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Abstract
We show that the Wirtinger presentation of a prime alternating

link group satisfies a generalized small cancellation theory condition.
This gives a simplification of Weinbaum’s solution to the word and
conjugacy problems for these groups.

1. Introduction
To show that an alternating prime link group has a solvable word and

conjugacy problem, C.M.Weinbaum ([9], see also [4]) uses that the Dehn
presentation of this group almost verifies the small cancellation conditions
C(4)−T (4). In fact Weinbaum works with a presentation of a free product of
the link group and an infinite cyclic group, which implies some technical de-
tours in the proof. In [1], it is shown that the Dehn presentation corresponds
to a CAT (0) complex.

The more common Wirtinger presentation does not verify these classical
small cancellation conditions, but we shall show here that it does satisfy the
conditions of a recent version of new small cancellation theory, due to Gromov
(see [3]) and Ollivier (see [6]) using graphs. The usual small cancellation
theory methods then give solutions to the word and conjugacy problems.

First, we define the presentation associated to a finite, labelled, oriented
and reduced graph Γ, such that generators are the labels and relators are the
words read on a generating family of cycles of Γ.

Given a minimal Van Kampen diagram D, we then subdivide this dia-
gram into megatiles (essentially, a megatile is a maximal subdiagram of D,
implicitly used in [6]) and consider a small cancellation type condition on
this megatile diagram.

An important difference with the classical small cancellation theory from
[4] is that a piece is a word which has two distinct immersions in Γ.

Under usual small cancellation conditions (from the graph viewpoint),
the megatiles are simply connected, so the megatile diagram D′ is a diagram,
considering each megatile as a face.
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The first important result, shown in [6], is that each megatile satisfies an
linear isoperimetric inequality.

We give a correspondance between the two viewpoints: if Γ satisfies the
non metric conditions C(p) − T (q)O (“O” for “Ollivier”), then each megatile
diagram of a minimal diagram is a [p, q]-map, in the terminology of [4]. Then
we obtain an analogous result to the main technical result of classical small
cancellation theory in the non-metric case (see [4] theorem 6.3 p 262 and
theorem 7.6 p 265) giving solutions to the word and conjugacy problems,
from the graph viewpoint: see theorem 5.

As an application of this technical theorem, we have the following theorem
and its immediate corollary:

Theorem 6. Let Γ be the dual graph associated to a regular prime alternating
link projection P , let R be the natural “visual” basis of circuits of length 4 .
Then:

1. The presentation associated to the graph (Γ,R) is the Wirtinger pre-
sentation of the link group.

2. (Γ,R) satisfies the small cancellation conditions C(4)− T (4)O.

Together the above two theorems immediately give:

Corollary 7 (Weinbaum [9]). Groups of prime alternating links have solvable
word and conjugacy problems.

It is also clear that if a prime alternating presentation P (Γ,R) of a knot
contains at least one crossing, then the knot is not trivial, as it is easy to show
that the shortest relation has length 4, and all the generators of P (Γ,R) are
meridians or their inverses (see [5]). If the group were Z, then there would
be a relation of length 2.

With a little more work, one can show that prime alternating link pre-
sentations with at least one crossing correspond to non-trivial link.

2. Context
We summarize here some basic definitions and properties of this new

viewpoint: for more details, see [2].
Throughout, Γ will be a finite, oriented, not necessarily connected graph,

without vertices of degree 1. Γ is labelled by letters, which form a set denoted
by S. In addition, we shall suppose that Γ is reduced (two consecutives edges
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of the graph are never respectively labelled by a generator and its inverse)
and there are no redundant circuits.

We define the finitely presented group G, associated with Γ as follows:
S is the set of the generators. A set of relators, R, is a set of words read
on a basis (or generating family) of cycles (circles immersed in Γ) or circuits
(circles embedded in Γ) of Γ, which generate H1(Γ). We shall assume that
R always contains the shortest circuit, of length γ (γ is the girth of Γ).

This gives a finite presentation P(Γ,R) = 〈S | R〉 of the group G =
F (S)
〈〈R〉〉 = 〈S | R〉, where 〈〈R〉〉 is the normal subgroup of F (S) generated by
R. Notice that 〈〈R〉〉 is independent of the choice of the set R.

Classical small cancellation theory uses conditions on the lengths of pieces
relative to the lengths of relators, where a piece is a common subword of
two relators. A simple example illustrates the difference between the two
approaches. In classical small cancellation theory (see[4]), in the presentation
P = 〈a, b, c | ba−1, bc−1〉, b is a piece (common initial prefix of two distinct
relators) of length 1 for the word metric, and is half the length of the relators
containing it.

In this "graph small cancellation theory", a piece is defined as follows:

Definition 1. Let Γ be a finite labelled oriented graph. A piece is a word
labelling two distinct path immersions in Γ.

In the example, consider the θ−curve Γ consisting of two vertices joined
by three edges labelled by a, b and c. As each of a, b and c has an unique
immersion in Γ, there is no piece in Γ. It is clear how to choose R such that
P(Γ,R) = P = 〈a, b, c | ba−1, bc−1〉.

Remark 2. It is hard to take into account torsion in this version of the
theory: if there is an embedded loop labelled by a proper power wn, then it is
itself a piece. For more on this see [2].

A (van Kampen) diagram over a finite presentation P = 〈S | R〉 is
a finite, planar, connected, simply connected 2-complex D, with oriented
edges labelled in S, such that the boundary of each face is labelled by a
word of R (up to cyclic permutation and inversion). The label on the outer
boundary (the boundary of the complement of D in R2) is a word w in the
free semigroup on S ∪ S−1. We also say that D is a diagram for w over P .

A diagram for w is minimal if all other diagrams for w have at least
as many faces. Note that minimal diagrams are reduced. Van Kampen’s
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original interest in these diagrams is the fact (see [8]) that every word w in
〈〈R〉〉 has a diagram over P . We define the area of w ∈ 〈〈R〉〉, AreaP(w), to
be the number of 2–cells in a minimal diagram for w over P . We say that
the presentation satisfies a linear (quadratic, cubic, exponential, recursive)
isopermetric inequality if there is a linear (quadratic, cubic, exponential,
recursive) function fP : N → R such that Area(w) ≤ fP(|w|). A standard
result of this domain is that the word problem of a presentation is solvable
if and only if it has a recusive isoperimetric inequality. As usual, |w| denotes
the length of the word w (in the free group or semigroup F (S), according to
the context).

Let D be a minimal diagram over a graph presentation P(Γ,R).
We say that two open faces of D are Γ-adjacent if their boundaries in

D contain a common edge originating from Γ (that is, the two lifts of
the common edge is at the same place in Γ). We say that a vertex of D
originates from Γ if it only belongs to closed edges coming from Γ.

The reflexive and transitive closure of the Γ-adjacency relation is an equiv-
alence relation, and amegatileM is formed from the union of all elements of
an equivalence class, together with all open edges originating from Γ between
Γ-adjacent faces of this class and vertices which belong only to boundaries
of these open edges.

Seen as an abstract complex, M has a boundary, denoted ∂M , which is
a not necessarily connected 1-complex, and ∂M lifts to Γ. Notice that edges
of ∂M do not originate from Γ, and distinct edges in ∂M may be identified
in D (see figure 1), that is M ∪ ∂M is not necessarily homeomorphic to the
closure of M in D. In figure 1, the lower-left megatile M of D is a disc, with
boundary ∂M a circle, but the closure of M in D is an annulus.

This notion of megatile is implicitly used in [6] (where faces are called
"tiles"). Notice that a face of a minimal diagram belongs to one and only
one megatile, and that a megatile of a minimal diagram D is not necessarily
simply connected (see the figure 1). But under the usual small cancellation
conditions (e.g. C(4) − T (4), see theorem 5.1), each megatile of a minimal
diagram is simply connected (two megatiles of the figure 1 are impossible
under these conditions).

The megatile diagram of D, denoted by D′, is the 2-complex, unique by
construction, built from D, by deleting open edges of D originating from Γ
and vertices of D originating from Γ (see the figure 1).

In a diagram D, we can distinguish a D-edge, which is an edge of D
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Figure 1: Megatile diagram of a diagram D

labelled by a generator or its inverse and a D′-edge, which is an arc of the
megatile diagram D′ of D, labelled by a word, such that the extremal vertices
have degree at least 3 and the others have degree 2 (in D′).

We repeat that an important property of each megatile M is that every
loop in ∂M lifts to a cycle in Γ.

1. Results in graph small cancellation theory
We give now two important lemmas about megatiles; the first one comes

from [6]:

Lemma 3. Let Γ be a graph, R a basis of Γ, of girth γ and diameter ∆. Let

µ = max{Area(w) | |w| ≤ 3∆, w labels a cycle in Γ}

Let D be a minimal diagram over (Γ,R) and M a simply connected
megatile of D.

Then:

- M satisfies a linear isoperimetric inequality.

More precisely, M contains at most 3µ
γ
|∂M | faces.
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- If M and M ′ are two megatiles of D, each arc of ∂M ∩ ∂M ′ is labelled by
a piece (not necessarily maximal, i.e. included in a longer piece of Γ).

We say that a graph Γ verifies the C(p)O condition, p ≥ 2, when no cycle
of Γ can be decomposed into fewer than p pieces (with disjoint interior).

Let q ≥ 3. We say that Γ verifies the T (q)O condition when:
If there are h (3 ≤ h < q) paths (of length 2) in Γ labelled p1p

−1
2 ,

p2p
−1
3 ,...,php−11 , with p1, p2,...,ph generators (or their inverses, and pi 6=

pi+1 (mod h) as Γ reduced), which lift to Γ, then the h paths have the
same vertex of Γ as their midpoint.

These last technical definitions imply more simple and convenient prop-
erties:

Properties 4. Let D be a minimal diagram over (Γ,R), and D′ the megatile
diagram of D.

Then:

1. If Γ satisfies C(p)O, the boundary of each internal simply connected
megatile M of D′ (internal means that ∂D′ ∩ ∂M contains no edge) is
composed of at least p D′-edges. (One says that D′ satisfies C(p))

2. If Γ satisfies T (q)O, the degree of each internal vertex of D′ is at least
q. (One says that D′ satisfies T (q))

The proof is essentially the same than in [4] (lemma 2.2 p 242).

Theorem 5. Suppose (Γ,R), of girth γ, satifies C(p) − T (q)O for (p, q) ∈
{(4, 4), (6, 3), (3, 6)}. Let D be a minimal diagram over Γ and D′ the megatile
diagram of D. Then:

1. Each megatile of D is simply connected. Hence, one can consider D′
as a diagram, whose faces are megatiles of D.

2. The group G associated to Γ is torsion free.

3. The word and conjugacy problems are solvable for G (there is a cubic
isoperimetric inequality).
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Sketch of the proof:
One first uses the C(p) − T (q)O conditions to show (1). The megatile

diagram D′ of every minimal diagram D then satisfies the C(p)− T (q) con-
ditions, as said in the terminology of [4], D′ is a [p, q]-map. Then, using
standard methods and results of classical small cancellation theory, it is not
hard to prove:

2. The fact that there are no [p, q]-maps on a sphere implies there is no
torsion.

3. A [p, q]-map satisfies at least a quadratic isoperimetric inequality. Us-
ing lemma 3 in each megatile of D′, we obtain a cubic isoperimetric inequal-
ity. It is easy to show that the lengths of the boundaries of the megatiles are
bounded by a linear function of the boundary of D (see [2], theorem I.45 p
66).

2. Application to prime alternating link groups
a. Construction of a link graph

One considers an oriented link L embedded in S3 and a regular projection
P (L) of this link. At each double point of this projection, two opposite germs
of the arcs are identified to signify the presence of an overcrossing and an
undercrossing. By abuse of language, in this projection, arcs stop to each
undercrossing. As in [4] condition (1) p 268, we can suppose that there are
four distinct regions at each crossing.

One orients and labels each arc (of each component) between two cross-
ings of this projection (in the same sense) by a generator; these generators
correspond to those of the Wirtinger presentation; one obtains one relator of
length 4 per crossing. This gives a presentation of the fundamental group of
the link complement (see [7] pp 56-59).

The graph Γ(L) (or simply Γ) of the link is obtained by duality from
the regular projection. To each open and connected region of the regular
projection, we associate a vertex of the graph and to each arc of the regular
projection an edge of the graph which is transverse to this arc.

Then, one agrees on a rule for the labelling and the orienting of the graph:
If one imagines the link projected onto the graph, seen from above, and if

one follows each component of the link in the positive sense, one labels each
edge of the graph by the same generator which labels the transverse arc of
the link, oriented, by convention, from left to right.
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At each double point of the regular projection (a double point corresponds
to an overcrossing of the link projection), there is in general a circuit of length
4 in Γ, where one generator conjugates another to a third. This is a Wirtinger
relator (see [7] p 56-59).

An example of this construction is given by the figure 2.

Figure 2: Graph associated to (the regular projection of) the figure eight
knot giving P (Γ) = 〈a, b, c, d | bcb−1d−1, cac−1d−1, dad−1b−1〉. See [7] p 58
where x1 = b, x2 = a, x3 = d, x4 = c.

b. Word and conjugacy problems

Theorem 6. Let Γ be the graph associated to a regular prime alternating
link projection P as above.

Let R be the natural “visual ” basis of circuits of length bounding compact
regions of the complement of P in R2.

Then:

1. The presentation associated to the graph (Γ,R) is the Wirtinger pre-
sentation of the link group.

2. (Γ,R) satisfies the small cancellation conditions C(4)− T (4)O.

Corollary 7. Groups of prime alternating links have solvable word and con-
jugacy problems.

Proof
We show that the graph of a prime alternating link (in particular the

figure eight knot) satisfies the C(4)− T (4)O.
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Each generator occurs exactly twice in a single circuit of length 4 of the
graph of a prime alternating link, since the arc of the projection of the link
labelled by this generator, meets the boundary of exactly 4 regions of the
complement of the projection (corresponding to four vertices of the graph,
two couples of which form an edge labelled by the generator involved).

More precisely, as we can see in the figure 3, these two immersions of an
edge labelled “a ” in the graph Γ, in the same cycle of length 4, are separated
by two distinct generators and have opposite orientation (in this cycle).

Figure 3: Each generator occurs exactly twice in the link graph (and once
in each of two other circuits of length 4), in the same cycle of length 4,
“alternately” and with opposite orientation.

We see easily that the only possible pieces are of length 1. Indeed, the
only way to have a piece of length 2 in the graph is shown in figure 4 and
this implies that the link is not alternating.

Figure 4: Piece of length 2 in the graph

For example, in the graph of the figure eight knot, one can read the words
a−1b(or b−1a) and ba (or a−1b−1) in the graph, but the words a±1b±1 do not
appear elsewhere in the graph.

C(4)O condition:
In the example of the figure eight knot, it is clear that all the cycles of Γ

are of length at least 4. As each piece has length 1 and each generator is a
piece, the condition C(4)O is therefore satisfied.
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In general, the regular projection of a link is a bipartite graph (this is a
topological checkerboard). Therefore, by construction of the link graph, the
cycles of the graph have even length (one cycle passes alternately a black
region, a white region, and returns to its starting point).

If a cycle of length 2 comes from a link projection, then the two edges of
the graph, joining two vertices of the graph would form an embedded S1 in
the plane, meeting the link projection in two points; which is characteristic
of a non prime link, as the projection is regular (see [4] condition (2) and
figure 5).

Figure 5: Origin of a cycle of length 2

Pieces have length 1, each generator is a piece and cycles have length at
least 4, so the C(4)O condition is verified.

T (4)O condition:
With the convention erasing vertices of degree 2 (see [4] p 242), we just

have to check that in a minimal diagram D over Γ, every internal vertex of
degree 3 is internal to a megatile of D.

In the example of the figure eight knot, we just list all possible configu-
rations of vertices of degree 3 to realise that this is the case.

Now, we argue by contradiction. Let v be a vertex of degree 3, internal
to M , the subdiagram of D composed of three faces Fab, Fbc and Fac of Γ
({v} = ∂Fab ∩ ∂Fbc ∩ ∂Fac). We use the notations of figure 6.

Case n◦1: at least one of the three edges a, b, c at v originates from Γ.
Without loss of generality, suppose the edge is labelled b, then (Fab, Fbc)

is (or is included in) a megatile of D and the tripod (a; b; c) of vertex v lifts
entirely to Γ (with the vertex v). As ac−1, of length 2, is not a piece, the
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Figure 6: Vertex of degree 3 in a minimal diagram

boundary of the face Fac lifts together with the unique lift of the path labelled
by this word in Γ.

It follows in this case that M is contained in a megatile of D, the three
edges originate from Γ and v is an internal vertex of a megatile of D.

Case n◦2: none of the edges a, b, c originates from Γ.
So each of the three letters a, b, c has exactly two distinct lifts in Γ.
As the pieces of Γ are of length 1, there cannot be two distinct lifts of

the paths labelled by ab−1, bc−1, ca−1 (or their inverses), so v lifts to Γ as an
internal vertex of each of these three paths.

But a (for example) appears exactly twice in Γ in a circuit of length
4, with opposite orientations, separated by two different generators (neither
being a, see figure 3).

We use a colouring argument (see figure 6):
One colours vertices of Γ alternately in black and white (from the checker-

board colouring of the projection). According to the previous remark, the
two initial points (similarly, the two terminal points) of the edge labelled a
have different colours in Γ. Likewise for b and c.

The vertex v (of the figure 6) has three distinct lifts v1, v2 and v3 in Γ.
As the edge of D labelled by a is on the boundary of two megatiles of D, it
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lifts necessarily to two different places in Γ. By doing the same with b, then
with c, we get a contradiction on colorations: we have the same coloring for
both initial points of the two distinct edges of the graph labelled by c. This
is impossible. So every internal vertex of degree 3 is included in a megatile.
The T (4)O condition is satisfied for the graph.
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