.

Our approach has been validated in [3] with a Jacobi relaxation application. In this
paper, we extend it to a more complex stencil application, more representative of real



scientific applications: a shortest path computation. As in [3], that application has been
tested on two different hybrid machines. We were able to experiment our different ker-
nels (on CPU, GPU and Xeon-Phi), using one, two or three devices simultaneously, and
to identify the most suited combination for each application.

2 Application examples
Our parallel scheme (see Sec.4) aims at running 2D stencil applications, on hybrid
machines. Two different applications have been used to test and validate our approach:
a very classical 2D Jacobi relaxation algorithm, and a shortest path calculation on
2D+ ground (taking the elevations into account). They both work on 2D regular grids of
points. The reader is invited to see [3] for a detailed description of our Jacobi algorithm.
Our shortest path algorithm computes minimal paths costs from a given position in the
grid to all other positions. It is slightly different from the Jacobi algorithm as it is an
adaptation of the Dijkstra’s algorithm [5]. The path cost of each point Pi,j is updated
according to the previous costs of its eight neighbors in the 2D grid (denoted N8(Pi,j)).
Indeed, for each neighbor, the 3D euclidian distance to the current point is computed
and added to the current minimal cost of the neighbor. Then, the new cost of the current
point is chosen as the minimal cost among the eight computations:

Cn+1(i, j) = min
Pa,b∈N8(Pi,j)

(Cn(a, b) + d(Pi,j , Pa,b))

Considering h, the side length of a grid cell (between two successive points in the grid),
the distance between Pi,j and Pa,b is:

d(Pi,j , Pa,b) =
√

((i− a).h)2 + ((j − b).h)2 + (z(i, j)− z(a, b))2

T

P

Fig. 1. Shortest path point
neighboring

In fact, N8(Pi,j), the neighboring of point Pi,j in the 2D grid
(see Fig. 1), contains less than eight neighbors when Pi,j is
located on a grid edge. This algorithm requires a 2D array of
costs and a 2D array of elevations (z). Initially, a target point
Tα,β is chosen and its cost is set to 0 while all others costs are
set to +∞. Then the algorithm starts to iterate until no cost
changes during an entire iteration (convergence is reached).
Finally, we get a 2D array of minimal costs (distances) and
paths from every point Pi,j to the target point Tα,β .

3 Related work
Today, scientific computing on GPU accelerators is common, while using Xeon-Phi ac-
celerators starts to be deeply investigated and some comparisons have been achieved.
In [6], authors point out the need to optimize data storage and data accesses in different
ways on GPU and Xeon Phi. In [2], authors optimize data storage for stencil applica-
tions on different CPU, GPU and APU (processors with both CPU and GPU cores).
Several studies like [8, 11] address the deep optimization of parallel stencil applica-
tions or other lattice based applications [12], for different types of devices. However,
their programs use only one device at a time. Some authors use a generic programming
model and tool to develop on different architectures, like OpenCL [7, 10]. Nevetheless,



such tool does not hide to the programmer the devices hardware specificities to be taken
into account to attain optimal performance. Thus, an important algorithmic effort is still
required to design codes efficiently running on different architectures.

Another approach consists in using the CPU memory to store data too large for the
accelerator memory, and to efficiently send sub-parts of the problem to the accelerator
[9]. Here again, there is no simultaneous use of the CPU and the accelerators.

Finally, some works propose general frameworks to use different devices by per-
forming dynamic scheduling of tasks graphs or data flows [4]. However, the generality
of such frameworks induces additional costs compared to application specific schemes.

In [3], we introduced our first algorithmic scheme of heterogeneous computing,
successfully running a Jacobi relaxation on CPU, GPU and Xeon-Phi. In the current
study, we generalize our approach to a more realistic scientific problem involving more
complex and irregular computation.

4 Algorithmic scheme
In our context, the GPU and the Xeon-Phi are used as scientific co-processors in offload
mode. The Xeon-Phi could have been used via MPI but we chose the offload mode
to get similar programming paradigms between the GPU and the Phi. So, our hybrid
solution uses the CPU to launch and control the computation steps on the GPU, the
Xeon-Phi and its own cores, and to manage data transfers between CPU and devices.

4.1 Global strategy of the parallel scheme
Our global data distribution strategy is to partition the 2D grid in three horizontal strips
(potentially of different heights), so that the first one is processed on the GPU, the
second one, on the CPU, and the third one, on the Phi. Placing the CPU between the
GPU and Phi in the logical organization is a strategic choice as direct data transfers
between GPU and Phi are not currently possible. We name CPU boundaries the first
and last lines computed by the CPU, GPU boundary the last line computed by the GPU,
and MIC boundary the first line computed by the Xeon-Phi. We name corpus the other
lines computed by a computing device. According to data dependencies in the applica-
tion, each computing device must store, in addition to its strip of the grid, the adjacent
boundary(ies) of its neighboring device(s). So, the top part of the grid is transferred
to the GPU and the bottom part to the Xeon-Phi (see Fig. 2 left). Although the CPU
memory may host only its associated part of the grid (and the required boundaries), for
the sake of simplicity in the overall management of the system, we have chosen to store
the entire current (crt) and previous (prev) relaxation grids. However, this could be
easily optimized if the CPU memory were too small to store the entire grids.

At each iteration during the computation loop, the GPU boundary may be trans-
ferred to the CPU while the adjacent CPU boundary may be transferred to the GPU.
Symmetrically, the CPU/Xeon-Phi boundaries may be transferred too. Indeed, as a
frontier may remain unchanged during one iteration, our algorithm transfers a fron-
tier to/from an accelerator only if it has undergone at least one modification. Also, in
order to optimize the transfers, our algorithm is designed to allow direct transfers of the
frontiers in their place in the local arrays on the destination device. So, no intermediate
array is required to store the received frontiers coming from another device, and the
CPU algorithm uses symmetric data structures and interactions for both accelerators.
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Fig. 2. Data structures (left) and asynchronous and overlapping algorithm (right) to obtain effi-
cient simultaneous computations on the three devices (CPU, GPU and Xeon-phi)

4.2 Multi-device algorithm
Figure 2 (right) details the three main parts of our generic multi-device algorithm (see
[3] for a simplified version, with straightforward array allocation on accelerators and
systematic frontier transfers):
Initialization step: Memory allocation on accelerators and initial data transfers from
CPU to accelerators can be long, so the initialization step is parallel. Firstly, input data
are prepared on the CPU. Then, the other devices are initialized and they simultaneously
receive their respective part of input data. Complementary allocations and initialization
are performed concurrently between all devices. At last, synchronization barriers are
used to ensure that each device is ready to enter the computation loop.
Computation loop: We focused on maximizing the overlap of boundary(ies) com-
putations, boundary(ies) transfers, and corpus computations on the different devices.
Boundary transfers are performed simultaneously between devices that compute adja-
cent strips of the grid when boundaries are modified. On each device, boundaries com-
putation and potential transfer are performed concurrently with the corpus computation
in order to maximize the overlap of boundaries transfers with corpus computations.
All the devices work concurrently thanks to asynchronous operations. Data transfers
from/to the accelerators are fully efficient when two PCI express buses are present.
Each iteration is ended by synchronization barriers to ensure that every device has all
its newly updated data.
Final step: Results retrieving from devices to the CPU can be long and have been also
overlapped. The results from one accelerator are transferred asynchronously during the
synchronous transfer from the other one. Thus, transfers overlap and only one synchro-
nization barrier is required to ensure the complete reception on the CPU. Finally, the
CPU cleans up the devices and its own memory and releases them. As this last operation
never appeared to be time consuming, it is done sequentially.



5 Computing kernels
The design of optimized multi-core or many-core kernels is out of scope of this article
as we focus on the efficient interactions between cooperating kernels. However, as we
developed the computing kernels for the three types of devices by adapting the Jacobi
kernels to the shortests path problem, the reader should see [3] for further details.

On GPU, both for Jacobi and Shortest Path applications, we designed CUDA ker-
nels using the fast (but small) shared memory of each stream-processor, in order to
load and access sub-parts of the data arrays. This is a kind of cache memory explicitly
managed by the developer, which is a classical optimization on NVIDIA GPU. For the
Shortest Path program, we designed a first solution that pre-compute distances between
all neighbors in the grid, in order to avoid recomputing d(Pi,j , Pa,b) (see Sec. 2). How-
ever, this version showed to be penalized by the induced larger data transfers between
GPU memories. The adopted solution, less memory consuming, consists in taking ad-
vantage of the regular structure of the grid cells by pre-computing only X and Y axis
contributions to the distances between neighbors, which represents at most 8 values in-
stead of four times the number of grid points. This implies an important reduction of
data copies into the shared memory at each iteration. In compensation, distances have
to be recomputed at each iteration, but only in a partial form (thanks to X and Y pre-
computed contributions) that does not increase the computational load so much. This
version has been used in all the experiments presented in Sec. 8.

Finally, we deployed 2D grids of 2D blocks of CUDA threads, and experimented
different sizes of 2D blocks. The optimal solution depended on the GPU used: blocks
of 16 × 16 (Y ×X) threads run faster on the GeForce GTX Titan Black, while blocks
of 16× 32 threads run faster on the Tesla K40m (both GPU have a Kepler architecture).

On CPU and Xeon-Phi, we designed basic and cache-blocking algorithms. When
blocked in cache, the grid update was processed per small sub-grids filling only the
amount of L2 cache available per thread. Moreover, we attempted to guide the compiler
to vectorize computational loops by using the AVX units (but we did not implement
intrinsics routine calls). On the basic calculations of the Jacobi algorithm, our cache
blocking mechanism has been efficient. On the opposite, on the Shortest Path algorithm
our cache blocking implementation had no effect but vectorization has been efficient.
Using #pragma ivdep and #pragma simd directives and AVX compiler options,
and achieving minor code modifications we succeeded to significantly improve perfor-
mance on Xeon CPU and on Xeon-Phi accelerator (3120 and 5100 series).

6 Optimized solution for Xeon-Phi and GPU accelerators
We present below the optimization of the initialization step and the computation loop.

6.1 Initial datastructure allocations and settings
Figure 3 introduces the actually implemented data-structures, not so different from
the generic ones (see Fig. 2 right). Listing 1.1 illustrates how we implemented data-
structures allocations and initialization by mixing GPU CUDA, CPU OpenMP and
Xeon-Phi Offload semantics and syntax. This code implements and respects the initial
step of our generic algorithm (see Sec. 4).

Main changes in the data-structures concern the Xeon-Phi (see Fig. 2 (right) and 3).
In fact, we could observe during our developments that allocations of large arrays on the



Xeon-Phi are very long when achieved from the CPU through a #pragma offload
in(...) directive. However, this allocation mechanism is required to be able to trans-
fer data between the CPU and the Xeon-Phi. So, we allocate the micPrev array and
transfer CPU data with a #pragma offload directive (lines 4-5), but the _micCrt
array is allocated as a pure Xeon-Phi variable (line 12), which is a fast mechanism.
Then, it is initialized with a Xeon-Phi internal memcpy call (line 13). Obviously, the
final results will have to be transferred from the Xeon-Phi to the CPU only through the
micPrev array. This strategy significantly reduces the initialization step, but leads to
allocate two additional small buffers to transfer the CPU and Xeon-Phi frontiers during
each computation step, as shown in Fig. 3 (fm1 and fm2). This allocation of a transfer-
able 2-lines array is done at line 6. All this sequence of operations is run asynchronously
due to the signal clause in line 9.

crt

prec GPUndevice

XphindeviceCPUndevice

GPUnpart

CPUnpart

MICnpart
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local
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Fig. 3. Optimized data structures implemented
on the three devices (CPU, Xphi and GPU)

After launching the allocation and
initialization sequence on the Xeon-Phi,
the CPU immediately enters the GPU
sequence at line 19. It allocates sev-
eral streams to manage concurrent op-
erations on the GPU, and several ar-
rays on the GPU (lines 21 and 22). Ac-
cording to CUDA paradigm, the CPU
allocates memory on the GPU calling
a cudaMalloc function. At lines 24-
26 the CPU runs another CUDA library
function to lock in its memory the ar-
rays that will be transferred to/from the
GPU, in order to speedup the transfers
and to do them asynchronously. All these
memory allocations and locking opera-
tions are achieved synchronously but are
fast. Then, the CPU launches long asyn-
chronous data transfers to fill the allocated GPU arrays (lines 28-30), and an asyn-
chronous GPU-to-GPU memory copy at lines 32-33. All these long operations are run
asynchronously on stream 0 so that the CPU can concurrently perform its own initial-
ization at lines 35-38 (running several threads to speedup a large memory copy).

Finally, we implemented the two synchronization barriers of our algorithm (Fig. 2
right). At line 40, the CPU waits for the end of all asynchronous GPU operations on
stream 0, and at line 41, it waits for the end of all asynchronous Xeon-Phi operations.
This implementation is very close to the initial step of our generic algorithm, save for
some fast GPU memory allocation and CPU memory locking that remain synchronous.

Listing 1.1. Initial step implementation
1 // CPU allocation of data array
2 posix_memalign(&crt, ALIGN, TotCol * TotLin * sizeof(double));
3 // ASYNCHRONOUS XEON-PHI ALLOCATIONS AND INITIALIZATION
4 #pragma offload target(mic:0) \
5 in(micPrev:length(micTotLin*TotCol) free_if(0) align(ALIGN)) \
6 in(micCrt:length(2*TotCol) free_if(0) align(ALIGN)) \
7 ... \



8 nocopy(micRes, _micCrt, micTopFront, micBotFront) \
9 signal(&micPrev)

10 {
11 // Alloc and init of _micCrt array on Xeon-Phi (matching micPrev array)
12 posix_memalign(&_micCrt, ALIGN, micTotLin*TotCol*sizeof(double));
13 memcpy(_micCrt, micPrev, micTotLin*TotCol*sizeof(double));
14 // Init pointers on data arrays on Xeon-Phi
15 micRes = micPrev + TotCol;
16 ...
17 }
18 // Synchronous GPU Allocations
19 for (i=0; i<NBSTREAMS; ++i) // 3 streams
20 cudaStreamCreate(&(streamTab[i]));
21 cudaMalloc(&gpuPrev, gpuTotLin*TotCol*sizeof(double));
22 ...
23 // Synchronous CPU memory lock (to speedup CPU-GPU data transfers)
24 cudaHostRegister(prev, gpuTotLin*TotCol*sizeof(double), // transferred
25 cudaHostRegisterPortable); // to gpuPrev
26 ...
27 // ASYNCHRONOUS GPU INIT: data transfer from CPU to GPU
28 cudaMemcpyAsync(GpuPrev, prev, gpuTotLin*TotCol*sizeof(double),
29 cudaMemcpyHostToDevice, streamTab[0]);
30 ...
31 // ASYNCHRONOUS GPU INIT: data copy from GPU to GPU
32 cudaMemcpyAsync(GpuCrt, GpuPrev, gpuTotLin*TotCol*sizeof(double),
33 cudaMemcpyDeviceToDevice, streamTab[0]);
34 // Complementary CPU init. (parallelized with OpenMP)
35 #pragma omp parallel num_threads(nbTHet) {
36 size_t idxFirstValTh = ...; size_t nbValTh = ...;
37 memcpy(crt+idxFirstValTh, prev+idxFirstValTh, nbValTh*sizeof(double));
38 }
39 // SYNCHRONIZATION BARRIERS on the end of the GPU and Xeon-Phi async. init.
40 cudaStreamSynchronize(streamTab[0]); // GPU
41 #pragma offload_wait target(mic:0) wait(&micPrev) // Xeon-Phi

6.2 Asynchronous and overlapped computation loop
Code snippet in Listing 1.2 summarizes our implementation of the computation loop of
the generic algorithm (Fig. 2 right). Line 1 shows that the global loop is stopped as soon
as no modification occurs during one iteration. Line 4 is an asynchronous CUDA kernel
launch, running frontier computation on the GPU. Indeed, a CUDA kernel launch has a
specific CUDA syntax, and requires to be implemented in a .cu source file, and to be
compiled with the Nvidia CUDA compiler (nvcc), that cannot compile Intel offload or
OpenMP directives. So, CUDA kernels launching operations have to be encapsulated
into functions located in a .cu file. Line 5 transfers a modification flag of the GPU
frontier onto the CPU. This asynchronous transfer uses the same CUDA top frontier
stream (TF) as the previous kernel execution, so these two asynchronous operations are
sequenced: frontier computation is achieved and the modification flag set before it is
transferred to the CPU. Lines 7 and 8 reproduce this kernel launch and modification flag
transfer, focusing on the rest of the problem processed on the GPU, using the CUDA
corpus stream.

Lines 11-16 perform a similar frontier and corpus computations on the Xeon-Phi
(like on the GPU). Here, the modification flags are scalar boolean values automatically
transferred between the CPU and the Xeon-Phi at the beginning and at the end of each
offload directive. Moreover, when declared (at top of the source file) the heterMIC
routine has been labeled to be a Xeon-Phi routine, in order the Intel compiler applies
all the suited optimizations. In particular, it can take into account the vectorization di-
rectives embedded in the source code of this routine.



Lines 18-25 are the synchronous CPU computation of the two CPU frontiers (CPU/
GPU and CPU/Xeon-Phi), using OpenMP multithreading and Intel compiler vectoriza-
tion on SSE or AVX units. The CellUpdate routine (lines 22-23) is compiled only
for CPU, and Intel compiler can achieve vectorization optimization adapted to CPU
cores. Lines 27-35 perform the asynchronous transfers of the CPU frontiers to the GPU,
using a new CUDA bottom frontier stream (BF), and to the Xeon-Phi, using a new sig-
nal clause (dummyTransfer). According to our generic algorithm (see Sec. 4) these
transfers are done only if the frontiers have been modified on the CPU.

At lines 37-40, the CPU waits for the end of the GPU frontier computation and
modification flag transfer (TF CUDA stream) before to asynchronously transfer the
GPU frontier to the CPU if it has been modified on the GPU. Lines 42-46 execute
the same operations for the Xeon-Phi. Lines 48-61 correspond to the computation of
the CPU part of the problem excepted its frontiers (the CPU corpus). Again, it is a
multithreaded and vectorized computation, and a modification flag is raised when a
modification occurs (line 60).

Lines 63-65 contain synchronization barriers for the end of the CPU/GPU frontier
transfers and the end of the GPU corpus computation. Lines 67-71 perform the same
operations on the Xeon-Phi. Lines 73-77 permute current and previous array pointers
on the Xeon-Phi, the GPU, and the CPU. These permutations are not complex but their
implementations differ: pointers on GPU memory are CPU variables managed by the
CPU, while pointers on Xeon-Phi memory are stored on the Xeon-Phi and must be per-
muted by the Xeon-Phi. Finally, pointers on the Xeon-Phi memory have mirror pointers
on the CPU (due to the offload semantics) that must be permuted too (line 77). Lines
78-81 compute global modification flags corresponding to each computing device.

Listing 1.2. Computation loop implementation
1 for(iter=0; iter<nbIters && (modifCPU || modifGPU || modifMIC); ++iter) {
2 ...
3 // ASYNCHRONOUS GPU computations and frontier transfer to the CPU ------------
4 gpuOneIterationLast(gpuPrec+..., gpuCrt+..., 1 /*1 line*/, nbCol, ..., TF);
5 cudaMemcpyFromSymbolAsync(&modifGPULast, pt_gpu_modif_hf, ...,
6 cudaMemcpyDeviceToHost, streamTab[TF]);
7 gpuOneIteration(gpuPrev, gpuCrt, ..., nbLinsGPU-1, nbCol, ..., CORPUS);
8 cudaMemcpyFromSymbolAsync(&modifGPUCorpus, pt_gpu_modif_corpus, ...,
9 cudaMemcpyDeviceToHost, streamTab[CORPUS]);

10 // ASYNCHRONOUS Xeon-Phi computations and frontier transfer to the CPU -------
11 #pragma offload target(mic:0) nocopy(botFrontMIC, micPrev, _micCrt, ...) \
12 signal(&botFrontMIC)
13 { heterMIC(micPrev, _micCrt, ..., botFrontMIC, &modifMICFirst); }
14 #pragma offload target(mic:0) \
15 nocopy(micPrev, _micCrt, micTer, ..., modifMICCorpus) signal(&_micCrt)
16 { heterMIC(micPrev, _micCrt, ..., &modifMICCorpus); }
17 // Synchronous CPU frontier computations -------------------------------------
18 #pragma omp parallel num_threads(nbTHet)
19 { #pragma omp for
20 #pragma simd
21 for (col=1; col <= nbCol; ++col) {
22 CellUpdate(prev, crt, ..., firstLine + col, &modifCPUFirst);
23 CellUpdate(prev, crt, ..., lastLine + col, &modifCPULast);
24 }
25 }
26 // ASYNCHRONOUS CPU frontiers transfers to accelerators ----------------------
27 if (modifCPUFirst)
28 cudaMemcpyAsync(gpuCrt+..., cpuCrt+..., nbCol*sizeof(double),
29 cudaMemcpyHostToDevice, streamTab[BF]);
30 if (modifCPULast) {



31 #pragma offload target(mic:0) \
32 in(topFrontMIC:length(nbCol+1) alloc_if(0) free_if(0) align(ALIGN)) \
33 in(dummyTransfert) nocopy(_micCrt) signal(&dummyTransfer)
34 { memcpy(_micCrt+1, topFrontMIC+1, nbCol * sizeof(double)); }
35 }
36 // ASYNCHRONOUS GPU frontier transfer to the CPU -----------------------------
37 cudaStreamSynchronize(streamTab[TF]);
38 if (modifGPULast)
39 cudaMemcpyAsync(topFrontCPU, gpuCrt+..., nbCol*sizeof(double),
40 cudaMemcpyDeviceToHost, streamTab[TF]);
41 // ASYNCHRONOUS Xeon-Phi frontier transfer to the CPU ------------------------
42 #pragma offload_wait target(mic:0) wait(&botFrontMIC)
43 if (modifMICFirst)
44 #pragma offload_transfer target(mic:0) \
45 out(botFrontMIC:length(nbCol+1) alloc_if(0) free_if(0) align(ALIGN)) \
46 signal(&botFrontMIC)
47 // Synchronous CPU corpus computation ----------------------------------------
48 #pragma omp parallel for schedule(dynamic) num_threads(nbTHet)
49 for (lin=2; lin < nbLinesCPU; ++lin) // multithreaded loop
50 #pragma simd // guided vectorization
51 for (col=1; col <= nbCol; ++col) {
52 size_t ind = lin*TotCol + col;
53 #pragma ivdep // guided vectorization
54 for (dl=-1; dl <= 1; ++dl)
55 for (dc=-1; dc <= 1; ++dc) {
56 cost = cpuPrev[ind + ...] + sqrt(...); // Compute the new distance
57 minCost = min(cost, minCost); // Store current min distance
58 }
59 cpuCrt[ind] = minCost; // Store the min distance
60 if(minCost < cpuPrev[ind]) modifCPUCorpus = true; // Rise modif flag if
61 } // min distance has changed
62 // SYNCHRONIZATION BARRIER on the end of GPU operations ----------------------
63 if (modifGPULast) cudaStreamSynchronize(streamTab[TF]);
64 if (modifCPUFirst) cudaStreamSynchronize(streamTab[BF]);
65 cudaStreamSynchronize(streamTab[CORPUS]);
66 // SYNCHRONIZATION BARRIER on the end of Xeon-Phi operations -----------------
67 #pragma offload_wait target(mic:0) wait(&_micCrt)
68 if (modifMICFirst)
69 #pragma offload_wait target(mic:0) wait(&botFrontMIC)
70 if (modifCPULast)
71 #pragma offload_wait target(mic:0) wait(&dummyTransfer)
72 // SYNCHRONOUS PERMUTATION of current and previous arrays on each device -----
73 #pragma offload target(mic:0) nocopy(micPrev, _micCrt)
74 { double *tmp = _micCrt; _micCrt = micPrev; micPrev = tmp; } // Phi ptr on Phi
75 tmp = gpuPrev; gpuPrev = gpuCrt; gpuCrt = tmp; // GPU ptr on CPU
76 tmp = prev; prev = crt; crt = tmp; // CPU ptr on CPU
77 micCrt = crt + ...; micPrev = prev + ...; ... // Mirror Phi ptr on CPU
78 // Modification flags computations
79 modifGPU = modifGPULast | modifGPUCorpus;
80 modifMIC = modifMICPre | modifMICCorpus;
81 modifCPU = modifCPUFirst | modifCPULast | modifCPUCorpus;
82 }

Finaly, mixing the Nvidia CUDA and Intel offload programming paradigm leads
to a complex syntax, but we succeeded to implement our generic asynchronous paral-
lel algorithm, including many computations / data transfers overlapping. Vectorization
can be used on the CPU and Xeon-Phi kernels, but must be implemented in separated
routines so that the compiler can easily generate efficient code for each architecture.
Some different CUDA streams must be associated with the GPU kernel launches and
data transfers, in order to concurrently run sequences of operations.

The final step of our generic algorithm mainly consists in retrieving the results from
the accelerators. The mechanisms used to implement this are similar to the initialization
step and consists in overlapping the results transfers from GPU and Xeon-Phi by using



an asynchronous transfer from the GPU. So, we do not give code sample for that part.
Instead, we mention that on the Xeon-Phi, it is necessary to copy the results into the
transferable array (the one initialized with the in offload directive, line 5 in Listing 1.1)
when the number of iterations is odd.

7 Testbeds and benchmark data for shortest path computation
The machine used at CentraleSupelec is a Dell R720 server containing two 6-cores
Intel(R) Xeon(R) CPU E5-2620 at 2.10GHz, with two accelerators on separate PCIe
buses. One accelerator is an Intel MIC Xeon-Phi 3120 with 57 physical cores at 1.10 GHz,
supporting 4 threads each. The second accelerator is a Nvidia GPU GeForce GTX Titan
Black (Kepler architecture) with 2880 CUDA cores. The machine used at Loria is a
Dell R720 server containing two 8-cores Intel(R) Xeon(R) CPU E5-2640 at 2.00GHz,
with two accelerators on separate PCIe buses. One accelerator is an Intel MIC Xeon-
Phi 5100 with 60 physical cores at 1.05 GHz supporting 4 threads each. The second
accelerator is a Nvidia GPU Tesla K40m (Kepler architecture) with 2880 CUDA cores.

In order to get representative results with the shortest path problem, we used el-
evation data of a large area in the French and Italian Alps from the NASA SRTM
project [1]. The 2D grid resolution is 30m, with 10803 columns and 18005 lines
(≈324Km×540Km), and the elevations range from -87m to 4797m. The overall calcu-
lation takes 9005 iterations with a target point located at the center of the area. In this
study, we did not use larger datasets to be able to compare executions on single devices.

8 Benchmark results with different hybrid machines
In the following paragraphs, we present the performance results of our algorithm in sev-
eral steps. Firstly, we present the performance of each device alone in order to give an
idea of the relative computing powers of the devices inside each machine. These relative
powers are useful to deduce the theoretical optimal partitioning of the 2D grid by using
a simple static load balancing scheme. Then, we consider double device mixing, where
two devices cooperate (GPU-CPU, CPU-PHI, GPU-PHI). Finally, the results with the
three cooperating devices are presented. All the following experiments are averages of
several executions although we observed a very limited standard deviation.
Standalone performance In Tab. 1 are presented the performance results for each de-
vice in both machines. Speeds are expressed in points per second instead of GFlops as
the computation amount varies among the points. Relative computing powers are esti-
mated according to the total power of each machine, deduced from the aggregation of
the devices speeds. As expected, the CPU is the slowest device inside each machine and
the GPU is the fastest one. However, strong differences between the two machines are
observed, which is interesting as it provides significantly different hardware configura-
tions. It allows us to see how our algorithm behaves in either cases. Absolute speeds are
useful here to deduce the relative computing powers of the devices but they are omitted
in the following tables as they are redundant information with gains.

Loria machine CentralSupelec machine
CPU PHI GPU CPU PHI GPU

Speed (pts/s) 6.35E+008 1.56E+009 3.00E+009 4.46E+008 1.74E+009 1.74E+009
Relative powers 12.20% 29.97% 57.83% 11.36% 44.32% 44.32%

Table 1. Performance results of each device alone and relative computing powers



Loria machine CentraleSupelec machine
GPU-CPU CPU-PHI GPU-PHI GPU-CPU CPU-PHI GPU-PHI

Cut line gain Cut line gain Cut line gain Cut line gain Cut line gain Cut line gain
-1000 13900 -47.74% 4200 29.14% 10900 -14.80% 13300 -48.14% 1700 7.40% 8000 19.99%
-500 14400 -45.88% 4700 33.32% 11400 -13.27% 13800 -46.64% 2200 10.38% 8500 22.31%

opt. cut 14900 -42.92% 5200 37.19% 11900 -14.58% 14300 -44.66% 2700 13.97% 9000 23.01%
+500 15400 -37.03% 5700 28.37% 12400 -15.91% 14800 -41.61% 3200 13.94% 9500 22.32%

+1000 15900 -33.24% 6200 15.69% 12900 -17.59% 15300 -37.58% 3700 -0.92% 10000 19.29%

Table 2. Performance results and gains around theoretical optimal cutting lines for both machines.

Double device mixing According to the single devices results, the relative computing
powers of the devices in each machine are used to perform static load balancing. The
optimal grid partitioning into two horizontal strips is computed for every couple of
devices. For example, GPU is 4.7 times faster than CPU in the Loria machine, then
the strip associated to the GPU will be 4.7 times larger than the CPU one, leading to a
cutting line (opt. cut in Tab. 2) of 14900. The results are presented in Tab. 2 where the
gains are computed relatively to the speed of the fastest device involved in the mixing.

First of all, we can see that some gains are negative and others are positive. Negative
gains indicate that the mixing is less efficient than the fastest device alone. With both
machines, the GPU-CPU mixing does not provide any gain. Indeed, even extremely
imbalanced partitions with most of the grid on the GPU (17500 lines) provided a loss
of 19.42% on the Loria machine and 8.20% on the CentralSupelec one. Those results
show that the mixing overheads are never compensated by the computation gains with
that grid size. Concerning the CPU-PHI mixing, we obtain significant gains on both
machines, showing that our scheme is efficient for mixing those two devices. Finally,
we obtain diverging results between the two machines for the GPU-PHI mixing. This
mainly comes from the difference of powers between the two GPU devices. As the
powers of the PHI and GPU are similar on the CS machine, their mixing is actually
efficient whereas on the Loria machine the two devices have too different powers to
compensate the mixing overheads. Also, it is surprising to get so different gains between
GPU-CPU and CPU-PHI on the CS machine and this will require a deeper analyze.

CPU Loria machine CPU CentraleSupelec machine
PHI GPU-CPU cut line PHI GPU-CPU cut line

cut line 9400 9900 10400 10900 11400 cut line 7000 7500 8000 8500 9000 9500
11600 1.28% -3.38% -7.07% -11.66% -13.60% 9000 24.87% 28.94% 27.08% 25.63% 23.47%
12100 -2.13% 1.55% -2.31% -5.70% -9.57% 9500 3.05% 23.26% 32.60% 30.65% 28.41% 22.53%
12600 -12.73% -5.19% 3.00% -1.03% -5.78% 10000 -9.33% 1.61% 21.92% 34.83% 32.30% 26.24%
13100 -21.84% -16.00% -9.32% -4.51% -2.01% 10500 -19.32% -10.69% 0.07% 20.51% 37.01% 30.83%
13600 -30.68% -23.83% -20.22% -12.83% -7.13% 11000 -27.32% -20.27% -11.68% -1.08% 19.08% 32.01%

Table 3. Performance gains for the triple mixing on both machines.

Triple device mixing For the sake of concision, we present in Tab. 3 only the per-
centage gains for both machine around their respective optimal cutting lines between
GPU-CPU and CPU-PHI. For the CS machine, we added an extra column of GPU-CPU
cutting line as the maximal performance was obtained at the limit of the initial set. It
can be observed that our heterogeneous algorithm hardly obtains positive gains on the
Loria machine whereas it obtains up to 37% gain over the GPU on the CS machine
(better than double mixing). The bad performance with the Loria machine is quite un-
expected. It probably comes from the different hardware configuration as well as the
older Intel compiler used. However, results with the CS machine show that our algo-
rithmic scheme can provide significant gains. All those results show that the efficiency



of our approach is sensitive to the hardware configuration as well as to the problem
size. This will deserve a more complete investigation over the behavior of our scheme
according to larger grid sizes.

9 Conclusion
An algorithmic scheme has been presented that enables the cooperation of several com-
puting devices of different types (CPU, GPU, PHI) to process a stencil application on a
single machine. Our scheme makes an intensive use of asynchronous computations and
data transfers in order to obtain an efficient overlapping of both operations.

The scheme has been evaluated with different combinations of devices cooperation
on a representative elevation map of the Alps region. Results show that our algorithm
can provide significant gains either with two or three devices. It has been observed that
better gains are obtained when the relative computing powers of the devices are closer.

Several extensions should be interesting such as studying the behavior of our scheme
with larger grid sizes, including a dynamic load balancing by re-partitioning the grid
during the algorithm execution, as well as extending our scheme to cluster systems by
adding explicit inter-machine communications.
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