
HAL Id: hal-01263100
https://hal.science/hal-01263100

Submitted on 27 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling Independent Moldable Tasks on Multi-Cores
with GPUs

Raphaël Bleuse, Sascha Hunold, Safia Kedad-Sidhoum, Florence Monna,
Grégory Mounié, Denis Trystram

To cite this version:
Raphaël Bleuse, Sascha Hunold, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, et al..
Scheduling Independent Moldable Tasks on Multi-Cores with GPUs. [Research Report] RR-8850,
Inria Grenoble Rhône-Alpes, Université de Grenoble. 2016. �hal-01263100�

https://hal.science/hal-01263100
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
88

50
--

FR
+E

N
G

RESEARCH
REPORT
N° 8850
January 2016

Project-Teams Datamove

Scheduling Independent
Moldable Tasks on
Multi-Cores with GPUs
Raphaël Bleuse, Sascha Hunold, Safia Kedad-Sidhoum,
Florence Monna, Grégory Mounié, Denis Trystram

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Scheduling Independent Moldable Tasks on
Multi-Cores with GPUs

Raphaël Bleuse*, Sascha Hunold†, Safia Kedad-Sidhoum‡,
Florence Monna‡, Grégory Mounié*, Denis Trystram*

Project-Teams Datamove

Research Report n° 8850 — January 2016 — 14 pages

Abstract: The number of parallel systems using accelerators is growing up. The technology is now
mature enough to allow sustained petaflop/s. However, reaching this performance scale requires
efficient scheduling algorithms to manage the heterogeneous computing resources.
We present a new approach for scheduling independent tasks on multiple CPUs and multiple GPUs.
The tasks are assumed to be parallelizable on CPUs using the moldable model: the final number
of cores allotted to a task can be decided and set by the scheduler. More precisely, we design an
algorithm aiming at minimizing the makespan—the maximum completion time of all tasks—for this
scheduling problem. The proposed algorithm combines a dual approximation scheme with a fast
integer linear program (ILP). It determines both the partitioning of the tasks, i.e. whether a task should
be mapped to CPUs or a GPU, and the number of CPUs allotted to a moldable task if mapped to the
CPUs. A worst case analysis shows that the algorithm has an approximation ratio of 3

2 + ε. However,
since the complexity of the ILP-based algorithm could be non-polynomial, we also present a proved
polynomial-time algorithm with an approximation ratio of 2 + ε.
We complement the theoretical analysis of our two novel algorithms with an experimental study. In
these experiments, we compare our algorithms to a modified version of the classical HEFT algorithm,
adapted to handle moldable tasks. The experimental results show that our algorithm with the 3

2 + ε
approximation ratio produces significantly shorter schedules than the modified HEFT for most of
the instances. In addition, the experiments provide evidence that this ILP-based algorithm is also
practically able to solve larger problem instances in a reasonable amount of time.

Key-words: scheduling, heterogeneous computing, moldable tasks, dual approximation scheme,
integer linear programming

* Univ. Grenoble Alpes – LIG, France
Inria team/project Datamove
E-mail: {raphael.bleuse, gregory.mounie, denis.trystram}@imag.fr

† Vienna University of Technology, Faculty of Informatics, Institute of Information Systems,
Favoritenstrasse 16/184-5, 1040 Vienna, Austria.
E-mail: hunold@par.tuwien.ac.at

‡ Sorbonne Universités, UPMC Univ. Paris 06, UMR 7606, LIP6, France

Ordonnancement de tâches indépendantes modelables sur des processeurs
multi-cœurs et GPU

Résumé : La technologie des accélérateurs est maintenant suffisamment mure pour permettre des performances soutenues
de l’ordre du petaflop/s. Néanmoins, atteindre ce niveau de performance demande des algorithmes d’ordonnancement
efficaces capable de gérer l’hétérogénéité des ressources de calculs.

Nous présentons une nouvelle approche pour les algorithmes d’ordonnancement pour multiprocesseurs (CPU) et
multi-GPU. Chaque tâche peut être exécutée en parallèles sur les CPU. Nous utilisons le modèle des tâches modelables:
l’ordonnanceur peut choisir le nombre de cœurs alloués à chaque tâche sur CPU. Notre but est de minimiser la date de
terminaison de la dernière tâche (makespan). Notre algorithme combine un schéma d’approximation duale avec la résolution,
rapide, d’un programme linéaire en nombre entier (PLNI). Le programme linéaire décide à la fois de l’équilibrage entre CPU
et GPU, mais aussi du nombre de cœurs pour les tâches allouées sur CPU. Une analyse en pire cas de notre algorithme
donne un ratio d’approximation de 3

2 + ε. Puisque, la compléxité du PLNI pourrait ne pas être polynômial, nous proposons
aussi un algorithme pleinement polynomial avec un ratio d’approximation de 2 + ε.

Une étude expérimentale vient compléter l’analyse théorique. Nous comparons notre algorithme avec une version
modifiée de l’algorithme HEFT, adapté aux tâches modelables. L’étude montre que notre algorithme obtient des
ordonnancements significativement plus courts sur la plupart des instances. De plus, ces expérimentations montrent
que le PLNI est en pratique capable de résoudre des instances de grande taille en un temps raisonnable.

Mots-clés : Ordonnancement, calcul sur machines hétérogènes, tâches modelables, schéma d’approximation duale,
programmation linéaire en nombre entier

Scheduling Independent Moldable Tasks on Multi-Cores with GPUs 3

1 INTRODUCTION

TODAY’S available parallel computing systems often con-
sist of compute nodes, which contain multi-core CPUs

and additional hardware accelerators [1]. Such accelerators
(General Purpose Graphic Processor Units, denoted by GPU
for short) have a simpler architecture than traditional CPUs.
They offer a high degree of parallelism as they possess a
large number of compute cores but only provide a limited
amount of memory. As a consequence, the heterogeneity of
the compute nodes architectures is increasing. Still, these
hybrid systems are becoming more and more popular, and
it is foreseeable that the trend of using such hybrid systems
will grow as GPUs consume significantly less power per flop
than standard CPUs [2].

Recent works have addressed the issue of efficiently
utilizing such hybrid platforms, e.g., to improve the perfor-
mance of numerical kernels [3], [4]; biological sequence align-
ments [5]; or molecular dynamics codes [6]. The scheduling
algorithms employed in these approaches were tailor-made
for the targeted applications. However, these scheduling
algorithms do not exploit a high-level view of all tasks
in order to provide an efficient and transparent solution
for any type of parallel application. The challenge today
is to develop effective and automatic management of the
resources for executing generic applications on new parallel
hybrid platforms.

We have already done first steps to devise such a
generic scheduling algorithm for heterogeneous compute
nodes. In particular, we have developed an approximation
algorithm with a constant worst-case performance guaran-
tee that provides solutions for the scheduling problem of
independent, sequential tasks onto CPUs or GPUs for the
makespan objective [7], [8]. However, the algorithm had two
main drawbacks. First, even though the proposed algorithm
has a polynomial-time complexity, it relies on dynamic
programming, in which a vast state space has to be explored.
For that reason, the practical applicability of the algorithm
is limited due to its large run-time. Second, tasks could
potentially benefit from internal (data-)parallelism on CPUs,
as our previous algorithm worked for sequential tasks only.
Thus, in the present work we assume that tasks are moldable,
i.e., they are computational units that may be executed by
several (more than one) processors. Then, the run-time of
such a moldable task depends in the number of processors
allotted to it. Such a model allows to exploit the two types of
parallelism offered by hybrid parallel computing platforms:
the inherent parallelism induced by GPU’s architecture, and
the parallelization of tasks on several CPUs. Our objective
within this work is to propose a generic method to leverage
these two different kind of parallelism.

Compared to the state of the art, we make the following
contributions in the present article:
• We present a novel algorithm—combining dual approxi-

mation and integer linear programming—that can solve
the scheduling problem of independent, moldable tasks
on hybrid parallel compute platforms consisting of m
CPUs and k GPUs.

• We prove that the algorithm has an approximation ratio
of 3

2 + ε.
• We show through a sequence of experiments that even

though our algorithm is based on integer linear pro-
gramming, which may be theoretically non-polynomial,

it is still practically relevant, as it provides competitive
schedules but has a relatively short run-time.

• We also present a fully polynomial-time algorithm for
the same scheduling problem, for which we prove an
approximation ratio of 2 + ε.

The paper is organized as follows: in Section 2, we
define the scheduling problem targeted in this work. We
examine existing related works on scheduling with GPUs and
moldable tasks in Section 3. We present a novel scheduling
algorithm, which is based on integer linear programming
(ILP), in Section 4 and provide the theoretical analysis of the
algorithm in Section 5. Section 6 presents a fully polynomial
approximation algorithm, which we introduce to compare
with our ILP-based algorithm. In Section 7, we present
an experimental study that compares the solution quality
(makespan) of various scheduling algorithms for a variety of
test instances. We conclude the paper in Section 8.

2 PROBLEM DEFINITION

We consider a multi-core parallel platform composed of m
identical CPUs and k identical GPUs. An instance of the
problem is described as a set {T1, . . . , Tn} of n independent
tasks considered as moldable when assigned to the CPUs and
sequential when assigned to a GPU. The processing time of
any task Tj is represented by a function pj : l 7→ pj,l that
represent the processing time when executed on l CPUs and
by pj that is the processing time when executed on a GPU. We
assume that these processing times are known in advance.
It is a common assumption when dealing with classical
numerical codes like those considered in the experiments.

The scheduling problem consists in finding a function σ
that associates for each task Tj its starting time and the
computing resources assigned for its execution. A task is
either assigned to a single GPU or to a subset of the available
CPUs, under the constraints that the task starts its execution
simultaneously on all the allocated resources and occupies
them without interruption until its completion time.

We define the CPU work function wj of a task Tj—
corresponding to its computational area on the CPUs in
the Gantt chart representation of a schedule—as wj : l 7→
wj,l = l × pj,l for l 6 m. According to the usual executions
of parallel programs, we assume that the tasks assigned
to the CPUs are monotonic: assigning more CPUs to a
task usually decreases its execution time at a price of an
increased work. This is due to some internal communications
and synchronizations. There are two types of monotonies:
namely the time monotony which is achieved when pj is a
non-increasing function for any task and the work monotony
that is achieved when wj is an increasing function for any
task. A set of tasks is said to be monotonic when it achieves
both monotonies. This assumption may be interpreted by the
well-known Brent’s lemma [9], which states that the parallel
execution of a task achieves some speedup if it is large
enough, but does not lead to super-linear speedups. Notice
that an instance of the problem can always be transformed to
fulfill the time monotony property by replacing function pj
by pj ′ : l 7→ min {pj,q | q = 1, . . . , l}. Such a transformation
does not affect the optimal solution of the scheduling. In
the sequel, we always assume that the set of tasks of the
considered instance is monotonic. There is no need of such

RR n° 8850

4 Raphaël Bleuse, Sascha Hunold, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, Denis Trystram

an hypothesis on the GPUs as the tasks are considered
sequential on this architecture.

The makespan is defined as the maximum completion
time of the last finishing task. For the problem considered
here, the objective is to minimize the makespan of the whole
schedule, which is the maximum of the makespan on the
CPUs and the makespan on the GPUs. The problem is
denoted by (Pm,Pk) | mold | Cmax.

Observe that if all the tasks are sequential and the
processing times are the same on both devices (pj = pj,1)
for j = 1, . . . , n, the problem (Pm,Pk) | mold | Cmax

is equivalent to the classical P || Cmax problem, which is
NP-hard. Thus, the problem of scheduling moldable tasks
with GPUs is also NP-hard, and we are looking for efficient
algorithms with guaranteed approximation ratio. Recall
that for a given problem the approximation ratio ρA of an
algorithm A is defined as the maximum over all the instances
I of the ratio f(I)

f∗(I) where f is any minimization objective
and f∗ is its optimal value.

This study considers algorithms that provide non-
preemptive schedules with contiguous processor assignment.
It is clear that the optimal assignment could use CPUs that
are not consecutive ones. However, this restriction does not
hinder the achieved results [10].

3 RELATED WORK

In this section we will first discuss the most relevant works
related to heterogeneous scheduling. Then we will present
the existing results dealing with moldable tasks.

From a scheduling perspective, (Pm,Pk) || Cmax is a
special case of R || Cmax. Lenstra et al. [11] propose a PTAS
for the problem R || Cmax with running time bounded by the
product of (n+ 1)m/ε and a polynomial of the input size. Let
us notice that if parameter m is not fixed, then the algorithm
is not fully polynomial. The authors also prove that unless
P = NP , there is no polynomial-time approximation algo-
rithm for R || Cmax with an approximation factor less than
3
2 and present a 2-approximation algorithm. This algorithm
is based on rounding the optimal solution of the preemptive
version of the problem. Shmoys and Tardos generalize the
rounding technique for any fractional solutions [12]. Recently,
Shchepin and Vakhania [13] introduce a new rounding
technique which yields an improved approximation factor
of 2 − 1

m . This is so far the best approximation result
for R || Cmax. If we look at the more specific problem
of scheduling unrelated machines of few different types,
Bonifaci and Wiese [14] present a PTAS to solve this problem.
However, the time complexity of the polynomial algorithm
is not provided so that the algorithm does not seem to be
potentially useful from a practical perspective. Finally, it is
worth noticing that if all the tasks of the addressed problem
have the same acceleration on the GPUs, the problem reduces
to a Q || Cmax problem with two machines speeds.

A family of scheduling algorithms based on the dual ap-
proximation scheme for the problem (Pm,Pk) || Cmax with
sequential tasks has been developed in a previous paper [7].
These algorithms provide a 1 + ε+O(1

q) approximation for
any ε > 0 with a cost of O(n2kqmq).

The problem of scheduling independent moldable tasks
on homogeneous parallel systems has been extensively
studied in the last decade. Among other reasons, the interest
in studying this problem was motivated by scheduling jobs in
batch processing in HPC clusters. For instance, the documen-
tation of TORQUE mentions a basic moldable submission
mechanism. A noteworthy work is the implementation and
evaluation of a moldable scheduler for OAR by Lionel
Eyraud [15].

Jansen and Porkolab [16] proposed a polynomial time
approximation scheme based on a linear programming
formulation for scheduling independent moldable tasks.
The complexity of their scheme, although linear in the
number of tasks, is highly dependent on the accuracy of the
approximation due to an exponential factor in the number
of processors. Thus, although the result is of significant
theoretical interest, this algorithm cannot be considered for a
practical use.

Most existing previous works are based on a two-phase
approach, initially proposed by Turek, Wolf and Yu [17]. The
basic idea here was to select first an assignment (the number
of processors assigned to each task) and in a second step to
solve the resulting rigid (non-moldable) scheduling problem,
which is a classical scheduling problem with multiprocessor
tasks. As far as the makespan objective is concerned, this
problem is related to a 2-dimensional strip-packing problem
for independent tasks [18], [19].

It is clear that applying an approximation of guarantee
ρ for the rigid problem on the assignment of an optimal
solution provides the same guarantee ρ for the moldable
problem if ever an optimal assignment can be found. Two
complementary ways have been proposed for solving the
problem, either focusing on the first phase of assignment or
on the scheduling (second phase). Ludwig [20] improved the
complexity of the assignment selection in the special case
of monotonic tasks leading to a 2-approximation. The other
way corresponds to choosing an assignment such that the
resulting non-moldable problem is not a general instance
of strip-packing, and hence better specific approximation
algorithms can be applied. Using the knapsack problem as
an auxiliary problem for the selection of the assignment, this
technique leads to a (3

2 + ε)-approximation algorithm for any
ε > 0 by Mounié et al. [10].

Furthermore, an extensive both theoretical and experi-
mental comparison of low-cost scheduling algorithms for
moldable tasks is carried out in [21].

4 ALGORITHM APPROX-3/2
The principle of the algorithm is based on a dual approxi-
mation [22]. Recall that a ρ-dual approximation algorithm
for a minimization problem takes a real number λ (called
the guess) as an input, and either delivers a solution whose
objective function’s value is at most ρλ, or answers correctly
that there exists no solution whose objective function’s value
is at most λ.

Our aim here is to optimize the makespan, and we target
ρ = 3

2 . Let λ be the current real number input for the dual
approximation. In the whole section, we suppose there exists
a schedule of length lower than λ, and we show how to build
a schedule of length at most 3λ

2 .

Inria

Scheduling Independent Moldable Tasks on Multi-Cores with GPUs 5

µ(5)

µ∅

µ(3)

µ(1)

µ(2)

µ(4)

(5) (6)

(3)

(0)

(1)L

(2)

(4)

(1)R

t
0 λ

2
3λ
4 λ 3λ

2

Fig. 1: Structure of the schedule. The number of processors
used by set (i) is denoted by µ(i). The number of CPUs below
set (3) is denoted by µ∅.

µ∅

µ(3)

µ(1)

µ(2)

µ(4)
(3)

(0)

(1)L

(2)

(4)

(1)R

t
0 λ

2
3λ
4 λ 3λ

2

Fig. 2: Structure of the schedule on CPUs with an odd number
of tasks in set (1).

Given a positive number h, we define—as in [10]—for
each task Tj its canonical number of CPUs γ(j, h). It is the
minimal number of CPUs needed to execute task Tj in time
at most h. If Tj cannot be executed in time less than h on
m CPUs, we set by convention γ(j, h) = +∞. Observe that
wj,γ(j,h) is the minimal work area needed to execute Tj on
CPUs in time at most h. Also note that if the set of tasks is
monotonic, the canonical number of CPUs can be found in
time O(logm) by binary search.

4.1 Partitioning Tasks
The idea of the algorithm is to partition the set of tasks on
the CPUs into five sets, and on the GPUs into two sets, as
depicted in Figure 1. This choice of the task assignement to
CPUs is detailed below:
(0): the set containing the sequential tasks assigned to the

CPUs with a processing time at most λ2 .
(1): the set containing the sequential tasks assigned to the

CPUs with a processing time greater than λ
2 and at most

3λ
4 . This set is partitioned in two shelves as depicted in

Figure 1: namely, the left set (1)L and the right set (1)R.
(2): the set containing the tasks—either parallel or

sequential—assigned to the CPUs with different canoni-

cal numbers of CPUs for the times λ and 3λ
2 . Task Tj is

then assigned to γ(j, 3λ
2) CPUs.

(3): the set containing the tasks assigned to their canonical
number of CPUs for time λ. If this number is 1, then
the processing time of the corresponding task is strictly
greater than 3λ

4 .
(4): the set containing the parallel tasks assigned to their

canonical number of CPUs for time λ
2 . Note that γ(j, λ2)

is greater than 1.
Similarly, the tasks assigned to GPUs are partitioned in two
sets:
(5): the set containing the tasks assigned to a GPU with a

processing time greater than λ
2 and at most λ.

(6): the set containing the tasks assigned to a GPU with a
processing time at most λ2 .

Such a partition ensures that both the makespans on the
CPUs and on the GPUs are lower than 3λ

2 .
Note that if there is an even number of tasks assigned to

set (1), both sets (1)L and (1)R occupy the same number of
CPUs. On the contrary, if set (1) contains an odd number of
tasks, the right set occupies one less processor (as shown in
Figure 2).

4.2 Mathematical Formulation

Partitioning tasks into the seven above-mentioned sets using
a list algorithm does not achieve the desired performance
guarantee. Therefore, we propose an Integer Linear Program
(ILP) for solving the assignment problem.

4.2.1 Objective Function and Constraints

We define WC as the computational area of the CPUs on the
Gantt chart representation of a schedule, i.e. the sum of all
the works of the tasks assigned to some of the CPUs:

WC =
∑

Tj∈(0)∪(1)

wj,1 +
∑
Tj∈(2)

wj,γ(j, 3λ2) +

∑
Tj∈(3)

wj,γ(j,λ) +
∑
Tj∈(4)

wj,γ(j,λ2)

(1)

We want to obtain a specific 5-set schedule on the CPUs
and a 2-set schedule on the GPUs, hence we look for an
assignment minimizing:

(C1) The total computational area WC on the CPUs. It is at
most mλ.

The assignment must satisfy the following constraints:
(C2) Sets (1)L, (2) and (3) use a total of at most m processors.
(C3) Sets (1)R, (2) and (4) use a total of at most m processors.
(C4) The total computational area on the GPU is at most kλ.
(C5) Set (5) uses a total of at most k processors.
(C6) Each task is assigned to exactly one set.
(C7) The number of tasks assigned to set (1) is the total

number of tasks processed in its two shelves.
(C8) The tasks of set (1) are evenly shared between its two

sets (1)L and (1)R, i.e. there is at most one task less in
(1)R. The idle time induced by the difference is used to
process a fraction of a task assigned to set (4).

Such an assignment clearly defines a schedule of length
at most 3λ

2 which allows us to build a solution.

RR n° 8850

6 Raphaël Bleuse, Sascha Hunold, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, Denis Trystram

T (0) T (1) T (2) T (3) T (4)

T (5) T (6)

Fig. 3: Intersection graph of the eligible allocation sets, in its
most generic shape. Actual instances may have fewer edges.

4.2.2 Filtering

The structure of the schedule allows tasks to belong only to
a limited number of shelves. Hence we define for each task
j the filtering function F (j) computing the set of possible
containing shelves. For each set (i) we also define the set T (i)

of tasks eligible for an allocation in (i). The eligible allocation
sets are explicitly defined in Equation (2). We furthermore
define for each task Tj several binary variables x(i)

j , where
i ∈ F (j). If Tj is assigned to set (i), we define x(i)

j to be
1. Otherwise we set x(i)

j to be 0. We also define for set (1)

the variable left(1) (resp. right(1)), that corresponds to the
number of tasks assigned to the (1)L (resp. (1)R) shelf of set
(1) (see Figure 1).

T (0) =

{
j | pj,1 ≤

λ

2

}
T (1) =

{
j | λ

2
< pj,1 ≤

3λ

4

}
T (2) =

{
j | λ < pj,γ(j, 3λ2) ≤

3λ

2

}
T (3) =

{
j | λ

2
< pj,γ(j,λ) ≤ λ

}
\ T (1)

T (4) =

{
j | pj,γ(j,λ2) ≤

λ

2
∧ γ(j,

λ

2
) > 1

}
T (5) =

{
j | λ

2
< pj ≤ λ

}
T (6) =

{
j | pj ≤

λ

2

}

(2)

This filtering step helps a lot reducing the search space.
The intersection graph of the eligible allocation sets shown in
Figure 3 explains this behavior. Each task can simultaneously
belong to only a limited number of sets, since most sets are
mutually exclusive. In most cases, a task belong to 2 or 3 sets.

4.2.3 Integer Linear Program

Determining if such an assignment exists reduces to solving
an ILP that can be formulated as follows:

minW (ILP)
C =

∑
j∈T (0)

wj,1x
(0)
j +

∑
j∈T (1)

wj,1x
(1)
j

+
∑

j∈T (2)

wj,γ(j, 3λ2)x
(2)
j +

∑
j∈T (3)

wj,γ(j,λ)x
(3)
j

+
∑

j∈T (4)

wj,γ(j,λ2)x
(4)
j

s.t. W
(ILP)
C 6 mλ (C1)∑

j∈T (2)

γ(j,
3λ

2
)x

(2)
j +

∑
j∈T (3)

γ(j, λ)x
(3)
j + left(1) 6 m

(C2)∑
j∈T (4)

γ(j,
λ

2
)x

(4)
j +

∑
j∈T (2)

γ(j,
3λ

2
)x

(2)
j + right(1) 6 m

(C3)∑
j∈T (5)

pjx
(5)
j +

∑
j∈T (6)

pjx
(6)
j 6 kλ (C4)

∑
j∈T (5)

x
(5)
j 6 k (C5)

∑
i∈F (j)

x
(i)
j = 1 ∀j ∈ {1, . . . , n} (C6)

∑
j∈T (1)

x
(1)
j = left(1) + right(1) (C7)

0 6 left(1) − right(1) 6 1 (C8)

x
(i)
j ∈ {0, 1} ∀j ∈ {1, . . . , n},∀i ∈ F (j) (C9)

left(1), right(1) ∈ {0, . . . ,m} (C10)

The first eight equations of this integer linear program
correspond to the constraints listed above in order to obtain a
5-set schedule on the CPUs and a 2-set schedule on the GPUs.
The last two equations (C9), (C10) are integrity constraints
for the variables of the integer linear program.

5 ANALYSIS OF THE ALGORITHM APPROX-3/2
The integer linear program presented above derives from the
structural properties of the schedule we aim to construct. The
analysis—rather technical—is structured in three steps. First
we explain how the estimation of the instance’s makespan
λ helps us to sort and allocate tasks. We then give some
insight on the structure of the proposed partitioning. We
finally prove the correctness of the dual approximation, i.e.
we prove the reject condition is actually matched by the
algorithm.

5.1 Structure of a Schedule of Makespan λ

To take advantage of the dual approximation paradigm, we
have to make explicit the consequences of the assumption
that there exists a schedule of length at most λ. We state
below some straightforward properties of such a schedule.
They should give the insight for the construction of the
solution.

Proposition 1. In a solution of makespan at most λ, the execution
time of each task is at most λ. The computational area on the CPUs
(resp. GPUs) is at most mλ (resp. kλ).

Remark that for the problem of scheduling moldable
tasks on identical processors [10], it is enough to look at the
2m tasks with the longest processing times. If they have a
computational area larger than mλ, then a schedule of length
λ cannot exist. In the case of heterogeneous processors some
of these tasks can be assigned to a GPU, therefore the n tasks
have to be considered in our case.

Inria

Scheduling Independent Moldable Tasks on Multi-Cores with GPUs 7

Proposition 2. In a solution of makespan at most λ, if there exist
two consecutive tasks on the same processor such that one of the
task has an execution time greater than λ

2 , then the other task has
an execution time lower than λ

2 .

Proposition 3. Two tasks with sequential processing times
on CPU greater than λ

2 and lower than 3λ
4 can be executed

successively on the same CPU within a time at most 3λ
2 .

We now look at exploiting the properties of a schedule of
makespan at most λ, in order to construct the seven sets. The
constraints of the integer linear program derive from these
properties.

From Proposition 3, as we aim at a makespan of 3λ
2 , two

tasks from set (1) can be executed successively on the same
CPU. The whole set occupies µ(1) CPUs. The number of
tasks in set (1)R is given by µ(1) − 1(1)odd where 1(1)odd is
an indicator function equals to 1 when the number of tasks
in set (1) is odd.

From Proposition 2, the tasks whose execution times on
CPUs are greater than λ

2 do not use more than m − µ(1)

CPUs, and hence can be executed concurrently on the CPUs
in set (3). They occupy µ(3) CPUs.

Set (2) does not exist in a solution of makespan λ, since
the processing times of all the tasks in (2) are greater than
λ with the number of CPUs they are assigned to. However,
with this assignment and the monotony of the tasks on CPUs,
the work of the tasks in (2) is lower than their corresponding
work in the optimal schedule. Therefore, every task assigned
to (2) in the constructed schedule is a gain on the total work
on the CPUs. The tasks of (2) occupy µ(2) CPUs and the
inequality µ(1) + µ(2) + µ(3) 6 m must be satisfied.

The remaining tasks on CPUs have execution times lower
than λ

2 on CPU, and those that are not sequential can be
executed within a time at most λ

2 in set (4). These tasks
cannot be executed on the CPUs occupied by tasks from set
(2) but can be processed after the tasks from set (3). They
cannot be on the CPUs that already process two tasks of (1),
but if the number of tasks in (1) is odd, there is a CPU that
only processes one task from (1)L and a task from (4) can
be executed on this CPU. Therefore, if we denote by µ(4)

the number of CPUs occupied by tasks of (4), the inequality
µ(1) − 1(1)odd + µ(2) + µ(4) 6 m must be satisfied.

The remaining sequential tasks on CPUs have execution
times lower than λ

2 on CPU and are assigned to set (0).

With the same reasoning, the tasks on GPUs whose
execution times are greater than λ

2 do not use more than
k GPUs, and hence can be executed concurrently in set (5).

The remaining tasks on GPUs have execution times lower
than λ

2 on GPU and can be executed within a time at most λ2
in set (6) on the GPUs. It can be after a task from (5) or on
the remaining free GPUs.

5.2 Structure of the Partitioning

We now have to prove that under the assumption that the
dual approximation do not reject the current guess λ, i.e.
W

(ILP)
C 6 mλ, the ILP solution leads to a feasible seven-

shelf schedule.

The structure of the partitioning verifies some properties
exposed hereinafter.

Lemma 4. With the assumption that W (ILP)
C 6 mλ, the tasks

assigned to sets (1), (2), (3) and (4) occupy at most m CPUs, in
a time at most 3λ

2 .

Proof. From Constraints (C2) and (C3), the assignment of the
tasks of the four sets is such that they occupy at most m
CPUs. The tasks are scheduled two by two in (1). According
to Constraint (C8), set (1) may have an even number of
tasks (see Figure 1) or an odd number of tasks (see Figure 2).
Whenever set (1) is assigned an odd number of tasks, an
extra processor is available to compute tasks from set (4). The
tasks of (4) are scheduled after tasks of (3) or on remaining
free CPUs. With this schedule, at most m CPUs are occupied
and the makespan is at most 3λ

2 .

Lemma 5. If W (ILP)
C 6 mλ, the tasks assigned to set (0) fit

in the remaining free computational space, while keeping the
makespan under 3λ

2 .

Proof. The tasks of set (0) all have a sequential processing
time on CPU lower than λ

2 by construction, and they
necessarily fit into the remaining computational space in the
allowed area of 3λ

2 m (represented by the dashed area in the
Figures 1 and 2). The schedule would otherwise contradict
Proposition 1.

The following algorithm can be used to schedule these
tasks:

1) Consider the remaining tasks T1, . . . , Tf ordered by non-
increasing sequential processing time on CPU, where f
is the number of remaining tasks.

2) At each step s (s = 1, . . . , f) assign task Ts to the least
loaded CPU, at the latest possible date, or between set
(3) and set (4) if relevant. Update the CPU’s load.

At each step, the least loaded CPU has a load at most λ: it
would otherwise contradict the fact that the total work area
of the tasks is bounded by mλ (according to Proposition 1).
Hence, the idle time interval on the least loaded CPU has a
length at least equal to λ

2 , and can contain the task Ts. This
proves the correctness of the algorithm above.

Lemma 6. If W (ILP)
C 6 mλ, the tasks assigned to sets (5) and

(6) occupy at most k GPUs, in a time at most 3λ
2 .

Proof. When the tasks of set (5) are assigned to the GPUs,
they take up to k GPUs from Constraint (C5), and their
processing time is lower than λ: the dual approximation
would otherwise reject the solution. The tasks of (5) are
scheduled first, one per GPU.

The tasks of set (6) all have a processing time on GPU
lower than λ

2 by construction and they necessarily fit into
the remaining computational space in the allowed area of
3λ
2 k. The schedule would otherwise contradict Proposition 1

and Constraint (C4).
The following algorithm can be used to schedule these

tasks:

1) Consider the remaining tasks T1, . . . , Tf ordered by
non-increasing processing time on GPU, where f is
the number of remaining tasks .

RR n° 8850

8 Raphaël Bleuse, Sascha Hunold, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, Denis Trystram

2) At each step s (i = 1, . . . , f) assign task Ts to the least
loaded GPU, at the latest possible date. Update the
GPU’s load.

At each step, the least loaded GPU has a load at most λ: it
would otherwise contradict the fact that the total work area
of the tasks is bounded by kλ (according to Proposition 1
and Constraint (C4)). Hence, the idle time interval on the
least loaded GPU has a length at least equal to λ

2 and can
contain the task Ts. The correctness of the algorithm above
is proved.

These three lemmas allow us to derive the following
theorem:

Theorem 7. If W (ILP)
C 6 mλ, then there exists a schedule of

length at most 3λ
2 built upon the assignment of the tasks given by

the solution of ILP.

Proof. The solution of ILP returns an assignment such that
the computational area on the CPUs is minimized, therefore
its value W (ILP)

C is lower than the computational area on the
CPUs in the optimal schedule, W ∗C , which is lower than mλ
since we assumed that there exists a schedule of makespan at
most λ. The three lemmas show that the schedule constructed
with the assignment of the tasks given by the solution of ILP
has a makespan lower than 3λ

2 .

If the computational area on the CPUs, i.e. the objective
of the integer linear program W

(ILP)
C , is greater than mλ,

the dual approximation algorithm rejects λ. Indeed, this
computational area is minimized in the resolution of (ILP):
if we had λ 6 C∗max, we would get W (ILP)

C 6W ∗C , which is
impossible since we have W ∗C 6 mλ. Therefore in that case
there exists no solution with a makespan at most λ, and the
algorithm rejects the current guess λ.

We have so far proved that—for a given guess λ of the
dual approximation algorithm—if the solution of ILP has
a computational area on the CPUs greater than mλ, then
there is no solution of makespan λ, and the guess has to be
rejected. If the solution of ILP has a computational area on
the CPUs lower than mλ, then we can construct a solution
with a makespan at most 3λ

2 , with the corresponding sets on
the CPUs and GPUs.

5.3 Correctness of the Dual Approximation

It remains to be proved that the existence of a solution of
makespan at most λ implies the existence of a solution with
the seven-shelf structure. To do so, we first expose and prove
two technical lemmas before stating the existence theorem
(Theorem 10).

Lemma 8. Suppose there exists a solution σref of makespan at
most λ. The assignment of tasks on the GPUs in σref is compatible
with the seven-shelf structure.

Proof. All tasks assigned to the GPUs by σref are sequential.
Hence we can assign these tasks in two distinct sets: tasks
with a processing time strictly greater than λ

2 and tasks with
a processing time lower than λ

2 . These two sets exactly match
the sets (5) and (6) of the structure we seek.

Lemma 8 allows us to only consider tasks assigned to the
CPUs in the proof of the existence of the sought schedule.

Lemma 9. If there exists a solution σref of makespan at most λ,
then there exists a solution σstruct with the seven-shelf structure
whose sub-solution σstruct (considering only tasks assigned to
CPUs) uses at most m CPUs with a lower CPU load than the
CPU load of σref.

Proof. First, let us prove that the big tasks of σref, namely
tasks with a processing time greater than λ

2 , fit in sets (1),
(2) and (3) without using more than m CPUs and without
increasing the CPU load:

• The tasks assigned to set (1) are sequential tasks of
length greater than λ

2 : their work is minimal. Since their
processing time is at most 3λ

4 , only one of the tasks
assigned to set (1) can fit on one CPU in σref, whereas in
σstruct, these tasks are stacked by pair, one in shelf (1)L,
the other in shelf (1)R. As a result, the tasks in set (1)
in σstruct use less processors than they would in σref.

• The tasks assigned to sets (2) and (3) are using their
canonical number of CPUs for a time limit at least λ,
hence they generate a lower or equal work than they
would in σref. As these tasks use their canonical number
of processors for a time limit greater than λ, they use
less processors than they would in σref. Observe that the
tasks assigned to set (2) use less processors than they
do in σref thanks to the relaxed time limit.

We now have to consider the tasks of σref assigned to
CPUs with a processing time lower than λ

2 . All the tasks
with a sequential time lower than λ

2 are assigned to set (0).
The remaining tasks are the tasks that have been assigned
to more than one CPU in σref, with a processing time lower
than λ

2 . The monotony assumption ensures that they can fit
in any set among sets (1), (2), (3) and (4) without increasing
the computational load. In order to prove that there exists
such an assignment of these remaining tasks, we consider the
integer linear program introduced in Section 4.2 that we relax
by removing Constraint (C3). This allows set (4) to occupy
as many CPUs as needed. The tasks already assigned to the
GPUs as in σref thanks to Lemma 8 have their corresponding
variables in the integer linear program set according to their
assignment. The same is done for the variables of the integer
linear program corresponding to the tasks already assigned
to sets (1), (2), (3) and (0) above in the proof. We let the
integer linear program choose the remaining assignments. By
doing so, since Constraint (C3) was removed, set (4) could
use too many CPUs. It remains to prove that the assignment
returned by the revised integer linear program does not need
to use more than m CPUs. Two cases are to be distinguished:
either every CPU is busy or some CPUs remain idle after
assigning tasks to sets (1), (2) and (3). The first case’s proof
is straightforward while the latter is done in three steps.

Let us first consider the case where every CPU is busy. By
construction, at most one processor—in set (1)—is loaded
less than λ but more than 3λ

4 . As all the tasks assigned to
set (4) have a processing time larger than λ

4 , we cannot use
more than m CPUs without contradicting the facts that the
integer linear program is minimizing the CPU load and that
σref exists.

Inria

Scheduling Independent Moldable Tasks on Multi-Cores with GPUs 9

Let us consider now the case where some CPUs remain
idle. We denote by µ∅ their number.

(i) We begin by proving that at most one task in set (4)
does not fit. As µ∅ > 0, every task of set (4) has a work
greater than µ∅λ, otherwise it would have been assigned to
set (3) by the integer linear program. The maximum amount
of work by which a task of set (4) could be overreaching is
bounded by the gap left between mλ and the work of the
tasks filling sets (1), (2) and (3). Because of the structure in
five sets on the CPUs, such a gap is at most 3λ

4 µ∅ + λ
41(1)odd,

which is strictly smaller than the work of any task assigned
to set (4). The existence of a task in set (4) executed only on
processors not meant to do so by the five set structure would
contradict the fact that sets (1), (2) and (3) were filled by
the integer linear program while minimizing the CPU load.
Therefore there is at most a fraction of a task assigned to (4)
whose execution requires processors that do not exist.

In the next two steps, we consider an arbitrary assignment
for the tasks assigned to set (4) and suppose exactly one task
does not fit. We focus on this particular task, denoted by
T∆. Proving its existence contradicts the fact that the work
is minimized by the integer linear program. We denote by
(3)∆ the subset of (3) that shares processors with the task
T∆.

(ii) We show now that the inequality µ(3)∆ > 2µ∅ holds
under the assumption that T∆ exists. The integer linear
program chose to assign task T∆ to set (4). As set (4) is
the one creating the most work amongst sets (1), (2), (3) and
(4), this choice had to be made because otherwise constraints
would have been violated. We know for sure that µ(3)∆ > 0,
otherwise this would contradict Step 1. Moreover, as T∆ was
not assigned on µ∅ processors in set (2), its work is greater
than 3λ

2 µ∅. Such a case is only possible if we have enough
space next to set (3), which is equivalent to the following
inequality:

3λ

4
µ(3)∆ +

3λ

2
µ∅ < (µ(3)∆ + µ∅)λ (4)

This inequality reduces to the one we are interested in, i.e.
µ(3)∆ > 2µ∅.

(iii) To finish the proof, let us shows that the previous
point leads to a contradiction, hence σstruct fits into m CPUs.
Inequality (4) can be rewritten in the following form:

3λ

4
µ(3)∆ +

λ

2

(
µ∅ + µ(3)∆

)
> λ

(
µ∅ + µ(3)∆

)
The left part of the sum is a lower-bound of the work of set
(3)∆. The monotony ensures that the work of T∆ is greater
than λ

2

[
γ(T∆,

λ
2)− 1

]
, and we know that the number of

processors needed by task T∆ is at least µ(3)∆ + µ∅ + 1.
Hence the work of T∆ is greater than λ

2

(
µ∅ + µ(3)∆

)
. This

brings the contradiction as this would mean that the total
work is greater than mλ.

Theorem 10. If there exists a solution of makespan at most λ,
then there exists a solution with the seven-shelf structure we are
looking for with a makespan at most 3λ

2 and a lower CPU load.

Proof. The theorem is a direct consequence of Lemmas 8
and 9.

The reject condition of the dual approximation is the
contrapositive of Theorem 10.

5.4 Building the Schedule
We have described the core step of the dual-approximation
algorithm, with a fixed guess. A binary search is used with
successive guesses to approach the optimal makespan. Using
an initial lower (resp. upper) bound Bmin (resp. Bmax) of the
optimal makespan, the number of iterations of this binary
search is bounded by log (Bmax −Bmin).

Each iteration of the dual approximation algorithm
consists in solving an ILP. The complexity of this step is
not bounded by a polynomial function. However, solving
the ILP with a standard linear solver (e.g., CPLEX or Gurobi)
shows a very good efficiency as described in Section 7.4.
Indeed, the filtering functions allow to reduce the search
space size of the ILP, a task can be assigned to at most
four sets instead of seven. Moreover, as the number of tasks
increases, every task’s relative execution time shrinks. Thus,
for large instances, most of the tasks will be assigned to sets
(0) and (6) only.

This has to be compared to an algorithm using dynamic
programming to solve the allocation problem. Even if this
paradigm would lead to a proved polynomial complexity,
the size of the search space makes it intractable to explore.
Adapting the technique proposed in [7] would result in an
algorithm whose complexity is O(n2m4k2) in our case.

6 ALGORITHM APPROX-2
As stated in Section 5.4, APPROX-3/2 is not proved to
be polynomial. To get more insight on dual approxima-
tion algorithms, we devise APPROX-2 that is a simpler
polynomial-time algorithm providing an approximation ratio
of 2+ ε. APPROX-2 uses the same principle as APPROX-3/2:
it partitions the computing resources, allocates the tasks to a
partition, and then schedules them within their partition.

6.1 Sketch
We consider a guess λ of the optimal makespan value. The
scheduling problem on the CPUs is simplified by forcing
the number of CPUs a task can use to its canonical number
of CPUs, with respect to λ. The algorithm then works as
follows:

1) Allocate the tasks that fits in λ only on one type of
architecture.

2) Sort the tasks by decreasing work ratio wj,γ(j,λ)
pj

. The
approximation ratio derives from this sort as explained
in Lemma 12.

3) Allocate the tasks on the GPUs until each GPU has a
load more than λ.

4) Schedule the remaining rigid tasks on the CPUs with
a 2-approximation algorithm. List algorithms or strip-
packing algorithms are viable options.

If all the tasks do not fit with a makespan at most 2λ, then
the algorithm rejects this guess. Otherwise, we have founded
a valid schedule.

6.2 Analysis
We now analyze some properties of APPROX-2. First we
study the approximation ratio, then the complexity.

RR n° 8850

10 Raphaël Bleuse, Sascha Hunold, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, Denis Trystram

Lemma 11. The makespan of the tasks allocated to the GPUs is
smaller than 2λ.

Proof. By construction, all the tasks considered for an allo-
cation on a GPU are smaller than λ. As the algorithm stops
loading a GPU when its load exceeds λ, the makespan bound
is straightforward.

Lemma 12. If there exists a solution of makespan at most λ, then
the makespan of the tasks allocated to the CPUs is smaller than 2λ.

Proof. Using the canonical number of CPUs with respect to
λ ensures that every task allocated to some CPUs generates
a minimal amount of work (as stated in Section 4). In
particular, this amount of work is at most the amount of
work generated in the optimal schedule. The GPUs have
been—by construction—allocated a greater share of work
than the optimal solution. Moreover, the tasks are sorted by
decreasing work ratio wj,γ(j,λ)

pj
. This specific order implies

that the work remaining on the CPUs is smaller than mλ if
there exists a solution of makespan at most λ. The makespan
bound follows from the fact we schedule the remaining
tasks with a list algorithm [23] or a strip-packing algorithm
[24]. Using the strip-packing algorithm would provide a
contiguous solution.

The two previous lemmas prove APPROX-2 provides a
solution whose makespan is at most 2λ.

APPROX-2 is an algorithm of low polynomial complexity.
It indeed only relies on sorting the tasks, and on keeping track
of the computing resources using priority queues. Moreover,
each task is considered at most once when scheduled. Hence,
and more precisely, the complexity of the algorithm belongs
to O (n [log(n) + log(k) +m log(m)]).

7 EXPERIMENTAL EVALUATION

After providing the theoretical foundation for solving the
given scheduling problem, we will now examine the appli-
cability of our approach. For that reason, we will compare
the makespans produced by APPROX-3/2 and APPROX-2
as well as the run-time required to compute the solutions. In
our evaluation, we will also consider the scheduling solutions
from heuristics, which are modifications of the classical
Heterogeneous Earliest Finish Time algorithm (HEFT) [25].

We start by explaining the problem instances used in our
analysis. After that, we give a description of the heuristics
used to evaluate our proposed algorithms. We present
implementation details for all algorithms, and last, we show
and discuss the experimental results.

7.1 Problem Instances
Finding the right problem instances for evaluating schedul-
ing algorithms is generally a hard problem. Real world
instances are often considered to be essential when choosing
test instances. However, testing an algorithm on a small set
of real world instances will often not support the claim that
an algorithm is generally well applicable. Another problem
is that influencing factors, such as the number of tasks or the
size of tasks, are fixed in real world instance. Therefore, we
generated scheduling instances that allows us to study the

0

25

50

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of cores

ru
n-

ti
m

e
[s

]

t1 t2 t3 t4 t5

0

25

50

75

GPU

Fig. 4: Example of a problem instance: Each of the five
tasks exhibits a different parallel scalability on the multi-
core machine (left) and has a different run-time on the GPU
(right).

general applicability of our algorithms and to investigate the
influence of experimental factors.

To generate the instances, we first select the number
of tasks (n), the number of CPUs (m), and the number of
GPUs (k). Then, the instance generator decides on the run-
time of all tasks as follows:

1) It randomly picks the sequential time on the CPU of one
task.

2) It defines the speedup of one task on the CPU, by picking
the sequential fraction of this task. The time for the
sequential fraction defines the lower bound of a task’s
run-time, as only the run-time of the parallel fraction of
a task can be reduced by adding more CPUs (Amdahl’s
law).

3) It picks a speedup factor that defines how much faster
a particular task can run on a GPU compared to being
executed on all m CPUs.

4) The generation process is repeated for all the n tasks.

We now provide a more detailed description of each step
of the instance generation process.

Step 1: The sequential run-time pj,1 of task Tj is picked
from a uniform distribution in the interval [pmin, pmax].

Step 2: Next, the speedup model of each task is deter-
mined. To this end, we apply Amdahl’s law to model the
speedup of a moldable task. The law states that the parallel
execution time is bounded by the sequential fraction of a
program. Therefore, we select the sequential fraction βj
of each task, where βj follows uniform distribution in
[βmin, βmax]. The knowledge of the sequential run-time
pj,1 and the sequential fraction βj allows us to model and
compute the parallel execution time on l CPUs of task Tj as:
pj,l = βjpj,1 + (1− βj)pj,1l (for all l in 2, . . . ,m).

Step 3: We assume that GPUs can accelerate the execution
of a task, i.e., a task will—most likely—be faster on a GPU
than on all CPUs of the multi-core system. Thus, we model
the time for task Tj on the GPU relative to the parallel time
and all m CPUs pj,m. To obtain the time on the GPU (pj),
we pick a speedup factor g and set pj = g pj,m. The value
of g follows a normal distribution with mean meang and
standard deviation sdg . In this way, we also allow tasks that
are slower on the GPU than on the CPUs. We also set some
bound on the maximum speedup or maximum slowdown
for each task on the GPU. For that reason, we introduce

Inria

Scheduling Independent Moldable Tasks on Multi-Cores with GPUs 11

TABLE 1: Parameter settings used to generate scheduling instances.

description variable values

number of tasks n {10, 50, 100, 1000}
number of CPUs m {4, 16, 64, 128, 256, 384, 512}
number of GPUs k {1, 2, 4, 8, 16, 32}
minimum sequential run-time of tasks pmin 10
maximum sequential run-time of tasks pmax 100
minimum sequential fraction of a task βmin 0
maximum sequential fraction of a task βmax 0.5
mean speedup factor for tasks on GPUs meang 0.2
standard deviation of speedup factor for tasks on GPUs sdg 0.5
minimum speedup factor for tasks on GPUs ming 0.1 (10× speedup on the GPU)
maximum speedup factor for tasks on GPUs maxg 1.5 (50% slowdown on the GPU)

the variables ming and maxg , which denote the minimum
(maximum speedup) and maximum value of g (maximum
slowdown) of a task on the GPU.

We generated 10 samples for each parameter combination
of n, m, and k with the values shown in Table 1. Figure 4
shows the characteristics of one of these instances, which
contains only five tasks for the sake of readability. Each task
has a different scalability behavior (caused by a different
sequential fraction), and all tasks in this example have a
shorter run-time when executed on a GPU.

7.2 HEFT-like Heuristics

In the present paper, we have proposed two algorithms that
provide approximate solutions to the scheduling problem
stated in Section 2. In order to compare our approaches
with practically relevant algorithms, we also include HEFT-
like algorithms in our evaluation. We call them HEFT-
like algorithms as they work similar to the original HEFT
algorithm [25], but target a slightly different scheduling
problem. HEFT-like algorithms are used in practice, for
instance, the run-time system StarPU uses a very similar
algorithm (called MCT for minimum completion time) to
schedule tasks on CPUs and GPUs [26].

Now, we describe our variants and implementation of
the HEFT-like algorithms for scheduling moldable tasks on a
multi-core system with multiple GPUs. Our implementation
resembles the general idea of the original algorithm proposed
by Topcuoglu et al. [25], except that—since we have no
precedence constraints—we change the priority function
used to sort the tasks. Similar to HEFT, our algorithm places
the highest priority task on the CPUs or one of the GPUs that
minimize the earliest finish time (EFT). We expect that HEFT-
like algorithms are sensitive to the type of prioritization
function. To avoid a possible bias towards one prioritization
function, we consider three different strategies, which are:

1) LPT: This strategy sorts the tasks in decreasing order of
their execution times (Longest Processing Time).

2) SPT: This strategy sorts the tasks in increasing order of
their execution times (Shortest Processing Time).

3) RATIO: This strategy sorts the tasks in decreasing order
of the following ratio: execution time on the CPUs over
the run-time on a GPU, i.e., pj,lpj , where l is either 1 for
sequential tasks or m for parallel tasks.

For the strategies LPT and SPT, the execution time of task Tj
is computed as max(pj,l, pj), for l ∈ {1,m}.

The question is now: how many CPUs should be assigned
to each task when computing the schedule? We use two
simple schemes: the strategy PAR allots all CPUs to a task
(l = m), whereas the strategy SEQ allots only one CPU to
a task (l = 1). Considering the monotonic assumption for
the run-time of moldable tasks, the strategy PAR is a greedy
way of minimizing the execution time of a task, as the run-
time function is non-increasing in the number of CPUs. The
second strategy (SEQ) favors task parallelism and minimizes
every task’s work. It is certainly possible that these HEFT-like
implementations can be improved, but such considerations
are outside the scope of this paper. In total, we have created
six different HEFT-like heuristics, called Heuristic 1–6, which
are listed in Table 2.

7.3 Implementation Details
We implemented APPROX-3/2 using the programming
languages Julia and Python. Logically, the algorithm
APPROX-3/2 consists of two steps: (i) find the best λ by
applying the bisection method to partition the tasks into sets,
and (ii) build the schedule from the computed partitioning.
The first step has been implemented in Julia, as it features the
domain-specific modeling language JuMP, which provides
an abstraction layer above different ILP solvers, such as
Gurobi, CPLEX, or GLPK. Hence, we only need to write
our ILP problem using the JuMP API1 and can use different
solvers to find a solution. The second step, the building of
the schedule, has been implemented in Python.

As stated above, the lower and upper bound of the
scheduling problem are adjusted during the iterative search
for the best λ using the bisection method. The bisection
method stops when the ratio between upper and lower
bound is below a certain threshold (the cutoff value). For both
algorithms, APPROX-3/2 and APPROX-2, we have used a
cutoff value of 1.01 (~1%) in all experiments.

The algorithm APPROX-2 has been entirely implemented
in Julia. Here, the algorithm also intents to find the best λ,
but since it maps tasks to devices (CPUs or GPUs) greedily,
the actual schedule is built on the fly.

The HEFT-like heuristics has been written in Python.
Similarly to the implementation of APPROX-2, the actual
schedule can be built directly, as there is no previous
partitioning step.

We have used the following software versions: Julia
0.3.11, Python 2.7.10, JuMP 0.10.1, Gurobi binding for JuMP

1. Application Programming Interface

RR n° 8850

12 Raphaël Bleuse, Sascha Hunold, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, Denis Trystram

TABLE 2: HEFT-like heuristics used for comparison.

name mapping sorting parallel tasks on CPUs

Heuristic 1 EFT LPT no (SEQ)
Heuristic 2 EFT SPT no (SEQ)
Heuristic 3 EFT RATIO no (SEQ)
Heuristic 4 EFT LPT yes (PAR)
Heuristic 5 EFT SPT yes (PAR)
Heuristic 6 EFT RATIO yes (PAR)

0.1.29, CPLEX binding for JuMP 0.0.13, Gurobi Optimizer
for OS X 6.0.0, CPLEX Optimization Studio for OS X 12.6.1.0,
and Mac OS X 10.10.5. For the experiments shown in the
present paper, we have used the Gurobi Optimizer to solve
the integer linear programs.

7.4 Experimental Results
First, we evaluate the produced makespan of each scheduling
instance, which is the most important property of the
scheduling algorithms described in the present paper.

Figure 5 compares the makespans of the schedules
generated by APPROX-3/2, APPROX-2, and the six different
HEFT-like heuristics. For a better comparability, we nor-
malize the makespan for each scheduling instance by the
makespan obtained from APPROX-3/2. Thus, the algorithm
APPROX-3/2 will always have a relative makespan of 1.0
(red horizontal line). The relative makespan of the other
algorithms, APPROX-2 and the six heuristics, will most
likely differ from 1.0. If the computed relative makespan
is smaller than 1.0, the produced schedule of one of the
competing scheduling algorithms is shorter than the one of
APPROX-3/2. Similarly, if the relative makespan is larger
than 1.0 then APPROX-3/2 was able to find a shorter
schedule. We can observe that the HEFT-like heuristics
produce competitive results when the number CPUs and
GPUs is small (cf. Figure 5a, case m=4 and k=4). If the
number of tasks, CPUs, and GPUs is increased, the results
in Figure 5b provide evidence that APPROX-3/2 produces
significantly shorter schedules than its competitors. The
results of the heuristics 4–6 using the PAR strategy (cf.
Table 2) have been omitted, as they have been found to be
largely inferior compared to the SEQ versions. Among the
HEFT-like algorithms, the heuristics that use an LPT strategy
produced the shortest schedules. Interestingly, the solutions
obtained from the approximation algorithm APPROX-2 are
most often not better than the much simpler HEFT-like
heuristics, indicating that an approximation factor of 2 is
simply too large for a practical applicability.

The solution quality (the makespan) is only one metric to
assess scheduling algorithms. The algorithm APPROX-3/2
requires to solve an ILP for each value of λ. Therefore,
an analysis of the run-time of the algorithms is of equal
importance. The run-times measured do not include the
time to read and parse the input files and the time to write
the final schedules to disk. In addition, the results are only
meant to show general trends of the run-time requirements
of the different algorithms, as the algorithms have been
implemented using different programming languages.

Figure 6 compares mean run-time of the different schedul-
ing algorithms for various values of n,m, and k. In particular,
the run-time of the algorithms APPROX-3/2 and APPROX-2

includes all iterations that were required to obtain the final
value of λ. The experiments were conducted on a quad-
core Intel i7-3615QM with a clock speed of 2.3 GHz. Since
the run-times of the various HEFT-like heuristics were very
similar, as only the prioritization function is changed, we
only show the time for Heuristic 1 (EFT, LPT, SEQ). As
expected, the run-time of Heuristic 1 grows linearly with
the number of tasks, CPUs, or GPUs, and has been found
to be the shortest among all scheduling algorithms tested.
The run-time of the APPROX-2 algorithm is significantly
longer than the run-time of the heuristics due to the iterative
nature of the algorithm. It is also not surprising that the
APPROX-3/2 algorithm has the longest mean run-time for
all considered cases. We can also see that the run-time of
APPROX-3/2 grows proportionally faster than the run-times
of the other algorithms, which is a consequence of solving an
ILP in each iteration. Nevertheless, APPROX-3/2 computes
the solutions relatively quickly, as it takes about five seconds
to compute the schedule for the largest instance in our test
set (n = 1000, m = 512, k = 16, cf. Figure 6b). It goes
without saying that this run-time is too large to schedule
many small-grained tasks onto CPUs or GPUs, but it is a
very promising alternative algorithm for scheduling longer
running tasks (or even different parallel application).

We have also studied the effectiveness of the filtering step
that we introduced in Section 4.2.2, and Figure 7 shows these
results. For different numbers of tasks (n), the graphs show
the distributions of the mean number of possible partitions
per task after the filtering has been applied. We recall that
the internal ILP find a partitioning of all tasks into seven
disjoint sets. That means, each of the n tasks can only be in
one of the seven partitions. Thus, the ILP initially allocates
a table of n× 7 binary variables. In the filtering step, some
of the variables are set to 0, i.e., the number of partitions
that a task can be assigned will be reduced. Ideally, the
number of available partitions per task reduces from seven
to one when the filtering is applied, and the solution can
be obtained immediately. Figure 7 shows the number of
available partitions for increasing values of n. The “mean
number of possible partitions” is computed over all the
tasks of one iteration. For example, for one problem instance,
the mean number of possible partitions (over all the tasks)
is 2 in iteration 1 and 2.5 in iteration 2. In this case, the
distributions shown in Figure 7 will contain the values 2
and 2.5. We observe that for the majority of the tasks, except
in the case of n = 10, only two partitions are available (on
average) after applying the filtering step, which supports our
claim that the filtering step is effective.

Figure 8 complements the previous results by an analysis
of the number of iterations required, such that the bisection
method converges. In the experiments conducted as part
of the present paper, the required number of iterations was
ranging from 10 to 17.

In summary, we can state that APPROX-3/2 is able to find
significantly shorter schedules than the APPROX-2 algorithm
or the HEFT-like heuristics. On the contrary, APPROX-3/2
needs more time to compute the solutions. However, even for
larger instances (n = 1000, m = 512, k = 16) APPROX-3/2
can be used to obtain the solution in a couple of seconds.
If the average task duration lies in the range of seconds,
applying APPROX-3/2 will definitely provide an advantage

Inria

Scheduling Independent Moldable Tasks on Multi-Cores with GPUs 13

m: 4 m: 16 m: 64

0.75

1.00

1.25

1.50

k:4

APPROX-2

EFT/LPT/SE
Q

EFT/SP
T/SE

Q

EFT/RATIO
/SE

Q

APPROX-2

EFT/LPT/SE
Q

EFT/SP
T/SE

Q

EFT/RATIO
/SE

Q

APPROX-2

EFT/LPT/SE
Q

EFT/SP
T/SE

Q

EFT/RATIO
/SE

Q

algorithm

m
ak

es
pa

n
re

la
ti

ve
to

A
PP

R
O

X
-3

/2

(a) n = 100

m: 128 m: 256 m: 384 m: 512

0.9

1.1

1.3

k:16

APPROX-2

EFT/LPT/SE
Q

EFT/SP
T/SE

Q

EFT/RATIO
/SE

Q

APPROX-2

EFT/LPT/SE
Q

EFT/SP
T/SE

Q

EFT/RATIO
/SE

Q

APPROX-2

EFT/LPT/SE
Q

EFT/SP
T/SE

Q

EFT/RATIO
/SE

Q

APPROX-2

EFT/LPT/SE
Q

EFT/SP
T/SE

Q

EFT/RATIO
/SE

Q

algorithm

m
ak

es
pa

n
re

la
ti

ve
to

A
PP

R
O

X
-3

/2

(b) n = 1000

Fig. 5: Comparison of the relative of makespan obtained with APPROX-2 and the HEFT-like algorithms with respect to the
makespan produced by APPROX-3/2 (n tasks, m CPUs, k GPUs) .

m: 4 m: 16 m: 64

0.0

0.1

0.2

0.3
k:4

APPROX-3/
2

APPROX-2

EFT/LPT/SE
Q

APPROX-3/
2

APPROX-2

EFT/LPT/SE
Q

APPROX-3/
2

APPROX-2

EFT/LPT/SE
Q

algorithm

ti
m

e
to

co
m

pu
te

sc
he

du
le

[s
]

(a) n = 100

m: 128 m: 256 m: 384 m: 512

0

1

2

3

4

5

k:16

APPROX-3/
2

APPROX-2

EFT/LPT/SE
Q

APPROX-3/
2

APPROX-2

EFT/LPT/SE
Q

APPROX-3/
2

APPROX-2

EFT/LPT/SE
Q

APPROX-3/
2

APPROX-2

EFT/LPT/SE
Q

algorithm

ti
m

e
to

co
m

pu
te

sc
he

du
le

[s
]

(b) n = 1000

Fig. 6: Comparison of the mean run-time (incl. 95% confidence interval) of each scheduling algorithms to compute the
solutions (n tasks, m CPUs, k GPUs).

n: 10 n: 50 n: 100 n: 1000

0

2

4

6

2 3 2 3 2 3 2 3
mean number of possible partitions per task (after filtering)

de
ns

it
y

Fig. 7: Distribution of the (mean) number of possible par-
titions per task after the filtering has been applied for
APPROX-3/2. The graphs show distributions for all values
of m and k presented in Table 1.

compared to the other scheduling algorithms.

8 CONCLUSIONS

In this paper, we presented a new scheduling algorithm using
a generic methodology (in the opposite of specific ad hoc
algorithms) for hybrid architectures (multi-core machine with

0

5

10

15

10 50 100 1000
number tasks (n)

nu
m

be
r

of
it

er
at

io
ns

Fig. 8: Distribution of iterations (of the bisection method)
performed by APPROX-3/2 to converge to a solution.

GPUs) with the moldable task model on CPUs. We proposed
an algorithm with a constant approximation ratio of 3

2 + ε.
The main idea of the approach is to determine an adequate
partition of the set of tasks on the CPUs and the GPUs using a

RR n° 8850

14 Raphaël Bleuse, Sascha Hunold, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, Denis Trystram

dual approximation scheme and integer linear programming.
Still, we do not provide any proof of the complexity of this
ILP-based approach. Instead, we compared this approach
with another algorithm with a proved polynomial-time
complexity, at the cost of degrading the approximation ratio
to 2 + ε. An experimental analysis on realistic instances has
been provided to assess the computational efficiency and the
schedule quality of the proposed method when compared to
classical HEFT algorithms. The main conclusion is that the
ILP-based algorithm is stable because of its approximation
guaranty, with a reasonable running time. Moreover this
proposed algorithm outperforms all HEFT algorithms when
dealing with instances of large size, which is often the case
on computing platforms.

ACKNOWLEDGMENTS

This work has been partially supported by a DGA-MRIS
scholarship and the French program GDR-RO.

REFERENCES

[1] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Sing-
hal, and P. Dubey, “Debunking the 100X GPU vs. CPU myth:
An evaluation of throughput computing on CPU and GPU,” in
Proceedings of the 37th Annual International Symposium on Computer
Architecture (ISCA’10). ACM, 2010, pp. 451–460.

[2] Y. Abe, H. Sasaki, M. Peres, K. Inoue, K. Murakami, S. Kato et al.,
“Power and performance analysis of GPU-accelerated systems,” in
Proceedings of the 2012 USENIX conference on Power-Aware Computing
and Systems (HotPower), vol. 12, 2012, pp. 10–10.

[3] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief,
S. Thibault, and S. Tomov, “QR factorization on a multicore node
enhanced with multiple GPU accelerators,” in Proceedings of the
25th IEEE International Parallel & Distributed Processing Symposium
(IPDPS’11). IEEE Computer Society, 2011, pp. 932–943.

[4] F. Song, S. Tomov, and J. Dongarra, “Enabling and scaling matrix
computations on heterogeneous multi-core and multi-GPU sys-
tems,” in Proceedings of the 26th ACM International Conference on
Supercomputing (ICS’12). ACM, 2012, pp. 365–376.

[5] A. Boukerche, J. M. Correa, A. Melo, and R. P. Jacobi, “A hardware
accelerator for the fast retrieval of DIALIGN biological sequence
alignments in linear space,” IEEE Transactions on Computers, vol. 59,
no. 6, pp. 808–821, 2010.

[6] J. C. Phillips, J. E. Stone, and K. Schulten, “Adapting a message-
driven parallel application to GPU-accelerated clusters,” in Proceed-
ings of the Supercomputing Conference (SC’08). IEEE Press, 2008, pp.
8:1–8:9.

[7] R. Bleuse, S. Kedad-Sidhoum, F. Monna, G. Mounié, and D. Trys-
tram, “Scheduling independent tasks on multi-cores with GPU
accelerators,” Concurrency and Computation: Practice and Experience,
vol. 27, no. 6, pp. 1625—-1638, 2015.

[8] F. Monna, “Scheduling for new computing platforms with GPUs,”
Ph.D. dissertation, Université Pierre et Marie Curie - Paris VI, Nov.
2014.

[9] R. P. Brent, “The parallel evaluation of general arithmetic expres-
sions,” Journal of the ACM (JACM), vol. 21, no. 2, pp. 201–206,
1974.

[10] G. Mounié, C. Rapine, and D. Trystram, “A 3/2-approximation
algorithm for scheduling independent monotonic malleable tasks,”
SIAM Journal on Computing, vol. 37, no. 2, pp. 401–412, 2007.

[11] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algo-
rithms for scheduling unrelated parallel machines,” Mathematical
Programming, vol. 46, no. 1, pp. 259–271, 1990.

[12] D. B. Shmoys and E. Tardos, “An approximation algorithm for
the generalized assignment problem,” Mathematical Programming,
vol. 62, no. 1, pp. 461–474, 1993.

[13] E. V. Shchepin and N. Vakhania, “An optimal rounding gives a bet-
ter approximation for scheduling unrelated machines,” Operations
Research Letters, vol. 33, no. 2, pp. 127–133, 2004.

[14] V. Bonifaci and A. Wiese, “Scheduling unrelated machines of few
different types,” CoRR, vol. abs/1205.0974, 2012.

[15] L. Eyraud, “Théorie et pratique de l’ordonnancement d’applications
sur les systèmes distribués,” Ph.D. dissertation, Institut National
Polytechnique de Grenoble, 2006.

[16] K. Jansen and L. Porkolab, “Linear-time approximation schemes
for scheduling malleable parallel tasks,” in Proceedings of the Tenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 99),
1999, pp. 490–498.

[17] J. Turek, J. Wolf, and P. Yu, “Approximate algorithms scheduling
parallelizable tasks,” in Proceedings of the Fourth Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA ’92), 1992,
pp. 323–332.

[18] E. G. Coffman, M. R. Garey, D. S. Johnson, and R. E. Tarjan,
“Performance bounds for level-oriented two-dimensional packing
algorithms,” SIAM Journal on Computing, vol. 9, no. 4, pp. 808–826,
1980.

[19] M. Bougeret, P.-F. Dutot, K. Jansen, C. Otte, and D. Trystram, “A
fast 5/2-approximation algorithm for hierarchical scheduling,” in
Proceedings of the Euro-Par 2010, ser. LNCS. Springer, 2010, vol.
6271, pp. 157–167.

[20] W. Ludwig and P. Tiwari, “Scheduling malleable and nonmalleable
parallel tasks,” in Proceedings of the Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’94). Society for Industrial
and Applied Mathematics, 1994, pp. 1670–176.

[21] L. Fan, F. Zhang, G. Wang, and Z. Liu, “An effective
approximation algorithm for the malleable parallel task
scheduling problem,” Journal of Parallel and Distributed Computing,
vol. 72, no. 5, pp. 693–704, 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2012.01.011

[22] D. S. Hochbaum and D. B. Shmoys, “Using dual approximation
algorithms for scheduling problems: Theoretical and practical
results,” Journal of the ACM (JACM), vol. 34, no. 1, pp. 144–162,
1987.

[23] M. R. Garey and R. L. Grahams, “Bounds for multiprocessor
scheduling with resource constraints,” SIAM Journal on Computing,
vol. 4, no. 2, pp. 187–200, 1975.

[24] A. Steinberg, “A strip-packing algorithm with absolute perfor-
mance bound 2,” SIAM Journal on Computing, vol. 26, no. 2, pp.
401–409, 1997.

[25] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 3,
pp. 260–274, 2002.

[26] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and Experience,
vol. 23, no. 2, pp. 187–198, 2011.

Inria

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

