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DIAGONAL CHANGES FOR EVERY INTERVAL EXCHANGE TRANSFORMATION

SÉBASTIEN FERENCZI

ABSTRACT. We give a geometric version of the induction algorithms defined in [10] and general-

izing the self-dual induction of [17]. For all interval exchanges, whatever the permutation and the

disposition of the discontinuities, we define diagonal changes which generalize those of [7]: they

are exchange of unions of triangles on a set of triangulated polygons, which may be glued to cre-

ate a translation surface. There are many possible algorithms depending on decisions at each step,

and when the decision is fixed each diagonal change is a natural extension of the corresponding

induction, which extends the result shown in [7] in the particular case of the hyperelliptic Rauzy

class. Furthermore, for that class, we can define decisions such that we get an algorithm of diagonal

changes which is a natural extension of the underlying algorithm of self-dual induction, and we can

thus compute an invariant measure for the normalized induction. The diagonal changes allow us

also to realize the self-duality of the induction in the hyperelliptic class, and to prove this does not

hold outside that class.

Interval exchanges were originally introduced by Oseledec [25], following an idea of Arnold

[1], see also Katok and Stepin [20]; an exchange of k intervals, denoted throughout this paper by

I, is given by a probability vector of k lengths together with a permutation π on k letters; the unit

interval is partitioned into k subintervals of lengthsα1, . . . , αk which are rearranged by I according

to π. The first tool to study interval exchanges is an algorithm of renormalization called the Rauzy

induction [27], which generalizes the Euclid algorithm of continued fraction approximation, and

coincides with it for k = 2.

The Rauzy induction, further developed by Veech [29], and modified by Zorich [34] and oth-

ers, had a tremendous success in solving the big problems which made the history of this field,

such as unique ergodicity [31][24] or weak mixing [3] of almost all interval exchanges. These

inductions are also a fundamental tool in the study of the space of moduli of Riemann surfaces,

and the various strata of its unit tangent bundle, through the Teichmüller flow on a stratum. Con-

sider the translation surface obtained by gluing opposite parallel sides of a polygon: to study the

Teichmüller flow applied to this given surface, the Rauzy induction chooses an initial segment of

an horizontal separatrix and follows its vertical separatrix till it intersects this initial segment, in

order to obtain an interval exchange as induced map; then it considers shorter and shorter initial

segments. But a basic flaw is that we only consider one horizontal separatrix; the da Rocha induc-

tion [23] considers all the horizontal separatrices and one vertical separatrix, and its duality with

the Rauzy induction appears in the natural extension of the induction process (this was predicted

by Arnoux, an unpublished proof is attributed to Fisher, at last a proof has just been written by

Inoue and Nakada [19]). The trouble with both procedures is that they destroy the symmetry of

the geometrical situation, by giving a special role to one of the separatrices; because of that, each

foliation admits several descriptions, and the relative position of the separatrices is not taken into

account.
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A new induction algorithm for interval exchanges, tentatively giving the same role to each hori-

zontal and vertical separatrix, has been defined and studied in a long series of papers by the author,

some of them together with Holton, Zamboni or da Rocha, in successive particular cases in [12]

[13] [14] [17], then in full generality in [10]; in the first papers we called it the self-dual induction

as, at least in the case of three intervals, it is self-dual for the duality mentioned above [11]. This

induction has already been used successfully, as it seems to be more suitable than the existing ones

to build explicit examples of interval exchanges with prescribed dynamical properties: the author

and his collaborators build examples with weak mixing in [14] [17] [8] [10] (though weak mixing

is known to be widely verified, very few actual examples existed), and then the first known exam-

ples with eigenvalues, in [14] [18], or, in [15] [18], with the famous property of simplicity defined

by Veech [30]. Then it was used by Smillie and Ulcigrai [28] to study some classes of billiards,

Delecroix [6] for the so-called windtree model, and recently by Bourgain [4] to build interval ex-

changes satisfying a famous conjecture of Sarnak, which states that the trajectories of any system

with zero topological entropy are orthogonal to the Möbius function; this last result is generalized

in [16], where we build examples satisfying both Sarnak’s conjecture and Veech simplicity for

any number of intervals and any Rauzy class. The fact that this induction does not privilege any

separatrix should also make it the right instrument to solve some long-standing problems such as

enumerating and counting the pseudo-Anosov diffeormorphisms in a given stratum.

At each stage we induce I on a disjoint union of k− 1 intervals, and as for the other inductions,

this generates an infinite path through a set of states. Even in the simpler case of the hyperelliptic

Rauzy class, dealt with in [17], the self-dual induction is neither unique nor straightforward to

implement; as there is no canonical order between the parameters to be changed, there will be

decisions to make, as in the problem of induction of a train-track [26], which is not solved in the

general case. Thus we propose several algorithms, which create the same induction sub-intervals

though at different speeds.

The latest development, after an idea of Smillie, Ulcigrai [28] and Hubert (unpublished) is to de-

fine also this induction in a geometric way, with a natural extension defined on a class of translation

surfaces; this idea, which is very far from the original authors’ minds, is carried out by Delecroix

and Ulcigrai [7]; an exchange of triangles, and not rectangles as for the Rauzy induction, called

diagonal change, is defined directly on translation surfaces, made with quadrilaterals, in the hyper-

elliptic component, and it provides, at each step when the decision is known, a natural extension of

the self-dual induction for the interval exchanges studied in [17], namely those with the symmetric

permutation i→ k + 1− i and with alternate discontinuities, see Definition 1.3 below.

The present paper extends the geometric results of [7] to the general algorithm defined in [10];

thus, for every interval exchange, we can define a natural extension (again, at each step when the

decision is known, see Theorem 2.1 below) on sets of triangulated polygons (which may then be

glued to create a translation surface) by exchanging unions of triangles. This is valid whatever the

permutation and the order of the discontinuities for the interval exchange: for the examples of [17],

the geometric model is just the one of [7] translated in the language of interval exchanges, but, in

every other case, it is new and does make the combinatorial results of [10] much more palatable,

particularly in the intricate case where the discontinuities do not alternate (even in the hyperelliptic

class, this case could not be treated with the quadrilaterals of [7]). The castle forests which were

used in [10] as states of the induction appear naturally as a description of the polygons and their

triangulation.
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After making our algorithm work in the most general case, we turn again to the hyperelliptic

case, to show some further results extending the work of [7], first for the symmetric permutation

and then for all permutations in the hyperelliptic Rauzy class. In that case our induction is indeed

self-dual: inverting the natural extension amounts, up to a renumbering of the coordinates, to ex-

changing the verticals and horizontals; also, we can define a combinatorial algorithm of decisions

such that the corresponding algorithm of diagonal changes is actually invertible, thus being a nat-

ural extension, in the usual (full) sense, of the corresponding algorithm of self-dual induction, and

we can compute the density of an invariant measure for the normalized induction. Outside the

hyperelliptic class, however, as far as we can show, the diagonal change is the natural extension of

the corresponding induction only when the decision is fixed, while that induction is not self-dual:

thus in [7] it is called the Ferenczi-Zamboni induction. In the last part of the paper, we investigate

the relation between the states of our induction and the existing Rauzy classes, again with a full

description in the case of the hyperelliptic class.

The present paper is essentially independent from [10], as it gives a geometric point of view,

and the latter a word combinatorial one; just some proofs of [10] are used in Section 1.5 without

being duplicated here. It is also independent of [7], as our geometric point of view is unashamedly

pedestrian and limited to the study of interval exchanges while [7] deals with more general objects,

the only (but fundamental) element we use from [7] is the idea of the definition of polygons and

diagonal changes. The author thanks Vincent Delecroix, Pascal Hubert and Corinna Ulcigrai for

fruitful discussions about this idea and its consequences.

This research was carried out while the author was in Unité Mixte IMPA-CNRS in Rio de

Janeiro. It was also partially supported by the ANR GeoDyn and the ANR DYna3S.

1. INTERVAL EXCHANGES WITH ALTERNATE DISCONTINUITIES

1.1. Definitions. For any question about interval exchanges, we refer the reader to the surveys

[32] [33] [9]. Our intervals are always semi-open, as [a, b[.

Definition 1.1. A k-interval exchange I with probability vector (α1, α2, . . . , αk), and permutation

π is defined by

Ix = x+
∑

π−1(j)<π−1(i)

αj −
∑

j<i

αj.

when x is in the interval

∆i =

[

∑

j<i

αj ,
∑

j≤i

αj

[

.

We denote by βi, 1 ≤ i ≤ k − 1, the i-th discontinuity of I−1, namely βi =
∑

π−1(j)≤π−1(i) αj ,

while γi is the i-th discontinuity of I, namely γi =
∑

j≤i αj . We shall use freely the notation

β0 = γ0 = 0, βk = γk = 1; then ∆i is the interval [γi−1, γi[.

Warning: roughly half the texts on interval exchanges re-order the subintervals by π−1; the

present definition corresponds to the following ordering of the I∆i: from left to right, I∆π(1), ...I∆π(k).

Figure 1 shows a 3-interval exchange with πi = 3− i.

Definition 1.2. I satisfies the infinite distinct orbit condition or i.d.o.c. of Keane [21] if the k − 1
negative orbits {I−nγi}n≥0 ,1 ≤ i ≤ k − 1, of the discontinuities of I are infinite disjoint sets.
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FIGURE 1

As is proved in [21], the i.d.o.c. condition implies that I has no periodic orbit and is minimal:

every orbit is dense. If π is primitive, that is π({1, ...j}) 6= {1, ...j} for every 1 ≤ j ≤ k − 1, the

i.d.o.c. condition is (strictly) weaker than the total irrationality, where the only rational relation

satisfied by αi, 1 ≤ i ≤ k and 1 is
∑k

i=1 αi = 1.

Definition 1.3. Let I be a k-interval exchange; it has alternate discontinuities if β1 < γ1 <

...., βk−1 < γk−1, opposite alternate discontinuities if γ1 < β1 < ...., γk−1 < βk−1.

Definition 1.4. The induced map of a map T on a set Y is the map y → T r(y)y where, for y ∈ Y ,

r(y) is the smallest r ≥ 1 such that T ry is in Y (in all cases considered in this paper, r(y) is finite).

We recall that the Rauzy induction consists in inducing I on the interval [0, βk−1 ∨ γk−1[, which

gives an interval exchange with a new permutation (∨ and ∧ denote the supremum and infimum).

The Rauzy induction partitions the set of interval exchanges, or equivalently the set of (primitive)

permutations, into equivalence classes called Rauzy classes; the two-sided Rauzy induction allows

us to induce also on [β1 ∧ γ1, 1[ and creates extended Rauzy classes. Their link with connected

components of strata in the moduli space of abelian differentials is described in [22]. Among the

Rauzy classes of permutations on {1, . . . , k}, a particular one is the hyperelliptic class which con-

tains the symmetric permutation i → k + 1 − i, 1 ≤ i ≤ k, and is also an extended Rauzy class;

each hyperelliptic Rauzy class corresponds to a so-called hyperelliptic component in the above

strata.

1.2. The induction(s). Starting from an interval exchange, and with a word-combinatorial mo-

tivation detailed in [10] (namely, we want to know all the bispecial words of the associated lan-

guage), we aim to build the points where the negative orbits of the discontinuities of I approximate

the discontinuities of I−1. By approximating the discontinuities of I−1 from the right and the left,

we build small intervals around them. We suppose first I has alternate discontinuities, as this

makes things much easier at the initial stages; the opposite condition works similarly, the only

difference being in the initial state, see Section 2.2 below.

Thus we want to build k − 1 nested families of subintervals Ei,n = [βi − li,n, βi + ri,n[ 1 ≤
i ≤ k − 1, so that Ei,0 = ∆i, and the Ei,n are the intervals containing βi, and whose endpoints are

the successive (where I−m′

γj′ is after I−mγj if m′ > m) I−mγj which fall closest to βi.

The number n of the stage will be omitted whenever it is not absolutely necessary: when we go

from one stage to the next, Ei,n will be Ei and Ei,n+1 will be E ′
i.
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Proposition 1.1. Given any subinterval E of ∆i containing βi, there is a minimal m < 0 and

unique j such that I−mγj is in the interior of E; this point I−mγj is different from βi.

Proof

As I is minimal, there exist some points I−mγj in the interior Ẽ of E. We take a minimal m;

then Im is continuous on Ẽ; if there exist two different points I−mγj1 and I−mγj2 , j1 < j2, in Ẽ,

then ImẼ contains the interval [γj1, γj2] and thus, because of the alternate discontinuities, the point

βj1+1, which implies that Im−1Ẽ contains some γl, and this is a contradiction. The point I−mγj is

different from all points βi, 1 ≤ i ≤ k − 1, because of the i.d.o.c. condition. �

Definition 1.5. γ(E) is the unique point I−mγj defined in Proposition 1.1. φ(E) is the one of the

two subintervals of E with endpoints γ(E) which contains βi.

Thus, for a given Ei ⊂ ∆i, γ(Ei) is indeed the first element I−mγj , m > 0, 1 ≤ j ≤ k − 1, to

fall in the interior of Ei. Then we could tentatively define E ′
i to be φ(Ei). However, it may very

well happen that, for example, γ(E1) = I−5γ1 while γ(E2) = I−2γ1 and γ(E ′
2) = I−3γ1, which

creates a desynchronization between the tentatives E ′
1 and E ′

2; then it seems natural to wait before

cuttingE1, that is to put E ′
1 = E1. Thus, for each i, at each stage, we make a decision, either to put

E ′
i = Ei or to defineE ′

i = φ(Ei), the subinterval [γ(Ei), βi+ri[ or [βi−li, γ(Ei)[ which contains βi.

Thus, in the case of alternate discontinuities, we can define formally our induction as follows.

Definition 1.6. For an interval exchange I, given a disjoint union of intervals Ei = [βi − li, βi +
ri[⊂ ∆i, 1 ≤ i ≤ k − 1, and a nonempty subset F of {1, ...k − 1}, an induction with decision F

creates the intervals E ′
i where

• if i is in F , E ′
i = φ(Ei);

• if i is not in F , E ′
i = Ei.

This formal definition applies to any nonempty subset F of {1, k− 1}. Concretely, we shall use

it in the course of an induction process, where we have intervals Ei,n at stage n; then the set F will

depend on n, and at each stage we shall restrict ourselves to some particular sets F , explicited in

Definition 1.9 below, for which we shall be able to identify the new intervals.

This still leaves many different possible decisions at each stage, and thus different induction

processes; however, as is shown in [10], all sequences of decisions for which, for every 1 ≤ i ≤
k−1, E ′

i 6= Ei at infinitely many stages yield the same sequences of different intervals, though not

numbered in the same way. To define sequences of decisions which makes the induction work is

non-trivial: it is done in [17] for some permutations, in [10] for all permutations. These are indeed

induction algorithms because the intervals E ′
i are built from the Ei by using S where throughout

this paper, S denotes the induced map of I on the set ∪k−1
i=1Ei.

1.3. Examples on three intervals. We consider the three-interval exchange of Figure 1 above,

with the symmetric permutation 1 → 3, 2 → 2, 3 → 1, and alternate discontinuities, as in Section

2.2 of [10]. S is always the induced map of I on E1 ∪ E2.

At the initial stage, E1 = [0, α1[, E2 = [α1, α1 + α2[. By the induced map S, each Ei is

partitioned into two arrival intervals [βi − li, βi[ and [βi, βi + ri[, and two departure intervals [βi −
li, γ(Ei)[ and [γ(Ei), βi + ri[, with γ(E1) = I−1γ2, γ(E2) = I−1γ1. S sends by a translation
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the two departure intervals of E1 onto the arrival intervals of length r2 and l1, the two departure

intervals of E2 onto the arrival intervals of length r1 and l2.

β1

A1

B1

C1

β2

A2

B2

C2

−→
l1

−→r1

−→r2
−→
l1

−→
l2

−→r2

−→r1

−→
l2

FIGURE 2

This implies the train-track equalities l1 + r1 = r2 + l1, l2 + r2 = r1 + l2, which in turn imply

r1 = r2.

We go now from intervals to polygons, by adding heights Li > 0 and Ri > 0, such that the

vectors
−→
li = (li,−Li) and −→ri = (ri, Ri) satisfy the same train-track equalities as their first com-

ponents, namely
−→
l1 +−→r1 = −→r2 +

−→
l1 ,

−→
l2 +−→r2 = −→r1 +

−→
l2 . We draw quadrilaterals as in Definition

1.11 below, such that S will appear as a section of the linear flow on the translation surface de-

fined by glueing them by their opposite equal sides: we have
−→
l1 , −→r1 ,

−→
l2 , −→r2 as lower sides, −→r2 ,

−→
l1 ,

−→r1 ,
−→
l2 as upper sides, and we can glue the upper

−→
l1 to the lower

−→
l1 , etc The projections, on the

horizontal containing the βi, of the lower, resp. upper, sides give the arrival, resp. departure, inter-

vals of S. We get two parallelograms (Figure 2), and call polygon i the one with lowest point βi;

they have a natural triangulation by the triangles β1A1B1 andA1B1C1, resp. β2A2B2 and A2B2C2,

which we call pasting triangles. Note that in the pictures we have exaggerated the distance from β1
to β2 so that the initial intervalsE1 andE2 do not appear as adjacent, as this adjacency is irrelevant.

The tentative new Ei (if i is in F ) is one of the two subintervals [γ(Ei), βi+ri[ or [βi− li, γ(Ei),
according to the respective positions of βi and γ(Ei). These are given by the signs of the quantities

li − r2−i = li − ri, which are nonzero by the i.d.o.c. condition.

First step. We suppose that l2 < r2 = r1 < l1. This means that the vertical of β1 in the polygon

1 intersects the subpolygon which lies to the right of the diagonal β1C1 (this is a triangle, β1B1C1,

though this will not be always the case in more general situations, but not a pasting triangle), the

vertical of β2 in the polygon 2 intersects the subpolygon β2A2C2.

First possible decision: F = {1}: then we keep in the new polygon 1 the subpolygon which

intersects the vertical of β1, namely β1C1B1, and this becomes the new lower pasting triangle
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β1

A′
1

B′
1

−→
r′1

−→
l′1

−→
l1

−→
l1

−→r2

−→
l′1

FIGURE 3

β1

A′
1

B′
1

C ′
1

−→
r′1

−→
l′1

−→
l1

−→
r′2 = −→r2

−→
l′1

FIGURE 4

β1A
′
1B

′
1. The other subpolygon, β1A1C1, is cut (Figure 3) and pasted by its lower side, which has

vector
−→
l1 , to the available upper side with vector

−→
l1 , which is C1B1 = A′

1B
′
1 (Figure 4), the tri-

angle A′
1B

′
1C

′
1 which has been added on the polygon 1 becomes a pasting triangle, which explains

the terminology. We get two parallelograms again, the parallelogram 2 remaining as in Figure 2.
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β2

A′
2

B′
2

−→
l′2

−→
r′2

−→r1

−→
r′2

−→
l2

−→r2

FIGURE 5

β1

A′
1

B′
1

C ′
1

D′
1

β2

B′
2

A′
2

−→
r′1

−→
l′1

−→
l1

−→r2

−→
l′1

−→
r′2

−→
l′2 =

−→
l2

−→
l′2

−→
r′2

−→
r′1 = −→r1

FIGURE 6

Up to this point, we have only translated in the context of interval exchanges the diagonal

changes of [7]; but in the present case they would allow only the decision F = {1}. We be-

gin now to diverge from [7] by allowing other decisions.
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β1

A′′
1

B′′
1 = C ′

1

C ′′
1 = D′

1

−→
r′′1

−→
l′′1

−→
r′2

−→
l′2

−→
r′1

−→
r′′1

−→
l′1

FIGURE 7

Second possible decision: F = {1, 2}. Then the subpolygon β1A1C1, is cut and pasted by its

lower side, with vector
−→
l1 , to the available upper side with vector

−→
l1 , as in Figure 3, but also the

subpolygon β2B2C2, is cut from the polygon 2 (Figure 5) and pasted by its lower side, with vector
−→r2 , to the available upper side with vector −→r2 . The two pastings can be made in any order, and in

the end we get Figure 6 with a pentagon 1 and triangle 2, and pasting triangles β1A
′
1B

′
1, A

′
1B

′
1C

′
1,

A′
1C

′
1D

′
1, and β2A

′
2C

′
2.

Then, in view of the next step, the triangle 2 cannot be cut, while there are a priori two possi-

ble diagonals to cut the pentagon, namely β1C
′
1 and β1D

′
1; going back to the interval exchange,

we see that the projections of D′
1 and C ′

1 on the horizontal of β1 correspond to two points on the

negative orbits of discontinuities, and cut the interval 1 into three subintervals of lengths r′2, l′2
and l′1. The way the pentagon has been constructed implies that the projection of C ′

1 is before

the projection of D′
1 (they are I−mγ and I−m′

γ′ for m < m′). This information is given in the

picture by the pasting triangles, which are A′
1B

′
1C

′
1 and A′

1C
′
1D

′
1, but not A′

!D
′
1B

′
1 or B′

1C
′
1D

′
1: C

′
1

is above the diagonal A′
1B

′
1, which indicates that the projection of C ′

1 is after the projections of

A′
1 and B′

1, and D′
1 is above the diagonal A′

1C
′
1, which indicates that the projection of D′

1 is after

the projections of A′
1 and C ′

1; alternatively, we can write the parenthesized train-track equalities
−→
l′1 +

−→
r′1 = (

−→
r′2 +

−→
l′2 ) +

−→
l′1 ,

−→
l′2 +

−→
r′2 =

−→
r′1 . Either one of these properties implies that, at the next
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β1

A′′
1

B′′
1 = C ′

1

C ′′
1 = D′

1

β2

B′′
2

A′′
2

C ′′
2

−→
r′′1

−→
l′′1

−→
r′′2

−→
l′′2

−→
l′′2

−→
r′′2

−→
r′′1

−→
l′′1

−→
r′1

FIGURE 8

step, we shall cut the pentagon by the diagonal β1C
′
1.

r2

l1

r1
l2

FIGURE 9
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Second step. We suppose furthermore that 2r1 > l1. If, at the first step, we have taken the

second decision, the triangle 2 cannot be cut; if now we take any decision containing 2, the new

interval E2, though it is uniquely defined, cannot be identified from the data we have; thus we take

the decision F = {1}. As we have seen above, the pentagon 1 is divided into the subpolygons

β1A
′
1D

′
1C

′
1 and β1C

′
1B

′
1 (Figure 7); we keep in the new polygon 1 the subpolygon which intersects

the vertical, namely the quadrilateral β1A
′
1D

′
1C

′
1 while the triangle β1C

′
1B

′
1 is pasted, by its lower

side with vector
−→
r′1 , to the available upper side, with vector

−→
r′1 , which is on the triangle 2. We get

Figure 8, with two quadrilaterals which are not parallelograms, but related by a rotation of angle

π.

If, at the first step, we have taken the first decision, and then, at the second step, take F = {1, 2},

then, as in [7], the triangle β1B
′
1C

′
1 of Figure 4 is cut, and pasted on the parallelogram 2 along the

side with vector
−→
r′1 , while the triangle β2B2C2 of Figure 2 is cut as in Figure 5, and pasted on the

parallelogram 1 along the side with vector
−→
r′2 = −→r2 , and what we get is again Figure 8.

1.4. Castle polygons and diagonal changes. The plane is oriented; when a given segment is said

to correspond to some vector, the vector goes from left to right (there will be no vertical segment).

Definition 1.7. A set of castle polygons is a set of k − 1 polygons, each one equipped with a

triangulation by pasting triangles such that

(1) the lowest vertex in the polygon i is denoted by βi, and no other vertex is on the vertical of

βi,

(2) the lower sides in the polygon i correspond to vectors
−→
li = (li,−Li), going from Ai to βi

and −→ri = (ri, Ri), going from βi to Bi, with li > 0, ri > 0, Li > 0, Ri > 0, 1 ≤ i ≤ k− 1,

(3) the upper sides of the polygons i, 1 ≤ i ≤ k − 1, form a partition of the set

{
−→
l1 ,

−→r1 , ...,
−−→
lk−1,

−−→rk−1},

(4) βiAiBi is a pasting triangle; every pasting triangle except the βiAiBi has one lower side

with finite nonzero slope, one left upper side with finite positive slope, one right upper side

with finite negative slope,

(5) every pasting triangle except the βiAiBi is pasted by its lower side onto an upper side of

another pasting triangle,

(6) there is no strict subset J of {1, ...k − 1} such that all the upper sides of the polygons i,

i ∈ J correspond to vectors
−→
lj or −→rj for j ∈ J .

In a set of castle polygons, the vectors must satisfy train-track equalities; for 1 ≤ i ≤ k − 1,
−→
li +

−→ri is the sum of the vectors of the upper sides of the polygon i; furthermore, we get parenthe-

sized train-track equalities by putting, in the second members of the equalities, a set of parentheses

around each sum of vectors corresponding to a pasting triangle (we can omit the outer set of paren-

theses corresponding to βiAiBi).

In [10] the induction is used to generate the names (for the natural coding) of the bispecial

intervals: they appear as labels of edges in some trees, constituting forests which can be naturally

associated with castle polygons:

Definition 1.8. The castle forest of a set of k − 1 castle polygons is a set of k − 1 castle trees

defined by
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• there is one vertex on each upper side of each pasting triangle, labeled li, resp. ri when it

is also an upper side
−→
li , resp. −→ri of a polygon,

• from every vertex which is also on the lower side of a pasting triangle, there is an edge,

oriented upwards and going to the left, resp. right, to the vertex corresponding to the upper

left, resp. right, side, of this pasting triangle,

• for the i such that the polygon i is a triangle, there is a vertex at the lowest point of this

triangle, and a single edge, oriented upwards, from this vertex to the one corresponding to

the upper side of the triangle.

The tree structure of the castle forest is exactly the one described by the parenthesized train-

track equalities. Also, for each polygon i, there is a tree defined naturally by its triangulation into

pasting triangles: we put a vertex in each triangle, for example on its lowest side (or lowest point

if it is a βiAiBi) and an edge between two triangles which have a common side. Then the castle

tree of the polygon i is obtained from that tree by orienting it, deleting the lower edge when there

is one, and adding edges going to the upper sides of the polygon.

For the examples of Section 1.3, Figure 9 gives the castle forest embedded in the polygons of

Figure 2, which is the one in Figure 2.6 of [10] (minus the edge and root labels).

l1

r2

l2

r1

FIGURE 10

In Figure 10 we show both the castle forest embedded in the polygons of Figure 6 (Figure 2.8 or

2.9 of [10] minus the edge and root labels), and the trees describing the triangulation of Figure 6,
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made with two edges in the pentagon, and no edge in the triangle. Note that the above-mentioned

names which label the edges in [10] can be seen here as labels of the upper sides of the pasting

triangles.

We define now two operations on castle polygons.

Definition 1.9. A forward diagonal change on a set of castle polygons is defined as follows: let H

be the set of i such that the polygon i is not a triangle. Let F be a nonempty subset of H , called a

(forward) decision. For each i in F , let Ci be the upper vertex of the pasting triangle with lower

side AiBi; then we cut the polygon i into two subpolygons by the diagonal βiCi, keep in the new

polygon i the subpolygon which contains the vertical of βi, and paste the other one by its lower

side onto the one upper side of a castle polygon which corresponds to the same vector (
−→
li or −→ri ).

The cuttings and pastings for different i in F can be made in any order. The pasting triangles of the

new set of castle polygons are deduced from the ones in the original set by deleting the diagonals

AiBi, i ∈ F , and adding all the former sides along which a pasting has just been done.

Lemma 1.2. The image of a set of castle polygons by a forward diagonal change satisfies all the

properties of a set of castle polygons, except that some βiCi may be vertical.

Proof

The non-trivial point to check is that any subpolygon which has been cut is pasted to one of the

new castle polygons; as we can cut the polygons successively, it suffices to check that the part we

cut from the polygon i does not have to be pasted on itself; but in that case, if −→zi is the lower side

of the subpolygon which has been cut from the polygon i, −→zi is an upper side of the subpolygon

which has been cut from the polygon i; if zi is the first coordinate of −→zi , and z̃i is the horizontal

distance from Ci to the one of the points Ai or Bi which is in the subpolygon which has been cut

from the polygon i, we must have z̃i < zi < z̃i, impossible.

Also, by definition each one of the new lower side vectors
−→
li or −→ri is also an upper side of a

subpolygon which has been cut, and thus a new upper side vector, hence the conclusion of the

lemma. �

Definition 1.10. A backward diagonal change on a set of castle polygons is defined as follows: let

H− be the set of i such that

• either Ri > Li, the unique upper side in the set of castle polygons with vector −→ri is not the

only upper side of its polygon, and the lower side of the pasting triangle containing it has

positive slope,

• or Li > Ri, the unique upper side in the set of castle polygons with vector
−→
li is not the

only upper side of its polygon, and the lower side of the pasting triangle containing it has

negative slope,

Let F be a nonempty subset ofH−, called a (backward) decision. Then for each i in F , let ζi be the

lower side of the pasting triangle containing the upper side used in the definition of H−; then we

cut the relevant polygon j in two parts by the diagonal ζi, keep the lower part in the new polygon

j and paste the upper part, by the upper side used in the definition of H−, onto the lower side in

the set of castle polygons with the same vector −→ri or
−→
li . The cuttings and pastings for different i

in F can be made in any order. The pasting triangles of the new set of castle polygons are deduced

from the ones in the original set by adding the diagonals AiBi of the new polygons for i ∈ F , and

deleting the former diagonals ζi for i in F .
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Lemma 1.3. The image of a set of castle polygons by a backward diagonal change satisfies all the

properties of a set of castle polygons, except that some AiBi may be horizontal.

Proof

The proof follows immediately from the definitions. �

We check first that our definitions are nonempty, as independent as they can be of the decisions,

and that the backward and forward changes are locally inverse to each other:

Lemma 1.4. For any set of castle polygons

• H and H− are nonempty;

• two forward diagonal change with decisions F1 and F2 give the same new vectors −→ri and
−→
li for any i ∈ F1 ∩ F2;

• two backward diagonal changes with decisions F1 and F2 give the same new vectors −→ri
and

−→
li for any i ∈ F1 ∩ F2;

• the composition of a a forward and backward, resp. backward and forward, diagonal

change with the same decision is the identity.

Proof

H is nonempty as there are 4k − 4 sides for k − 1 polygons, thus not every polygon is a triangle.

Suppose H− is empty. We take an i such that Ri > Li, and look at the upper side in the set of

castle polygons with vector −→ri . If it is the only upper side of a polygon j, then −→ri =
−→
lj +−→rj and

thus Rj > Ri > Li. Otherwise, the lower side of the pasting triangle containing it has negative

slope, and, if ζi,1 is the right upper side of that triangle and Li,1 the length of its vertical projection,

then Li,1 > Ri; if ζi,1 is not an upper side of a polygon, then it is the lower side of a pasting

triangle, whose right upper side is ζi,2, with a vertical projection of length Li,2, and Li,2 > Li,1;

and so on until some ζi,s is an upper side of a polygon, thus corresponds to some vector
−→
lj , and

Lj = Li,s > ... > Li,1 > Ri > Li. Similarly, if Li > Ri, we find some j such that Rj > Li > Ri

or Lj > Li > Ri, and for every i we have found a j such that Lj ∨ Rj > Li ∨ Ri, which is

impossible.

It follows from the definitions that, for a given i and forward change, the new vectors
−→
li . and

−→ri depend only on the subpolygon which is cut from the polygon i, and this is the same for all the

decisions F such that i is in F .

For a given i and backward change, the new vectors
−→
li . and −→ri are determined by the subpoly-

gon which is pasted on the polygon i; in general, this is a union of (before the change) pasting

triangles, and
−→
li and −→ri depend only on the lower one, which is the same for all the decisions F

such that i is in F .

The last assertion comes from the definition, and the important fact that after a forward change

has cut a left part of the polygon i, then the new Li is bigger than both the old Li and Ri, and thus

than the new Ri which is the same as the old one, and similarly Ri > Li after a forward move has

cut a right part of the polygon i. �
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Note that if i is not in F the vectors
−→
li and −→ri are never changed. When i is in F , the subpolygon

which is pasted on the polygon i by a backward change may depend on other elements of F ; for

example if we make a backward change from Figure 6 and 1 is in F , the subpolygon to be pasted

on the polygon 1 may be either the triangle A′
1B

′
1C

′
1, if A′

1C
′
1D1 is pasted on 2 because 2 is in F ,

or the quadrilateral A′
1B

′
1C

′
1D

′
1 otherwise. This contrasts with the polygon which is cut from the

polygon i by a forward change, which depends only on whether i is in F .

We look now at infinite iterations of diagonal changes, which supposes we are always in sets of

castle polygons. To ensure that infinitely many successive forward diagonal changes are possible

from a given set of castle polygons, a sufficient condition is that this set is obtained by a finite

number of successive forward diagonal changes from the initial set of an interval exchange satis-

fying the i.d.o.c. condition, see Proposition 1.7 below; another sufficient condition is that the li
and ri have no rational relations except those generated by the train-track equalities. In an infinite

sequence of forward changes, the vectors
−→
li and −→ri become more and more vertical, their future

values being vectors of upper sides of pasting triangles.

To ensure that infinitely many successive backward diagonal changes are possible from a given

set of castle polygons, a sufficient condition is that the Li and Ri have no rational relations except

those generated by the train-track equalities. In an infinite sequence of backward changes, the vec-

tors
−→
li and −→ri become more and more horizontal, their future values being vectors of lower sides

of pasting triangles.

We prove now in the general setting a fundamental result which in the case of forward changes

coming from an i.d.o.c. interval exchange is just a consequence of minimality.

Theorem 1.5. If we make infinitely many successive diagonal changes from a given set of castle

polygons

• forward, then for each i, li,n and ri,n tend to zero, Li,n and Ri,n tend to infinity, when n

tends to infinity;

• backward, then for each i, Li,n and Ri,n tend to zero, li,n and ri,n tend to infinity, when n

tends to infinity;

• in both cases the sequences of successive (different) values of −→ri and
−→
li is the same, what-

ever the sequence of decisions.

Proof

We look first at forward changes.

Suppose that li,n 6→ 0 but the polygon i has a part cut from the left infinitely many times; then

Li,n is increased infinitely many times by some positive quantity which is the length of the vertical

projection of some side of a pasting triangle, and thus at least the length of the vertical projection

of some side of a pasting triangle at stage 0, as these quantities are increasing, thus Li,n → +∞.

The total area of the set of castle polygons at stage n is constant, and is at least the area of the lower

pasting triangle of the polygon i, which is 1
2
(li,nRi,n + ri,nLi,n). If ri,n → 0, the polygon i has a

part cut from the right infinitely many times, and by the above reasoning Ri,n, and thus li,nRi,n,

tend to infinity. If ri,n 6→ 0, ri,nLi,n tends to infinity. In both cases, we have a contradiction. And

the same reasoning leads to a contradiction if ri,n 6→ 0 but the polygon i has a part cut from the

right infinitely many times.
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Suppose that li,n+ri,n 6→ 0, but the polygon i is cut infinitely often. We takeN large enough, so

that all the lj,n and rj,n which do not tend to zero will not be changed further, while the others are

small. Let −−→xj,N , x = l or x = r, be the vector of the upper side of the polygon i at stage N which

contains the vertical of βi. By the definition of the forward changes, after finitely many stages the

diagonal AiBi will have vector −−→xj,N . Thus xj,N ′ = li,N ′ + ri,N ′ , hence xj,n cannot tend to zero, and

thus xj,n = xj,N for all n ≥ N . But nothing can ever be pasted on the diagonal AiBi as this would

create an xj,n+1 < xj,n. Thus the polygon i cannot be cut ultimately, contradiction.

Let now J be the set of i such that the polygon i is cut infinitely many times; J is nonempty as

in infinitely many forward changes at least one polygon i is cut infinitely many times. An i is in

J if and only if li,n and ri,n tend to zero. Because of the train-track equalities, for n large enough

the upper sides of polygons i for i in J can only have vectors −→xj , x = l or x = r, j ∈ J , hence

all the −→xj , x = l or x = r, j ∈ J must be vectors of upper sides of polygons i, i ∈ J ; thus

J = {1, ...k − 1} by (6) of Definition 1.7.

We look now at backward changes.

Suppose that Li,n 6→ 0 but the polygon i has a part pasted to the left infinitely many times;

then we make the same reasoning using the areas as above, mutatis mutandis (l and L, r and R

exchanged, “cut from” replaced by “pasted to”, “vertical projection” replaced by “projection”) and

get a contradiction. And similarly if Ri,n 6→ 0 but the polygon i has a part pasted to the right

infinitely many times.

Suppose that Li,n + Ri,n 6→ 0, but the polygon i is pasted infinitely often; then for example

Li,n → 0 and Ri,n 6→ 0. Then for n large enough Li,n < Ri,n, and by the definition of the forward

changes the polygon i cannot ever have a part pasted to the left, contradiction.

Let now J be the set of i such that the polygon i is pasted infinitely many times; J is nonempty

as in infinitely many backward changes at least one polygon i is pasted infinitely many times. An

i is in J if and only if li,n and ri,n tend to infinity. Because of the train-track equalities, for n large

enough the upper sides of polygons i for i in Jc can only have vectors −→xj , x = l or x = r, j ∈ Jc,

hence all the −→xj , x = l or x = r, j ∈ Jc must be vectors of upper sides of polygons i, i ∈ Jc; thus

J = {1, ...k − 1} by (6) of Definition 1.7.

The last assertion comes from the fact that any infinite sequence of decisions creates the same

pasting triangles: they depend only on the initial values of the
−→
li and −→ri ; the stages during which

any given pasting triangle exists may vary, but as every sequence of decisions changes each poly-

gon to the left and to the right infinitely often, every pasting triangle created by one sequence will

be created by any other sequence. �

1.5. Diagonal changes project on inductions. The algorithms of induction described in [10] use

states defined by castle forests, or parenthesized train-track equalities involving the ri and li; in a

given state, we know the γ(Ei) of Definition 1.5 for i in some set H , and an induction is defined

by some inequalities involving the li and ri, and a decision F ⊂ H , and creates new parameters li
and ri in a new state.

To each of these states correspond sets of castle polygons, with suitable Li and Ri, and the same

parenthesized train-track equalities but involving the −→ri and
−→
li , we define H as in Definition 1.9

and we take a decision F ⊂ H: it follows from the definitions and the theory in Section 2 of [10]
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that the two sets H coincide, the inequalities involving the li and ri are exactly those determining

whether the diagonal βiCi is left or right of the vertical of βi, and the forward diagonal change

defined by F and projected on the parameters li, ri is just the induction defined by F in [10].

We define here the initial set of castle polygons when I has alternate discontinuities; in that

case the initial intervals are Ei = [γi−1, γi[. Other cases, including the case of opposite alternate

discontinuities, are studied in Section 2.2 below.

Definition 1.11. An initial set of castle polygons defined by an i.d.o.c interval exchange I with

permutation π and alternate discontinuities is such that

• the βi of Definition 1.7 are identified with those of Definition 1.1;

• li is the distance from γi−1 to βi, 1 ≤ i ≤ k − 1;

• ri is the distance from βi to γi, 1 ≤ i ≤ k − 1;

• if π−1k = 1: the upper sides of the polygon 1 are −−→rk−1 and
−→
l1 , the upper sides of the

polygon πi 6= 1 are −−→ri−1 and
−→
li ;

• if π−1k = j 6= 1, the upper sides of the polygon πi, 2 ≤ i ≤ k − 1, i 6= j, are −−→ri−1 and
−→
li ;

the only upper side of the polygon π1 is
−→
l1 ; the upper sides of the polygon πk are −−→rk−1,

−−→rj−1,
−→
lj ;

• the Li > 0 and Ri > 0 have no rational relations except those generated by the train-track

equalities, and satisfy Rj−1 < Lj if π−1k = j 6= 1;

• the polygons are equipped with the unique triangulation compatible with Definition 1.7.

The triangulation is defined trivially for the triangle and the quadrilaterals, and for the pentagon
−−→rj−1 and

−→
lj are the upper sides of the same triangle.

Suppose now we start from an initial set of castle polygons defined by an i.d.o.c interval ex-

change I with alternate discontinuities; then, by the definitions, at any given stage the diagonal

AiBi projects (on the horizontal of βi) on the interval Ei. Thus we can translate Proposition 2.3 of

[10]; the proof is not repeated here, but comes directly from the definitions.

Lemma 1.6. At any given stage, each vertex of the polygon i, except βi, projects (on the horizontal

of βi) on a point I−sγt in the interior of Ei; if a vertex X is (strictly) above a side Y Z of a pasting

triangle, the projection of X is (strictly) after (i.e. corresponds to a larger s) than the projections

of Y and Z.

If an upper side of the polygon i has vector
−→
lj , resp. −→rj , then its horizontal projection is an

interval of continuity of S, sent by S onto [βj − lj , βj[, resp. [βj, βj + rj[.

The following result translates Proposition 2.25 of [10], or can be recovered from Theorem 1.5

and the remark that the i.d.o.c. condition prevents the existence of vertical βiCi.

Proposition 1.7. An i.d.o.c interval exchange I with alternate discontinuities, through any se-

quence of decisions Fn, generates an infinite sequence of forward diagonal changes, such that

each polygon has a part cut from the left, resp. right, for infinitely many n.

A converse of Proposition 1.7 is Theorem 2.28 of [10]; this is the key to the construction of

examples which is the main use of this induction. Here we just quote it as it will not be used in

the present paper, and its non-trivial proof is based on word combinatorial techniques, for which

we do mot know any ready geometric translation. This uses formal diagonal changes where the
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actual values of the
−→
li and −→ri are not involved, just the description of what is cut and pasted; for

a given description of the set of castle polygons, not every formal diagonal changes is possible,

as the positions of the verticals may satisfy some symmetry conditions; for example in Figure 7,

whatever the actual value of the parameters, the polygons 1 and 2 cannot be cut from different

sides. These allowed formal changes are defined in Corollary 2.16 of [10], as those for which the

resulting train-track equalities do have solutions in the positive cone.

Proposition 1.8. Any infinite sequence of allowed formal forward diagonal changes, starting from

an initial set as in Definition 1.11, and such that each polygon has a part cut from the left, resp.

right, for infinitely many n, defines at least one k-interval exchange with permutation π and alter-

nate discontinuities, satisfying the i.d.o.c. condition, which generates it as in Proposition 1.7.

2. INTERVAL EXCHANGES WITHOUT ALTERNATE DISCONTINUITIES

Without the condition of alternate discontinuities, or the opposite condition, our induction has

to deal with a finite number of transient states at the beginning, and diagonal changes loose a part

of their interest as in these states there are no satisfying backward changes. Still, the presentation

of the new induction through forward diagonal changes is more elegant than the one in [10], and

will be used in Section 4.

We give a general definition for the induction, taking into account that an interval Ei may now

contain several points βi, or several I−mγi for the samem; this definition applies always, while the

simpler Definition 1.6 applies at every stage when I has alternate discontinuities, and a modified

version (taking into account that Ei is not always a subinterval of ∆i) applies for opposite alternate

discontinuities, and after a finite number of initial stages for general I. Of course, when both

definitions apply, they are equivalent.

Definition 2.1. For an interval exchange I, we start from a disjoint union of intervals Ei = [βi −
li, βi+zi + ri[ for i in a subset K of {1, ...k − 1} and zi ≥ 0. For a given i, let m be such that at

least one (but possibly several) I−mγr is in the interior of Ei and no I−sγt, is in the interior of Ei

for s < m. Then, if i is in F , the induction with decision F creates all possible subintervals E ′ of

Ei such that

• E ′ contains at least one βi,

• each endpoint of E ′ is either an endpoint of Ei or an I−mγr,

• the interior of E ′ contains no I−mγt.

The E ′ are then numbered so that E ′
j = [βj − l′j , βj+z′j

+ r′j[ for j in K ′. If i is not in F , E ′
i = Ei.

2.1. Examples on four intervals. We take first the example in Figure 11, with permutation 1 → 4,

2 → 3, 3 → 2, 4 → 1, and γ1 < γ2 < β1 < γ3 < β2 < β3.

We have two intervals [γi, γi+1[ which contain points βi, and thus the parameters of our induction

are l1, the distance from γ2 to β1; r1, the distance from β1 to γ3; l2, the distance from γ3 to β2; u2,

the distance from β2 to β3; r2, the distance from β3 to 1; we add the auxiliary quantities v1, the

distance from 0 to γ1, and v2, the distance from γ1 to γ2, which will be used later, and remark that

by definition of the transformation we have v1 = r2, v2 = u2. We define vectors
−→
li = (li,−Li),

−→ri = (ri, Ri),
−→u2 = (u2, 0). The train-track equalities imply l1 = l2; we suppose r1 < l1 = l2 and

r2 < l1 = l2.
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The generalized castle polygons corresponding to this situation are drawn in Figure 12; note that

in the hexagon there is no diagonal A2C22 or B2C21, which reflects the fact that the projection (on

the horizontal of the βi) of C21 and C22 are I−nγ1 and I−nγ2 for the same n.

Then at the next stage, if F = {1, 2}, the triangles β1A1C1 and β2A2C21 are cut and pasted in

the usual way, respectively on the upper side with vector
−→
l1 and

−→
l2 , but also the lower triangle

β2β3C22 is cut, and pasted by its lower side with vector −→u2 onto the available upper side C21C22.

The hexagon is replaced by two quadrilaterals, thus a polygon 3 is created and some vectors are

renumbered accordingly. The three quadrilaterals we get in Figure 13 form a generalized set of

castle polygons, but not a set of castle polygons because of the horizontal new A2B2.

We take now the permutation 1 → 4, 2 → 3, 3 → 1, 4 → 2, again with γ1 < γ2 < β1 < γ3 <

β2 < β3. The parameters of the induction are again l1, r1, l2, u2, r2, and with l1 < r1, r2 < l2 < u2
we get the initial set of generalized castle polygons in Figure 14.

If F = {1, 2}, the triangle β1B1C1 is cut and pasted on the quadrilateral 1, and the quadrilateral

β2C21C22β3 is cut and pasted by its lower side with vector −→u2 onto the available upper side A2C21.

Thus the hexagon is replaced by a pentagon and a triangle, a polygon 3 is created and some vectors

are renumbered accordingly. In the generalized set of three castle polygons we get in Figure 15,

the pentagon 2 has again an horizontal A2B2, and no other pasting diagonal.
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2.2. The general case. The above examples suggest that it might be possible to define backward

changes, even in the case of horizontalAiBi as these indicate that former sides −→us have been pasted;

but iterating them would be somehow meaningless except in the case of alternate discontinuities

or the opposite case, as unchangeable vectors −→us would co-exist with long vectors
−→
li and −→ri ; thus

we shall not attempt to define backward diagonal changes.

For a general interval exchange I, satisfying the i.d.o.c. condition, the initial set of generalized

castle polygons will be defined in several steps. It involves vectors
−→
li and −→ri as before, though

they will be defined only for those i for which we have an Ei, which are defined below, and form

a smaller set than before as one Ei may contain several βj ; but we have also to use vectors −→us,

which join two points βs and βs+1 when they do not have a γj between them, these are horizontal

as we want the two points βs and βs+1 to be in the polygon; the opposite situation is the case when

two points γj−1 and γj do not have a βi between them: as can be seen in the examples of Section

2.1, these do not create sides in the initial polygons, as the corresponding (auxiliary) vectors −→vj are

pasted at a preliminary stage. The full process of building the initial polygons is as follows.

The intervalEi is the unique interval [γj−1, γj[ which is of the form [βi−li, βi+zi+ri[ for zi ≥ 0;

such i form a subset K of {1, ...k − 1} and for i in K we define li to be the distance from γj−1 to

βi, ri to be the distance from βi+zi to γj , while us is the distance, if it exists, from βs to βs+1 for

i ≤ s ≤ i + zi − 1. We shall use the auxiliary quantities vj , the distance from γj−1 to γj when

[γj−1, γj[ contains no βi, which may happen for j in a (possibly empty) set K1; note that if also
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I[γj−1, γj[ contains no γt, which may happen for j in a (possibly empty) set K2, then vj is either

l1, rk−1 or a us; to understand these notations, look at Figure 11 above, where E1 is [γ2, γ3[, E2 is

[γ3, 1[; then K1 = {1, 2}, and we define v1 and v2 as in Section 2.1, but as I[0, γ2[ contains no γt,

K2 = {1, 2} with v1 = r2, v2 = u2.

We define vectors
−→
li = (li,−Li),

−→ri = (ri, Ri),
−→us = (us, 0), and auxiliary ones −→vj = (vj .Vj)

for j in K1 \ K2. The Vj can have any value satisfying the corresponding train-track equalities,

except that, if they exist, we take V1 > 0 and Vk < 0.

Then for i in K, the provisional polygon i has lower sides, from left to right,
−→
li from Ai to βi,

−→us (if they exist) from βs to βs+1 for i ≤ s ≤ i+ zi− 1, −→ri from βi+zi to Bi. To get its upper sides,

we look at IEi, which is an interval [βt, βt+1[, and partition it by all the γs inside it; this gives,

from left to right, subintervals of lengths rt′ (for some t′ ≤ t), vs, s1 ≤ s ≤ s2, lt+1, and then the

upper sides of the provisional polygon i will be, from left to right, −→rt′ ,
−→
v′s , s1 ≤ s ≤ s2,

−→
lt+1, where

−→
v′s = −→vs when s is in K1 \K2, and, when s is in K2,

−→
v′s is

−→
l1 , −−→rk−1 or −→us′ if vs is l1, rk−1 or us′ .

The provisional polygon i, if it is not a triangle, has AiBi as a pasting diagonal.

Also, for each j in K1 \K2, we add an auxiliary unnumbered polygon with lower side −→vj , and

whose upper sides correspond to the partition of I[γj−1, γj[ by all the γs inside it, as in the previous

paragraph. Then we paste each auxiliary polygon, by its lower side with vector −→vj , onto the avail-

able upper side with vector −→vj ; the pasted sides with vector −→vj are kept as pasting diagonals. The

pastings can be made in any order, and at the end we get polygons i for i in K, together with some

pasting diagonals, but generalized castle polygons are not necessarily triangulated, see Figures 12

and 14 above; indeed, a triangulation will be built by forward diagonal changes in successive fur-

ther steps, as in Figure 13.

The signs of the Vj are not important (they could also be 0) as in general we do not define back-

ward changes, except for V1 and Vk which may exist when there are no −→ui , and Vk < 0 ensures that

in the case of alternate discontinuities we get the initial set of castle polygons in Definition 1.11

and can define backward changes, while V1 > 0 ensures an equivalent construction in the opposite

case, with Ei = [γi, γi+1[ in the initial state.

The forward diagonal change corresponding to the induction in Definition 2.1 is the following:

we start from a set of generalized castle polygons, where the polygon i, i in K, has lower sides
−→
li

from Ai to βi,
−→us (if they exist) from βs to βs+1 for i ≤ s ≤ i + zi − 1, −→ri from βi+zi to Bi, and

the upper sides of the polygons i, i in K, correspond to a partition of the set {
−→
li , i ∈ K,−→ri , i ∈

K,−→us, i ∈ K, i ≤ s ≤ i+ zi − 1}. Because of the i.d.o.c. condition, no vertex except βi is on the

vertical of βi. We take a nonempty decision F ⊂ K, such that for all i in F the polygon i is not a

triangle. The polygons i such that i is not in F will not be cut.

Then, for i ∈ F let Ci,j , 1 ≤ j ≤ yi, be the vertices of the polygon i other than Ai, Bi, and the

βs. As in Figures 12 and 14, we draw the cutting diagonals from βs, i ≤ s ≤ i+ zi to

• if s > i, the rightmost (if such exist) Ci,j which is between the verticals of βs−1 and βs,

• if s = i, the rightmost (if such exist) Ci,j which is between the verticals of βi − li and βi,

• if s < i+ zi, the leftmost (if such exist) Ci,j which is between the verticals of βs and βs+1,

• if s = i + zi, the leftmost (if such exist) Ci,j which is between the verticals of βi+zi and

βi+zi + ri.
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The polygon i is partitioned into subpolygons by the cutting diagonals. If a subpolygon contains

the vertical of at least one βs, then it contains the verticals of βs for j ≤ s ≤ j+z′j ; the subpolygon

is not moved, and becomes a part of the new polygon j. Any other subpolygon is cut, and pasted

by its lower side
−→
li , −→ri , or −→us, onto the available upper side

−→
li , −→ri , or −→us.

The new lower sides are then renumbered so that each new polygon j has lower sides
−→
lj from

the (possibly new)Aj to βj ,
−→us (if they exist) from βs to βs+1 for j ≤ s ≤ j+z′j−1, −→rj from βj+z′j

to the (possibly new) Bj ; the new upper sides are numbered accordingly, each lower side which

has been created (and not just changed) appearing as an upper side of a subpolygon with a lower

side −→us which has been cut, while the rightmost lower side and its corresponding upper side, which

were −→ri , are renumbered −→rj , whether they are changed or not, where j is the highest number of

the new polygons issued from the polygon i.

Because of minimality, after a finite number of forward changes, we get a set of castle polygons,

satisfying all the properties of Definition 1.7; but, whenever I does not have alternate or opposite

alternate discontinuities, if we make backward changes from those polygons, at some stage they

show that there was at least one vector −→us in the initial set of castle polygons, by the presence of

an horizontal side of a pasting triangle, and we cannot make infinitely many backward changes.

2.3. Natural extension and algorithms. From the conclusions of Section 1.5, which generalize

to the diagonal changes of Section 2.2, we get immediately the following theorem, which extends

the results of [7] to interval exchanges with every permutation and every disposition of the discon-

tinuities.

Theorem 2.1. For any interval exchange I satisfying the i.d.o.c. condition, the forward diagonal

changes defined in Section 2 by a decision F gives a natural extension of the induction defined in

[10] by the decision F . At any stage, if we build a translation surface through gluing the castle

polygons by their opposite equal sides, the induced map S of I on ∪k−1
i=1Ei is a Poincaré section of

the linear flow on the surface.

More precisely, a forward diagonal change with decision F defines a map ΦF on the space of

parameters li, ri, Li, Ri, and possibly ui, which is a bijection between two sets of such parameters,

each set being defined by train-track equalities; an induction with decision F defines a map φF on

the space of parameters li, ri, and possibly ui, and, for each decision F , ΦF is a natural extension

of φF .

An algorithm of induction, as defined in Section 2.7 of [10], is a way to associate to each value

of the parameters li, ri, and possibly ui, a decision F (li, ri, ui). Examples of such algorithms are

given in [10]: in general, the decision depends on the parameters through the formal description

of the castle polygons, or parenthesized train-track equalities, and the inequalities defining the

positions of the verticals.

Any such algorithm defines an induction map ψ(li, ri, ui) = φF (li,ri,ui)(li, ri, ui); it defines also

a diagonal change map Ψ(li, ri, Li, Ri, ui) = ΦF (li,ri,ui)(li, ri, Li, Ri, ui). Clearly Ψ has a vocation

to be a natural extension of ψ, but it seems to be a non-trivial open problem to find an invertible

algorithm of self-dual induction, i.e. an algorithm such that Ψ is a bijection between two suitable

sets of parameters; this would mean that the decision may be retrieved from the knowledge of

the algorithm and the parameters in the arrival set of polygons. As is remarked in the beginning

of Section 2.2, it is not interesting when there are parameters ui; but even when there are no ui.
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there is in general a big obstacle described in the remark just after Lemma 1.4: in a given polygon,

two different pasting triangles may have been pasted at the same stage or at two different stages,

depending on the decision, and the value of the parameters in a given set of polygons do not seem

to allow us to distinguish between these two situations; the only way we know to overcome this

problem is to ensure that all polygons are quadrilaterals, and this is impossible in the general case,

see Section 3.1 below. But this is possible in the hyperelliptic case, and a (new and non-trivial)

invertible algorithm is described in Section 3.3 below.

We mention another property, which is defined for surfaces and called best approximation in

[7]; it is still satisfied in the general case, even outside the hyperelliptic class, we state it here in

our framework, though we give references instead of duplicating proofs.

Proposition 2.2. In an infinite sequence of forward diagonal changes starting from an initial set

of castle polygons defined by an i.d.o.c interval exchange, for any poluygon i in any set of castle

polygons, in the rectangle whose diagonal is the lower side
−→
li , resp. −→ri , starting from βi there

is no vector from the lattice generated by the
−→
li and −→ri , except

−→
li , resp. −→ri . Moreover, all the

possible vectors
−→
li , resp. −→ri , having this property appear at some stage in the process.

Proof

By Lemma 4.7 of [7], this property is equivalent to the fact that the induction generates all the

bispecial factors of the associated language, and that fact is proved in Proposition 2.27 of [10]. �

3. SYMMETRIC INTERVAL EXCHANGES

When I is in the hyperelliptic Rauzy class, the new induction, called the self-dual induction, has

been studied from the word-combinatorial point of view in [17], and the diagonal changes in [7].

In the present section, we continue the study of [7] with some new results. These results are written

here for symmetric interval exchanges, i.e. when the permutation is πi = k+1− i, 1 ≤ i ≤ k− 1,

and with alternate discontinuities; they will be extended to the whole hyperelliptic Rauzy class by

Theorem 4.3 below.

3.1. Trees of relations. In this case, the induction and diagonal changes are defined as usual, but

there are privileged decisions which allow us to have only quadrilaterals as castle polygons; this

means that we can always find decisions such that, whenever we cut a part, for example from the

left, of a quadrilateral, another part, coming from another quadrilateral, is pasted on its left, and

vice-versa (these sets of quadrilaterals are called staircases in [7]). The existence of these deci-

sions is not trivial: it was proved in [17] using some combinatorial objects called trees of relations,

and re-proved geometrically in [7], where the fundamental part played by the hyperelliptic involu-

tion is explained, and trees of relations are identified as triangulation trees of the sphere; it results

from Section 2.8 of [10] or Section 3.4 of [7] that, outside the hyperelliptic class, it is not possible

in general to find such decisions. Algorithms using trees of relations are described extensively in

[17], [8] and [6]. We give here a summary of the results we need, which are either results of [17]

or their translations in the terminology of diagonal changes.

A tree of relations (not to be confused with a castle tree) is a non-oriented and non-rooted tree

with k− 1 vertices labeled i, 1 ≤ i ≤ k− 1, and edges labelled +, −, or =, such that two adjacent

edges never have the same label. Such a tree can be represented by a picture like Figure 16 (non-

oriented), but by convention, in the text a +, resp. −, resp. =, edge between a and b is denoted



DIAGONAL CHANGES 25

by writing a+̂b, resp. a−̂b, resp. a=̂b; thus the tree in Figure 16 is also represented for example

by 2−̂1+̂3−̂4, 3=̂5, or else 4−̂3=̂5, 3+̂1−̂2; the hats are there to avoid writing dubious assertions

like 3 = 5.

1

2

3

4

5

−

+ −

=

FIGURE 16

A tree of relations G defines three bijections s, p m, by

• s(i) is the only j such that there is a =̂ edge between i and j, or s(i) = i if there is no such

edge,

• p(i) is the only j such that there is a +̂ edge between s(i) and j, or p(i) = s(i) if there is

no such edge,

• m(i) is the only j such that there is a −̂ edge between s(i) and j, or m(i) = s(i) if there is

no such edge.

Thus G defines a combinatorial class of sets of castle polygons, by the train-track equalities
−→
li + −→ri = −−→rm(i) +

−→
lp(i), 1 ≤ i ≤ k − 1: any set of vectors as in Definition 1.7 satisfying them

defines a set of castle polygons (quadrilaterals, indeed), associated with G, and always denoted by

G̃.

For example the castle polygons in Figure 2, resp. 8, are associated with the tree of relations

1−̂2, resp. 1=̂2, while with the tree of relations in Figure 16 are associated sets of five castle

polygons, whose upper sides are respectively −→r2 and
−→
l3 , −→r1 and

−→
l2 , −→r5 and

−→
l5 , −→r3 and

−→
l4 , −→r4 and

−→
l1 .

When a set of castle polygons is associated to a tree of relations, all the polygon are quadri-

laterals; the train-track equalities, which do not need parentheses, can be simplified into a set of

relations which have given their names to the trees, namely
−→
li =

−−→
lps(i),

−→ri = −−−→rms(i).
−→
li + −→ri =

−→
ls(i) +

−−→rs(i) for all i, which gives only k − 2 different nontrivial relations. This implies that the set

of castle polygons is invariant by the rotation of angle π, which corresponds to the hyperelliptic

involution, see [7].

In a tree of relations, a positive, resp. negative induction branch is a maximal connected subtree

without −̂ edges, resp. without +̂ edges; the tree in Figure 16 defines the positive induction

branches 2, 4, and 1+̂3=̂5, the negative induction branches 2−̂1, 4−̂3=̂5. When a set of castle

polygons is associated to a tree of relations, a positive, resp. negative, induction branch is accepted

if for all its vertices i we have li > rs(i), resp. ri > ls(i); a positive, resp. negative, induction

branch is backward accepted if for all its vertices i we have Li > Ri, resp. Ri > Li (note that the

quantities li − rs(i) and Li − Ri are invariant by s).
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It is shown in Proposition 2.4 of [17] that, if at one stage of an induction process the set of

castle polygons, or equivalently the parenthesized train-track equalities, are associated to a tree of

relations, and if the decision is made with the vertices of a disjoint union of accepted induction

branches, then at the next stage the set of castle polygons is associated to a new tree of relations.

Moreover, if I is a symmetric i.d.o.c. interval exchange with alternate discontinuities, the initial

set of castle polygons is associated to the tree of relations 1−̂(k − 1)+̂2−̂(k − 2)+̂..., and if up

to stage n − 1 all the decisions have been made with the vertices of disjoint unions of accepted

induction branches, then at stage n there exists at least one nonempty such decision. This translates

in the usual way for forward diagonal changes on sets of castle polygons for a symmetric i.d.o.c.

interval exchange with alternate discontinuities.

In the example of Section 1.3, at the beginning we have the tree of relations 1−̂2 and if l2 <

r2 = r1 < l1, the only accepted induction branch is the positive branch 1; if l1 < 2r1, at the second

stage, after the change with decision F = {1}, the negative branch 1−̂2 is accepted; thus, taking

F = {1} in the first step and F = {1, 2} in the second step is a way, and indeed here the only

way, to keep a set of quadrilaterals; taking F = {1, 2} in the first step, which obliges F = {1} in

the second step, is a less subtle way to proceed, but for non-hyperelliptic interval exchanges such

decisions creating polygons which are not quadrilaterals are unavoidable.

The same reasoning works also for backward diagonal changes, using backward decisions made

with the vertices of disjoint unions of backward accepted induction branches.

From the definitions, we get that if we make a forward diagonal change with decision F , then

for all i in F , the new vectors are given by
−→
l′i =

−→
li − −−→rm(i),

−→
r′i = −→ri whenever i is a vertex of a

positive accepted induction branch,
−→
l′i =

−→
li ,

−→
r′i = −→ri −

−→
lp(i) whenever i is a vertex of a negative

accepted induction branch. If we make a backward diagonal change with backward decision F ,

then for all i in F , the new vectors are given by
−→
l′′p(i) =

−→
p(i) −

−−→rm(i),
−→
r′′i = −→ri whenever i is a vertex

of a positive backward accepted induction branch,
−→
l′′i =

−→
li ,

−−→
r′′m(i) =

−−→rm(i) −
−→
lp(i) whenever i is a

vertex of a negative backward accepted induction branch.

3.2. Self-duality. The self-duality claimed in the name of our induction in the symmetric case

[17] means that a backward change should be equivalent to a forward change after exchanging the

horizontals and verticals; this equivalence does not hold in the general case, but, when we can use

trees of relations, there is indeed such an equivalence, up to a permutation of the coordinates. An

analogous result is stated and proved independently in [7] in the setting of quadrangulations of

hyperelliptic surfaces, while earlier a similar result has been proved in [11] for three intervals and

a slightly different natural extension.

Theorem 3.1. Let G̃0 be a set of castle polygons associated with the tree of relations 1−̂(k −

1)+̂2−̂(k − 2)+̂.... We suppose that, starting from the vectors
−→
li,0,

−→ri,0 in G̃0, we arrive to vectors
−→
li,n, −→ri,n, by a sequence of forward diagonal changes with decisions Fn made with the vertices of

disjoint unions of accepted induction branches.

Let
−−→
li,0,d = (Li,0,−li,0),

−−→ri,0,d = (Ri,0, ri,0); then there exist backward decisions Fn,d made with

the vertices of disjoint unions of backward accepted induction branches and two permutations σn

and τn of {1, ...k − 1}, such that, if starting from the vectors
−−→
li,0,d, −−→ri,0,d we arrive to vectors

−−→
li,n,d,

−−→ri,n,d, by a sequence of backward diagonal changes with decisions Fn,d, then Li,n,d = lσn(i),n,

Ri,n,d = rτn(i),n, li,n,d = Lσn(i),n, ri,n,d = Rτn(i),n.
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Proof

At stage n the vectors
−→
li,n, −→ri,n are in a set of castle polygons associated to a tree of relations

Gn, with bijections sn, pn, mn; the vectors
−−→
li,n,d,

−−→ri,n,d are in a set of castle polygons associated

to a tree of relations Gn,d, with bijections sn,d, pn,d, mn,d. The claimed result comes from the

fact that the castle polygons in G̃n,d are obtained from those in G̃n by first replacing each
−→
lj by

−−−→
lσ−1

n (j), and each −→rj by −−−→rτ−1
n (j), then rotating each polygon by π

2
to the right and making a left

to right symmetry; thus the polygon τ−1
n j in G̃n,d has lower sides

−−−−−−−→
lσ−1

n pn(j),n,d
, −−−−−→rτ−1

n (j),n,d, upper

sides −−−−−−−→rτ−1
n mn(j),n,d

,
−−−−−→
lσ−1

n (j),n,d. This translates into the conclusion of the proposition plus the three

equalities σn = pn ◦ τn, mn ◦ τn = τn ◦ mn,d, p−1
n ◦ σn = σn ◦ pn,d, and we take all this as our

induction hypothesis.

For n = 0 it is satisfied with τ0 = Id, σ0 = p0. We suppose it is satisfied up to stage n. Then

we take Fn,d = τ−1
n Fn; if Fn,+, resp. Fn,− is the subset of Fn made with vertices of positive, resp.

negative, accepted induction branches, we notice that, as τ−1
n = σ−1

n ◦ pn and Fn,+ is stable by

pn, Fn,d is also τ−1
n Fn,− ∪ σ−1

n Fn,+. Then we put τn+1 = τ−1
n ◦ mn ◦ τn, σn+1 = σn on Fn,−,

σn+1 = σ−1
n ◦ p−1

n ◦σn, τn+1 = τn on Fn,+, τn+1 = τn, σn+1 = σn on F c
n. The induction hypothesis

is satisfied at stage n+ 1, as a straightforward application of the formulas giving the new parame-

ters and train-track equalities. �

Note that the above permutations are not unique; we could start with σ0 = Id, τ0 = m0, and

make similar constructions where the polygons are rotated to the left, with different equalities.

Outside the hyperelliptic class the induction does not seem to deserve being called self-dual:

Proposition 3.2. Theorem 3.1 is not valid for the non-hyperelliptic (or rotations) Rauzy class on

four intervals.

Proof

Let G be a set of castle polygons satisfying the parenthesized train-track equalities
−→
l1 + −→r1 =

−→r3 + (−→r2 +
−→
l3 ),

−→
l2 +−→r2 =

−→
l1 ,

−→
l3 +−→r3 = −→r1 +

−→
l2 . This is an initial set of castle polygons for the

permutation 1 → 2, 2 → 3, 3 → 4, 4 → 1. but it is also shown in Section 2.8 of [10] that these

equalities define a recurrent state for every permutation in this Rauzy class.

To begin proving an analogous of Theorem 3.1, we need to find two permutations σ and τ and a

dual state Gd such that the train-track equalities of Gd projected on the Li and Ri are the same as

the train-track equalities of G projected on the li and the ri after applying σ to the li and τ to the

ri; equalities on Li and Ri must be of the form Li + X = Ri + Y and, after trying all thirty-six

pairs of permutations, we get six possible states, which are the same up to the permutations of

{1, 2, 3}. We take for example Gd to be the state where the train-track equalities of Gd projected

on the Li and the Ri are L2 + R1 = (R3 + R2) + L1, L3 + R2 = L2, L1 + R3 = R1 + L3, then

σ is a circular permutation and τ is the identity; thus Gd is defined by the train-track equalities
−→
l1 +−→r1 = −→r3 + (−→r2 +

−→
l2 ),

−→
l2 +−→r2 =

−→
l3 ,

−→
l3 +−→r3 = −→r1 +

−→
l1 .

Now, if we want to go forward from G, only the polygons 1 and 3 can be cut, the positions of

the diagonals are given by the signs of l1−r3 and l3−r1, and the train-track equalities forG imply

that l1−r3 = l2+ r2− l3 > l2−r3 = l3−r1, thus three pairs of signs are possible, (−,−), (+,+),
and (+,−); with the decision F = {1, 3}, the three different pairs of forward diagonal changes

from G are indeed possible, and lead to three different formal sets of castle polygons. However, if
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we go backwards from Gd, the relation L1+R3 = R1+L3 and the rules of the backward diagonal

changes imply that with the decision Fd = {1, 3} only two possible pairs of backward changes

(decreasing both L1 and L3 or bothR1 and R3) are possible; the other possible backward decisions

being Fd = {1} and Fd = {3}, there is no way to get the self-duality at the next stage. �

Note that the above proof points out another (see also the remark after Lemma 1.4) interesting

dissymetry between forward and backward diagonal changes.

3.3. An invertible algorithm. We tackle now the problem of inverting an algorithm of induction,

starting from where we have left it in Section 2.3. For example, let us take the greedy-hyperelliptic

algorithm as described in [17] (and named in [10]), where at each stage the decision is made with

the vertices of all accepted induction branches; for a three-interval exchange and the initial set

of castle polygons associated to the tree of relations 1−̂2, when m1r1 < l1 < (m1 + 1)r1 and

m2r2 < l2 < (m2 + 1)r2, with m1 < m2, this implies taking m1 times the decision F = {1, 2}
then m2 − m1 times the decision F = {2}. If we want to inverse this sequence of changes, we

have to begin with F = {2}, thus wait until pasting on 1, though 1 is a backward accepted induc-

tion branch. How long we have to wait until pasting on vertices of a blocked backward accepted

induction branch is not always apparent from the parameters in the arrival set of castle polygons:

it depends on the forward algorithm we want to invert, and we are not able to determine it in the

general case.

In the case of three-interval exchanges the greedy-hyperelliptic algorithm is invertible; this is

proved in [11], with a different but equivalent natural extension, because the set of castle polygons

associated to 1=̂2 acts as a regulator. Namely, every sequence of consecutive sets of castle poly-

gons associated to 1−̂2 comes after one set associated to 1=̂2, and in the first set associated to 1−̂2
we have R1 > L1 and R2 > L2; then after m decisions made with the vertex 1 and n decisions

made with the vertex 2 we have mR1 < L1 < (m + 1)R1, nR2 < L2 < (n + 1)R2; thus at each

stage we can retrieve the number of decisions made with the vertex 1, resp. 2, which have just been

taken, and, knowing we have followed the greedy-hyperelliptic algorithm, invert the process; the

same reasoning, mutatis mutandis, is valid for sets of castle polygons associated with 1+̂2, and in

the remaining case with 1=̂2 there is only one possible decision, thus no problem of invertibility.

For more than three intervals, we do not know whether the greedy-hyperelliptic algorithm is

invertible.

In this section, we propose an invertible algorithm which uses only one accepted induction

branch at a time; the choice of this branch uses the tree structure of the trees of relations, which

will be rooted and oriented for this purpose (though they are still not to be confused with the castle

trees).

Namely, in any tree of relations we particularize the vertex 1 to be the root, and the edges are

oriented away from the root; thus the tree of relations in Figure 16 can be seen as oriented from

left to right (to stress the difference with the castle trees which are oriented upwards).

Let G̃ be a set of castle polygons associated to the tree of relations G, oriented as above. The

orientation defines a partial order on the vertices; we extend it now to a total order between disjoint

induction branches of G depending on the horizontal coordinates li and ri of the sides of the
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polygons in G̃; namely, if B and B′ are two disjoint induction branches of G, B is before B′ in

any of the following cases:

• B has a common vertex with the path from the root to B′,

• a is the last common vertex in the oriented paths from the root to B and B′, and the first

edge in the path from a to B is labelled =,

• a is the last common vertex in the oriented paths from the root to B and B′, the first edge

in the path from a to B is labelled +, the first edge in the path from a to B′ is labelled −,

and la > rs(a),

• a is the last common vertex in the oriented paths from the root to B and B′, the first edge

in the path from a to B is labelled −, the first edge in the path from a to B′ is labelled +,

and ra > ls(a).

Theorem 3.3. A set G̃ of castle polygons is canonical if it is associated to a tree of relations G

and no accepted induction branch is before any backward accepted induction branch; we define

the canonical decision F to be the union of the vertices of the first accepted induction branch,

the canonical backward decision F− to be the union of the vertices of the last backward accepted

induction branch.

Any forward diagonal change from G̃ with canonical decision leads to another canonical set of

castle polygons, from which a backward change with canonical backward decision is the inverse

of the previous forward change.

Any backward diagonal change from G̃ with canonical backward decision leads to another

canonical set of castle polygons, from which a forward change with canonical decision is the

inverse of the previous backward change.

Proof

We take a forward change from G̃, where the decision F is made with the vertices of an accepted

induction branch B. In the new tree G′, this creates a backward accepted induction branch with the

same vertices as B, deletes B as an accepted induction branch, and possibly creates new accepted

induction branches using vertices of B; this also changes the order between disjoint induction

branches, but only beyond B for the partial order of the orientation.

G̃′ could be non canonical only if a new accepted induction branch is before an existing back-

ward accepted induction branch. The only non-trivial possibility is when B is on one of the two

far sides of a node (or the root) and, after the change, some vertices of B become part of a new

accepted induction branchB′ touching the node (or root): for example, starting from Figure 14, the

induction branch 2 could be accepted and, after the change, create a new accepted induction branch

B′, the branch 1−̂2; then we have to check that B′ is not before a backward accepted union branch

on the other far side of the node (or root), such as 4 in Figure 14; but this is just what is avoided

by the last three items in the definition of the order, which ensure that, before the change, B was

before any branch on the other far side, and thus there can be no backward accepted induction

branch on that side.

Similarly, after a backward change from G, the new G̃′′ could be non canonical only if a new

backward accepted branch, created in the new tree G′′ by the change, is after an existing accepted

induction branch. This is not possible as an extending of a branch as above can only move it

towards the root.

All the sets being canonical, it is immediate that the changes with canonical decisions are in-

verse to each other. �
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We check that in the initial state defined by G0 = 1−̂(k − 1)+̂2−̂(k − 2)+̂..., for any possible

parameters li, ri given by an interval exchange, we can choose the Li andRi such that the initial set

of castle polygons G̃0 is canonical. Indeed, the worst case is when l1 > r1, as then 1 is a positive

accepted induction branch; then the induction branches (k − 1)+̂2, 2−̂(k − 2), and so on as far as

the negative branch p if k = 2p, or the positive branch p + 1 if k = 2p + 1, cannot be backward

accepted. This is ensured, if k = 2p, by taking Lp > Rp, Rp+1 > Lp+1, Lp−1 > Rp−1, and so on

until L2 > R2 and Rk−1 > Lk−1, and similarly starting from Rp+1 > Lp+1 if k = 2p+ 1.

Thus, for a symmetric i.d.o.c. interval exchange with alternate discontinuities, the algorithm of

self-dual induction using the canonical decisions is invertible.

3.4. Invariant measure. We can now define the maps ψ and Ψ of Section 2.3 for the algorithm

described above: Ψ is defined on a subset of IR2k−2, and ψ as its projection on IRk−1 (after nor-

malization). Namely, let G be the set of all trees of relations with vertices 1, 2,... k − 1 such that

pms(i) = i+ 1 for 1 ≤ i ≤ k − 2, pms(k − 1) = 1; it is shown in Corollary 6.3 of [5] (allowing

for slightly different definitions of s, m, p) that these are exactly the trees of relations which can

be reached from the initial 1−̂(k − 1)+̂2−̂(k − 2)+̂... by a finite sequence of inductions using

decisions made with the vertices of accepted induction branches.

For any G ∈ G, we define DG as the set of (li, ri, Li, Ri) in IR4k−4 which satisfy

• the 2k − 4 nontrivial relations defined by G, namely li = lps(i), ri = rms(i). li + ri =
ls(i) + rs(i) Li = Lps(i), Ri = Rms(i). Li +Rs(i) = Ls(i) +Ri for all i;

• S = 1, where S is the total area of the castle polygons associated to G, namely, because of

the relations and the symmetries they imply, S =
∑k−1

i=1 (liRi + riLi);
• the signs of li − rs(i) and Li − Ri, 1 ≤ i ≤ k − 1, are all the possible 2k − 2-uples

compatible with the invariance by s, and such that in G no accepted induction branch is

before any backward accepted induction branch for the order defined in Section 3.3.

Then we define Ψ(li, ri, Li, Ri, 1 ≤ i ≤ k−1) = (l′i, r
′
i, L

′
i, R

′
i, 1 ≤ i ≤ k−1), the new parameters

after the forward diagonal change with canonical decision, leading from G̃ to G̃′ for some G′ ∈ G.

Then, by Theorem 3.3, after deleting a finite union of rational hyperplanes, Ψ is a bijection from

DG to DG′ , which projects on the self-dual induction ψ(li, ri, 1 ≤ i ≤ k−1). As we want to iterate

Ψ or ψ, it will be convenient to delete a countable invariant union of rational hyperplanes, which

will be always understated.

We can then write Ψ on independent variables on each DG, by using first the relations to drop

k − 2 pairs of variables (li, Li) or (ri, Ri); the remaining variables are denoted by xi and Xi,

1 ≤ i ≤ k; then we drop xk and Xk, and add x0 =
∑k−1

j=1(lj + rj), and X0 = S. We still call DG

the resulting domain and Ψ the resulting map from DG to DG′ .

Theorem 3.4. Let y0 = log x0, yi = xiX1, 1 ≤ i ≤ k − 1, Y0 = X0, Yi = x0Xi, 1 ≤ i ≤ k − 1.

Let J(xi, Xi, 1 ≤ i ≤ k − 1) be the Jacobian such that
∏k−1

j=1(dyjdYj) = J
∏k−1

j=1(dxjdXj); let

J ′(xi, Xi, 1 ≤ i ≤ k − 1) be the Jacobian such that
∏k−1

j=0(dyjdYj) = J ′
∏k−1

j=0(dxjdXj) taken

for x0 = X0 = 1. Then the self-dual induction map ψ, on the coordinates xi, normalized by
∑k−1

j=1(lj + rj) = 1, admits an invariant measure whose density with respect to the Lebesgue

measure on DG is
∫

DG(x1,...,xk−1)
J
J ′
dX1...dXk−1, where DG(x1, ...xk−1) = {(X1, ..., Xk−1); (x0 =

1, X0 = 1, x1, X1, ..., xk−1, Xk−1) ∈ DG}.
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Proof

We just use the recipe given in [2]. Ψ commutes with the flow ρt(xi, Xi) = (xie
−t, Xie

t), and

in the (yi, Yi) coordinates this flow is just a translation on the first coordinate, and preserves the

Lebesgue measure; the first return map of ρt on the surface s = 1 preserves the Lebesgue measure
∏k−1

j=1(dyjdYj), and after integrating on each fibre we get an invariant measure for the normalized

projection of Ψ. �

4. RAUZY CLASSES

The Rauzy classes partition the states of the Rauzy induction; thus one can wonder if the formal

states of our induction, namely the description of the castle polygons, or castle trees, or paren-

thesized train-track equalities, without the actual values of the parameters, are partitioned in an

equivalent way. Here the geometric theory comes into its own, as it gives an immediate answer in

one direction.

Proposition 4.1. If there exists a common formal state reached by inductions from the initial state

of two different interval exchanges, then these are in the same extended Rauzy class.

Proof

Then two induced maps from the respective interval exchanges appear as sections of the linear

flows on two surfaces in the same stratum, and this yields the result. �

In the other direction, it is not so clear that, through our inductions, we can get from any surface

to any other one in the same connected component of any stratum; we can show only partial results,

using the combinatorics of the induction, with the additional inconvenience that the states we can

reach depend on the decisions. In Section 2.8 of [10], we compute all the possible formal states for

four intervals, with a particular algorithm for choosing a decision, and show that, for this algorithm,

two interval exchanges with alternate discontinuities give the same possible formal states, up to a

renumbering of the intervals 1 to k (see the discussion at the end of this section), if they are in the

same Rauzy class, except for some transient states in the early stages. Here we give two results in

the direction of a more general statement.

Note that Lemma 4.2 concerns actual, not only formal, states; it is a result on the induction,

though it is stated and proved more easily in the language of diagonal changes, and it is valid also

if γ1 < β1 and we induce on [γ1, 1[.

Lemma 4.2. Let I be an i.d.o.c. interval exchange with βk−1 < γk−1, I
′ its (Rauzy) induced

map on [0, γk−1[. Then, for any infinite sequence S of forward diagonal changes, starting from the

initial set of castle polygons for I and with decisions Fn, there exists a finite sequence of forward

diagonal changes, starting from the initial set of castle polygons for I ′ and with decisions F ′
n,

leading to the same set of castle polygons as an initial subsequence of S.

Proof

The effect of the Rauzy induction is to cut the interval [γj−1, γj[= I−1[βk−1, 1[ into two subinter-

vals, provisionally numbered j1 and j2, by the point γ′ = I−1γk−1; then the intervals (1, ..j1, j2, ...k−
1) are re-ordered by I ′ in the order π(1), ...π(k) modified by replacing k by j2 and π(k) = j by

j1; then the intervals are renumbered 1 to k.

In the initial set of castle polygons of I the side corresponding to [γk−1, 1[ has already been

pasted somewhere.
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Suppose first that the interval [γj−1, γj[ is one of the initialEi; then it contains some βs, in which

case it is numbered Ei1 , and γ′ is the horizontal projection of a vertex C1 of the polygon i1 (for I).

Then, if we make what amounts to a partial forward diagonal change, namely cutting the polygon

i1 by the diagonal βi1C1 and pasting one part according to the usual rules, we get a new set of castle

polygons for I which is exactly the initial set of castle polygons for I ′, except that the pasted part

may create a vertex C2, projecting on some I−mγ′, while the adjacent vertices are other I−mγt; as

γ′ is a discontinuity of I ′, while for I it is the pre-image of a discontinuity, this implies that C2 is

above a pasting diagonal for I, while this pasting diagonal does not exist for I ′. The change we

have made may replace the polygon i1 in the initial set of I by two polygons, numbered i1 and

i2, both in the new set for I and in the initial set of I ′; all the other polygons and their sides are

numbered in the same way in the two initial states, as the discontinuities βi are the same, even if

the intervals are numbered differently.

If [γj−1, γj[ is not one of the initial Ei, then some I−mγ′ is the horizontal projection of a vertex

C2 of some polygon i3 in the initial set of I. Then the two initial sets are the same, except that

again a pasting diagonal below C2 may be present for I and not for I ′.

Now, given decisions Fn for I, we take Fn = F ′
n except possibly for two modifications: first,

if i1 exists and Fn1
is the first decision containing i1 (it exists by minimality), we build F ′

n1
from

Fn1
by adding i2 if it exists and the polygon i2 is not a triangle, and deleting i1 if the polygon i1 in

the initial state of I ′ is a triangle. In this way, after n1 decisions at most, we have the same castle

polygons for I and I ′ except possibly for a pasting diagonal which may be present in the former

and absent in the latter; in that case, one polygon for I will be cut more slowly (by one step) than

the same polygon for I ′, and this is compensated by deleting its number from some Fn2
to get F ′

n2
,

at some stage after the pasting diagonal is cut and each polygon contains only one βi (again, this

will happen by minimality); thus we get the claimed result. �

In general the induction in Lemma 4.2 does not preserve the condition of alternate discontinu-

ities. Thus the problem is to know whether two different formal initial states for interval exchanges

with the same permutation lead ultimately to the same formal states; this seems to be true experi-

mentally, but difficult to prove in the general case; however, it is proved in the important particular

case of [17], using the relatively heavy machinery of composite trees of relations.

Theorem 4.3. Let I be an interval exchange in the hyperelliptic Rauzy class, satisfying the i.d.o.c.

condition; then there exists an algorithm of self-dual induction such that all the possible sets of

castle polygons are associated with trees of relations, except for some transient states in the early

stages.

Proof

This algorithm is described in Section 3.1 of [17] where it is proved that, if we make self-dual

inductions from any initial state of a symmetric i.d.o.c. interval exchange, we can make decisions

which lead us, after a finite number of initial stages, to states associated with trees of relations.

Now, starting from the initial state of an interval exchange which is the Rauzy induced map on

[0, γk−1[ of a symmetric i.d.o.c. interval exchange, by Lemma 4.2 we can go to states associated

with trees of relations. The same result is true for the Rauzy induced map on [0, βk−1[ of a sym-

metric i.d.o.c. interval exchange by using the inverse maps I−1 and (I ′)−1, as, when an induced

map is described by a state corresponding to a tree of relations, its inverse is also.
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As it is shown in [27] that any i.d.o.c. interval exchange in the hyperelliptic class is obtained

from a symmetric i.d.o.c. interval exchange by a finite number of Rauzy inductions (this is non-

trivial and has no known equivalent in other Rauzy classes), this yields the result. �

By Proposition 6.2 of [5], for k intervals trees of relations form (k− 1)! disjoint sets of possible

states, characterized by a circular order determined by the map pms of Section 3.4, thus we have

only one possible set of states up to a renumbering of the intervals. If we want to know the set

itself with the numbering defined in Definition 2.1: under the condition of alternate discontinuities,

we get the set containing the initial state 1−̂(k− 1)+̂2−̂(k− 2)+̂ . . ., coresponding to the circular

order (1, 2, 3, . . . , k− 1, 1); under the opposite condition, we get the set containing the initial state

(k−1)−̂1+̂(k−2)−̂2+̂ . . ., coresponding to the circular order (1, k−1, k−2, . . . , 2, 1). A closer

look at Section 3.1 of [17] (where a different numbering system is used) would prove that only

these two possibilities exist.
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