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. The scaling limit of the boundary of K λ and the variance asymptotics are described in terms of a germ-grain model consisting of cone-like grains pinned to the extreme points of a Poisson point process on R d-1 × R having intensity √ de dh dhdv.

Main results

Let K be a convex subset of R d with non-empty interior. For all λ ∈ [1, ∞), let P λ denote a homogeneous Poisson point process of intensity λ on K. Let K λ be the polytope defined by the convex hull of P λ , with f k (K λ ) denoting the number of k-faces of K λ , k ∈ {0, ..., d -1}. The study of the random polytope K λ has a long and rich history going back at least until 1864 and we refer to the surveys of Weil and Wieacker [START_REF] Weil | Stochastic geometry[END_REF] and Reitzner [START_REF] Reitzner | Random Polytopes, New Perspectives in Stochastic Geometry[END_REF] for details. Major papers of Rényi and Sulanke [START_REF] Rényi | Über die konvexe Hülle von n zufállig gewählten Punkten[END_REF][START_REF] Rényi | Über die konvexe Hülle von n zufállig gewählten Punkten II[END_REF] have played a seminal role in the subject. When K has a smooth boundary ∂K, it has been only recently shown by Reitzner [START_REF] Reitzner | Central limit theorems for random polytopes[END_REF] that f k (K λ ) and Vol(K λ ) satisfy a central limit 1 theorem as λ → ∞. More recently, for ∂K smooth, the second order properties and scaling limits of ∂K λ have been established in [START_REF] Calka | Variance asymptotics for random polytopes in smooth convex bodies[END_REF][START_REF] Calka | Brownian limits, local limits, and variance asymptotics for convex hulls in the ball[END_REF][START_REF] Schreiber | Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points[END_REF].

When K is itself a convex polytope, the analysis of f k (K λ ) and Vol(K λ ) appears more challenging. The lack of regularity in ∂K as well as the lack of rotational symmetry in K present additional technical obstacles. Still, the central limit theorem for f k (K λ ) and Vol(K λ ) was shown in two remarkable papers of Bárány and Reitzner [START_REF] Bárány | Poisson polytopes[END_REF][START_REF] Bárány | The variance of random polytopes[END_REF], who also establish rates of normal convergence for these functionals. They do not consider scaling limits of ∂K λ and though they obtain sharp lower bounds for Varf k (K λ ) and VarVol(K λ ), their results stop short of determining precise variance asymptotics for f k (K λ ) and Vol(K λ ) as λ → ∞, an open problem going back to the 1993 survey of Weil and Wieacker (p. 1431 of [START_REF] Weil | Stochastic geometry[END_REF]). When K is a simple polytope, we resolve this problem in Theorems 1.3 and 1.4, expressing variance asymptotics in terms of scaling limit functionals of the germ-grain model consisting of cone-like grains pinned to the 'extreme' points of the Poisson point process P on R d-1 × R with intensity dP((v, h)) := √ de dh dhdv, (v, h) ∈ R d-1 × R.

(1.1)

Along the way, we show that the scaling limit of ∂K λ near any vertex of K coincides with the boundary of this germ-grain model. Our results share some striking similarities with their asymptotic counterparts for convex hull functionals of i.i.d. uniform samples in the unit ball as well as for i.i.d. Gaussian samples in R d , as given in [START_REF] Calka | Brownian limits, local limits, and variance asymptotics for convex hulls in the ball[END_REF] and [START_REF] Calka | Variance asymtotics and scaling limits for Gaussian polytopes[END_REF], respectively. The remarkable qualitative similarities, made precise in Remark (ii) below, help unify both the second order analysis of random polytopes as well as the scaling limit analysis of their boundaries.

Before stating our results we require some additional terminology. Henceforth we assume that K is a simple polytope, namely one whose vertices are adjacent to d facets (faces of dimension d -1). Let V := {(x 1 , • • • , x d ) ∈ R d : d i=1 x i = 0} and for every v ∈ V and 1 ≤ i ≤ d, we let l i (v) be the i-th coordinate of v in the standard basis with respect to R d and l(v) the vector (l

1 (v), • • • , l d (v)) in R d . Put G(v) := log( 1 d d i=1 e l i (v) ), v ∈ V. (1.2)
The graph of G has a cone-like structure, as shown in Lemma 4.5, and gives rise to the cone-like grain

Π ↓ := {(v, h) ∈ R d-1 × R : h ≤ -G(v)} (1.3)
opening in the down direction. For w := (v, h) ∈ R d-1 × R we put Π ↓ (w) := w ⊕ Π ↓ , where ⊕ denotes Minkowski addition. Given a locally finite set X in R d , the maximal Figure 1: The point process Ext(X ) (blue); the boundary ∂Φ(X ) of the down-grains containing Ext(X ) (green).

union of grains Π ↓ (w), w ∈ R d-1 × R, whose interior contains no point of X is Φ(X ) := w∈R d-1 ×R X ∩int(Π ↓ (w))=∅ Π ↓ (w).

(

Remove points of X not belonging to ∂(Φ(X )) and call the resulting thinned point set Ext(X ). As shown in Figure 1, ∂(Φ(X )) is a union of inverted cone-like surfaces 'pinned' to or 'suspended' from Ext(X ).

Extending the logarithmic function to (0, ∞) d by the formula log(z 1 , • • • , z d ) = (log z 1 , • • • , log z d ), we consider for all λ ∈ [1, ∞)

T (λ) : (0, ∞) d -→ V × R (z 1 , • • • , z d ) -→ p V (log z), 1 d (log λ + d i=1 log z i )
.

(1.5)

Here p V : R d → R denotes the orthogonal projection onto V . Postponing the motivation behind T (λ) until Section 4, we state our main results. Let

K ′ := [0, ∆ d ] d where ∆ d ∈ [1, ∞
) is a suitably large constant depending only on d, to be further specified in the sequel (cf. Lemma 7.1). Without loss of generality, re-scaling K if necessary, we make a volume preserving affine transformation such that the origin is a vertex of K, K ′ ⊂ K, and K is contained in a multiple of K ′ . Put

δ 0 := δ 0 (λ) := exp(-(log λ) 1/d ) (1.6)
and let Q 0 := [0, δ 0 ] d .

Theorem 1.1 Under the transformation T (λ) , the extreme points of K λ ∩ Q 0 converge in distribution to the thinned process Ext(P) as λ → ∞.

Let B d (x, r) be the closed d-dimensional Euclidean ball centered at x ∈ R d and with radius r ∈ (0, ∞). C(B d (x, r)) is the space of continuous functions on B d (x, r) equipped with the supremum norm. Let 0 denote a point at the origin of R d or R d-1 , according to context. Theorem 1.2 Fix L ∈ (0, ∞). As λ → ∞, the re-scaled boundary T (λ) ((∂K λ ) ∩ Q 0 ) converges in probability to ∂(Φ(P)) in the space C(B d-1 (0, L)).

The transformation T (λ) induces scaling limit k-face and volume functionals governing the large λ behavior of f k (K λ ) and Vol(K λ ) as seen in the next results.

Theorem 1.3 For all k ∈ {0, 1, ..., d -1}, there exists a constant F k,d ∈ (0, ∞), defined in terms of averages of covariances of a scaling limit k-face functional on P, such that lim λ→∞

(log λ) -(d-1) Varf k (K λ ) = F k,d • f 0 (K). (1.7) 
Theorem 1.4 There exists a constant V d ∈ (0, ∞), defined in terms of averages of covariances of a scaling limit volume functional on P, such that lim λ→∞ λ 2 (log λ) -(d-1) VarVol(K λ ) = V d • f 0 (K).

(1.8)

Remarks. (i) On the scaling transform. Baryshnikov's far reaching work [START_REF] Yu | Supporting-points processes and some of their applications[END_REF] uses the scaling transform T (λ) , though in a different guise, to establish Gaussian fluctuations and variance asymptotics for the number of Pareto extreme points in a random sample. Baryshnikov (cf. Section 2.2.5 of [START_REF] Yu | Supporting-points processes and some of their applications[END_REF]) also mentions that T (λ) could be used to establish the asymptotic normality of f 0 (K λ ), but he does not provide the details. The present paper, in addition to establishing the scaling limit of ∂(K λ ) and the asymptotics of Varf k (K λ ) and VarVol(K λ ), makes a three-fold contribution going beyond that in [START_REF] Yu | Supporting-points processes and some of their applications[END_REF]. First, we establish a new, if not crucial, interpretation of the action of the scaling transform in terms of a dual process defined via cone-like grains called petals. In the setting of convex hulls of i.i.d. samples in the unit ball, the dual process has previously featured as a parabolic growth process [START_REF] Calka | Brownian limits, local limits, and variance asymptotics for convex hulls in the ball[END_REF][START_REF] Schreiber | Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points[END_REF]. Second, we establish a qualitative link with scaling transforms used previously for different models of random polytopes; see remark (ii) below and Section 4.1. Lastly, the transform suitably re-scales the floating bodies for K, showing that their re-scaled images play a central role in the re-scaled convex hull geometry. Floating bodies usefully approximate random polytopes, as in [START_REF] Bárány | Poisson polytopes[END_REF][START_REF] Bárány | The variance of random polytopes[END_REF], but here we show that their re-scaled images also play a key role in asymptotic analysis. The approach surrounding the transform T (λ) , together with the counterpart transforms in [START_REF] Calka | Variance asymtotics and scaling limits for Gaussian polytopes[END_REF][START_REF] Calka | Brownian limits, local limits, and variance asymptotics for convex hulls in the ball[END_REF][START_REF] Schreiber | Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points[END_REF], help unify the asymptotic analysis of random polytopes.

(ii) Theorems 1.1 and 1.2 -related work. The re-scaled point process T (λ) (P λ ) converges to the point process P as seen in Lemma 4.2. The part of the re-scaled boundary of K λ which is close to a vertex of K converges to a festoon of inverted cone-like hypersurfaces pinned to Ext(P). The situation with K a unit ball involves quantitative differences and similarities. When K is the unit d-dimensional ball, in the large λ limit, the relevant scaling transform carries P λ into a homogeneous Poisson point process on the upper half-space R d-1 × R + and it carries the boundary of K λ into a festoon of parabolic hypersurfaces [START_REF] Calka | Brownian limits, local limits, and variance asymptotics for convex hulls in the ball[END_REF][START_REF] Schreiber | Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points[END_REF]. On the other hand, if the input is a Poisson point process Pλ having Gaussian intensity λφ(x)dx, with φ being the standard normal density on R d , then, as λ → ∞, the relevant scaling transform carries Pλ into a non-homogeneous Poisson point process P on R d-1 × R with intensity density e h dhdv and it carries the boundary of the convex hull of Pλ into a festoon of parabolic hypersurfaces pinned against the extreme points of P [START_REF] Calka | Variance asymtotics and scaling limits for Gaussian polytopes[END_REF].

(iii) Theorems 1.3 and 1.4. Variance asymptotics (1.7) and (1.8) do not depend on the volume of K, but only on the number of its vertices. Breakthrough papers of Bárány and Reitzner [START_REF] Bárány | Poisson polytopes[END_REF][START_REF] Bárány | The variance of random polytopes[END_REF] establish precise growth rates for Varf k (K λ ) and VarVol(K λ ). While these works do not give a closed form expression for the asymptotic constants F k,d and V d , they do insure their strict positivity. We anticipate that methods given here yield expectation and variance asymptotics for non-homogenous Poisson point processes having intensity density λκ, with κ : K → R + bounded away from zero and infinity and continuous on ∂K.

(iv) The locally defined transform T (λ) . The map T (λ) is local in that it is defined with respect to 0, assumed to be a vertex of K. We are unable to find a suitable global transform for all of K. On the other hand, when K has rotational symmetry, e.g. when K is the d-dimensional ball, then we may globally map K into R d-1 × R + as in [START_REF] Calka | Brownian limits, local limits, and variance asymptotics for convex hulls in the ball[END_REF][START_REF] Schreiber | Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points[END_REF].

The existence of a global scaling transform brings multiple benefits, leading to a more regularized re-scaled structure in R d-1 × R, including stationarity as λ → ∞ and local independence (stabilization) with respect to spatial coordinates. When K lacks rotational symmetry, as is the case in this paper, then our methods do not yield any such global scaling transform. Roughly speaking, the obstruction to finding a global scaling transform goes as follows. The transform given here, like those in [START_REF] Calka | Variance asymtotics and scaling limits for Gaussian polytopes[END_REF][START_REF] Calka | Brownian limits, local limits, and variance asymptotics for convex hulls in the ball[END_REF], relies on the construction of a one-parameter family of (d -1)-dimensional surfaces interior to K (boundaries of associated floating bodies for K), in which the height coordinate is a function of the corresponding parameter and the space coordinate is given by a mapping from a subset of R d-1 to the surface belonging to the one-parameter family. It is in general difficult to construct a global mapping from R d-1 to a (d -1)-dimensional manifold, and thus difficult to find a global scaling transform.

(v) Approximate additivity of the variance. The lack of a global scaling transform necessitates showing that Varf k (K λ ), k ∈ {0, 1, ..., d -1}, and VarVol(K λ ) are well approximated by the sum of variances of contributions arising from small neighborhoods around each vertex of K. We show this decoupling of the variance over the vertex set of K by refining the dependency graph arguments in [START_REF] Bárány | Poisson polytopes[END_REF] and applying these arguments to a dyadic collection of Macbeath regions. These non-trivial technical obstacles are not present when K is the unit ball [START_REF] Calka | Brownian limits, local limits, and variance asymptotics for convex hulls in the ball[END_REF].

(vi) Extension to general polytopes. The fundamental work of Bárány and Buchta [START_REF] Bárány | Random polytopes in a convex polytope, independence of shape, and concentration of vertices[END_REF] shows that the extreme points of a general polytope K concentrate in regions defined by each flag of K. These 'flag regions', themselves simple polytopes, could individually be treated by the methods of this paper. If one could show (a) negligibility of covariances of contributions to f k (K λ ) and Vol(K λ ) arising from input on distinct flag regions as well as (b) negligibility of contributions to f k (K λ ) and Vol(K λ ) arising from input on the complements of flag regions, then variance would be additive with respect to flags. This would extend our results to general polytopes and it would align our second order results with the first order results of [START_REF] Bárány | Random polytopes in a convex polytope, independence of shape, and concentration of vertices[END_REF], which shows that expectation asympotics are additive with respect to flags. However showing additivity of variance with respect to flags seems to be a separate project which would either require a scaling transform more general than T (λ) or a non-trivial extension of the methods of Section 3.

This paper is organized as follows. Section 2 introduces scaling limit functionals of germ-grain models having cone-like grains. These scaling limit functionals feature in Theorem 2.1, which establishes expectation and variance asymptotics for the empirical measures for the volume and k-face functionals, thus extending Theorems 1.3 and 1.4. In Section 3 we establish two propositions which prepare for an effective use of the crucial transformation T (λ) . We show that the extreme points near a vertex of K have a preferred normal direction and that the variance of the k-face and volume functional decouples over the vertices of K. Section 4 studies K λ near a fixed vertex of K and establishes that the image of P λ under T (λ) converges in distribution to P and that T (λ) defines re-scaled k-face and volume functionals. We show that the scaling transform T (λ) maps the Euclidean convex hull geometry into 'cone-like' convex geometry in R d-1 × R and that the extreme points near a vertex of K are with high probability characterized in terms of the geometry of so-called petals. Section 5 establishes that the re-scaled k-face and volume functionals localize in space, which is crucial to showing convergence of their means and covariances to the respective means and covariances of their scaling limits. Section 6 provides proofs of the main results whereas Section 7, an Appendix, contains proofs of several lemmas.

General results

Here we consider functionals of the germ-grain model Φ(P) which are central to the description of the scaling limits of the k-face and volume functionals f k (K λ ) and Vol(K λ ). We use their second order correlations to establish variance asymptotics for the empirical measures induced by the k-face and volume functionals. This extends Theorems 1.3 and 1.4 to the setting of measures and yields formulas for the constants F k,d and V d in (1.7) and (1.8), respectively. Denote points in R d-1 × R by w := (v, h).

2.1. Empirical k-face and volume measures. Given a finite point set X ⊂ R d , let co(X ) be its convex hull. Definition 2.1 Given k ∈ {0, 1, ..., d -1} and x a vertex of co(X ), define the k-face functional ξ k (x, X ) to be the product of (k + 1) -1 and the number of k-faces of co(X ) which contain x. Otherwise we put ξ k (x, X ) = 0. Thus the total number of k-faces in co(X ) is x∈X ξ k (x, X ). Letting δ x be the unit point mass at x, the empirical k-face measure for P λ is

µ ξ k λ := x∈P λ ξ k (x, P λ )δ x . (2.1)
We now consider the defect volume of K λ with respect to K in a cubical neighborhood of 0. Recall from (1.6) that δ 0 := δ 0 (λ) := exp(-(log λ) 1/d ) and

Q 0 := [0, δ 0 ] d .
Let X ⊂ [0, ∞) d be finite. Given x a vertex of co(X ), let F + (x, X ) be the (possibly empty) collection of facets in co(X ), included in Q 0 , containing x and having outer normals in (-∞, 0] d . Let cone(x, X ) := {ry : r > 0, y ∈ F + (x, X )} be the (possibly empty) cone generated by F + (x, X ).

We first define the volume score for points in

P λ ∩ Q 0 . If x is vertex of K λ ∩ Q 0 with cone(x, P λ ) = ∅, then define the defect volume functional ξ V (x, P λ ) := d -1 λVol(cone(x, P λ ) ∩ (K \ K λ )).
(2.2)

Otherwise put ξ V (x, P λ ) = 0. In general, the union x (cone(x, P λ ) ∩ (K \ K λ )), with x ranging over the vertices of We now extend the definition of the volume score so that is defined for all points in P λ . This goes as follows. Let V K := {V i } denote the vertices of K and recall that we assume 0 ∈ V K . Re-scaling K if necessary, for each vertex V i ∈ V K \ {0}, we define an associated volume preserving affine transformation a i : R d → R d , with a i (V i ) = 0, and such that the facets of a i (K) containing 0 also contain the facets of K ′ := [0, ∆ d ] d belonging to the coordinate hyperplanes. For any δ ∈ (0, ∆ d ), define the parallelepiped

K λ ∩ Q 0 , does not equal (K \ K λ ) ∩ Q 0 . See Figure 2.
p d (V i , δ) := a -1 i ([0, δ] d ). Put P λ (δ) := P λ ∩ 1≤i≤f 0 (K) p d (V i , δ).
For any convex polytope K and any face F of K, we denote by C F (K) the cone of outer normal vectors to F . For any x ∈ p d (V i , δ 0 ) define F + (x, P λ ) to be the intersection of p d (V i , δ 0 ) and the (possibly empty) collection of facets in co(P λ ), included in p d (V i , δ 0 ), containing x and having outer normals in C V i (K). We then put cone(x, P λ ) = {V i ⊕ r(y -V i ) : r > 0, y ∈ F + (x, P λ )}. If x is vertex of K λ ∩ p d (V i , δ 0 ) with cone(x, P λ ) = ∅, define the defect volume functional via the formula (2.2) and put ξ V (x, P λ ) = 0 otherwise.

Finally, we define the volume score for points in P λ \P λ (δ 0 ). Let F k (x) := F k (x, K λ ) be the (possibly empty) collection of k-dimensional faces in K λ which contain x. For x a vertex of K λ and x / ∈ P λ (δ 0 ), define the defect volume score

ξ V (x, P λ ) := d-1 k=0 F ∈F k (x) λ card{F ∩ (P λ \ P λ (δ 0 ))} Vol((F ⊕ C F (K λ )) ∩ K ∩ (D(P λ )) c ), (2.3 
) where D(P λ ) := x∈P λ (δ 0 ) cone(x, P λ ). Otherwise, put ξ V (x, P λ ) = 0. Definition 2.2 Define the empirical defect volume measure of P λ by

µ ξ V λ := x∈P λ ξ V (x, P λ )δ x , (2.4) 
where ξ V (x, P λ ) is given by (2.2) or (2.3) depending on whether x ∈ P λ (δ 0 ) or not.

Notice that in general x∈P λ ∩Q 0 ξ V (x, P λ ) ≤ λVol(Q 0 ∩(K \K λ )) and likewise we have 1, k (w, P), k ∈ {0, 1, ..., d-1}, to be the product of (k+1) -1 and the number of k-dimensional faces of the festoon ∂(Φ(P)) which contain w. The scaling limit defect volume functional is

µ ξ V λ ≤ λVol(K \ K λ ). 2 
ξ (∞) V (w, P) := 1 d √ d v∈Cyl(w) exp{d • ∂(Φ(P))(v)}dv,
where Cyl(w) denotes the projection onto R d-1 of the hyperfaces of ∂(Φ(P)) containing w. When w / ∈ Ext(P) we put ξ

(∞) k (w, P) = 0 and ξ (∞) V (w, P) = 0. Let Ξ denote the collection of functionals ξ k , k ∈ {0, 1, ..., d -1}, together with ξ V . Let Ξ (∞) denote the collection of scaling limits ξ (∞) k , k ∈ {0, 1, ..., d -1}, together with ξ (∞) V .
A main feature of our approach (cf. Lemma 5.4) is that on a high probability set, the elements of Ξ (∞) are scaling limits of re-scaled elements of Ξ.

2.3.

Limit theory for empirical k-face and volume measures. Define the following second order correlation functions for ξ (∞) ∈ Ξ (∞) . Definition 2.4 For all w 1 , w 2 ∈ R d and ξ

(∞) ∈ Ξ (∞) put c ξ (∞) (w 1 , w 2 ) := c ξ (∞) (w 1 , w 2 , P) := (2.5) E ξ (∞) (w 1 , P ∪ {w 2 })ξ (∞) (w 2 , P ∪ {w 1 }) -E ξ (∞) (w 1 , P)E ξ (∞) (w 2 , P) and σ 2 (ξ (∞) ) := √ d ∞ -∞ E ξ (∞) ((0, h 0 ), P) 2 e dh 0 dh 0 (2.6) + d ∞ -∞ R d-1 ∞ -∞ c ξ (∞) ((0, h 0 ), (v 1 , h 1 
))e d(h 0 +h 1 ) dh 1 dv 1 dh 0 .

Let C(K) be the class of bounded functions on K which are continuous on V K . Given g ∈ C(K) let g, µ ξ λ denote its integral with respect to µ ξ λ . Consider the regular d-dimensional simplex of edge length √ 2d given by

S(d) := {(x 1 , ..., x d ) ∈ (-∞, 1] d : d i=1 x i = 0}. (2.7)
The following general result is proved in Section 6.

Theorem 2.1 For all ξ ∈ Ξ and g ∈ C(K) we have

lim λ→∞ (log λ) -(d-1) E [ g, µ ξ λ ] = d -d+(3/2) Vol d (S(d)) ∞ -∞
E ξ (∞) ((0, h 0 ), P)e dh 0 dh 0 

V i ∈V K g(V i ) (2.8) and lim λ→∞ (log λ) -(d-1) Var[ g, µ ξ λ ] = d -d+1 Vol d (S(d))σ 2 (ξ (∞) ) V i ∈V K g 2 (V i ). ( 2 
µ ξ V λ (log λ) d-1 = lim λ→∞ λ 2 Var(VolK λ ) (log λ) d-1 .
Thus (1.8) follows from (2.9) where we set

V d to be d -d+1 Vol d (S(d))σ 2 (ξ (∞) V ).

Decomposition of the variances

Before discussing the scaling transform T (λ) we need some key simplifications. We show here that variance asymptotics for f k (K λ ) and Vol(K λ ) are determined by the behavior of these functionals on points near any fixed vertex of K, assumed without loss of generality to be 0; that is to say the point set P λ ∩ Q 0 determines variance asymptotics.

It is far from clear that this should be the case, as covariances of scores on subsets of P λ near adjacent vertices of K might be non-negligible. Secondly, variances of scores on subsets of P λ 'between' adjacent vertices of K might also be nonnegligible. The purpose of this section is to address these two issues via Proposition 3.2, showing the negligibility of the afore-mentioned quantities. This paves the way for an effective use of T (λ) , which is well defined on P λ ∩ Q 0 , and which we use in Section 4 to re-scale the scores ξ ∈ Ξ, the input P λ , as well as

Q 0 ∩ ∂K λ . Definition 3.1 If the collection C F (K λ ∩ Q 0 ) of outward normals to a face F in K λ ∩ Q 0 all belong to the normal cone C 0 (K) := {u = (u 1 , ..., u d ) ∈ (-∞, 0) d }, then F is called a 'cone-extreme' face.
Before stating Proposition 3.2 we require an auxiliary result, whose proof is deferred to the Appendix. We first assert that there is a high probability event A λ , to be defined in Section 3.1, such that on A λ all faces of K λ ∩ Q 0 are cone-extreme. It is precisely the cone-extreme faces which are amenable to analysis under the transformation T (λ) . Proposition 3.1 There is an event

A λ with P [A c λ ] ≤ C(log λ) -4d 2 , such that on A λ we have C F (K λ ∩ Q 0 ) ⊂ C 0 (K) for any face F of K λ ∩ Q 0 .
Sections 4 and 5 develop the geometry and scaling properties of cone-extreme faces. In particular Lemma 4.3 identifies their collective image under T (λ) with a festoon of inverted cone-like surfaces.

Next, for each ξ ∈ Ξ, put

Z := Z λ := x∈P λ ξ(x, P λ ). (3.1)
The contribution to the total score from points in

P λ ∩ p d (V i , δ) is Z i := Z i (δ) := x∈P λ ∩p d (V i ,δ) ξ(x, P λ ), 1 ≤ i ≤ f 0 (K). (3.2) 
We now choose δ := δ(λ) large enough so that f 0 (K) i=1 Z i (δ) captures the bulk of the total score Z, but small enough so that Z i (δ) are independent random variables, or at least conditionally so, given the event A λ of Proposition 3.1. The next proposition tells us that it suffices to set δ to be δ 0 and it shows that VarZ is essentially a sum of variances of scores induced by points in P λ near each vertex of K. Given two sequences of scalars α λ and β λ , λ > 0, we write

α λ = o(β λ ) if α λ /β λ → 0 as λ → ∞. Proposition 3.2 For all ξ ∈ Ξ we have E [Z1(A λ )] = V i ∈V K E [Z i (δ 0 )1(A λ )] + o(E [Z]) (3.3)
and

Var[Z1(A λ )] = V i ∈V K Var[Z i (δ 0 )1(A λ )] + o(Var[Z]) = V i ∈V K Var[Z i (δ 0 )] + o(Var[Z]).
(3.4) Proposition 3.2 shows that to prove Theorems 1.3 and 1.4, it is enough to establish the variance of the k-face and volume functional for that part of K λ included in Q 0 . The identity (3.3) is essentially a re-phrasing of Theorems 3 and 4 in [START_REF] Bárány | Random polytopes in a convex polytope, independence of shape, and concentration of vertices[END_REF], which show that E [Z] is a sum of expectations of scores induced by points in P λ near each vertex of K (and more generally, near each flag of K when K is an arbitrary convex polytope). The methods of [START_REF] Bárány | Random polytopes in a convex polytope, independence of shape, and concentration of vertices[END_REF] do not appear to extend to variances.

To prove these two propositions, we shall rely heavily on a construction of dyadic Macbeath regions. The rest of this section is devoted to the proof of Proposition 3.2. The set-up of the next three subsections closely parallels that of the breakthrough paper [START_REF] Bárány | Poisson polytopes[END_REF].

3.1.

A critical annulus and a high probability set. As in [START_REF] Bárány | Poisson polytopes[END_REF], define v : K → R by v(z) := min{V (K ∩ H) : H is a half-space and z in H}.

There should be no confusion between the function v, used in this section and in the Appendix, and the point v, denoting a generic point in R d-1 , used in subsequent sections. For t ∈ [0, ∞), let K(v = t) be the boundary of the floating body {z ∈ K : v(z) ≥ t}, which we abbreviate as

K(v ≥ t). Recall K ′ := [0, ∆ d ] d , with ∆ d ∈ [1, ∞)
to be specified. Lemma 7.1 in the Appendix shows that for ∆ d large, the floating bodies for K and K ′ coincide in [0, 1/2] d . Following [START_REF] Bárány | Poisson polytopes[END_REF], put

s := s λ := 1 λ(log λ) β , T := α log log λ λ , T * := d6 d T (3.5) 
with β := 4d 2 + d -1, α := (6d) d β (in this section, T denotes the scalar at (3.5) and there should be no confusion with T (λ) ). Consider the annulus-like set

A(s, T * , K) := K(v ≥ s) \ K(v ≥ T * ).
By Lemma 5.2 of [START_REF] Bárány | Poisson polytopes[END_REF] there is an event A λ := A λ (K) such that on A λ we have

∂K λ ⊂ A(s, T * , K), where (log λ) -(3d) d+2 ≤ P [A c λ ] ≤ C(log λ) -4d 2 .
(3.6)

Macbeath regions.

In this subsection we construct Macbeath regions near the origin. As we shall see, the construction serves as a prototype for constructing Macbeath regions near vertices

V i ∈ V K \ {0}. For all z ∈ K, let M K (z) := M K (z, 1/
2) be the Macbeath region (M-region for short) with center z and scale factor 1/2, i.e.,

M K (z) := M K (z, 1/2) := z + 1 2 [(K -z) ∩ (z -K)]. For z := (z 1 , ..., z d ) ∈ [0, 1/2] d we have M K ′ (z) = d i=1 [ z i 2 , 3z i 2 ]. (3.7) Figure 3: A saturated collection M K (0, δ) of Macbeath regions The inclusion K ′ ⊆ K gives for all z := (z 1 , ..., z d ) ∈ [0, 1/2] d M K (z) = d i=1 [ z i 2 , 3z i 2 ].
More generally, given δ ∈ (0, 1/2) and integers

k i ∈ Z with 3 k i ∈ (0, 1/(3δ)], 1 ≤ i ≤ d, the dyadic rectangular solids d i=1 [ 3 k i δ 2 , 3 k i +1 δ 2 ] (3.8)
coincide with the M-regions

M K ′ ((3 k 1 δ, ..., 3 k d δ)) = M K ((3 k 1 δ, ..., 3 k d δ)), 3 k i ∈ (0, 1/(3δ)]. (3.9) 
Points z := (3 k 1 δ, ..., 3 k d δ) are centers of dyadic solids. When log 3 T /δ d ∈ Z, then M K (z) has center z belonging to K(v = T ) as soon as d i=1 k i = log 3 T /δ d ; we shall use such M-regions to define a saturated system as in [START_REF] Bárány | Poisson polytopes[END_REF].

Henceforth, let δ ∈ (0, 1/2) and with log 3 T /δ d ∈ Z. Consider the collection M K (0, δ) of dyadic rectangular solids of the type (3.9) having centers on

K(v = T ) ∩ [0, 1/2] d (see Figure 3). The solids in M K (0, δ) do not cover K(v = T ) ∩ [0, 1/2] d
but they leave some parts uncovered. The uncovered part is too small to accommodate another M-region with center on

K(v = T ) ∩ [0, 1/2] d .
In other words, the collection M K (0, δ) of dyadic M-regions defined at (3.9) is maximal in that it can not be enlarged to include another M-region with center on

K(v = T ) ∩ [0, 1/2] d . The following is proved in the Appendix. Lemma 3.1 The collection M K (0, δ) of M-regions is maximal.
We will use the collection M K (0, δ) to control the spatial dependence of scores ξ ∈ Ξ. This is done via supersets of M-regions, described below.

3.3. Supersets of M-regions. The collection M K (0, δ) generates a 'dyadic staircase', where the step width increases in a geometric progression according to its distance from a coordinate hyperplane H l , 1 ≤ l ≤ d. Elements of M K (0, δ) are only pairwise interior-disjoint and not pairwise disjoint. Still, we claim that this collection allows us to reproduce the construction from the economic cap covering theorem (Theorem 2.5 of [START_REF] Bárány | Poisson polytopes[END_REF]) with the same outcome and to construct a partition of K(v ≤ T * ) into supersets S ′ j which are also pairwise interior-disjoint (see Figure 4). This goes as follows.

Each M-region in M K (0, δ) produces a superset, called an S-region in [START_REF] Bárány | Poisson polytopes[END_REF], in the following canonical way. For M-regions M j meeting [0, (T * ) 1/d ] d we define the associated region S ′ j := S ′ j (M j ) to be the intersection of K(v ≤ T * ) and the smallest cone with apex at ((T * ) 1/d , ..., (T * ) 1/d ) which contains M j . We call these the 'cone sets S ′ j '. The volume of every M-region in

M K (0, δ) is Π d i=1 3 k i δ = T , and thus the number of M-regions meeting [0, (T * ) 1/d ] d is bounded by a constant depending only on d. The 'cone sets S ′ j ' are not contained in [0, (T * ) 1/d ] d when M j itself is not contained in [0, (T * ) 1/d ] d .
In this case, we replace the cone set S ′ j with a so-called 'cone-cylinder set', defined to be the union of S ′ j ∩ [0, (T * ) 1/d ] d and the so-called 'cylinder set' generated by M j ∩ ([0, (T * ) 1/d ] d ) c , defined as follows.

For M-regions M j with centers (3 k 1 δ, ..., 3 k d δ) and such that M j meets ([0, (T * )

1/d ] d ) c , define for 1 ≤ l ≤ d, the cylinder C l (k 1 , • • • , k d ) := l-1 i=1 [ 3 k i δ 2 , 3 k i +1 δ 2 ] × R × d i=l+1 [ 3 k i δ 2 , 3 k i +1 δ 2 ] ∩ ([0, (T * ) 1/d ] d ) c . Note that C l (k 1 , • • • , k d )
is the smallest cylinder containing M j and oriented in the direction n H l , where n H l is a unit normal vector for the hyperplane H l . The Sj region associated with

M j ∩ ([0, (T * ) 1/d ] d ) c is Sj := Sj ((3 k 1 δ, ..., 3 k d δ)) := l:k l =min(k 1 ,••• ,k d ) C l (k 1 , • • • , k d ) ∩ K.
When k l is the unique minimum, Sj consists solely of a single cylinder C l and it simply extends

M j ∩ ([0, (T * ) 1/d ] d ) c in the direction n H l . Note that n H l points in the direction of the facet of K ′ closest to M j . The union of such Sj does not cover all of K(v ≤ T * ) ∩ ([0, 1/2] d \ [0, (T * ) 1/d ] d ).
The uncovered parts are rectangular regions produced by precisely one M-region having a cubical face. Consequently, we define S j as the union of Sj and all rectangular regions produced by the ties in the minimum of

k 1 , • • • , k d .
As on page 1518 of [START_REF] Bárány | Poisson polytopes[END_REF], we define the superset

S ′ j := S j ∩ K(v ≤ T * ). (3.10) 
We call these the 'cylinder sets'. If S ′ j has a facet F which meets ∂([0, (T * ) 1/d ] d ) then we adjoin the cylinder set S ′ j to the unique cone set containing F ∩ [0, (T * ) 1/d ] d and we call the resulting set a cone-cylinder set. By construction, the sets S ′ j are disjoint. Given this way of generating S ′ j , 1 ≤ j ≤ card(M K (0, δ)), we may control its diameter in all directions n H i ,

1 ≤ i ≤ d. The diameter of M K ((3 k 1 δ, ..., 3 k d δ)) in the direction n H i is 3 k i +1 δ 2 - 3 k i δ 2 = 3 k i δ.
The diameter of the corresponding S j := S j ((3 k 1 δ, ...,

3 k d δ)) in the direction n H i , 1 ≤ i ≤ d, is thus at most c3 k i δ + 3 k i δ,
with the first term accounting for the possible uncovered adjoined regions included in S j , or, if the direction n H i were the direction i corresponding to the smallest k i from the M-region, then the diameter would be the distance from the coordinate hyperplane to the pseudo-hyperboloid K(v = T * ) inside the cylinder C i and thus would be bounded by c3

k i δ. Let S ′ 1 , ..., S ′ J be the supersets generated by M-regions meeting [0, 1/2] d \[0, (T * ) 1/d ] d . For 0 < a < b < ∞ and 1 ≤ i ≤ d, we denote by H i [a, b] the 'parallel slab' between hyperplanes H i ⊕ an H i and H i ⊕ bn H i .
We also define for any bounded subset A of R d , the diameter diam i (A) of A in the direction n H i as the width of the maximal parallel slab containing A.

If J ′ j=1 S ′ j is connected and if it meets H i [0, δ], then by the diameter bound diam i (S ′ j ((3 k 1 δ, ..., 3 k d δ))) ≤ c3 k i δ,
valid for cone-sets, cone-cylinder sets and cylinder sets, we have

diam i ( J ′ j=1 S ′ j ) ≤ cδ(1 + 3 + ... + 3 J-1 ) = c ′ δ3 J ′ . (3.11)
3.4. Dependency graphs. The above subsection describes a collection of supersets S ′ j generated by the constituent M-regions in M K (0, δ) . These sets are either cone sets, cone-cylinder sets, or cylinder sets, depending on whether the M-region lies entirely in [0, (T * )

1/d ] d , meets the boundary of [0, (T * ) 1/d ] d , or lies outside [0, (T * ) 1/d ] d . Given any vertex V i ∈ V K \ {0} we may likewise construct a collection M K (V i , δ) of dyadic M-regions in p d (V i , 1/2)
and use them to generate a corresponding collection of S ′ j regions. Here p d (V i , δ) is the parallelepiped defined before (3.2) and without loss of generality, we may assume that the parallelepipeds p d (V i , 1/2) are disjoint. We embed the union of M K (V i , δ), i ≤ f 0 (K), into a (possibly not unique) larger collection M K (m(T, δ)) of M-regions having cardinality m(T, δ) and which is maximal for the entire surface K(v = T ). This is possible since among all possible collections containing the union of M K (V i , δ), 1 ≤ i ≤ f 0 (K), there is at least one which is maximal.

The integer m(T, δ) may not be unique, but in any case it is bounded above and below by integers depending only on T , as shown in [START_REF] Bárány | Poisson polytopes[END_REF]. Next, let S ′ (δ

) := {S ′ j } m(T,δ) j=1
be the S ′ j regions generated by the M-regions in M K (m(T, δ)). The additional S ′ j regions which are not associated with a dyadic M-region are defined exactly as in [START_REF] Bárány | Poisson polytopes[END_REF].

The collection S ′ (δ) partitions the annulus A(s, T * , K). Notice that m(T, δ) plays the role of m η := m(T η ) in [START_REF] Bárány | Poisson polytopes[END_REF]. The choice of a saturated system on K(v = s) is not relevant for our discussion and may be chosen as in [START_REF] Bárány | Poisson polytopes[END_REF]. Now we are ready to consider a dependency graph G := (V G , E G ), where V G := S ′ (δ). Following section 6 of [START_REF] Bárány | Poisson polytopes[END_REF], define L j , 1 ≤ j ≤ m(T, δ), to be the union of all S ′ k ∈ S ′ (δ) such that there are points

a ∈ S ′ j ∩ K(v ≥ s), b ∈ S ′ k ∩ K(v ≥ s) with the segment [a, b] disjoint from K(v ≥ T * ). L j is not empty since it contains S ′ j . Also, S ′ k ⊂ L j if and only if S ′ j ⊂ L k .
Join vertices i, j ∈ V G with an edge iff L i and L j contain at least one S ′ k in common. Let E G be the edges thus defined. The first assertion of the next result is proved in the Appendix. The second assertion is Lemma 6.1 of [START_REF] Bárány | The variance of random polytopes[END_REF]. Let L(λ) := T (K) 3 (log log λ) 3(d-1) , where T (K) is the number of flags of K. Recall that we implicitly assume δ ∈ (0, 1/2) satisfies log 3 T /δ d ∈ Z. Lemma 3.2 For any fixed δ ∈ (0, 1/2) we have a. The geometric properties of sets in S ′ (δ) fulfill the requirements of [ [START_REF] Bárány | Poisson polytopes[END_REF], p. 1518, 5 lines before (5.4)], and b. There is a constant c * ∈ (0, ∞) such that for all 1 ≤ j ≤ m(T, δ) and all λ ∈ [1, ∞), we have card{k :

S ′ k ⊂ L j } ≤ c * L(λ).
In other words L j , 1 ≤ j ≤ m(T, δ), contains at most c * L(λ) sets in S ′ (δ). As shown in [START_REF] Bárány | Poisson polytopes[END_REF], neither L(λ) nor the maximal degree of G is a function of δ. By (3.11), if L j has non-empty intersection with H l [0, δ], then there exists a constant c diam ∈ (0, ∞) such that its diameter in the direction n

H i satisfies diam i (L j ) ≤ c diam δ3 c * L(λ) .
(3.12)

Lemma 3.3 If S ′ j ⊂ [0, δ] d and if S ′ i ∩ H l [c diam δ3 c * L(λ)+1 , diam(K)] = ∅ for all 1 ≤ l ≤ d,
then there is no edge in E G between j and i.

Proof. Case (i). If there were such an S ′ i , and if such an S ′ i were generated by an M-region in M K (0, δ), then by the diameter bound (3.12), it would follow that

L i ⊂ H l [2c diam δ3 c * L(λ) , diam(K)] whereas L j ⊂ H l [0, c diam δ3 c * L(λ) )]. Thus L i ∩ L j = ∅,
showing that there is no edge between j and i in the case when S ′ i is produced by an M-region in M K (0, δ). Case (ii). When S ′ i is generated by an M-region in M K (m(T, δ)) \ M K (0, δ) then we proceed by contradiction. If there were an edge between j and i, then there would exist an S ′ l (on the path between S ′ i and

S ′ j ) such that S ′ l ∩ H l [2c diam δ3 c * L(λ) , diam(K)] = ∅, S ′
l is generated by an M-region in M K (0, δ), and there is an edge between l and i. This contradicts the first case of this proof.

Next we recall Lemma 7.1 of [START_REF] Bárány | Poisson polytopes[END_REF] and the discussion on pages 1522-23 of [START_REF] Bárány | The variance of random polytopes[END_REF]. Though this lemma is proved in [START_REF] Bárány | Poisson polytopes[END_REF] for the volume score ξ V , its proof is general and applies to the scores ξ k as well. This result provides conditions for independence of scores on disjoint sets with respect to the graph distance between the sets. Lemma 3.4 Let ξ ∈ Ξ and let W 1 and W 2 be disjoint subsets of V G having no edge between them. Conditional on A λ , the random variables

x∈P λ ∩(∪ i∈W 1 S ′ i )
ξ(x, P λ ) and

x∈P λ ∩(∪ i∈W 2 S ′ i ) ξ(x, P λ ) are independent.
The next result provides conditions for independence of scores on disjoint sets with respect to the Euclidean distance between the sets.

Lemma 3.5 There exists a constant c ′ ∈ (0, ∞) such that if S ′ 0 ∈ S ′ (δ) is a subset of [0, δ] d and if S ′ ∈ S ′ (δ) is at Euclidean distance at least c ′ δ3 c * L(λ) from [0, δ] d ,
then conditional on A λ the sum of the scores on S ′ 0 and S ′ are independent.

Proof. This is a consequence of Lemma 3.3. We can choose c ′ > 0 such that if the Euclidean distance between S ′ 0 and S ′ exceeds c ′ δ3 c * L(λ) then the distance in any direction n H i is greater than c diam δ3 c * L(λ)+1 . Consequently, by (3.12), the graph distance exceeds 2, because any edge from the dependency graph would intersect more than c * L(λ) cylinder sets S ′ j .

Recall the definition of λ) . Now apply Lemma 3.5.

Z i (δ), 1 ≤ i ≤ f 0 (K), at (3.2). Lemma 3.6 Conditional on A λ , the random variables Z i (δ), 1 ≤ i ≤ f 0 (K), are independent for λ large enough whenever δ := δ(λ) satisfies δ3 c * L(λ) = o(1). Proof. Let S(V i ) ∈ S ′ (δ) be a subset of p d (V i , δ) ∩ K, 1 ≤ i ≤ f 0 (K). The Euclidean distance between S(V i ) and S(V j ), i = j, is bounded below by ||V i -V j || -2δ which exceeds c ′ δ3 c * L(

Variance is additive over vertices of

K. Put A(s, T * , K, δ) := A(s, T * , K) \ f 0 (K) i=1 p d (V i , δ) and set P λ (s, T * , K, δ) := P λ ∩ A(s, T * , K, δ).
Recall the definition of Z and Z i at (3.1) and (3.2). Conditional on A λ , we have for all ξ ∈ Ξ

Z = Z 0 + f 0 (K) i=1 Z i , (3.13) 
where

Z 0 := Z 0 (δ) := x∈P λ (s,T * ,K,δ) ξ(x, P λ ) (3.14)
is the contribution to Z from points in P λ which are far from V K . Recall from (1.6) that δ 0 := exp(-(log λ) 1/d ). We now put δ to be δ

1 := r(λ, d)δ 0 , where r(λ, d) ∈ [1, 3 1/d ) is chosen so that log 3 (T /δ d 1 ) ∈ Z.
Roughly speaking, conditional on A λ , we may bound the number of points in P λ (s, T * , K, δ 1 ) as well as magnitudes of scores arising from such points. In this way, the next lemma shows that the contribution to the total score arising from Z 0 (δ 1 ) is negligible. It also shows that the difference between the sum of the volume scores and the defect volume of K λ is negligible. The proof is in the Appendix.

Lemma 3.7 For ξ ∈ Ξ we have a. Var[Z 0 (δ 1 )|A λ ] = o(Var[Z]). b. Var 1 λ x∈P λ ξ V (x, P λ ) = Var[Vol(K λ )] + o(Var[Vol(K λ )]).
The next lemma, also proved in the Appendix, shows that the event A c λ contributes a negligible amount to the first and second order statistics of Z and Z i , 1 ≤ i ≤ f 0 (K). Lemma 3.8 Let Z i := Z i (δ 0 ) be as at (3.2). We have uniformly for

1 ≤ i ≤ f 0 (K): max{|E [Z] -E [Z|A λ ]|, |E [Z i ] -E [Z i |A λ ]|, |E [Z i ] -E [Z i 1(A λ )]|} = o(E [Z]),
and

max{|Var[Z] -Var[Z1(A λ )]|, |Var[Z] -Var[Z|A λ ]|, |Var[Z i ] -Var[Z i |A λ ]|, |Var[Z i ] -Var[Z i 1(A λ )]|} = o(Var[Z]).
Finally we may prove the second main result of this section.

Proof of Proposition 3.2. By Lemma 3.8 it suffices to show

Var[Z|A λ ] = f 0 (K) i=1 Var[Z i (δ 0 )|A λ ] + o(Var[Z]). (3.15) 
To do so, we proceed in two steps: (i) we first show

Var[Z|A λ ] = f 0 (K) i=1 Var[Z i (δ 1 )|A λ ] + o(Var[Z]), (3.16) 
and (ii) then for every 1

≤ i ≤ f 0 (K) we show Var[Z i (δ 1 )|A λ ] = Var[Z i (δ 0 )|A λ ] + o(Var[Z]). (3.17) Let us show (3.16). Let Cov((X, Y )|A λ ) be short for E [(X-E [X|A λ ])(Y -E [Y |A λ ])|A λ ].
Recalling (3.13), we have

Var[Z|A λ ] = Var[Z 0 (δ 1 ) + i Z i (δ 1 )|A λ ] = Var[Z 0 (δ 1 )|A λ ] + Var i Z i (δ 1 )|A λ + 2Cov ( i Z i (δ 1 ), Z 0 (δ 1 ))|A λ = i Var[Z i (δ 1 )|A λ ] + 2Cov ( i Z i (δ 1 ), Z 0 (δ 1 ))|A λ + o(Var[Z]),
where the last equality follows from δ 1 3 c * L(λ) = o(1), the conditional independence of Z i (δ 1 ), 1 ≤ i ≤ f 0 (K), as given by Lemma 3.6, as well as Lemma 3.7.

If random variables X and Y satisfy max{Var

[X + Y |E], Var[Y |E]} = O(Var[X + Y ]), then writing X = (X + Y ) -Y , it follows that Var[X|E] = O(Var[X + Y ]). We have max{Var[ Z i (δ 1 ) + Z 0 (δ 1 )|A λ ], Var[Z 0 (δ 1 )|A λ ]} = O(Var[Z]
) by [START_REF] Bárány | Poisson polytopes[END_REF] and by Lemma 3.7. It follows that Var[ Z i (δ 1 )|A λ ] = O(Var[Z]). This estimate, Lemma 3.7 again, and the Cauchy-Schwarz inequality give

Cov ( i Z i (δ 1 ), Z 0 (δ 1 ))|A λ ≤ Var[ i Z i (δ 1 )|A λ ] • Var[Z 0 (δ 1 )|A λ ] = O( Var[Z])o( Var[Z]) = o(Var[Z]).
This yields the decomposition (3.16).

To prove (3.17

) we introduce δ ′ 1 := r ′ (λ, d)δ 0 where r ′ (λ, d) ∈ (3 -1/d , 1] is chosen so that log 3 (T /δ ′d 1 ) ∈ Z. Methods similar to the proof of Lemma 3.7 show that Var[Z 0 (δ ′ 1 )|A λ ] = o(Var[Z]) and Var[ x∈B ξ(x, P λ )|A λ ] = o(Var[Z]), with B a subset of P λ (s, T * , K, δ ′ 1 ). Note that B i := (p d (V i , δ 1 ) \ p d (V i , δ 0 )) ∩ P λ , 1 ≤ i ≤ f 0 (K), are subsets of P λ (s, T * , K, δ ′ 1 ). Consequently, Var[Z i (δ 1 ) -Z i (δ 0 )|A λ ] = o(Var[Z]).
Moreover,

Cov((Z i (δ 1 )-Z i (δ 0 ), Z i (δ 0 ))|A λ ) ≤ Var[Z i (δ 1 ) -Z i (δ 0 )|A λ ] Var[Z i (δ 0 )|A λ ] = o(Var[Z]).
We deduce (3.17) from the two previous equalities. This completes the proof of Proposition 3.2.

4 Re-scaled convex hull boundaries, k-face, and volume functionals

Section 3 showed that variance asymptotics for f k (K λ ) and Vol(K λ ) are determined by the respective behavior of ξ k and ξ V on P λ ∩ Q 0 . We discuss scaling transforms of P λ ∩ Q 0 , ∂K λ ∩ Q 0 , as well as transforms for ξ k and ξ V restricted to input P λ ∩ Q 0 .

4.1. Parallel between the scaling transform T (λ) and those in previous work.

Scaling transforms lie at the heart of our asymptotic analysis. Before discussing the technical details, we explain their relevant geometric aspects, comparing T (λ) with counterparts in previous works on Gaussian polytopes [START_REF] Calka | Variance asymtotics and scaling limits for Gaussian polytopes[END_REF], as well as random polytopes in the unit ball [START_REF] Calka | Brownian limits, local limits, and variance asymptotics for convex hulls in the ball[END_REF][START_REF] Schreiber | Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points[END_REF] and in smooth convex bodies [START_REF] Calka | Variance asymptotics for random polytopes in smooth convex bodies[END_REF].

Floating bodies and associated coordinates. Seminal works of Bárany and Larman [START_REF] Bárány | Convex bodies, economic cap coverings, random polytopes[END_REF] and Bárány [START_REF] Bárány | Intrinsic volumes and f -vectors of random polytopes[END_REF] show the importance of the deterministic approximation of the random polytope inside the mother body K by a floating body K(v ≥ 1/λ). Consequently, it makes sense to use the parametric surfaces ∂K(v ≥ t/λ), t > 0, to associate to any point z ∈ K a depth coordinate which is the specific t such that z ∈ ∂K(v ≥ t/λ) and a spatial coordinate indicating the position of z on the surface ∂K(v ≥ t/λ). When K is the unit ball, the floating bodies are balls B(0, r), 0 < r < 1, and coordinates coincide with the usual spherical coordinates. When K := (0, ∞) d , the floating bodies are pseudo-hyperboloids, as seen in the next subsection. We could call the associated coordinates cubical coordinates. In the case of a general convex mother body K, there is not necessarily a natural way of globally defining a spatial coordinate, which explains a posteriori why we dealt with local spherical coordinates in [START_REF] Calka | Variance asymptotics for random polytopes in smooth convex bodies[END_REF].

Extreme points and duality. This paper, as well as [START_REF] Calka | Variance asymptotics for random polytopes in smooth convex bodies[END_REF][START_REF] Calka | Variance asymtotics and scaling limits for Gaussian polytopes[END_REF][START_REF] Calka | Brownian limits, local limits, and variance asymptotics for convex hulls in the ball[END_REF], rely on a dual characterization of extreme points. Arguably, it is most natural to define an extreme point as a point from the input on the boundary of the convex hull. By duality, we may also assert that a point z 0 from the input is extreme if it is included in a support hyperplane of the convex hull. In most cases, any hyperplane containing a fixed point z from the input is tangent to exactly one surface ∂K(v ≥ t/λ) at one point of tangency. This suggests the idea of considering the petal of z, i.e. the subset S(z) of K whose boundary ∂S(z) consists of all points of tangency of hyperplanes containing z. In the case of the unit ball, and when the origin is inside the convex hull, the petal of z is the ball with diameter [0, z]. The collection of such balls associated to the points of the input constitutes the so-called Voronoi flower of the input with respect to the origin, which explains a posteriori the appellation petal. In the case of the orthant (0, ∞) d , when the point z is cone-extreme (recall Definition 3.1), its petal is defined in (4.3) below. This provides the second definition of an extreme point (cone-extreme in the case of the orthant): A point from the input is extreme iff its petal is not covered by the petals from the other points from the input.

Scaling transformations. As in [START_REF] Calka | Variance asymtotics and scaling limits for Gaussian polytopes[END_REF][START_REF] Calka | Brownian limits, local limits, and variance asymptotics for convex hulls in the ball[END_REF], this paper uses the set of coordinates induced by the floating bodies to build the scaling transformation. With the proper re-scaling of both the spatial and depth coordinates, we get a new picture in a product space R d-1 × R, the height being the re-scaled depth coordinate. The duality of the two definitions of the extreme points (or cone-extreme points in the case of the orthant) is even more apparent in the re-scaled picture. Indeed, the re-scaled random polytope may be described either via the re-scaled boundary of the convex hull given below by ∂Φ(P (λ) ) at (4.10) or via the re-scaled boundary of the union of petals given by ∂Ψ(P (λ) ) at (4.11).

4.2.

A new characterization of cone-extreme points. We consider surfaces

H t := {(z 1 , • • • , z d ) ∈ (0, ∞) d : d i=1 z i = t}, t > 0. ( 4.1) 
When d = 2 each H t is a branch of a hyperbola and for this reason we will sometimes refer to H t as a pseudo-hyperboloid. The surfaces H t , t > 0, coincide with boundaries of floating bodies of the orthant [0, ∞) d , as shown in Lemma 7.1, and play a key role in the description of cone-extreme points of input inside (0, ∞) d .

For every z (0) ∈ (0, ∞) d , we denote by H(z (0) ) the hyperplane tangent to the unique surface H t containing z (0) . The gradient of the function

f (z) = Π d i=1 z i at z (0) is t 1 z (0) , where 1 z (0) := ( 1 z (0) 1 , ..., 1 z (0) d 
). It follows that H(z (0) ) is described by

H(z (0) ) := {(z 1 , ..., z d ) ∈ R d : d i=1 z i z (0) i = d}. (4.2) 
To every point z (0) ∈ (0, ∞) d , we associate the surface

S(z (0) ) := {z ∈ (0, ∞) d : z (0) ∈ H(z)}.
The petal of z (0) is the closed set S -(z (0) ) of points above S(z (0) ). Notice that S -(z (0) ) is also the set of points z such that z (0) lies 'below' H(z). Using (4.2), we have

S -(z (0) ) := {(z 1 , ..., z d ) ∈ (0, ∞) d : d i=1 z (0) i z i ≤ d}. (4.3) 
The next lemma characterizes cone-extreme points in terms of the geometry of petals (see Figure 5). We are not aware of an analogous characterization of extreme points which are not cone-extreme. Lemma 4.1 Let X be any point set in (0, ∞) d . Then z (0) ∈ X is cone-extreme with respect to X if and only if S -(z (0) ) is not completely covered by z∈X \{z (0) } S -(z).

Proof. Indeed, S -(z (0) ) is not covered iff there exists z ∈ S(z (0) ) which is below each of the surfaces S(z (0) ). This is equivalent to saying that the hyperplane H(z) is a support hyperplane of co(X ) containing z (0) and with outward normal in C 0 (K). 

4.3.

The scaling transform T (λ) at (1.5). Here we describe the image under T (λ) of P λ ∩ Q 0 , the image of half-spaces with bounding hyperplane H(z (0) ), as well as the image of petals. As a by-product, we find the image of a face of

K λ ∩ Q 0 .
Recall the definitions of V, l i (v), l(v), and p V : R d → V introduced before (1.2) and after (1.5), respectively. For any x = (x 1 , • • • , x d ) ∈ R d and any function f : R → R, we define the vector f (x) := (f (x 1 ), • • • , f (x d )). Note that e l : V → H 1 .

Recall that w = (v, h) denotes a generic point in

V × R. The inverse of T (λ) is [T (λ) ] -1 : V × R -→ (0, ∞) d (v, h) -→ λ -1/d e h e l(v) . (4.4) 
The expression for [T (λ) ] -1 is justified as follows. We have l(p V (log(z))) = log zlog z, u 0 1 d u 0 where u 0 := (1, • • • , 1) and •, • is the usual scalar product on R d . Indeed, log z, u 0 1 d u 0 is the projection of log z onto the line directed by u 0 . So exp(l(p V (log z))) = exp(-

1 d d i=1 log z i ) • z = (z 1 .....z d ) -1/d z and so [T (λ) ] -1 (T (λ)
) is the identity, as desired.

Definition 4.1 For all λ ∈ [1, ∞) we put W λ := T (λ) (Q 0 ) = {(v, h) ∈ R d-1 × R : h ≤ -l i (v) + log λ 1/d δ 0 , 1 ≤ i ≤ d} (4.5) and P (λ) := T (λ) (P λ ∩ Q 0 ). (4.6)
When λ = ∞ we identify W λ with V × R and P (λ) with P at (1.1).

Lemma 4.2 Let P be the Poisson point process at (1.1). Then P (λ) is equal in distribution to P ∩ W λ and P (λ) D -→ P as λ → ∞.

Remark. Since dP (λ) is the image under T (λ) of λVol d , with Vol d the d-dimensional volume measure on R d , this lemma says that

T (λ) (λVol d ) D -→ dP.
Proof. P (λ) is a Poisson point process with intensity measure T (λ) (λdz). Endow V with a direct orthonormal basis B. Using (4.4), the Jacobian of [T (λ) ] -1 with respect to the direct orthonormal basis of R d given by (B, 1

√ d u (0) ) equals √ dλ -1 exp(dh) exp( d i=1 l i (v))D,
where D is the determinant of the matrix for the change of basis from (B, 1 √ d u (0) ) to the standard basis of R d . Since both bases are direct and orthornormal, we have D = 1. Moreover, we notice that d i=1 l i (v) = 0 because v ∈ V . Consequently, P (λ) has intensity measure with no λ dependency save that it is carried by the 'pyramid-like' set W λ := T (λ) (Q 0 ). In other words,

dP (λ) = √ d exp(dh)1((v, h) ∈ W λ )dvdh. (4.7) 
Lemma 4.2 follows from (4.7) and the convergence

W λ ↑ W = V × R.
Having considered the behavior of the scaling transform T (λ) on P λ , we now consider the image under T (λ) of surfaces H c/λ with c > 0, C 0 -half-spaces, and petals. A C 0 -half-space is one having an outward normal in C 0 (K), where C 0 (K) is as in Definition 3.1. Note that a C 0 -half-space is bounded by a hyperplane H(z (0) ) for some z (0) ∈ (0, ∞) d . Denote by H + (z (0) ) the half-space bounded by H(z (0) ) and containing 0.

Recall the definition of the down cone-like grain Π ↓ given at (1.3) and its translate Π ↓ (w

) := w ⊕ Π ↓ , w = (v, h) ∈ R d-1 × R. Define similarly the up cone-like grain Π ↑ := {(v, h) ∈ R d-1 × R : h ≥ G(-v)}, (4.8) 
and the translate Π

↑ (w) = w ⊕ Π ↑ , w ∈ R d-1 × R.
The duality between up and down cone-like grains is expressed through the following equivalence: for all w, w

′ ∈ R d-1 × R, w ∈ Π ↑ (w ′ ) ⇐⇒ w ′ ∈ Π ↓ (w).
The next lemma shows that T (λ) sends pseudo-hyperboloids to hyperplanes parallel to V , C 0 -half-spaces to down cone-like grains, and petals to up cone-like grains. Lemma 4.3 (i) For every c ∈ (0, ∞), we have

T (λ) (H c/λ ) = V × 1 d log(c) .
(ii) For every C 0 -half-space H + (z (0) ), z (0) ∈ (0, ∞) d , we have

T (λ) (H + (z (0) )) = Π ↓ (T (λ) (z (0) )).
(iii) For every petal S -(z (0) ), z (0) ∈ (0, ∞) d , we have

T (λ) (S -(z (0) )) = Π ↑ (T (λ) (z (0) )).
Proof. For every (v, h) ∈ V × R, we have by (4.4)

[T (λ) ] -1 (v, h) ∈ H c/λ ⇐⇒ d i=1 (λ -1/d e h e l i (v) ) = c/λ ⇐⇒ e dh = c
which shows (i). Fix z (0) ∈ (0, ∞) d and put T (λ) (z (0) ) := (v (0) , h (0) ). We notice that

T (λ) ( 1 z (0) ) = (-v (0) , -h (0) + 2 log(λ 1/d )).
(4.9)

Using the equation of H + (z (0) ) implied by (4.2), the formula for [T (λ) ] -1 at (4.4) and (4.9), we have for any (v, h)

∈ V × R [T (λ) ] -1 ((v, h)) ∈ H + (z (0) ) ⇐⇒ [T (λ) ] -1 ((v, h), 1 z (0) ≤ d ⇐⇒ λ -1/d e h exp(l(v)), 1 z (0) ≤ d ⇐⇒ e h-h (0) exp(l(v)), exp(l(-v (0) )) ≤ d ⇐⇒ h ≤ h (0) -log( 1 d exp(l(v -v (0) )), u (0) ).
This last equivalence, coupled with the definition of G at (1.2), gives (ii). Similarly, (iii) is a consequence of the equation of the petal S -(z (0) ) at (4.3), (4.4) and (4.9). Indeed, we have for every (v, h)

∈ V × R [T (λ) ] -1 ((v, h)) ∈ S -(z (0) ) ⇐⇒ λ 1/d e -h e -l(v) , λ -1/d e h (0) e l(v (0) ) ≤ d ⇐⇒ e h (0) -h e l(v (0) -v) , u 0 ≤ d ⇐⇒ h ≥ h (0) + G(v (0) -v).
This completes the proof of Lemma 4.3.

4.4.

Re-scaled extreme points and scores. It is time to define re-scaled scores ξ (λ) on P (λ) . We use Proposition 3.1 to show that on the event A λ given at (3.6), the re-scaled scores ξ (λ) coincide with functionals ξ(λ) defined in terms of the geometry of the re-scaled convex hull boundary. This is facilitated with the following definitions.

Definition 4.2 Write [Π ↑ (w)] (λ) for Π ↑ (w) ∩ W λ and similarly for [Π ↓ (w)] (λ) . Given P (λ) , 1 ≤ λ ≤ ∞, we define the P (λ) -hull as at (1.4) with X set to P (λ) , namely

Φ(P (λ) ) := w∈R d-1 ×R P (λ) ∩int(Π ↓ (w))=∅ [Π ↓ (w)] (λ) .
(4.10)

We also put Ψ(P (λ) ) :=

w∈P (λ) [Π ↑ (w)] (λ) . (4.11)
Abusing notation, we let Ext(P (λ) ) be those points in P (λ) which are on the boundary of some down cone-like grain Π ↓ (w), w ∈ W λ , and int(Π ↓ (w 1 )) ∩ P (λ) = ∅.

Equivalently, a point w 0 ∈ P (λ) is extreme with respect to Ψ(P (λ) ) if the grain Π ↑ (w 0 ) is not a subset of the union of the grains Π ↑ (w), w ∈ P (λ) \ {w 0 } (see Figure 6). By Lemma 4.1, Lemma 4.3(iii) and Proposition 3.1, on the event A λ , the extreme points in P λ ∩ Q 0 are transformed to Ext(P (λ) ). By Lemma 4.3 we also have on the event A λ that T (λ) (∂K λ ∩ Q 0 ) = ∂(Φ(P (λ) ).

Definition 4.3 For λ ∈ [1, ∞), put ξ (λ) k (w, P (λ) ) := ξ k ([T (λ) ] -1 (w), P λ ). For w ∈ Ext(P (λ) ) and λ ∈ [1, ∞] we put ξ(λ) k (w, P (λ) ) := (k + 1) -1 [number of k-faces of Φ(P (λ) ) containing w].
(4.12)

For w / ∈ Ext(P (λ) ) we put ξ(λ) k (w, P (λ) ) = 0. Similarly, for λ ∈ [1, ∞) and w ∈ Ext(P (λ) ) we define ξ

(λ) V (w, P (λ) ) := ξ V ([T (λ) ] -1 (w), P λ ) and ξ(λ) V (w, P (λ) ) := 1 d v∈Cyl (λ) (w,P (λ) ) ∂(Φ(P (λ) )(v)) -∞ √ de dh dvdh, (4.13) 
where Cyl (λ) (w) := Cyl (λ) (w, P (λ) ) denotes the projection onto V of the hyperfaces of Φ(P (λ) ) containing w. When w / ∈ Ext(P (λ) ) we define ξ(λ) V (w, P (λ) ) = 0.

Figure 6: The point process Ext(P (λ) ) (blue); the boundary of the up-grains containing the extreme points (red); the boundary ∂(Φ(P (λ) ) of the down-grains containing Ext(P (λ) ) (green). Points which are not extreme are apices of gray up-grains.

By Proposition 3.1, on the event A λ , the vertices of K λ ∩Q 0 coincide with cone-extreme points. Putting w = T (λ) (x) gives ξ(λ) k (w, P (λ) )1(A λ ). We exploit this fundamental scaling identity in Section 6. Similarly, by Proposition 3.1, Lemma 4.1, and the remark after Lemma 4.2, we have the analog of (4.14), namely

ξ k (x, P λ )1(A λ ) = ξ(λ) k (w, P (λ) )1(A λ ) = ξ (λ) k (w, P (λ) )1(A λ ). ( 4 
ξ(λ) V (w, P (λ) )1(A λ ) = ξ (λ) V (w, P (λ) )1(A λ ).
(4.15) Lemma 3.8 shows that the variance asymptotics for x∈P (λ) ξ(λ) V (w, P (λ) )1(A λ ) coincide with those for x∈P λ ξ V (x, P λ ).

Given λ ∈ [1, ∞), let Ξ (λ) denote the collection of re-scaled functionals ξ (λ) k , k ∈ {0, 1, ..., d -1}, together with ξ (λ) V . Likewise, for λ ∈ [1, ∞], we let Ξ(λ) denote the collection of functionals ξ(λ) k , k ∈ {0, 1, ..., d -1}, together with ξ(λ) V .
4.5. Properties of the function G defined at (1.2). We record two properties of G needed in the sequel. Notice that G is an even function only when d = 2.

Lemma 4.4 G is a positive convex function.

Proof. By the convexity of the exponential function, for any v ∈ V , we have

G(v) ≥ log(exp( 1 d d i=1 l i (v))) = log(1) = 0.
Let v, v ′ ∈ V and t ∈ [0, 1]. Hölder's inequality gives

G(tv + (1 -t)v ′ ) = log( d i=1 [ 1 d exp(l i (v))] t [ 1 d exp(l i (v ′ )] (1-t) ) ≤ log([ d i=1 1 d exp(l i (v))] t [ d i=1 1 d exp(l i (v ′ )] (1-t) ) = tG(v) + (1 -t)G(v ′ ).
Thus G is convex, completing the proof of Lemma 4.4.

The next lemma shows that the graph of G is sandwiched between circular cones.

Lemma 4.5 There exist c 1 , c 2 ∈ (0, ∞) such that for every v ∈ V ,

c 1 v -log d ≤ G(v) ≤ c 2 v . (4.16) 
Proof. Since max 1≤i≤d |l i (v)| is a norm on V , it is equivalent to the Euclidean norm • . It follows that there are constants

c 1 , c 2 ∈ (0, ∞) such that c ′ 1 v ≤ max 1≤i≤d |l i (v)| ≤ c ′ 2 v for all v ∈ V . We have for every v ∈ V G(v) = log 1 d d i=1 exp(l i (v)) ≤ log exp( max 1≤i≤d |l i (v)|) ≤ c ′ 2 v .
Moreover, one of the l i (v) is at least equal to 1 d-1 max 1≤i≤d |l i (v)|. This implies that

G(v) ≥ log 1 d exp( c ′ 1 d -1 v ) ≥ c ′ 1 d -1 v -log d,
which establishes (4.16).

Properties of re-scaled k-face and volume functionals

Section 4 introduced re-scaled functionals ξ(λ) of re-scaled input P (λ) . Here we establish localization properties of the functionals ξ(λ) ∈ Ξ(λ) , bounds on their moments, as well convergence of their one and two-point correlation functions.

Stabilization.

We establish localization of the functionals ξ(λ) ∈ Ξ(λ) in both the space and time domains. Recalling that B d-1 (v, r) is the (d -1) dimensional ball centered at v ∈ R d-1 with radius r, define the cylinder

C(v, r) := C d-1 (v, r) := B d-1 (v, r) × R. (5.1)
We show that the boundaries of the germ-grain models Ψ(P (λ) ) and Φ(P (λ) ), λ ∈ [1, ∞] defined at (4.11) and (4.10), respectively, are not far from V . Recall that P (λ) , λ = ∞, is taken to be P. If w ∈ Ext(P (λ) ) we put H(w) := H(w, P (λ) ) to be the maximal height coordinate (with respect to R d-1 ) of an apex of a down cone-like grain belonging to Φ(P (λ) ) and containing w. Otherwise, if w / ∈ Ext(P (λ) ) then we put H(w) = 0.

Lemma 5.1 (a)

There is a constant c such that for all λ ∈ [1, ∞] and

(v 0 , h 0 ) ∈ W λ P [H((v 0 , h 0 ), P (λ) ) ≥ t] ≤ c exp(- e t/c c ), t ≥ h 0 ∨ 0. (5.2) (b) There is a constant c such that for all L ∈ (0, ∞) and λ ∈ [1, ∞] P [||∂Ψ(P (λ) ) ∩ C(0, L)|| ∞ > t] ≤ cL 2(d-1) exp(- t c ), t ∈ (0, ∞). (5.
3)

The bound (5.3) also holds for ∂(Φ(P (λ) )).

Proof. We first prove (5.2). Rewrite the event {H((v 0 , h 0 ), P (λ) ) ≥ t} as

{H((v 0 , h 0 ), P (λ) ) ≥ t} = {∃w 1 := (v 1 , h 1 ) ∈ ∂[Π ↑ ((v 0 , h 0 ))] (λ) : h 1 ∈ [t, ∞), [Π ↓ (w 1 )] (λ) ∩ P (λ) = ∅}. First consider the case λ = ∞. Let w 1 := (v 1 , h 1 ) ∈ ∂Π ↑ ((v 0 , h 0 )) with h 1 ∈ [t, ∞). Recalling (4.16), the dP measure of Π ↓ (w 1 ) is bounded below by the dP measure of {(v, h) : h ≤ h 1 -c 2 v -v 1 } ∩ (R d-1 × [0, ∞)),

which we generously bound below by

c h 1 2 h 1 4 e dh (h 1 -h) d-1 dh ≥ c ′ e h 1 /c ′ .
Here and elsewhere, unless noted otherwise, c and c ′ denote positive constants which are independent of other parameters except for dimension and whose value may change at each occurrence. Thus the probability that Π ↓ (w 1 ) does not contain points in P is bounded above by c exp(-e h 1 /c ).

We now discretize ∂Π

↑ ((v 0 , h 0 )) ∩ (R d-1 × [t, ∞)). Notice that if w 1 := (v 1 , h 1 ) ∈ ∂Π ↑ ((v 0 , h 0 )) then (4.16) gives h 1 = h 0 + G(v 0 -v 1 ) ≥ h 0 + c 1 ||v 1 -v 0 || -log d, which yields ||v 0 -v 1 || ≤ 1 c 1 [h 1 -h 0 + log d]. This gives P [H((v 0 , h 0 ), P) ≥ t] ≤ c ∞ t (h 1 -h 0 + log d) d-2 exp(-ce h 1 /c )dh 1 .
Thus (5.2) holds.

Next consider the case λ ∈ [1, ∞). The above argument still holds as soon as we can show for any (v 1 , h 1 ) ∈ W λ , that the dP measure of the intersection of W λ with the down cone-like grain

{(v, h) : h ≤ h 1 -c 2 v-v 1 } is bounded below by c exp(-e h 1 /c /c).
To do so, let C min be the largest circular cone included in the pyramid W λ and with the same apex as W λ . (Actually, C min does not depend on λ since for λ ′ > λ, W λ ′ is the image of W λ by a translation.) Then any vertical cone with apex in W λ is such that its intersection with W λ is either the cone itself or contains a translate of C min with same apex. Consequently, the intersection

{(v, h) : h ≤ h 1 -c 2 v -v 1 } ∩ W λ contains another cone {(v, h) : h ≤ h 1 -c 3 v -v 1 }
with c 3 depending only on d. Its dP measure is then bounded below by c exp(-e h 1 /c ). The proof is concluded as in the case λ = ∞.

We now prove (5.3). We bound the probability of the events

E 3 := {∂Ψ(P (λ) ) ∩ {(v, h) : ||v|| ≤ L, h > t} = ∅} and E 4 := {∂Ψ(P (λ) ) ∩ {(v, h) : ||v|| ≤ L, h < -t} = ∅}.
When in E 3 , there is a point w 1 := (v 1 , h 1 ) with h 1 ∈ [t, ∞), ||v 1 || ≤ L, and such that [Π ↓ (w 1 )] (λ) ∩ P (λ) = ∅. As in the proof of (5.2), there is a subset of C(0, L) of volume one and on this subset the density of the dP (λ) measure exceeds c exp(h 1 /c). Discretize {(v, h) : ||v|| ≤ L, h ∈ [t, ∞)} into unit volume sub-cubes and bound cross-sectional areas by cL d-1 to obtain

P [E 3 ] ≤ cL d-1 ∞ c 1 t/3 exp(dh 1 ) exp(-ce h 1 /c )dh 1 ≤ cL d-1 exp(- e t c
).

On the event E 4 , there exists a point (v 1 , h 1 ) with ||v 1 || ≤ L and h 1 ∈ (-∞, -t] which is on the boundary of an up cone-like grain with apex in P (λ) . The apex of this up cone-like grain is contained in the union of all down cone-like grains with apex on B d-1 (0, L) × {h 1 }. The dP (λ) measure of this union is bounded by cL d-1 exp(h 1 /c) (here we use that the union is a subset of the union of standard circular cones). Consequently, the probability that the union contains points from P (λ) is less than 1exp(-cL d-1 e h 1 /c ) ≤ cL d-1 exp(h 1 /c). It remains to discretize and integrate over h 1 ∈ (-∞, t). This goes as follows.

Discretizing C(0, L) × (-∞, -t] into unit volume subcubes and using the previous bound, we find that the probability there exists (v 1 , h 1 ) ∈ R d-1 × (-∞, -t] on the boundary of an up cone-like grain is bounded by

cL 2(d-1) -t -∞ e h 1 /c e dh 1 dh 1 .
This establishes (5.3). Similar arguments apply to ∂(Φ(P (λ) )).

For (v 0 , h 0 ) ∈ Ext(P (λ) ) and t ∈ R, we define

U (λ) (v 0 , h 0 , t) := w 1 ∈[Π ↑ ((v 0 ,h 0 ))] (λ) ∩(R d-1 ×(-∞,t]) [Π ↓ (w 1 )] (λ) .
The score ξ(λ) ((v 0 , h 0 ), P (λ) ) depends only on the points of P (λ) inside U (λ) (v 0 , h 0 , H((v 0 , h 0 ), P (λ) )), as this set contains all faces in Φ(P (λ) ) which contain (v 0 , h 0 ). Put

R := R ξ(λ) [(v 0 , h 0 )] := inf{r > 0 : P (λ) ∩ U (λ) (v 0 , h 0 , H((v 0 , h 0 ), P (λ) )) ⊂ C(v 0 , r)}.
(5.4) It follows from the definitions that ξ(λ) ((v 0 , h 0 ), P (λ) ) = ξ(λ) ((v 0 , h 0 ),

P (λ) ∩ C(v 0 , r)), r ∈ [R, ∞).
In other words, as in Section 6 of [START_REF] Calka | Brownian limits, local limits, and variance asymptotics for convex hulls in the ball[END_REF], R ξ(λ) [(v 0 , h 0 )] is a radius of spatial stabilization for ξ(λ) . The next lemma shows that R is finite a.s. and in fact has exponentially decaying tails. Given c 1 as in (4.16), we put for all h 0 ∈ R,

h0 := ( 6 c 1 log d) ∨ ((- 6 c 1 h 0 )1(h 0 < 0)). (5.5) Lemma 5.2 There is a constant c > 0 such that for all ξ ∈ Ξ, λ ∈ [1, ∞], (v 0 , h 0 ) ∈ W λ
, and all t ∈ [ h0 , ∞) we have

P [R ξ(λ) [(v 0 , h 0 )] > t] ≤ c exp(- t c
).

(5.6)

Proof. We show (5.6) for v 0 = 0, as the proof is analogous for arbitrary v 0 . Put R := R ξ(λ) [(v 0 , h 0 )] and write

P [R > t] ≤ P [H((0, h 0 ), P (λ) ) ≥ c 1 t 6 ] + P [H((0, h 0 ), P (λ) ) ∈ (-∞, c 1 t 6 ], R ≥ t].
Lemma 5.1(a) shows that the first term on the right-hand side is bounded by c exp(-e t/c /c).

Thus we only need to control the second term. When H((0, h 0 ), P (λ) ) ∈ (-∞, c 1 t/6], then ξ(λ) ((0, h 0 )) only depends on elements of P (λ) in U := U (λ) (0, h 0 , c 1 t/6).

Let w = (v, h) ∈ U and w 1 = (v 1 , h 1 ), h 1 ≤ c 1 t/6, be such that ∂[Π ↓ (w 1 )] (λ) contains both (0, h 0 ) and w. We assert that if h ∈ [-c 1 t/6, c 1 t/6], then ||v|| ≤ t. To see this we first note that ||v - 

v 1 || ≤ t/2. This follows because h = h 1 -G(v -v 1 ), which in view of (4.16) yields h ≤ h 1 -c 1 ||v -v 1 || + log d, that is to say ||v -v 1 || ≤ 1 c 1 [h 1 -h + log d]. ( 5 
(λ) ∩ U ∩ (R d-1 × (-∞, -c 1 t/6]) = ∅, then only elements of P (λ) ∩ U ∩ (R d-1 × (-c 1 t/6, c 1 t/6]) contribute to the score ξ(λ) ((0, h 0 )), showing that in this case R ξ(λ) [(0, h 0 )] ∈ (0, t]. Therefore P [H((0, h 0 ), P (λ) ) ∈ (-∞, c 1 t 6 ], R ≥ t] ≤ P [P (λ) ∩ U ∩ (R d-1 × (-∞, -c 1 t/6]) = ∅]. Notice that if v ∈ U then ||v|| ≤ ||v 1 || + ||v -v 1 || ≤ t 2 + t 3 -h c 1
, where we use ||v 1 || ≤ t/2 and (5.7). Similar to the proof of Lemma 5.1, discretization methods yield

dP (λ) (P (λ) ∩ U ∩ (R d-1 × (-∞, -c 1 t 6 ])) ≤ c -c 1 t/6 -∞ e dh ( t 2 + t 3 - h c 1 ) (d-1) dh ≤ c exp(- t c ).
It follows that

P [P (λ) ∩ U ∩ (R d-1 × (-∞, -c 1 t 6 ]) = ∅] ≤ c exp(- t c ),
as desired.

Lemma 5.3 For all p ∈ [1, ∞) and ξ ∈ Ξ, ξ a k-face functional, there is a constant c > 0 such that for all

(v 0 , h 0 ) ∈ W λ , λ ∈ [1, ∞],
we have

E [ ξ(λ) ((v 0 , h 0 )), P (λ) ) p ] ≤ c(|h 0 | c + 1) exp(- e (h 0 ∨0)/c c ).
(5.8)

For all p ∈ [1, ∞) there is a constant c > 0 such that for all (v 0 , h 0 ) ∈ W λ , λ ∈ [1, ∞],
we have

E [ ξ(λ) V ((v 0 , h 0 )), P (λ) ) p ] ≤ c(|h 0 | c + 1) exp(c(h 0 ∨ 0)) exp(- e (h 0 ∨0)/c c ).
(5.9)

Proof. We first prove (5.8) for the k-face functional ξ(λ

) := ξ(λ) k , k ∈ {0, 1, ..., d -1}. We start by showing for all λ ∈ [1, ∞] and h 0 ∈ R sup v 0 ∈R d-1 E [ ξ(λ) ((v 0 , h 0 ), P (λ) ) p ] ≤ c(|h 0 | c + 1).
(5.10)

Let R := R ξ(λ) [(v 0 , h 0 )
] be as at (5.4) and N (λ) ((v 0 , h 0 )) the cardinality of extreme points in C(v, R) which share a common facet with (v 0 , h 0 ). Clearly

ξ(λ) ((v 0 , h 0 ), P (λ) ) ≤ 1 k + 1 N (λ) ((v 0 , h 0 )) k .
To show (5.10), given p ∈ [1, ∞), it suffices to show there is a constant c

:= c(p, k, d) such that for λ ∈ [1, ∞] E N (λ) ((v 0 , h 0 )) pk ≤ c(|h 0 | c + 1). (5.11) By (1.1) 
, for all r, ℓ ∈ R we have

dP (λ) (C(v 0 , r) ∩ (R d-1 × (-∞, ℓ))) ≤ cr d-1 e dℓ .
Consequently, with H := H((v 0 , h 0 ), P (λ) ) as defined before Lemma 5.1 and with Po(α) denoting a Poisson random variable with mean α ∈ (0, ∞), we have for λ

∈ [1, ∞] E N (λ) ((v 0 , h 0 )) pk ≤ E [card(P (λ) ∩ [C(v, R) ∩ (R d-1 × (-∞, H))]) pk ] = ∞ i=0 ∞ j=⌊h 0 ⌋ E [Po(dP (λ) (C(v, R) ∩ (R d-1 × (-∞, H))) pk 1(i ≤ R < i + 1, j ≤ H < j + 1)] ≤ ∞ i=0 ∞ j=⌊h 0 ⌋ E [Po(c(i + 1) d-1 e (j+1)d ) pk 1(R ≥ i, H ≥ j)].
We shall repeatedly use the moment bound

E [Po(α) r ] ≤ c(r)α r , r ∈ [1, ∞). Using Hölder's inequality, we get E N (λ) ((v 0 , h 0 )) pk ≤ c ∞ i=0 ∞ j=⌊h 0 ⌋ (i + 1) pk(d-1)/3 e (j+1)dpk/3 P [R ≥ i] 1/3 P [H ≥ j] 1/3 .
Splitting the sum on the i indices into i ∈ [0, h0 ] and i ∈ [ h0 , ∞], with h0 defined at (5.5), and splitting the sum on the j indices into [⌊h 0 ⌋ ∧ 0, 0] and [0, ∞), we get

EN (λ) ((v 0 , h 0 )) pk ≤ S 1 + S 2 + S 3 + S 4 ,
where

S 1 := h0 i=0 0 j=⌊h 0 ⌋∧0 (i + 1) pk(d-1)/3 e (j+1)dpk/3 P [R ≥ i] 1/3 P [H ≥ j] 1/3 S 2 := ∞ i= h0 0 j=⌊h 0 ⌋∧0 (i + 1) pk(d-1)/3 e (j+1)dpk/3 P [R ≥ i] 1/3 P [H ≥ j] 1/3 S 3 := h0 i=0 ∞ j=⌊h 0 ⌋∨0 (i + 1) pk(d-1)/3 e (j+1)dpk/3 P [R ≥ i] 1/3 P [H ≥ j] 1/3 S 4 := ∞ i= h0 ∞ j=⌊h 0 ⌋∨0 (i + 1) pk(d-1)/3 e (j+1)dpk/3 P [R ≥ i] 1/3 P [H ≥ j] 1/3 .

Now we compute

S 1 ≤ c h0 i=0 (i + 1) pk(d-1)/3 0 j=⌊h 0 ⌋∧0 exp((j + 1)dpk/3) ≤ c(|h 0 | c + 1),
since the second sum is bounded by a constant and where c := c(p, k, d). Next,

S 2 ≤ c ∞ i= h0 (i + 1) pk(d-1)/3 P [R ≥ i] 1/3 0 j=⌊h 0 ⌋∧0 exp((j + 1)dpk/3) ≤ c
where the first sum converges by the exponentially decaying tail bound for P [R ≥ i]. Making use of the super exponentially decaying tail bound for P [H ≥ j] we get

S 3 ≤ c h0 i=0 (i + 1) pk(d-1)/3 ∞ j=⌊h 0 ⌋∨0 e (j+1)dpk/3 exp(-e j/c /3c) ≤ c(|h 0 | c + 1). Finally, S 4 ≤ c ∞ i= h0 (i + 1) pk(d-1)/3 P [R ≥ i] 1/3 ∞ j=⌊h 0 ⌋∨0
e (j+1)dpk/3 exp(-e j/c /3c) ≤ c, since both sums are bounded by a constant. Combining the bounds for S 1 , S 2 , S 3 and S 4 gives the required bound (5.11).

To deduce (5.8), we argue as follows. First consider the case h 0 ∈ [0, ∞). By the Cauchy-Schwarz inequality and (5.10) we have

E [ ξ(λ) ((v 0 , h 0 ), P (λ) ) p ] ≤ (E ξ(λ) ((v 0 , h 0 ), P (λ) ) 2p ) 1/2 P [ ξ(λ) ((v 0 , h 0 ), P (λ) ) > 0] 1/2 ≤ c(|h 0 | + 1) c P [ ξ(λ) ((v 0 , h 0 ), P (λ) ) = 0] 1/2 .
The event { ξ(λ) ((v 0 , h 0 ), P (λ) ) = 0} coincides with the event that (v 0 , h 0 ) is extreme in P (λ) and we may now apply (5.2) for t = h 0 , which is possible since we have assumed h 0 is positive. This gives (5.8) for h 0 ∈ [0, ∞). When h 0 ∈ (-∞, 0) we bound P [ ξ(λ) ((v 0 , h 0 ), P (λ) ) > 0] 1/2 by c exp(-e 0 /c), c large, which shows (5.8) for h 0 ∈ (-∞, 0). This concludes the proof of (5.8) when ξ is a k-face functional.

We now prove (5.8) for the volume functional ξV . We start by proving the analog of (5.10). Without loss of generality we put (v 0 , h 0 ) = (0, h 0 ). Recalling the definition of H := H((0, h 0 ), P (λ) ) we have

ξ(λ) V ((0, h 0 ), P (λ) ) ≤ 1 d v∈Cyl (λ) ((0,h 0 ),P (λ) ) dv H -∞ e dh dh.
Integrating, raising both sides to the pth power, taking expectations and applying the Cauchy-Schwarz inequality we get

E ξ(λ) V ((0, h 0 ), P (λ) ) p ≤ C(E (VolCyl (λ) ((0, h 0 ), P (λ) ) 2p ) 1/2 (E e 2pdH ) 1/2 . Now E (VolCyl (λ) ((0, h 0 ), P (λ) ) 2p ) ≤ E (R ξ(λ) V [(0, h)]) 2p(d-1) ≤ c(|h 0 | + 1) c
by Lemma 5.2. Lemma 5.1(a) and the formula

E X = ∞ 0 P [X ≥ t]dt imply that E e 2pdH = ∞ 0 P [e 2pdH > t]dt = ∞ 0 P [2pdH > log t]dt = t≤exp((h 0 ∨0)2pd) P [2pdH > log t]dt + t≥exp((h 0 ∨0)2pd) P [2pdH > log t]dt ≤ exp((h 0 ∨ 0)2pd) + t≥exp((h 0 ∨0)2pd) P [H ≥ log t 1/2pd ]dt ≤ c exp((h 0 ∨ 0)2pd). Thus E ξ(λ) V ((0, h 0 ), P (λ) ) p ≤ c(|h 0 | + 1) c exp(c(h 0 ∨ 0)).
(5.12)

The bound (5.9) for ξ(λ) V follows from (5.12) in the same way that (5.10) implies (5.8) for ξ(λ) k . This completes the proof of Lemma 5.3.

Two point correlation function for ξ(λ)

. For all h ∈ R, (v 0 , h 0 ), (v 1 , h 1 ) ∈ W λ , and ξ ∈ Ξ we extend the definition at (2.5) by putting for all λ ∈ [1, ∞]

c (λ) ((v 0 , h 0 ), (v 1 , h 1 )) := c ξ(λ) ((v 0 , h 0 ), (v 1 , h 1 ), P (λ) ) := (5.13) E [ ξ(λ) ((v 0 , h 0 ), P (λ) ∪ (v 1 , h 1 )) × ξ(λ) ((v 1 , h 1 ), P (λ) ∪ (v 0 , h 0 ))]- E ξ(λ) ((v 0 , h 0 ), P (λ) )E ξ(λ) ((v 1 , h 1 ), P (λ) ).
The first part of the next lemma justifies the assertion that the functionals in Ξ(∞) are scaling limits of their counterparts in Ξ(λ) .

Lemma 5.4 (a) For all (v 0 , h 0 ) ∈ R d-1 × R and ξ ∈ Ξ we have lim λ→∞ E ξ(λ) ((v 0 , h 0 ), P (λ) ) = E ξ(∞) ((v 0 , h 0 ), P). (b) For all h 0 ∈ R, (v 1 , h 1 ) ∈ R d-1 × R and ξ ∈ Ξ we have lim λ→∞ c ξ(λ) ((0, h 0 ), (v 1 , h 1 )) = c ξ(∞) ((0, h 0 ), (v 1 , h 1 )).
Proof. We first prove (a). Suppose (v 0 , h 0 ) / ∈ Ext(P). Then (v 0 , h 0 ) / ∈ Ext(P (λ) ), showing that both sides vanish. Without loss of generality, let (v 0 , h 0 ) ∈ Ext(P). Put

B(v 0 , h 0 ) := C(v 0 , R ξ(∞) [(v 0 , h 0 ), P]) ∩ (R d-1 × (-∞, H((v 0 , h 0 ), P)])).
We have ξ(∞) ((v 0 , h 0 ), P) = ξ(∞) ((v 0 , h 0 ), P ∩ B(v 0 , h 0 )).

For λ large we have

B(v 0 , h 0 ) ⊂ W λ . For such λ it follows that ξ(∞) ((v 0 , h 0 ), P) = ξ(∞) ((v 0 , h 0 ), P ∩ W λ ) = ξ(λ) ((v 0 , h 0 ), P ∩ W λ ), in other words ξ(λ) ((v 0 , h 0 ), P ∩ W λ ) → ξ(∞) ((v 0 , h 0 ), P) a.s.
Convergence of expectations follows from the uniform integrability of ξ(λ) ((v 0 , h 0 ), P ∩ W λ ), as shown in Lemma 5.3. This shows part (a). Part (b) follows from identical methods, since products of scores ξ(λ) ((0, h 0 ), P ∩ W λ ) and ξ(λ) ((v 1 , h 1 ), P ∩ W λ ) a.s. converge to their ξ(∞) counterparts and the products are uniformly integrable by Lemma 5.3.

Lemma 5.5 Let c 1 be as at (4.16). Let ξ ∈ Ξ be a k-face functional. There is a constant

c 3 := c 3 ( ξ, d) ∈ (0, ∞) such that for all λ ∈ [1, ∞] and (v 0 , h 0 ), (v 1 , h 1 ) ∈ W λ satisfying ||v 1 -v 0 || ≥ 2 max 6 c 1 log d, - 6 c 1 h 0 1(h 0 < 0), - 6 c 1 h 1 1(h 1 < 0) (5.14)
we have

|c ξ(λ) ((v 0 , h 0 ), (v 1 , h 1 ))| ≤ c 3 (|h 0 |+1) c 3 (|h 1 |+1) c 3 exp -1 c 3 (||v 1 -v 0 || + e h 0 ∨0 + e h 1 ∨0
) .

(5.15) When ξ is the volume functional ξV we have

|c ξ(λ) ((v 0 , h 0 ), (v 1 , h 1 ))| ≤ c 3 (|h 0 | + 1) c 3 (|h 1 | + 1) c 3 exp(c 4 ((h 0 ∨ 0) + (h 1 ∨ 0))) × exp -1 c 3 (||v 1 -v 0 || + e h 0 ∨0 + e h 1 ∨0
) .

(5.16)

Proof. We prove this assuming that ξ is the k-face functional, as the proof for the volume functional ξV follows from identical methods. Put

X λ := ξ(λ) ((v 0 , h 0 ), P (λ) ∪ (v 1 , h 1 )), Y λ := ξ(λ) ((v 1 , h 1 ), P (λ) ∪ (v 0 , h 0 )
), Xλ := ξ(λ) ((v 0 , h 0 ), P (λ) ) and Ỹλ := ξ(λ) ((v 1 , h 1 ), P (λ) ).

We have

c ξ(λ) ((v 0 , h 0 ), (v 1 , h 1 )) = E X λ Y λ -E Xλ E Ỹλ . (5.17) 
Put r := ||v 1v 0 ||/2 and let R ξ(λ) [(v i , h i )], i ∈ {0, 1}, be as at (5.4). Now

|E X λ Y λ -E X λ Y λ 1(R ξ(λ) [(v 0 , h 0 )] ≤ r, R ξ(λ) [(v 1 , h 1 )] ≤ r)| ≤ E X λ Y λ [1(R ξ(λ) [(v 0 , h 0 )] ≥ r) + 1(R ξ(λ) [(v 1 , h 1 )] ≥ r)].
Let v 1 and v 0 satisfy (5.14). Hölder's inequality and Lemma 5.2 imply that the right hand side of the above is bounded by

||X λ || 3 ||Y λ || 3 [P [R ξ(λ) [(v 0 , h 0 )] ≥ r] 1/3 + P [R ξ(λ) [(v 1 , h 1 )] ≥ r] 1/3 ] ≤ c(|h 0 | + 1) c (|h 1 | + 1) c exp -1 c (e h 0 ∨0 + e h 1 ∨0
)

× [P [R ξ(λ) [(v 0 , h 0 )] ≥ r] 1/3 + P [R ξ(λ) [(v 1 , h 1 )] ≥ r] 1/3 ] ≤ c(|h 0 | + 1) c (|h 1 | + 1) c exp -1 c (||v 1 -v 0 || + e h 0 ∨0 + e h 1 ∨0
) .

(5.18)

Now

E X λ Y λ 1(R ξ(λ) [(v 0 , h 0 )] ≤ r, R ξ(λ) [(v 1 , h 1 )] ≤ r) = E ξ(λ) ((v 0 , h 0 ), P (λ) ∩ C(v 0 , r)) ξ(λ) ((v 1 , h 1 ), P (λ) ∩ C(v 1 , r)) × 1(R ξ(λ) [(v 0 , h 0 )] ≤ r, R ξ(λ) [(v 1 , h 1 )] ≤ r).
Following the above methods, the difference of

E X λ Y λ 1(R ξ(λ) [(v 0 , h 0 )] ≤ r, R ξ(λ) [(v 1 , h 1 )] ≤ r) and E ξ(λ) ((v 0 , h 0 ), P (λ) ∩ C(v 0 , r)) ξ(λ) ((v 1 , h 1 ), P (λ) ∩ C(v 1 , r))
is also bounded by (5.18). By independence we have

E ξ(λ) ((v 0 , h 0 ), P (λ) ∩ C(v 0 , r)) ξ(λ) ((v 1 , h 1 ), P (λ) ∩ C(v 1 , r)) = E ξ(λ) ((v 0 , h 0 ), P (λ) ∩ C(v 0 , r))E ξ(λ) ((v 1 , h 1 ), P (λ) ∩ C(v 1 , r)).
Thus we have shown

|E X λ Y λ -E ξ(λ) ((v 0 , h 0 ), P (λ) ∩ C(v 0 , r))E ξ(λ) ((v 1 , h 1 ), P (λ) ∩ C(v 1 , r))| ≤ c(|h 0 | + 1) c (|h 1 | + 1) c exp -1 c (||v 1 -v 0 || + e h 0 ∨0 + e h 1 ∨0
) .

Identical methods give

|E Xλ E Ỹλ -E ξ(λ) ((v 0 , h 0 ), P (λ) ∩ C(v 0 , r))E ξ(λ) ((v 1 , h 1 ), P (λ) ∩ C(v 1 , r))| ≤ c(|h 0 | + 1) c (|h 1 | + 1) c exp -1 c (||v 1 -v 0 || + e h 0 ∨0 + e h 1 ∨0
) .

Combining the last two displays with (5.17), we get (5.15).

Our last lemma shows that c ξ(λ) ((0, h 0 ), (v 1 , h 1 ))e dh 0 e dh 1 is bounded by an integrable function, a fact used in establishing variance asymptotics in the next section.

Lemma 5.6 For all ξ ∈ Ξ there is an integrable

g : R × R d-1 × R → R + such that for all λ ∈ [1, ∞] we have |c ξ(λ) ((0, h 0 ), (v 1 , h 1 ))|e dh 0 e dh 1 ≤ g(h 0 , v 1 , h 1 ). ( 5 

.19)

Proof. With c 1 as at (4.16), define

F : R × R d-1 × R → R + by F (h 0 , v 1 , h 1 ) := c(|h 0 | + 1) c (|h 1 | + 1) c exp(c 4 ((h 0 ∨ 0) + (h 1 ∨ 0))) × exp -1 c (||v 1 || + e h 0 ∨0 + e h 1 ∨0 ) +1(||v 1 || ≤ 2 max 6 c 1 log d, - 6 c 1 h 0 1(h 0 < 0), - 6 c 1 h 1 1(h 1 < 0) ,
where c is a constant. If c is large enough, then Lemma 5.5 gives

|c ξ(λ) ((0, h 0 ), (v 1 , h 1 ))|e dh 0 e dh 1 ≤ F (h 0 , v 1 , h 1 )e dh 0 e dh 1 .
Put g(h 0 , v 1 , h 1 ) := F (h 0 , v 1 , h 1 )e dh 0 e dh 1 and note that g is integrable as claimed.

6 Proof of main results

6.1. Proof of Theorems 1.1 and 1.2. The next proposition immediately yields Theorem 1.2. It also yields Theorem 1.1, since it implies that the extreme points of K λ ∩ Q 0 converge in law to Ext(P) as λ → ∞. Recall that T (λ) (P λ ∩ Q 0 ) := P (λ) as at (4.6) and T (λ) ((∂K λ ) ∩ Q 0 ) := ∂(Φ(P (λ) )) on the event A λ . Proposition 6.1 Fix L ∈ (0, ∞). We have that ∂Ψ(P (λ) ) converges in probability as λ → ∞ to ∂Ψ(P) in the space C(B d-1 (0, L))). Likewise, ∂Φ(P (λ) ) converges in probability as λ → ∞ to ∂(Φ(P)).

Proof. We prove the first convergence statement as follows. With L fixed, for all l ∈ [0, ∞) and λ ∈ [1, ∞), let E(L, l, λ) be the event that the heights of ∂(Ψ(P (λ) )) and ∂(Ψ(P)) belong to [-l, l] over the spatial region B d-1 (0, L). Π ↓ (w).

Thus whenever we have equality of P ∩ D ∩ W λ and P ∩ D, it follows that ∂Ψ(P (λ) ) and ∂Ψ(P) coincide in C d-1 [0, L]. Since D \ W λ decreases to ∅, we have as λ goes to infinity

P [P ∩ D ∩ W λ = P ∩ D] = P [P ∩ (D \ W λ ) = ∅] ≤ dP[D \ W λ ] → 0.
This completes the proof of the first convergence statement. The proof of the second convergence statement is nearly identical and we leave the details to the reader.

6.2. Proof of Theorem 2.1. When g ≡ 1, the decomposition (3.3) shows that it is enough to find expectation asymptotics for E [ 1(Q 0 ), µ ξ λ 1(A λ )] and multiply the result by f 0 (K). For arbitrary g ∈ C(K), an identical decomposition holds and so to show (2.8), it suffices to find lim λ→∞ E [ g1(Q 0 ), µ ξ λ 1(A λ )]. We have

E [ g1(Q 0 ), µ ξ λ 1(A λ )] = Q 0 g(x)E [ξ(x, P λ )1(A λ )]λdx = √ d (v,h)∈W λ g([T (λ) ] -1 (v, h))E [ ξ(λ) ((v, h), P ∩ W λ )1(A λ )]e dh dhdv = √ d (v,h)∈W λ g([T (λ) ] -1 (v, h))E [ ξ(λ) ((0, h), P ∩ (W λ -v))1(A λ )]e dh dhdv
where the second equality uses (4.14) and (4.15), whereas the last equality uses translation invariance of ξ(λ) . Scaling by (log λ) d-1 and making the change of variable

u = ( 1 d log λ) -1 v, dv = d -(d-1) (log λ) d-1 du, we obtain (log λ) -(d-1) E [ g1(Q 0 ), µ ξ λ 1(A λ )] = d -d+3/2 (u,h)∈W λ ′ g([T (λ) ] -1 (( 1 d log λ)u, h))E [ ξ(λ) ((0, h), P∩(W λ ′ -u) log λ 1/d )1(A λ )]e dh dhdu, (6.1 
) where

W λ ′ := {( 1 d log λ) -1 v, h); (v, h) ∈ W λ }.
Here, for B ⊂ R d-1 × R and s ∈ R, we write sB := {(sv, h) : (v, h) ∈ B}. We now prove (2.8) via the following three steps.

(i) We first show the almost everywhere convergence

lim λ→∞ 1((u, h) ∈ W λ ′ )g [T (λ) ] -1 (( 1 d log λ)u, h) = 1(u ∈ S(d))g(0), (6.2) 
where S(d) is defined at (2.7). Indeed, because of (4.5), the equation of

W λ ′ is ℓ i (u) ≤ (1 + log δ 0 -h log λ 1/d ), 1 ≤ i ≤ d.
Consequently, in the limit as λ → ∞, we have ℓ i (v) ≤ 1 for 1 ≤ i ≤ d. In other words, the limit of W λ ′ is a cylinder whose base is the intersection of V and the pyramid

{(x 1 , • • • , x d ) ∈ R d : x i ≤ 1, 1 ≤ i ≤ d}. This base is precisely S(d).
Moreover in view of (4.4), we have This shows (6.2).

[T (λ) ] -1 (( 1 d log λ)u, h) = λ If u ∈ S(
(ii) We remove the indicator on the right hand side of (6.1) with small error:

(log λ) -(d-1) E [ g1(Q 0 ), µ ξ λ 1(A λ )] = d -d+3/2 g([T (λ) ] -1 (( 1 d log λ)u, h)) E [ ξ(λ) ((0, h), P ∩ (W λ ′ -u) log λ 1/d )]1((u, h) ∈ W λ ′ )e dh dhdu + o(1). (6.3) 
Indeed, by the Cauchy-Schwarz inequality and by moment bounds similar to those from Lemma 5.3, we have uniformly in u that

E [ ξ(λ) ((0, h), P ∩ (W λ ′ -u) log λ 1/d )1(A c λ )]e dh dh ≤ (E [ ξ(λ) ((0, h), P ∩ (W λ ′ -u) log λ 1/d )] 2 ) 1/2 P [A c λ ] 1/2 e dh dh ≤ c(log λ) -2d 2 ,
where c is a constant not depending on u. Equality (6.3) follows from the estimate above, (6.2), and the dominated convergence theorem. For g ∈ C(K), the Mecke-Slivnyak formula (Corollary 3.2.3 in [START_REF] Schneider | Stochastic and Integral Geometry[END_REF]) gives

Var[ g1(Q 0 ), µ ξ λ 1(A λ )] := I 1 (λ) + I 2 (λ), (6.5) 
where

I 1 (λ) := Q 0 g(x) 2 E ξ(x, P λ ) 2 1(A λ ) λdx and I 2 (λ) := Q 0 Q 0 g(x)g(y)[E ξ(x, P λ ∪y)ξ(y, P λ ∪x)1(A λ )-E ξ(x, P λ )1(A λ )E ξ(y, P λ )1(A λ )]λ 2 dydx.
Replacing g by g 2 in the proof of expectation asymptotics, we obtain lim λ→∞ ) ((0, h 0 ), P) 2 ]e dh 0 dh 0 g 2 (0). (6.6) We next consider lim λ→∞ (log λ) -(d-1) I 2 (λ). Recalling (5.13) we have

(log λ) -(d-1) I 1 (λ) = d -d+3/2 Vol d (S(d)) ∞ -∞ E [ξ (∞
c ξ(λ) 1(A λ ) ((v 0 , h 0 ), (v 1 , h 1 )) = E [ ξ(λ) ((v 0 , h 0 ), P (λ) ∪ (v 1 , h 1 )) × ξ(λ) ((v 1 , h 1 ), P (λ) ∪ (v 0 , h 0 ))1(A λ )] -E [ ξ(λ) ((v 0 , h 0 ), P (λ) )1(A λ )]E [ ξ(λ) ((v 1 , h 1 ), P (λ) )1(A λ )].
By (4.14) and (4.15), we may rewrite I 2 (λ) in terms of ξ(λ) :

I 2 (λ) = d (v 0 ,h 0 )∈W λ (v 1 ,h 1 )∈W λ g([T (λ) ] -1 (v 0 , h 0 ))g([T (λ) ] -1 (v 1 , h 1 )) •c ξ(λ) 1(A λ ) ((v 0 , h 0 ), (v 1 , h 1 
))e dh 0 e dh 1 dh 0 dh 1 dv 0 dv 1 .

Translation invariance of ξ(λ) yields

I 2 (λ) = d (v 0 ,h 0 )∈W λ (v 1 ,h 1 )∈W λ g([T (λ) ] -1 (v 0 , h 0 ))g([T (λ) ] -1 (v 1 , h 1 )) •c ξ(λ) 1(A λ ) ((0, h 0 ), (v 1 -v 0 , h 1 ), P ∩ (W λ -v 0
))e dh 0 e dh 1 dh 0 dh 1 dv 1 dv 0 .

Again, we make the change of variable u = ( 1 d log λ) -1 v 0 . This gives

(log λ) -(d-1) I 2 (λ) = d -d+2 (u,h 0 )∈W λ ′ (v 1 ,h 1 )∈W λ g([T (λ) ] -1 ( 1 d log λ•u, h 0 ))g([T (λ) ] -1 (v 1 , h 1 )) •c ξ(λ) 1(A λ ) (0, h 0 ), (v 1 - 1 d log λ • u, h 1 ), P ∩ (W λ - 1 d log λ • u) e dh 0 e dh 1 dh 0 dh 1 dv 1 du.
To conclude the proof of (2.9), it remains only to compute lim λ→∞ (log λ) -(d-1) I 2 (λ). We proceed in four steps.

(i) Similarly to (6.2), we have

lim λ→∞ 1((u, h 0 ) ∈ W λ ′ )1((v 1 , h 1 ) ∈ W λ )g([T (λ) ] -1 ( 1 d log λ • u, h 0 ))g([T (λ) ] -1 (v 1 , h 1 )) = 1(u ∈ S(d))g 2 (0). ( 6.7) 
(ii) We remove the indicator from c ξ(λ) 1(A λ ) at the cost of a small additive error. Recall the definition of c ξ(λ) ((v 0 , h 0 ), (v 1 , h 1 ), P (λ) ) at (5.13). As in the proof of Lemmas 5.5 and 5.6 we show that the difference

|c ξ(λ) 1(A λ ) (0, h 0 ), (v 1 - 1 d log λ • u, h 1 ), P ∩ (W λ - 1 d log λ • u) -c ξ(λ) (0, h 0 ), (v 1 - 1 d log λ • u, h 1 ), P ∩ (W λ - 1 d log λ • u) |e dh 0 e dh 1 is bounded above by P [A c λ ] 1/4 G(h 0 , v 1 , h 1 )
where G is a function which is integrable with respect to (h 0 , v 1 , h 1 ) ∈ R × R d-1 × R and which does not depend on u. Consequently, the integrated error is bounded, uniformly in u:

h 0 ∈R (v 1 ,h 1 )∈W λ P [A c λ ]G(h 0 , v 1 , h 1 )dh 0 dh 1 dv 1 ≤ C(log λ) -d 2 = o((log λ) (d-1) ). (6.8) 
Combining (6.7) and (6.8) with the dominated convergence theorem, we find that the removal of the indicator does not modify the asymptotics of the variance.

(iii) Given a fixed u, for all (v 1 , h 1 ) ∈ W λ , we make the change of variable

v ′ = v 1 -1 d log λ • u, dv ′ = dv 1 . This transforms c ξ(λ) (0, h 0 ), (v 1 - 1 d log λ • u, h 1 ), P ∩ (W λ - 1 d log λ • u) e dh 0 e dh 1 into c ξ(λ) (0, h 0 ), (v ′ , h 1 ), P ∩ (W λ ′ -u) log λ 1/d e dh 0 e dh 1 .
By Lemma 5.6 the last expression is bounded by an integrable function of h 0 , v ′ and h 1 , uniformly in λ, and by Lemma 5.4 it converges to c ξ(∞) ((0, h 0 ), (w, h 1 ), P) as λ → ∞.

(iv) We make the change of variable v

′ = v 1 -1 d log λ • u. The integration domain W λ transforms to {(v ′ , h 0 ) ∈ (W λ ′ -u) log λ 1/d }, which increases up to R d-1 × R.
Combining observations (i)-(iv) with the dominated convergence theorem yields lim λ→∞

(log λ) -(d-1) I 2 (λ) = d -d+2 Vol d (S(d))g 2 (0) ∞ -∞ R d-1 ∞ -∞ c ξ (∞) ((0, h 0 ), (v ′ , h 1 
))e d(h 0 +h 1 ) dh 0 dv ′ dh 1 . (6.9)

u shows that z ′z, u ≤ 0 must hold for all z ′ ∈ K λ . However this is not case and we assert there is a z

′ := (z ′ 1 , ..., z ′ d ) ∈ P λ such that z ′ 1 -z 1 > 0, ..., z ′ j -z j > 0; z ′ j+1 -z j+1 < 0, ..., z ′ d -z d < 0. ( 7.6) 
We prove (7.6) as follows.

Since z ∈ [0, δ 1 ] d , the point z must belong to an M-region

Π d i=1 [3 k i δ 1 /2, 3 k i +1 δ 1 /2]. We shall show there exist integers k ′ 1 , ..., k ′ d with k ′ i ≤ log 3 (δ -1 1 ), 1 ≤ i ≤ d, such that k ′ i > k i for 1 ≤ i ≤ j whereas k ′ i < k i for j + 1 ≤ i ≤ d, (7.7 
)

and d i=1 k ′ i = log 3 (T /δ d 1 )
. The last equality implies that the M-region

M := d i=1 [ 3 k ′ i δ 1 2 , 3 k ′ i +1 δ 1 2 ]
is an element of M K (0, δ 1 ). On A λ we know that M contains at least one element of P λ ∩ A(s, T * , K) ∩ [0, 1/2] d , say z ′ , with coordinates z ′ i , 1 ≤ i ≤ d, satisfying (7.6). This shows z ′z, u ≥ 0 as desired. To show (7.7) we consider two cases. Note that

d i=1 k i ∈ [log 3 s/δ d 1 , log 3 T * /δ d 1 ]. Case (i). d i=1 k i ∈ [log 3 s/δ d 1 , log 3 T /δ d 1 ]. We choose k ′ i < k i for j + 1 ≤ i ≤ d such that j ≤ d i=j+1 (k i -k ′ i ) ≤ d.
Then for 1 ≤ i ≤ j, we choose k

′ i ∈ [k i + 1, log 3 δ -1 1 ] such that j i=1 (k ′ i -k i ) = log 3 T /δ d 1 - d i=1 k i + d i=j+1 (k i -k ′ i ). Such k ′ i exist since log 3 T /δ d 1 -d i=1 k i is bounded by the maximum allowable value in the range of k ′ i , that is to say it is bounded by log 3 T /δ d 1 -d i=1 k i = o(log 3 δ -1 1 
). Thus (7.7) holds in this situation.

Case (ii).

d i=1 k i ∈ [log 3 T /δ d 1 , log 3 T * /δ d 1 ]. We choose k ′ i > k i for 1 ≤ i ≤ j such that (d -j) ≤ j i=1 (k ′ i -k i ) ≤ d. Then for j + 1 ≤ i ≤ d, we choose k ′ i ≤ k i -1 such that d i=j+1 (k i -k ′ i ) = d i=1 k i -log 3 T /δ d 1 + j i=1 (k ′ i -k i ).
Proof of Lemma 3.2. Similar to Section 2 of [START_REF] Bárány | Poisson polytopes[END_REF], we use the notation C(z (0) ) = K ∩ H + (z (0) ) to signify a cap of K at z (0) , where H + (z (0) ) is at (7.3). Also, if

(3 k 1 δ, • • • , 3 k d δ)
denotes the center of the M-region M j , then for γ > 0 we define

K γ j := C 6γ ((3 k 1 δ, • • • , 3 k d δ)), where C 6γ (z (0) ) is the enlarged cap C 6γ (z (0) ) := {(z 1 , ..., z d ) : d i=1 z i z (0) i ≤ 6dγ}. ( 7.10) 
Looking closely at Section 5 of [START_REF] Bárány | Poisson polytopes[END_REF], it suffices to show the set inclusions

(i) S ′ j ⊂ K γ j where γ ∈ ( 1 6d (2 d-1 d6 d + 3 2 (d -1)), ∞) and (ii) K ′ j ⊂ S j , where K ′ j := M K ((3 k 1 δ, • • • , 3 k d δ)) ∩ C((3 k 1 δ, • • • , 3 k d δ)). When S ′
j is either a cone set or cone-cylinder set, the cardinality of which is bounded independently of λ, these set inclusions are satisfied for large γ. The only challenge is to show these inclusions for the cylinder sets S ′ j . We start by showing the first inclusion. Let z (0) ∈ K(v = T ). The aim is to show that the explicit regions S ′ j defined at (3.10) satisfy the requirement from [START_REF] Bárány | Poisson polytopes[END_REF], i.e. that there exists an explicit γ depending only on dimension d such that S ′ j ⊂ K γ j for every j. Actually, our explicit value of γ will be larger than the one used in [START_REF] Bárány | Poisson polytopes[END_REF] (see display before (5.4) therein) but we claim that this does not affect any of the results from [START_REF] Bárány | Poisson polytopes[END_REF] and in particular it does not modify the construction of the dependency graph.

We now describe the set S ′ j constructed from the M-region containing z (0) . Recalling (3.10), assume z (0) d = min 1≤i≤d z (0) i and that there is no tie for sake of simplicity (the case of a tie would be treated analogously). We have

S ′ j = K(v ≤ T * ) ∩ [ 1 2 z (0) 1 , 3 2 z (0) 1 ] × • • • × [ 1 2 z (0) d-1 , 3 2 z (0) d-1 ] × R. Putting T * := d!/d d T * , the height of S ′ j above the point (z 1 , • • • , z d-1 , 0) is z d = T * Π d-1 i=1 z i . (7.11) 
In particular, (7.10) and (7.11) imply that S ′ j ⊂ K γ j as soon as for every (z

1 , • • • , z d-1 ) ∈ [ 1 2 z (0) 1 , 3 2 z (0) 1 ] × • • • × [ 1 2 z (0) d-1 , 3 2 z (0) d-1 ], we have T * Π d-1 i=1 z i ≤ z (0) d (6dγ - d-1 i=1 z i z (0) i
).

(7.12)

Noticing that on the one hand,

T * Π d-1 i=1 z i ≤ 2 d-1 d6 d d!T d d Π d-1 i=1 z (0) i = 2 d-1 d6 d z (0) d
and that on the other hand, z

d (6dγ - d-1 i=1 z i z (0) i ) ≥ z (0) d (6dγ - 3 2 (d -1)), (0) 
we conclude that (7.12) is satisfied as soon as γ ∈

[ 1 6d (2 d-1 d6 d + 3 2 (d - 1 
)), ∞). We show now the second inclusion (ii). In particular, because of its definition, S j contains

M K ′ ((3 k 1 δ, • • • , 3 k d δ)) ∩ C((3 k 1 δ, • • • , 3 k d δ)) = K ′ j .
This concludes the proof of Lemma 3.2.

Proof of Lemma 3.7. We first assert that Vol(A(s, T * , K, δ 1 )) = O(log log λ(log λ) d-2+1/d λ -1 ).

(7.13) Indeed, we notice that A(s, T * , K, δ 1 ) ⊂ K(v ≤ T * ). Next we apply the bound in display (4.1) of [START_REF] Bárány | Random polytopes in a convex polytope, independence of shape, and concentration of vertices[END_REF] with the ε and ϕ of that bound set to T * and a constant multiple of δ 1 , respectively. This is possible because without loss of generality the parallelepiped

p d (v i , δ 1 ) := a -1 i ([0, δ 1 ] d
) contains the intersection of K with a slab of thickness proportional to δ 1 . Note that ϕ d ≥ const • ε, which gives (7.13).

We prove part (a) of Lemma 3.7 for the k-face functional ξ k and then treat the volume functional ξ V . We first show Var[Z 0 (δ 1 )1(A λ )] = o(VarZ), which goes as follows. Put ξ(x, P λ ) := ξ k (x, P λ )1(A λ ). Letting P y λ := P λ ∪ {y} we have Var

x∈P λ (s,T * ,K,δ 1 ) ξ(x, P λ ) = V 1 + V 2 , (7.14) 
where V 1 := E x∈P λ (s,T * ,K,δ 1 )

ξ(x, P λ ) 2 and V 2 := E

x,y∈P λ (s,T * ,K,δ 1 ); x =y [ ξ(x, P y λ ) ξ(y, P x λ ) -E ξ(x, P λ )E ξ(y, P λ )].

We bound V 1 as follows. Each x ∈ A(s, T * , K, δ 1 ) belongs to some S ′ i region in the collection {S ′ j } m(T,δ 1 ) j=1

. Let S x denote the union of those S ′ j such that there is an edge between i and j. By Theorem 6.2 of [START_REF] Bárány | Poisson polytopes[END_REF], we have card(S x ) ≤ D(λ), where D(λ) = O(log log λ 6(d-1) ) is the maximal degree of the dependency graph (V G , E G ), where V G := S ′ (δ 1 ). On A λ we have max j≤m(T,δ 1 ) card(S j ∩ P λ ) ≤ c(d) log log λ, as explained two lines after display (5.4) in [START_REF] Bárány | Poisson polytopes[END_REF]. It follows that on A λ at most O((log log λ) 6(d-1)+1 ) points in P λ can potentially contribute to a k-face containing x ∈ P λ (s, T * , K, δ 1 ). By

McMullen's bound [START_REF] Mcmullen | The maximum number of faces of a convex polytope[END_REF], the number of k-faces on an n point set is bounded by Cn d/2 . The score at x thus satisfies Now we bound V 2 . We treat separately the sum over x ∈ P λ (s, T * , K, δ 1 ) and y ∈ S x and the sum over x ∈ P λ (s, T * , K, δ 1 ) and y ∈ S x . When x ∈ A(s, T * , K) and y ∈ S x , we have Vol(S ′ j ) = O log log λ 6(d-1)+1 λ .

(7.19)

Consequently, using the Slivnyak -Mecke formula, (7.13), (7.18) Indeed, for any face F and facet F ′ containing F , let H be the hyperplane containing F ′ . Then C F (K λ ) ∩ K is included in the cap of K bounded by H. Since H meets A(s, T * , K) but not K(v ≥ T * ), it is tangent to some some K(v = s ′ ) with s ≤ s ′ ≤ T * . Consequently, Lemma 2.4 in [START_REF] Bárány | Poisson polytopes[END_REF] We only prove the first assertion, as the second follows from identical methods. We prove the first assertion when Z is the number of k-dimensional faces of K λ and then treat the case when Z is the defect volume of K λ . We have We first estimate E [Z 2 1(A c λ )] as follows. Using the event B λ provided by [START_REF] Bárány | Poisson polytopes[END_REF] (and denoted by B there, see p. 1519 of [START_REF] Bárány | Poisson polytopes[END_REF]), we write To estimate the second term of (7.23), we proceed as in the proof of Lemma 8.2 in [START_REF] Bárány | Poisson polytopes[END_REF]: We now adapt the above proof when Z is the defect volume. Regarding the first term of (7.23), Theorem 2.7 in [START_REF] Bárány | Poisson polytopes[END_REF] implies that on B λ , we have Z ≤ Vol(K(v ≤ d6 d log λ/λ)) = O((log λ/λ)(log λ) d-1 )). Consequently, (7.24) is replaced by .27) 

E [Z 2 1(A c λ )] = E [Z 2 1(A c λ ∩ B λ )] + E [Z 2 1(A c λ ∩ B c λ )]. ( 7 
E [Z 2 1(A c λ ∩ B c λ )] = ∞ m=0 E [Z 2 1(A c λ ∩ B c λ )|
E [Z 2 1(A c λ ∩ B λ )] = O (log λ) 2d λ 2 P [A c λ ] = O (log λ) -4d 2 +2d λ 2 . ( 7 

Figure 2 :

 2 Figure 2: The part of the defect volume not counted in the sum of scores (pink); the boundary of the cap containing that part (red).

Figure 4 :

 4 Figure 4: The supersets S ′ j (purple, pink and grey) associated with the saturated system of Macbeath regions.

Figure 5 :

 5 Figure 5: The point process Ext(P λ ) (blue); the boundary of the associated petals containing the extreme points (red); the boundary of the convex hull (green). Points which are not extreme are apices of gray petals.

  Lemma 5.1(b) shows that P [E(L, l, λ) c ] decays exponentially fast in l, uniformly in λ. It is enough to show, conditional on E(L, l, λ), that ∂(Ψ(P (λ) )) and ∂(Ψ(P)) coincide with high probability in the space C(B d-1 (0, L)), λ large. Indeed, conditional on E(L, l, λ), ∂Ψ(P) ∩ (B d-1 (0, L) × [-l, l]) depends only on points inD := w∈B d-1 (0,L)×[-l,l]

  d), then for λ large enough, the indicator function is equal to 0. If u ∈ intS(d) (where int denotes the interior), then l i (u) < 1 for 1 ≤ i ≤ d and thus lim λ→∞ [T (λ) ] -1 (( 1 d log λ)u, h) = 0. By continuity of g we have lim λ→∞ g([T (λ) ] -1 (( 1 d log λ)u, h)) = g(0).

  (iii) Since (W λ ′u) log λ 1/d ↑ R d as λ → ∞, an easy modification of the proof ofLemma 5.4 giveslim λ→∞ E ξ(λ) ((0, h), P ∩ (W λ ′u) log λ 1/d ) = E ξ(∞) ((0, h), P).(6.4)Lemma 5.3 shows that E ξ(λ) ((0, h), P ∩ (W 1 -1 d u) log λ)e dh is dominated by an integrable function on R d-1 × R. Combining (6.2)-(6.4) yields (2.8) as desired.Next we show variance asymptotics (2.9). By an easy extension of the decomposition (3.4) and Lemma 3.8, it suffices to find lim λ→∞ Var x∈P λ ∩Q 0 ξ(x, P λ )g(x)1(A λ ).

  sup x,y∈A(s,T * ,K,δ 1 ) | ξ(x, P y λ )| = O((log log λ) (6(d-1)+1)d/2 ). (7.15)Combining (7.13),(7.15), and using the Slivnyak -Mecke formula, we find the desired bound for the first term in (7.14):V 1 = λ A(s,T * ,K,δ 1 ) E [ ξ(x, P λ ) 2 ]dx = O(λVol(A(s, T * , K, δ 1 ))(log log λ) (6(d-1)+1)d ) = o((log λ) d-1 ) = o(Var[Z]).

E

  [ξ k (x, P y λ )ξ k (y, P x λ )|A λ ] -E [ξ k (x, P λ )|A λ ]E [ξ k (y, P λ )|A λ ] = 0.Consequently,E [ ξ(x, P y λ ) ξ(y, P x λ )] -E [ ξ(x, P λ )]E [ ξ(y, P λ )] = E [ξ k (x, P y λ )ξ(y, P x λ )|A λ ]P [A λ ] -E [ξ k (x, P λ )|A λ ]E [ξ k (y, P λ )|A λ ]P [A λ ] 2 = E [ξ k (x, P λ )|A λ ]E [ξ k (y, P λ )|A λ ]P [A λ ]P [A c λ ]. (7.16) Combining (3.6), (7.15) and (7.16) and applying the Slivnyak-Mecke formula, we get E [ x,y∈P λ (s,T * ,K,δ 1 ); y / ∈Sx [ξ k (x, P y λ )ξ k (y, P x λ ) -E ξ k (x, P λ )E ξ k (y, P λ )] = o(VarZ). Now we prove that E x,y∈P λ (s,T * ,K,δ 1 ); y∈Sx [ ξ(x, P y λ ) ξ(y, P x λ ) -E ξ(x, P λ )E ξ(y, P λ )] = o(VarZ). (7.17) By (7.15) we also have sup x,y | ξ(x, P y λ ) ξ(y, P x λ ) -E ξ(x, P λ )E ξ(y, P λ )| = O((log log λ) (6(d-1)+1)d ). (7.18) Moreover, we deduce from (5.4) in [4] that sup x∈A(s,T * ,K) Vol(S x ) ≤ sup x∈A(s,T * ,K) card(S x ) • sup S ′ j ∈S ′ (δ 1 )

  [ ξ(x, P y λ ) ξ(y, P x λ ) -E ξ(x, P λ )E ξ(y, P λ )]= O(λ 2 Vol(A(s, T * , K, δ 1 )) supx∈A(s,T * ,K) Vol(S x )(log log λ) (6(d-1)+1)d ) = o(VarZ). Now we show Var[Z 0 (δ 1 )|A λ ] = o(VarZ). Notice that E [Z 2 0 (δ 1 )1(A λ )] ≤ λ 2 A(s,T * ,K,δ 1 ) A(s,T * ,K,δ 1 ) E [ ξ(x, P y λ ) ξ(y, P x λ )]dydx = O(λ 2 (Vol(A(s, T * , K, δ 1 ))) 2 (log log λ) (6(d-1)+1)d ) = O((log λ) 2(d-2)+2/d (log log λ) (6(d-1)+1)d+1 ),where we use (7.13). Thus by (3.6) we get E [Z 2 0 (δ 1 )1(A λ )]P [A c λ ] = o(1). The desired bound Var[Z 0 (δ 1 )|A λ ] = o(Var[Z]) follows from this estimate and the identity Var[Z 0 (δ 1 )|Aλ ] = P [A λ ] -2 (Var[Z 0 (δ 1 )1(A λ )] -E [Z 2 0 (δ 1 )1(A λ )](1 -P [A λ ])). Now we show Var[Z 0 (δ 1 )1(A λ )] = o(Var[Z]) when ξ is the volume score. Recall from (2.3) that F d-1 (x) is the collection of facets in K λ which contain x. Regardless of whether we use (2.2) and (2.3), we have on A λ that ξ V (x, P λ ) ≤ λcard(F d-1 (x))× sup{Vol(Cap of K): Cap of K tangent to K(v = s ′ ) with s ≤ s ′ ≤ T * }.

  yields sup{Vol(Cap of K): Cap of K tangent to K(v = s ′ ) with s ≤ s ′ ≤ T * } = O( 7.15) implies that card(F d-1 (x)) = O((log log λ) (6(d-1)+1)d/2 ). Thus on A λ we have supx∈Q c 0 ∩A(s,T * ,K) |ξ V (x, P λ )| = O (log log λ) (6(d-1)+1) d 2 +1.51Using this bound in place of the bound (7.15) and following the method for the kface functional verbatim, we obtain Var[Z 0 (δ 1 )1(A λ )] = o((log λ) (d-1) ) = o(Var[Z]).Following the discussion for the k-face functional, we also haveE [Z 2 0 (δ 1 )1(A λ )] = o(1). This gives Var[Z 0 (δ 1 )|A λ ] = o(Var[Z]) as explained for the k-face score.To show part (b) of Lemma 3.7, we recall Figure2and notice that0 ≤ Vol(K \ K λ ) -1 λ x∈P λ ξ V (x, P λ )≤ card({facets intersecting one of the p d (V i , δ 0 ) and its complement})× sup{Vol(Cap of K): Cap of K tangent to K(v = s ′ ) with s ≤ s ′ ≤ T * } ≤ c x∈P λ (s,T * ,K,δ 1 ) log log λ λ ,where the last inequality uses the estimate (7.20). We now apply the exact same method as for the proof of part (a) in order to bound the variance of the difference Vol(K \ K λ ) -1 λ x∈P λ ξ V (x, P λ ) and show the required statement (b). This concludes the proof of Lemma 3.7.Proof of Lemma 3.8. Recall the definition of Z at(3.13). For 1≤ i ≤ |V K | the assertions max{|E [Z] -E [Z|A λ ]|, |E [Z i ] -E [Z i |A λ ]|} = o(E [Z])and max{|Var[Z] -Var[Z|A λ ]|, |Var[Z i ] -Var[Z i |A λ ]|} = o(Var[Z]) follow from Lemmas 8.2 and 8.3 of [4]. We now show |Var[Z] -Var[Z1(A λ )]| = o(Var[Z]); |Var[Z i ] -Var[Z i 1(A λ )]| = o(Var[Z]). (7.21)

  Var[Z] = Var[Z1(A λ )) + Z1(A c λ )] = Var[Z1(A λ )] + Var[Z1(A c λ )] + 2Cov(Z1(A λ ), Z1(A c λ )).Consequently,|Var[Z] -Var[Z1(A λ )]| ≤ E [Z 2 1(A c λ )] + 2 Var[Z1(A λ )] E [Z 2 1(A c λ )]. (7.22) 52

  .23)We treat separately each term on the right hand side of(7.23). Let us start with the first one: On the event B λ , we know that only the points inside K(v ≤ d6 d λ -1 log λ) are needed to construct K λ and that their cardinality is O((log λ) d ). Consequently, by McMullen's bound, we have Z = O((log λ) d 2 /2 ). It follows from(3.6) thatE [Z 2 1(A c λ ∩ B λ )] = O((log λ) d 2 P [A c λ ]) = O((log λ) -3d 2).(7.24) 

E

  card(P λ ) = m]P [card(P λ ) = m] = ⌊3Vol(K)λ⌋ m=0 E [Z 2 1(A c λ ∩ B c λ )| card(P λ ) = m]P [card(P λ ) = m] [Z 2 1(A c λ ∩ B c λ )| card(P λ ) = m]P [card(P λ ) = m].(7.25)When card(P λ ) = m, we have Z = O(m d/2 ). In particular, when m ∈ {0, 1, ...., ⌊3Vol(K)λ)⌋}, we bound Z 2 by O(λ d ). Consequently, the identity (7.25) givesE [Z 2 1(A c λ ∩ B c λ )] = O   λ d P [A c λ ∩ B c λ ] + m=⌊3Vol(K)λ⌋+1 m d P [card(P λ ) = m]   = O λ d P [B c λ |A c λ ]P [A c λ ] + E [(card(P λ )) d 1(card(P λ ) ≥ 3Vol(K)λ)] .In view of the bound (8.2) in[START_REF] Bárány | Poisson polytopes[END_REF], the first term is O(λ -2d+1 (log λ) -4d 2 ) whereas the second one is decreasing exponentially fast in λ. Consequently, we haveE [Z 2 1(A c λ ∩ B c λ )] = o(λ -2d+1). (7.26) Inserting (7.24) and (7.26) into (7.23), we get E [Z 2 1(A c λ )] = o((log λ) -3d 2 ). This fact combined with (7.22) and Theorem 1.3 from [5] implies (7.21).

  and (7.19), we get E x,y∈P λ (s,T * ,K,δ 1 ); y∈Sx

d (ℓ(u)-1) e h .
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Combining (6.6) and (6.9) and recalling the definition of σ 2 (ξ (∞) ) at (2.6) gives lim λ→∞ (log λ) -(d-1) Var[ g, µ ξ λ 1(Q 0 ) ] = d -d+1 Vol d (S(d))g 2 (0)σ 2 (ξ (∞) ).

We repeat this computation for each vertex of K. Proposition 3.2 yields (2.9), as desired.

Appendix

We establish the unproved assertions of Section 3. Our first lemma shows that, near the origin, the boundary of the floating body for K is a pseudo-hyperboloid.

Lemma 7.1 There exists ∆ d ∈ [1, ∞) depending only on d such that when K contains [0, ∆ d ] d and is contained in some multiple of that cube, then

Recall the definition of the surface H t at (4.1). We start by proving that for every z (0) = (z

where we recall that H + (z (0) ) is the half-space containing the origin and bounded by the hyperplane tangent to H t at z (0) . By (4.2), we have

where we use the change of variable

The proof of (7.2) is complete. We now prove that the boundary of the floating body for [0, ∞)

Indeed, let H + be a half-space with a boundary denoted by H such that H contains z (0) . We may assume that H has a normal vector with all strictly positive coordinates (otherwise, we would have Vol

That this holds for any t ∈ (0, s], combined with the fact that all H t, t > 0, and all [0, ∞) d (v = t), t > 0, form a partition (0, ∞) d , is enough to yield (7.4).

It remains to show the validity of (7.4) when replacing the orthant [0, ∞) d with K whenever K contains a large enough cube [0, ∆ d ] d . We remark that as soon as ∆ d ≥ d/2, we have for every t > 0 and every

We now fix again z (0) ∈ [0, 1 2 ] d ∩ H t and consider a half-space H + with boundary H such that H contains z (0) . We have to show that

When

) from H with a coordinate greater than ∆ d , say z 1 . In particular, H + ∩[0, ∆ d ] d contains a simplex which is the convex hull of ({z 

which completes the proof of Lemma 7.1. Notice that these arguments show that we can take ∆ 2 = 1.

Proof of Proposition 3.1. Recall from Section 3.5 that δ 1 := r(λ, d)δ 0 , where r(λ, d) ∈ [1, 3 1/d ) is chosen so that log 3 (T /δ d 1 ) ∈ Z. We show the slightly stronger result that

Thus there is some j ∈ {1, ..., d -1} such that the first j coordinates of u are positive and the last (dj) coordinates are negative.

Let H u be the support hyperplane containing F and let z ∈ H u ∩ [0, δ 1 ] d ∩ A(s, T * , K). The existence of z is guaranteed on the event A λ . The definition of This shows (7.7), completing the proof of Proposition 3.1.

Proof of Lemma 3.1. We start with a preliminary observation about sums of scalars. Given u 1 , • • • , u d ∈ R and d i=1 u i = k, with k an integer, we assert there exists

We prove this assertion for k = 0 as the proof is similar for any other integer k. We can see that

That number is at most equal to -d. Let us say that this number is equal to -k. Then it suffices to modify exactly k of the u i which are not integers into v i with u i ≤ v i < u i + 1 so that the integer part will grow by 1 exactly.

Given this assertion, we now prove Lemma 3.1. Any point (z

The point (z

, which is an M-region centered at a point on K(v = T ), where we recall that log 3 (T /δ d ) ∈ Z by assumption. Now, let (z

d ) ∈ K(v = T ). Let us prove that M((z

d )) intersects an M-region in M K (0, δ). To do this, we rewrite the equation of M((z

Since (z

We appeal to our assertion, setting u

Then we take zi such that v i = log 3 (δ -1 2z i ) and we put ki := ⌊log For the second term of (7.23), we simply bound Z 2 by a constant and we get from (7.25) that (7.26) also holds for the defect volume. Now, inserting (7.27) and (7.26) into (7.23), we find E [Z 2 1(A c λ )] = o((log λ) -4d 2 +2d λ -2 ) and so (7.21) also holds when Z is the defect volume. This completes the proof of Lemma 3.8.