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In this note, we shall discuss a generalization of Thakur's multiple zeta values and allied objects, in the framework of function fields of positive characteristic and more precisely, of periods in Tate algebras.

Introduction

Let A = F q [θ] be the ring of polynomials in an indeterminate θ with coefficients in F q the finite field with q elements and characteristic p, let K be the fraction field of A and K ∞ the completion of K at the infinity place ∞. For d ≥ 0 an integer, we denote by A + (d) the set of monic polynomials of A of degree d. Carlitz studied, in [START_REF] Carlitz | On certain functions connected with polynomials in a Galois field[END_REF], the so-called Carlitz zeta values:

ζ A (n) := a∈A + a -n ∈ K ∞ , n ≥ 1.
It is likely that the formal analogy of these objects with the classical zeta values

ζ(n) := i≥1 i -n ∈ R
with n integer (convergence occurs only if n ≥ 2) was the main motivation for his study (so that, in some way, "ζ = ζ Z "). In a more modern approach, we can say that Carlitz suggested, with his first pioneering papers, to develop an arithmetic theory of periods over the ring F q [θ] in parallel with the study of the arithmetic theory of periods over Z.

In all the following, if R is a ring, R × denotes the group of the multiplicative invertible elements of R. It was proved by Carlitz in [START_REF] Carlitz | On certain functions connected with polynomials in a Galois field[END_REF] that, if n ≡ 0 (mod q -1), [START_REF] Akiyama | On analytic continuation of multiple L-functions and related zeta functions[END_REF] ζ

A (n) ∈ K × π n ,
where π is the value in C ∞ = K ac ∞ ( 1 ) of a convergent infinite product

(2)

π := -(-θ) q q-1 ∞ i=1 (1 -θ 1-q i ) -1 ∈ (-θ) 1 q-1 K ∞ ,
uniquely defined up to the multiplication by an element of F × q = F q \ {0} (corresponding to the choice of a root (-θ) 1 q-1 ). It has been proved in a variety of ways (see [START_REF] Pellarin | Aspects de l'indépendance algébrique en caractéristique non nulle[END_REF] to see the most relevant ones) that π is moreover transcendental over K.

The element π is a fundamental period of the Carlitz exponential exp C (Goss,[START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF]§3.2]), that is, the unique surjective, entire, F q -linear function

exp C : C ∞ → C ∞ of kernel πF q [θ
] such that its first derivative satisfies exp ′ C = 1 (note that, since we are in a characteristic p > 0 environment, a function with constant derivative is not necessarily C ∞ -linear).

In his book [26, §5.10], Thakur also consider several variants of classical multiple zeta values in the context of the Carlitzian arithmetic over the ring A. We mention here what we think is the most relevant. For n 1 , . . . , n r ∈ Z ≥1 , Thakur defines, as one of the analogues of the classical multiple zeta values in the Carlitzian setting: [START_REF] Anglès | Arithmetic of "units[END_REF] ζ A (n 1 , . . . , n r ) =

a i ∈A + |a 1 |>•••>|ar | 1 a n1 1 • • • a nr r ∈ K ∞ .
Here, for x ∈ C × ∞ , we write |x| = q -v∞(x) where v ∞ is the valuation of C ∞ (so that v ∞ (θ) = -1) and we define |0| := 0. If r = 0 we further set the corresponding Thakur multiple zeta value ζ A (∅) to be equal to 1.

Classically, one of the reasons we could get interested in multiple zeta values is the need of "enveloping" zeta values in the "simplest" Q-algebra possible. From Euler, it is well known that the zeta values ζ(2), ζ(4), . . . all belong to the Q-algebra Q[ζ [START_REF] Anderson | Tensor powers of the Carlitz module and zeta values[END_REF]]. In general, the other zeta values are not expected to belong to this algebra. However, they belong to the Q-algebra Z R ⊂ R generated by the multiple zeta values. It is known that the product of two multiple zeta values is a Q-linear combination of multiple zeta values, and this algebra also has a more natural structure.

We expect that Z R is isomorphic to the algebra Q f 3 , f 5 , . . .

X ⊗ Q Q[ζ(2)],
where Q f 3 , f 5 , . . . X is the Q-algebra generated by the non-commutative words in the alphabet with letters f 3 , f 5 . . . with, as a product, the shuffle product X (see Brown's [START_REF] Brown | Mixed Tate motives over Z[END_REF]). A folklore conjecture comes in support of this guess; the number π and the zeta values ζ(3), ζ(5), . . . are expected to be algebraically independent over Q. Multiple zeta values are thus expected to provide a natural basis of this Qalgebra. See also [START_REF] Kaneko | Finite multiple zeta values[END_REF] for the definition of a Q-algebra of finite multi-zeta values which could offer a nice realization of the algebra Q f 3 , f 5 , . . . X .

Similarly, in the Carlitzian setting we note that, after [START_REF] Akiyama | On analytic continuation of multiple L-functions and related zeta functions[END_REF], the values ζ A (n) with n > 0 divisible by q -1 are all contained in the K-algebra K[ζ A (q -1)], which is isomorphic to K[X] for an indeterminate X. However, the remaining Carlitz zeta values ζ A (1), . . . do not belong to this algebra (if q > 2). Indeed, Chang and Yu proved in [START_REF] Chang | Determination of algebraic relations among special zeta values in positive characteristic[END_REF] that π and the Carlitz zeta values ζ A (n) with n ≥ 1, q -1 ∤ n and p ∤ n with p the prime number dividing q are algebraically independent (we recall that these authors, in ibid., use the powerful algebraic independence methods introduced by Papanikolas in [START_REF] Papanikolas | Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms[END_REF]); see also [START_REF] Chang | Linear independence of monomials of multizeta values in positive characteristic[END_REF][START_REF] Chang | Linear relations among double zeta values in positive characteristic[END_REF][START_REF] Chang | An effective criterion for Eulerian multizeta values in positive characteristic[END_REF].

Just as for the algebra Z R , Thakur proved in [START_REF] Thakur | Shuffle Relations for Function Field Multizeta Values[END_REF] that the product of two multiple zeta values as in ( 3) is a linear combination (this time with coefficients in F p ) of such multiple zeta values. Thakur also mentioned to the author of the present note that G. Todd's numerical computations have led to a good understanding of (conjectural) relations among Thakur's multiple zeta values; the relations are universal in a sense that is described in ibid. Compared to the classical setting, the difficulty here is to handle the product of the so-called power sums (see later). We denote by Z K∞ the K-sub-algebra of K ∞ generated by the multiple zeta values (3); even conjecturally, in spite of the striking results of algebraic independence mentioned above, we know very little about the structure of this algebra. In particular, we presently do not know what could be the analogue structure which could play the role of the algebra Q f 3 , f 5 , . . . X in this setting.

In this note, we shall discuss of a generalization of the Thakur multiple zeta values which, so far, has no counterpart in the classical setting. For this purpose, we note that A is an algebra over F q (Z is not an algebra over a field). Therefore, a series of advantages occurs in the Carlitzian framework, notably the possibility to use the tensor product over F q . We consider variables t 1 , . . . , t s over K and we write t s for the family of variables (t 1 , . . . , t s ). We denote by F s the field F q (t s ), so that

F 0 = F q .
In all the following, if R is a ring, we denote by R * the underlying multiplicative monoid (inclusive of the element 0). Note that A + is a multiplicative sub-monoid of A * . We denote by F ac q the algebraic closure of F q in C ∞ . Definition 1. A monoid homomorphism σ : A + → F ac q (t) * is called a semi-character. The trivial semi-character is the map 1 : A + → {1}. Let σ be a semi-character. We say that it is of Dirichlet type if there exist F q -algebra homomorphisms

ρ i : A → F ac q (t), i = 1, . . . , s, such that σ(a) = ρ 1 (a) • • • ρ s (a)
for all a ∈ A + . The integer s is called the length. By convention, the semi-character 1 is the unique semi-character of Dirichlet type of length 0.

For example, setting t = t 1 , the map χ t :

A + → F q [t] * ⊂ F ac q (t) * defined by χ t (a) = a(t) ( 2 ) is a semi-character of Dirichlet type. Let ζ be an element of F ac q . The map a ∈ A + → χ ζ (a) = a(ζ) ∈ F ac
q is also a semi-character of Dirichlet type, and the same can be said if we now pick elements ζ 1 , . . . , ζ s ∈ F ac q and consider the map a) is a semi-character, but it can be proved that it is not of Dirichlet type. Definition 2. Let σ : A + → F ac q (t) * be a semi-character. The associated twisted power sum of order k and degree d is the sum:

χ ζ : a → χ ζ1 (a) • • • χ ζs (a) (this is more commonly called a "Dirichlet character"). The map a ∈ A + → F q [t] * which sends a to t deg θ (
S d (k; σ) = a∈A + (d) a -k σ(a) ∈ F ac q (θ)(t s ).
More generally, let σ 1 , . . . , σ r be semi-characters, let n 1 , . . . , n r be integers, and d a non-negative integer. The associated multiple twisted power sum of degree d is the sum

S d σ 1 σ 2 • • • σ r n 1 n 2 • • • n r = S d (n 1 ; σ 1 ) d>i2>•••>ir ≥0 S i2 (n 2 ; σ 2 ) • • • S ir (n r ; σ r ) ∈ F ac q (θ)(t s ).
The integer i n i is called the weight and the integer r is called its depth.

We can write in both ways S d (n; σ) = S d σ n . Observe also that

S d 1 1 • • • 1 n 1 n 2 • • • n r = S d (n 1 , n 2 , . . . , n r ) ∈ K,
in the notations of Thakur, [28, §1.2]. We hope that all these slightly different notations will not bother the reader.

Definition 3. With n 1 , . . . , n r ≥ 1 and semi-characters σ 1 , . . . , σ r as above, we introduce the associated multiple zeta value

ζ A σ 1 σ 2 • • • σ r n 1 n 2 • • • n r := d≥0 S d σ 1 σ 2 • • • σ r n 1 n 2 • • • n r ∈ F ac q (t)((θ -1 )).
The sum thus converges with respect to the unique valuation extending the ∞-adic valuation of K ∞ and inducing the trivial valuation over F ac q (t). Explicitly, we have:

ζ A σ 1 σ 2 • • • σ r n 1 n 2 • • • n r = d≥0 a 1 ,...,ar ∈A + d=deg θ (a 1 )>•••>deg θ (ar )≥0 σ 1 (a 1 ) • • • σ r (a r ) a n1 1 • • • a nr r .
We will say that this is the multiple zeta value associated to the composition array

σ 1 σ 2 • • • σ r n 1 n 2 • • • n r .
The integer i n i is called the weight of the above multiple zeta value and the integer r is called its depth. If all the semi-characters σ 1 , . . . , σ r are of Dirichlet type, then, for all

1 ≤ i ≤ r, σ i = ρ i,1 • • • ρ i,ni
for ring homomorphisms ρ i,j . Then, we say that the multiple zeta value associated to the above matrix data is of Dirichlet type, and the cardinality of the set {ρ i,j ; i, j} is called its length.

The referee has pointed out that these multiple zeta values can be seen as some kind of analogues, for functional analysis in Tate algebras, of the Dirichlet multiple L-functions as in the paper of Akiyama and Ishikawa [START_REF] Akiyama | On analytic continuation of multiple L-functions and related zeta functions[END_REF].

Again note that if

σ 1 = • • • = σ r = 1, then, we can write ζ A σ 1 σ 2 • • • σ r n 1 n 2 • • • n r = ζ A (n 1 , . . . , n r ) ∈ K ∞
with ζ A (n 1 , . . . , n r ) as in (3) (of Dirichlet type, depth r and length 0). Further, let us assume that r = 1, n = n 1 > 0 and that σ = χ t1 • • • χ ts . Then, we have that

ζ A (n; σ) = ζ A σ n = a∈A + a(t 1 ) • • • a(t s ) a n = P 1 - P (t 1 ) • • • P (t s ) P n -1 ∈ T × s .
These series have been introduced in [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF] and extensively studied in e.g. [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF][START_REF] Anglès | Universal Gauss-Thakur sums and L-series[END_REF][START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras Preprint[END_REF]. The product runs over the irreducible polynomials P of A + and the convergence holds in the standard s-dimensional Tate algebra, which can be identified with the C ∞ -algebra of the rigid analytic functions B(0, 1) s → C ∞ , where B(0, 1) = {z ∈ C ∞ ; |z| ≤ 1}. In fact, these functions extend to entire functions [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF]Corollary 8]). More generally, we assume that for all i = 1, . . . , r, there exists a subset I i ⊂ {1, . . . , s} such that

C s ∞ → C ∞ (see
σ i = j∈Ii χ tj .
In particular, if I i = ∅, we set σ i = 1. In this setting, the multiple zeta value

(4) ζ A σ 1 σ 2 • • • σ r n 1 n 2 • • • n r belongs to T s .
Proposition 4. With the above assumption over the semi-characters σ 1 , . . . , σ r , the multiple zeta value (4), hence of Dirichlet type and of length ≤ s, extends to an entire function C s ∞ → C ∞ . Proof. Note that there exists a non-negative integer κ, depending of σ 1 , . . . , σ r , such that if we set

Σ d := S d σ 1 σ 2 • • • σ r n 1 n 2 • • • n r ∈ K[t 1 , . . . , t s ],
then the degree in t i of Σ d is ≤ κd for all i = 1, . . . , s.

If s > 0 and σ = χ t1 • • • χ ts then, by [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF]Lemma 7], we have the following estimate for the Gauss norm S d (n; σ) of S d (n; σ) associated with our valuation of F ac q (t)((θ -1 )) such that θ = q:

S d (n; σ) ≤ q -dn q -q [d-s q-1 ]-1 , d > s -1 q -1 ,
where [•] denotes the lower integer part (replace x = θ n and y = -n ∈ Z p with p | q in the statement of that Lemma). This implies that, if σ 1 is not the trivial semi-character,

Σ d ≤ S d (n; σ 1 ) ≤ q -dn1 q -q [d-µ q-1 ]-1 , d ≫ 0,
for some constant µ, which immediately implies the proposition. If σ 1 is the trivial semi-character we cannot directly apply the statement of the above lemma but the problem is superficial, as we can more easily conclude by using [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF]Proposition 8.8.2] as, in this case:

Σ d ≤ S d (n 1 ; 1) ≤ q -(q-1) d(d+1) 2 .
Remark 5. A more general result of this type can now be found in [START_REF] Anglès | Twisted characteristic p zeta functions[END_REF].

We set F s := F q (t s ). It is presently a work in progress of the author to show that the product of two multiple zeta values as in Definition 3 is a linear combination, with coefficients in the field K ⊗ Fq F ac q ⊗ Fq F s , of such multiple zeta values (with the various matrices of associated data not including, necessarily, the same semi-characters). We hope this will allow us to exhibit new multiple zeta values algebras Z F ac q ((θ -1 ))⊗ Fq F s containing the algebra Z K∞ and collecting the algebraic relations of Z K∞ in families by specialization.

Content of the present note

Waiting for more general results, in this note we will accomplish a more modest objective, as we will only give a few explicit examples of shuffle products of such multiple zeta values in the following case: s = 2, weight ≤ 2, and the semi-characters 1, σ, ψ and σψ of Dirichlet type, where

σ : a → a(t 1 ) ∈ F q [t 1 , t 2 ], ψ : a → a(t 2 ) ∈ F q [t 1 , t 2 ], (σψ)(a) = σ(a)ψ(a) = a(t 1 )a(t 2 ).
As an advantage of our explicit and restrictive viewpoint, we will see beautiful formulas dropping out from this new theory that we will apply to some new properties of the so-called "Bernoulli-Goss" polynomials.

The matrix data we are going to handle are:

Four in weight 1. 1 1 , σ 1 , ψ 1 , σψ 1 .
Four in weight 2 depth 1.

1 2 , σ 2 , ψ 2 , σψ 2 .
Nine in weight 2 depth 2.

1 1 1 1 , σ 1 1 1 , 1 σ 1 1 , ψ 1 1 1 , 1 ψ 1 1 , σψ 1 1 1 , σ ψ 1 1 , ψ σ 1 1 , 1 σψ 1 1 .
We shall show the following Theorem, which provides, taking into account the above tables, a complete picture of all the products of two weight one multiple zeta values in the restrictive context we have prefixed (in two variables t 1 , t 2 , and with the semi-characters 1, σ, ψ and σψ), unveiling partly an extremely complex and mysterious algebra structure. From now on, we suppose that q > 2. All the arguments presented below under this restriction can be also developed in the case q = 2 with appropriate modifications, but we refrain from giving full details here. Theorem 6. The following formulas hold.

(1

) ζ A (1) 2 = ζ A (2) + 2ζ A (1, 1), (2) ζ A (1; σ)ζ A (1) = ζ A (2; σ) + ζ A σ 1 1 1 , (3) ζ A (1; ψ)ζ A (1) = ζ A (2; ψ) + ζ A ψ 1 1 1 , (4) ζ A (1; σ)ζ A (1; ψ) = ζ A (2; σψ), (5) ζ A (1; σψ)ζ A (1) = ζ A (2; σψ) -ζ A σ ψ 1 1 -ζ A ψ σ 1 1 + ζ A 1 σψ 1 1 + ζ A σψ 1 1 1 .
We observe that the formula (1) can be found in Thakur's [START_REF] Thakur | Function Field Arithmetic[END_REF]Theorem 5.10.13]. Further, due to the symmetry of the roles of t 1 and t 2 , the formulas (2) and (3) are equivalent. Moreover, the formula (4) is in fact well known (see Perkins' [START_REF] Perkins | Explicit formulae for L-values in positive characteristic[END_REF] for more general formulas of this type). However, we will give a proof of this in the spirit of multiple zeta values. The formulas (2) is, on the other side, new, as far as we can see.

Twisted power sums

We need a few tools in order to obtain our formulas; more precisely, we have to improve our skill in computing twisted powers sums. For this purpose, we are going to use the tools introduced in the recent preprint of Perkins and the author [START_REF] Pellarin | On twisted A-harmonic sums and Carlitz finite zeta values[END_REF]; we are going to use for a while the notations of this reference. Let s be an integer ≥ 0. We set, for an integer d ≥ 0:

S d (n; s) = a∈A + (d) a(t 1 ) • • • a(t s ) a n ∈ K[t s ].
We are thus considering a special case of Definition 2. We also set, for d ≥ 0, F 0 (n; s) = 0 and

F d (n; s) = d-1 i=0 S d (n; s) ∈ K[t s ],
so that

lim d→∞ F d (n; s) = ζ A (n; s) := P 1 - P (t 1 ) • • • P (t s ) P n -1 ∈ T × s ,
where the product runs over the irreducible polynomials of A + (in general, all along this note, empty sums are by convention equal to zero). We are using the notation of [START_REF] Pellarin | On twisted A-harmonic sums and Carlitz finite zeta values[END_REF]. In particular, if σ is the semi-character χ t1 • • • χ ts (of Dirichlet type), then, the comparison between the notations of ibid. and those of the present note are:

S d (n; s) = S d (n; σ), ζ A (n; s) = ζ A (n; σ). It is easy to show that, if 0 ≤ s ′ < s, S d (n; s ′ ) is the coefficient of (t s ′ +1 • • • t s ) d in F d+1 (n; s).
We define inductively l 0 = 1 and l i = (θθ q i )l i-1 , and we set l -n = 0 for n > 0. We denote by b

i (Y ) the product (Y -θ) • • • (Y -θ q i-1 ) ∈ A[Y ] (for an indeterminate Y ) if i > 0 and we set b 0 (Y ) = 1.
We also write m = ⌊ s-1 q-1 ⌋ (the brackets denote the integer part so that m is the biggest integer ≤ s-1 q-1 ). We set

Π s,d = b d-m (t 1 ) • • • b d-m (t s ) l d-1 ∈ K[t s ], d ≥ max{1, m}.

Now, we quote [23, Theorem 1]:

Theorem 7. For all integers s ≥ 1, such that s ≡ 1 (mod q -1), there exists a non-zero rational fraction H s ∈ K(Y, t s ) such that, for all d ≥ m, the following identity holds:

F d (1; s) = Π s,d H s | Y =θ q d-m .
If s = 1, we have the explicit formula

H 1 = 1 t 1 -θ .
Further, if s = 1 + m(q -1) for an integer m > 0, then the fraction H s is a polynomial of A[Y, t s ] with the following properties:

(1) For all i, deg ti (H s ) = m -1, (2) deg Y (H s ) = q m -1 q-1 -m.

The polynomial H s is uniquely determined by these properties.

We apply this Theorem to compute explicitly the twisted power sums associated to the data we have chosen. For this, it suffices to choose s = q. In this case m = 1 and the polynomial H q of Theorem 7 has degree 0 in Y as well as in t 1 , . . . , t q . From [23, §2.6] we deduce that H q = 1 (the same result is given as an example in Florent Demeslay's thesis [START_REF] Demeslay | Formule de classes en caractéristique positive[END_REF]). In particular, to compute most of the twisted power sums associated to our data it suffices to analyze the polynomials

(5) F d+1 (1; q) = b d (t 1 ) • • • b d (t q ) l d .
The coefficients of (t

3 • • • t q ) d , (t 2 • • • t q ) d and (t 1 • • • t q ) d in F d+1
(1; q) are easily computed, and we get, for all d ≥ 0 (note that these are well known formulas; see [START_REF] Perkins | Explicit formulae for L-values in positive characteristic[END_REF]):

S d (1; 0) = 1 l d , (6) 
S d (1; 1) = b d (t 1 ) l d , (7) 
S d (1; 2) = b d (t 1 )b d (t 2 ) l d . ( 8 
)
To compute S d (2; 0), S d (2, 1), S d (2, 2) (3 ) we observe that, replacing θ with θ q in (5):

F d+1 (q; q) = b d+1 (t 1 ) • • • b d+1 (t q ) l q d (t 1 -θ) • • • (t q -θ) .
Note that the former is a polynomial in t s , written as a reducible fraction. We get that

F d+1 (2; 2) = b d+1 (t 1 ) • • • b d+1 (t q ) l q d (t 1 -θ) • • • (t q -θ) t3=•••=tq=θ = b d+1 (t 1 )b d+1 (t 2 ) l 2 d (t 1 -θ)(t 2 -θ)
.

Calculating the coefficients of t d 2 and (t 1 t 2 ) d , and subtracting F d+1 (2; 2) -F d (2; 2), we easily obtain the formulas, valid for d ≥ 0 (the first one is well known):

S d (2; 0) = 1 l 2 d , S d (2; 1) = b d (t 1 ) (t 1 -θ)l 2 d (t 1 -θ q d ), (9) 
S d (2; 2) = b d (t 1 )b d (t 2 ) (t 1 -θ)(t 2 -θ)l 2 d (t 1 t 2 -θ q d (t 1 + t 2 ) + 2θ 1+q d -θ 2 ) = b d (t 1 )b d (t 2 ) (t 1 -θ)(t 2 -θ)l 2 d [(t 1 -θ)(t 2 -θ) + (t 1 -θ)(θ -θ q d ) + (t 2 -θ)(θ -θ q d )]. ( 10 
)
We will also need the next Lemma which is also well known, where τ :

A[t] → A[t] is the F q [t]-linear endomorphism such that τ (θ) = θ q .
Lemma 8. We have the following formula, which holds in

A[t]. τ (b d (t)) = l d d i=0 b i (t) l i , d ≥ 0.
Proof. We recall the proof for convenience of the reader. We proceed by induction over d.

If d = 0, the formula is obvious. If d > 0, it suffices to show that b d+1 (t) = (t -θ)l d d i=0 l -1 i b i (t).
Now, we compute easily, by using the induction hypothesis:

b d+2 (t) = (t -θ + θ -θ q d )b d+1 = (θ -θ q d )b d+1 + (t -θ)b d+1 = (t -θ)l d (θ -θ q d ) d i=0 l -1 i b i (t) + l -1 d+1 b d+1 (t) = (t -θ)l d+1 d+1 i=0 l -1 i b i (t).

Proof of Theorem 6

Proof of Theorem 6,[START_REF] Anderson | Tensor powers of the Carlitz module and zeta values[END_REF]. We compute, by using ( 6) and ( 7):

S d (1; σ)S d (1; 1) = b d (t 1 ) l 2 d .
On the other hand, we have seen in ( 9) that

S d (2; σ) = b d (t 1 ) l 2 d t 1 -θ q d t 1 -θ = τ (b d (t 1 )) l 2 d ,
where τ (b d (t 1 )) has the obvious meaning. We compute (the third identity follows from Lemma 8):

S d 1 σ 1 1 = S d (1; 1) d-1 i=0 S i (1; σ) = 1 l d d-1 i=0 l -1 i b i (t 1 ) = τ (b d-1 (t 1 )) l d l d-1 = b d (t 1 ) l 2 d θ -θ q d t 1 -θ .
Combining the above formulas, we see that

(11) S d (1; σ)S d (1; 1) = S d (2; σ) -S d 1 σ 1 1 .
With the obvious meaning of some new notations introduced below, we deduce:

F d (1; σ)F d (1; 1) = d-1 i=0 S i (1; σ) d-1 j=0 S j (1; 1) = F d 1 σ 1 1 + F d σ 1 1 1 + d-1 i=0 S d (1; σ)S d (1; 1) = F d 1 σ 1 1 + F d σ 1 1 1 + d-1 i=0 S i (2; σ) -S i 1 σ 1 1 = F d 1 σ 1 1 + F d σ 1 1 1 -F d 1 σ 1 1 + F d (2; σ) = F d σ 1 1 1 + F d (2; σ),
where we have used [START_REF] Carlitz | On certain functions connected with polynomials in a Galois field[END_REF] in the third equality. We rewrite the resulting formula:

(12) F d (1; σ)F d (1; 1) = F d σ 1 1 1 + F d (2; σ).
Taking the limit d → ∞ in ( 12) we obtain the required multiple zeta identity.

The above also implies the formula (3) of Theorem 6 by interchanging t 1 and t 2 . To continue, we notice the next Lemma.

Lemma 9. We have that

S d (2; σψ) = b d (t 1 )b d (t s ) (t 1 -θ)(t 2 -θ)l 2 d + S d ψ σ 1 1 + S d σ ψ 1 1 .
Proof. We compute:

S d σ ψ 1 1 = S d (1; σ) d-1 i=0 S i (1; ψ) = b d (t 1 ) l d d-1 i=0 b i (t 2 ) l i = b d (t 1 )b d (t s ) (t 1 -θ)(t 2 -θ)l 2 d [(t 1 -θ)(θ -θ q d )],
in virtue of [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras Preprint[END_REF] and Lemma 8. Similarly, we have

S d ψ σ 1 1 = b d (t 1 )b d (t s ) (t 1 -θ)(t 2 -θ)l 2 d [(t 2 -θ)(θ -θ q d )].
The lemma follows from [START_REF] Brown | Mixed Tate motives over Z[END_REF].

Proof of Theorem 6, (4). As we have already mentioned, this is a well known formula but we want to provide a new proof. We note, by [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras Preprint[END_REF], that

S d (1; σ)S d (1; ψ) = b d (t 1 )b d (t 2 ) (t 1 -θ)(t 2 -θ)l 2 d [(t 1 -θ)(t 2 -θ)].
Hence, Lemma 9 implies the formula

(13) S d (1; σ)S d (1; ψ) = S d (2; σψ) -S d ψ σ 1 1 -S d σ ψ 1 1 .
We deduce:

F d (1; σ)F d (1; ψ) = F d ψ σ 1 1 + F d σ ψ 1 1 + d-1 i=0 S d (1; σ)S d (1; ψ) = F d ψ σ 1 1 + F d σ ψ 1 1 + d-1 i=0 S d (2; σψ) -S d ψ σ 1 1 -S d σ ψ 1 1 = F d ψ σ 1 1 -F d ψ σ 1 1 + F d σ ψ 1 1 -F d σ ψ 1 1 + F d (2; σψ) = F d (2; σψ),
where we have applied the formula [START_REF] Chang | Linear relations among double zeta values in positive characteristic[END_REF] in the third equality. The formula of the theorem follows by letting d → ∞.

Proof of Theorem 6,[START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF]. The identities (6) (8) imply that

S d (1; 1)S d (1; σψ) = b d (t 1 )b d (t 2 ) (t 1 -θ)(t 2 -θ)l 2 d [(t 1 -θ)(t 2 -θ)].
Lemma 9 then implies that also:

(14) S d (1; 1)S d (1; σψ) = S d (2; σψ) -S d ψ σ 1 1 -S d σ ψ 1 1 . 
We deduce:

F d (1; 1)F d (1; σψ) = F d 1 σψ 1 1 + F d σψ 1 1 1 + d-1 i=0 S d (1; σ)S d (1; ψ) = F d 1 σψ 1 1 + F d σψ 1 1 1 + d-1 i=0 S d (2; σψ) -S d ψ σ 1 1 -S d σ ψ 1 1 = F d (2; σψ) + F d 1 σψ 1 1 + F d σψ 1 1 1 -F d ψ σ 1 1 -F d σ ψ 1 1 , so we have reached the formula (15) F d (1; 1)F d (1; σψ) = F d (2; σψ) + F d 1 σψ 1 1 + F d σψ 1 1 1 -F d ψ σ 1 1 -F d σ ψ 1 1 .
Letting d tend to ∞ in (15) concludes the proof.

Remark 10. In fact, it is trivial that

ζ A (1)ζ A (1; σψ) -ζ A (1; σ)ζ A (1, ψ) = ζ d 1 σψ 1 1 + ζ d σψ 1 1 1 -ζ d ψ σ 1 1 -ζ d σ ψ 1 1 ,
and that the corresponding identity for the sums F d holds as well. Indeed, setting

α i = S i (1; 1) = l -1 i , β i = S i (1; σ) = b i (t 1 )l -1 i , γ i = S i (1; ψ) = b i (t 2 )l -1 i and δ i = S i (1; σψ) = b i (t 1 )b i (t 2 )l -1 i , we see that i≥0 α i j≥0 δ j - i≥0 β i j≥0 γ j = = i>j≥0 α i δ j + j>i≥0 α i δ j - i>j≥0 β i γ j - j>i≥0 β i γ j + + i≥0 α i δ i - i≥0 β i γ i .
But, of course, α i δ i = β i γ i for all i, from which the identity follows. Up to this simple trick, the identity (5) of Theorem 6 can be considered as equivalent to the identity (4) of the same result.

Some consequences

In virtue of Proposition 4 or by direct verification, the identities of Theorem 6 involve entire functions in two variables t 1 , t 2 . Hence, specializing the variables, we are able to recover identities in C ∞ or in some intermediate Tate algebra. We are going to show several results arising from the formula (2). We recall the formula (2) of Theorem 6 for convenience:

(16) ζ A (1; σ)ζ A (1) = ζ A σ 1 1 1 + ζ A (2; σ).
First of all, we can replace t 1 by θ, but this does not give anything interesting; we mention it only to show how the substitution works. We recall the following formula that the author proved in [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF]:

(17) ζ A (1; σ) = π (θ -t 1 )ω(t 1 )
,

where ω(t 1 ) = (-θ)

1 q-1 i≥0 1 - t 1 θ q i -1 ∈ T × 1 ,
is the Anderson-Thakur function (note that Ω(t 1 ) = 1 (t1-θ)ω(t1) is an entire function; see [START_REF] Anglès | Universal Gauss-Thakur sums and L-series[END_REF], containing a recent overview on the known properties of this function). The function ω(t 1 ) having a simple pole of residueπ at t 1 = θ, we see that ζ A (1; σ)| t1=θ = 1. Now, it is easy to see that [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF] ζ

A 1 σ 1 1 = d≥0 S d (1; σ) d-1 i=0 l -1 i = d≥0 l -1 d b d (t 1 ) d-1 i=0 l -1 i vanishes at t 1 = θ. Further, ζ A (2; σ) = d≥0 S d (2; σ)
takes the value ζ A (1) at t 1 = θ. Hence, with this evaluation, we only get the tautological identity ζ A (1) = ζ A (1).

5.1.

A family of multiple zeta identitities. We can also evaluate this identity at t 1 = θ q -k with k > 0 and raise the obtained identity to the power q k . Working out the intermediate details, the reader will easily recover the following sum shuffle formula:

ζ A (q k )ζ A (q k -1) = ζ A (2q k -1) + ζ A (q k -1, q k ), k ≥ 1.

5.2.

Evaluation at trivial zeros. Now, we evaluate the second identity of Theorem 6 at t 1 equal to a trivial zero of the function ζ A (1; σ) which, as it appears from the computation of the poles of the gamma factor of ( 17), means that we replace t 1 with θ q d with d > 0. This implies the following result.

Theorem 11. The following formula holds

(19) BG q d -2 = - d≥i>j≥0 b i (θ q d ) l i l j , d ≥ 1.
Proof. In fact, to make things more transparent, we make a step back to the identity (12) that we rewrite as

F k (2; σ) = F k (1; σ)F k (1; 1) -F k σ 1 1 1 , k ≥ 0.
By Proposition 4, we see that all the sequences F k (• • • ) involved tend, for k → ∞, to entire functions of the variable t 1 . However, we already know from [5, Proposition 6] that F k (2; σ) and F k (1; σ)F k (1; 1) tend to entire functions, so we immediately obtain that F k ( σ 1 1 1 ) tends to an entire function as k → ∞ without using Proposition 4 (in fact, this can be also seen directly). Replacing t 1 = θ q d with d > 0 yields the value zero for the limit

lim k→∞ F k (1; σ)F k (1; 1) = ζ A (1; σ)ζ A (1)
evaluated at t 1 = θ q d . Indeed, after [START_REF] Goss | L-series of t-motives and Drinfeld Modules[END_REF], θ q d is a trivial zero of ζ A (1; σ). Further, we see that

ζ A (2; σ)| t1=θ q d = lim k→∞ F k (2; σ)| t1=θ q d = k≥0 a∈A + (k) a q d -2 = BG q d -2 ∈ A.
Moreover, by ( 18) and evaluating at

t 1 = θ q d , ζ A σ 1 1 1 t1=θ q d = lim k→∞ F k σ 1 1 1 t1=θ q d = i>j≥0 b i (θ q d ) l i l j = d≥i>j≥0 b i (θ q d ) l i l j ,
because b i (θ q d ) vanishes for all i > d.

One nice aspect of the formula [START_REF] Kaneko | Finite multiple zeta values[END_REF] is that it is easy to reduce it modulo an irreducible polynomial of A of degree d. The following family of congruences is an immediate consequence of our result, and was first observed by Thakur in [START_REF] Thakur | Iwasawa theory and cyclotomic function fields[END_REF], and Anglès and Ould Douh in [START_REF] Anglès | Arithmetic of "units[END_REF]: Corollary 12. For all P an irreducible polynomial of A + (d), we have (recall that |P | = q d ):

BG |P |-2 ≡ d-1 i=0 1 l i ≡ F d (1; 1) (mod P ).
Proof. For all i, j with d ≥ i > j ≥ 0, the fraction b i (θ q d )(l i l j ) -1 is P -integral for any P irreducible of degree d.

If i < d, we have that b i (θ q d )l -1 i ≡ 0 (mod P ), because b i (θ q d ) is divisible, in A, by θ q d -θ. Further, b d (θ q d )/l d ≡ -1,
from which the congruence follows.

Remark 13. The reader can do similar computations with other formulas; more results will appear elsewhere. Observe, however, that manipulating in the same way the formula (5) of Theorem 6 returns relatively less identities. The reason seems to be that this formula is trivially equivalent to the formula (4), as it follows from Remark 10. At least, we deduce, specializing t 1 = θ q -k and t 2 = θ q -h , the following strange sum shuffle identity, valid for h, k ≥ 0 with h + k > 0:

ζ A (1) q k ζ A (q k+h -q h -1) = = ζ A (2q h+k -q h -1) + ζ A (q k+h , q k+h -q h -1) + ζ A (q k+h -q h -1, q k+h ) - -ζ A (q k+h -q h , q k+h -1) -ζ A (q k+h -1, q k+h -q h ).
The formula (2) of Theorem 6 and especially the formula of Theorem 19 can be seen as some kind of analogue of Euler's formula ζ(3) = ζ(2, 1) (for classical Euler multiple zeta values).

A degree computation.

In contrast with the universal formulas obtained in [START_REF] Pellarin | On twisted A-harmonic sums and Carlitz finite zeta values[END_REF] for the sums F d (n; s) in the case s ≡ n (mod q -1), there seems to be no such a formula for BG q d -2 , for d ≥ 1.

At least, we have a "universal formula" for its degree, and this can be deduced from [START_REF] Kaneko | Finite multiple zeta values[END_REF] as we are going to see in the next result, where it is supposed, again (as we did until now), that q > 2.

Theorem 14. We have

deg θ (BG q d -2 ) = (d -1)q d - 2q(q d-1 -1) q -1 .
This result should be compared with more classical degree computations by Wan, Diaz-Vargas, Poonen, Sheats, as well as Böckle's [START_REF] Böckle | The distribution of the zeros of the Goss zeta-function for A = F 2 [x, y]/(y 2 + y + x 3 + x + 1)[END_REF]Theorem 1.2] where the interested reader can find all the necessary references to the work of these authors on this topic.

Theorem 14 seems to be new. Thomas [START_REF] Thomas | On the zeta function for function fields over Fp[END_REF]Theorem 2] already proved an explicit formula to compute, not only the degree of BG q d -2 for d > 0 but also the degree of BG n for any n > 0 with q -1 ∤ n in case q is a prime number ( 4). It follows from Thomas' Theorem 1 and Corollary 1 ibid. that if q -1 ∤ n, and q is a prime, then BG n = 1 if and only if ℓ q (n) < q, where ℓ q (n) is the sum of the digits of the base-q expansion of n. However, Thomas formula contains an iterative process and for this reason, the identity of Theorem 14 is not immediately recognizable in it, and even if it was, it would have been valid only for q a prime number. Bruno Anglès has communicated to the author a simple proof of Theorem 14 in the case of q = p > 2 a prime number by using Sheats' method. Also, Dinesh Thakur has pointed out to the author that this result, for general q, can be more simply deduced from an application of his duality formula [START_REF] Thakur | Power sums of polynomials over finite fields and applications: A survey[END_REF]Theorem 2,[START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF]].

Remark 15. Note that for all d ≥ 1, q d -2 is a dual magic number in the sense of [17, §5.7] (see also [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF]). In this paper, Goss points out a result of Thomas which exhibits a computation of the degree of BG n when q -1 ∤ n and when n is a magic number ([18, §8.22]), in terms of the the degree of the Carlitz factorial. Our computation involves certain dual magic numbers which are not magic numbers, and this could also be a new instance of the conjectural functional equation for the Goss zeta function associated to the algebra A.

More results of the type of Theorem 14 can be obtained from more general consequences of the sum shuffle relations for our multi-zeta values in the Tate algebras, but they will be described in another work (the present paper can be considered as a first of more general results that will appear elsewhere). Before proving the Theorem, we need some notation and Lemmas. For commodity, we set

α i = b i (θ q d ) l i , β j = l -1 j ,
4 He obtained a more general result in this direction, also involving "first derivatives" of the Goss zeta function of A at its "trivial zeroes," the negative integers divisible by q -1.

so that the formula (19) rewrites as

BG q d -2 = - d≥i>j≥0 α i β j .
Then, we have

(20) δ i,j := deg θ (α i β j ) = iq d - i n=1 q n - j m=1 q m .
We recall the convention that an empty sum is zero. Moreover, the degree of 0 in θ is set to be -∞. We have the following Lemma.

Lemma 16. Assuming that d ≥ i > j ≥ 0, d ≥ i ′ > j ′ ≥ 0, we have that δ i,j = deg θ (α i β j ) = deg θ (α i ′ β j ′ ) = δ i ′ ,j ′
if and only if the following cases occur.

(

1) i = i ′ , j = j ′ , (2) i = d, i ′ = d -1 and j = j ′ , (3) i ′ = d, i = d -1 and j = j ′ .
Proof. For symmetry of the roles of i, i ′ , we can assume that i ≥ i ′ . First of all, if i = i ′ we have that

δ i,j -δ i ′ ,j ′ = j ′ m ′ =1 q m ′ - j m=1 q m , which equals zero if and only if j = j ′ ; if i = i ′ , δ i,j = δ i ′ ,j ′ if and only if j = j ′ . Now, let us suppose that i > i ′ .
From [START_REF] Papanikolas | Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms[END_REF] we deduce that

δ i,j -δ i ′ ,j ′ = (i -i ′ )q d -ψ i,i ′ ′ ,
where

ψ i,i ′ ,j,j ′ = i n=1 q n - i ′ n ′ =1 q n ′ + j m=1 q m - j ′ m ′ =1 q m ′ ∈ Z.
Since i > i ′ > j ′ and i > j, we have that ψ i,i ′ ,j,j ′ ≥ 0 and we can find integers c r ∈ {0, 1, 2}, unique, such that ψ i,i ′ ,j,j ′ = i r=0 c r q r , so we see that 0 ≤ ψ i,i ′ ,j,j ′ < q i+1

(recall that q > 2). If i < d, we see that

δ i,j -δ i ′ ,j ′ = (i -i ′ )q d -ψ i,i ′ ,j,j ′ > q d -q i+1 ≥ 0 so that δ i,j = δ i ′ ,j ′ in this case.
It remains to study the case in which i = d. In this case, j ′ < i ′ ≤ d -1 and we can write:

δ i,j -δ i ′ ,j ′ = (d -i ′ -1)q d -ρ i ′ ,j,j ′ ,
where

ρ i ′ ,j,j ′ = d-1 n=i ′ +1 q n + j m=1 q m - j ′ m ′ =1 q m ′ ∈ Z.
This number is obviously ≥ 0 and the following estimate holds

0 ≤ ρ i ′ ,j,j ′ < q d . If i ′ ≤ d -2, we thus have that δ d,j > δ i ′ ,j ′ for any choice of j < d and j ′ < i ′ . If i ′ = d -1, we have δ i,j -δ i ′ ,j ′ = j ′ m ′ =1 q m ′ - j m=1 q m
which equals zero if and only if j = j ′ .

In view of the above Lemma, to compute the degree of BG q d -2 , we rearrange the sum [START_REF] Kaneko | Finite multiple zeta values[END_REF] in the following way:

BG q d -2 = - U α d β d-1 -(α d + α d-1 ) d-2 j=0 β j V - d-2 i=0 i-1 j=0 α i β j W =: -(U + V + W ).
Lemma 17. We have:

(1)

deg θ (U ) = (d -1)q d -2(q + • • • + q d-1 ), (2) deg θ (V ) = (d -2)q d -(q + • • • + q d-2 ), (3) deg θ (W ) = (d -2)q d -(q + • • • + q d-2 ).
Proof. We compute the degree of U :

deg θ (U ) = dq d - d n=1 q n - d-1 m=1 q m = (d -1)q d -2 d-1 n=1 q n .
To compute the degree of V , we observe:

α d + α d-1 = b d (θ q d ) l d - b d-1 (θ q d ) l d-1 = b d (θ q d ) -(θ q d -θ)b d-1 (θ q d ) l d = b d-1 (θ q d )[θ q d -θ q d-1 -θ q d + θ] l d = (θ -θ q d-1 )b d-1 (θ q d ) l d .
Hence,

deg θ (V ) = deg θ (α d + α d-1 ) + deg θ   d-2 j=0 β j   = deg θ (α d + α d-1 ) = q d-1 + (d -1)q d - d n=1 q n = (d -2)q d - d-2 n=1 q n .
To compute the degree of W , we first notice, by Lemma 20, that all the terms involved in the double sum have different degrees. The term with the largest degree is the one corresponding to i = d -2 and j = 0, which is equal to α d-2 , and which has the expected degree.

Proof of Theorem 14. By Lemma 17 and by the assumption q > 2, we have

deg θ (U ) > deg θ (V ), deg θ (W ),
and

deg θ (BG q d -2 ) = deg θ b d (θ q d ) l d l d-1 = (d -1)q d - 2q(q d-1 -1) q -1 .
Remark 18. Anglès and Ould Douh have proved, in [START_REF] Anglès | Arithmetic of "units[END_REF], that there exist infinitely many irreducible elements of [START_REF] Kaneko | Finite multiple zeta values[END_REF] and that q > 2 all along the present note). As a consequence we see, by the fact that

A + such that BG |P |-2 ≡ 0 (mod P ) (recall that |P | = q d in
F deg θ (P ) (1; σ) ≡ 0 (mod P )
for all irreducible P of A + (easily checked), that the right-hand sides of ( 12) and (15) determine non-zero elements of the ring A s defined in [START_REF] Pellarin | On twisted A-harmonic sums and Carlitz finite zeta values[END_REF]. This result is an easy consequence of their formula that we have re-obtained in our Corollary 12.

Let us recall the elegant proof of this property in [START_REF] Anglès | Arithmetic of "units[END_REF]. Since BG q d -2 ≡ d-1 i=0 l -1 i (mod P ) (for P irreducible of degree d), we have BG q d -2 ≡ 0 (mod P ) if and only if P divides the polynomial

V (d) = l d-1 d-1 i=0 l -1 i ∈ A which has degree d-1 n=1 q n = q d -q
q-1 , so that we have at most q dq d(q -1) monic irreducible polynomials P of degree d dividing V (d). Now, the number of monic irreducible polynomials P of degree d is equal to the the necklace polynomial (where µ designates Moebius' function)

M d (q) = 1 d l|d µ(l)q d l ,
which is known to have an asymptotic behavior, as d → ∞, which is of a strictly bigger magnitude than that of the above fraction if q > 2. For example, if d = p ′ is a prime number, the necklace polynomial M p ′ (q) equals q p ′ -q p ′ and we have

q p ′ -q p ′ > q p ′ -q p ′ (q -1) , because q > 2.
The formula [START_REF] Kaneko | Finite multiple zeta values[END_REF] does not seem to immediately imply the result of Anglès and Ould Douh (without using the intermediate congruence with the polynomial V (d)), but we have not tried to rearrange the terms of the sum completely.

We also point out that the proof of the identity (6) can be easily generalized to give the identity

ζ A (1; σ)ζ A (n) = ζ A (n + 1; σ) + ζ A σ 1 1 n , 1 ≤ n ≤ q -1.
This almost immediately implies a generalization of Theorem 19, Corollary 12, Theorem 14 and the result of Anglès and Ould Douh. For all m = 2, . . . , q -1,

BG q d -m = - k≥d>i≥0 b d (θ q k ) l d l m-1 i .
In particular,

BG q d -m ≡ d-1 i=0 l 1-m i (mod P ), deg θ (P ) = d, m = 2, . . . , q -1
and the same proof as [START_REF] Anglès | Arithmetic of "units[END_REF] can be used to show that, for all 2 ≤ m ≤ q -1 we have

BG q d -m ≡ 0 (mod P ),
for infinitely many P .

Looking for more relations

We gave above some hints of a variant of the shuffle product for the multiple zeta values:

ζ A σ 1 σ 2 • • • σ r n 1 n 2 • • • n r
in the simplest non-trivial cases (weight 2). We shall complete our note by suggesting some other tools to develop, in order to compute other kinds of relations. We denote by K{τ } the skew polynomial ring of finite sums i c i τ i , with c i ∈ K, with the non-commutative product uniquely determined by the rule τ c = c q τ for c ∈ K. Additionally, let t be a variable (we can set t = t 1 to get compatibility with the first part of the note). We have an isomorphism of K-vector spaces:

K[t] η -→ K{τ } defined by η(t i ) = C θ i = (θ + τ ) i for i > 0 and η(1) = 1.
Here C θ = θ + τ is the multiplication by θ of the Carlitz module. The inverse of this isomorphism sends 1 to 1 and, for j > 0, τ j to b j (t), where we recall that b j (t) = (tθ) • • • (tθ q j-1 ).

To check that η is an isomorphism, one uses the evaluation at the Anderson-Thakur function. The evaluation f (ω) of an element

f = f 0 + f 1 τ + • • • + f r τ r ∈ K{τ } at ω is by definition the expression (f 0 + f 1 b 1 + • • • + f r b r )ω. It is easy to see that C a (ω) = a(t)ω, so that, for all f (t) ∈ K[t], we have η(f )(ω) = f (t).
This isomorphism η is useful to construct certain identities for finite sums. We recall, as a first example, the formula (7):

S d (1; 1) = S d (1; σ) = a∈A + (d) a -1 a(t) = b d (t) l d , d ≥ 0.
It is easy to show that η(a(t)) = C a ∈ K{τ }. Therefore, the isomorphism η yields the identity:

η(S d (1; 1)) = a∈A + (d) a -1 C a = l -1 d τ d , d ≥ 0.
This picture can be generalized. We can use variables t 1 , . . . , t s , indeterminates τ 1 , . . . , τ s , the rings K[t 1 , . . . , t s ] (commutative) and K{τ 1 , . . . , τ s } (non commutative, with multiplication rules: τ i τ j = τ j τ i and τ i c = c q τ i for c ∈ K), and the isomorphism uniquely defined by η(t j i ) = (θ + τ i ) j (we write η instead of the more precise expression η s we should have used, to simplify our notations). Then, any time we can show a formula for power sums in K[t 1 , . . . , t s ], we obtain a similar formula in the ring K{τ 1 , . . . , τ s }.

Florent Demeslay proved, in his Thesis [START_REF] Demeslay | Formule de classes en caractéristique positive[END_REF], the following result.

Theorem 19. Assume that s > 0. There exists a rational fraction Q k,s ∈ K(t 1 , . . . , t s )(Y ) such that

S d (k; s) = b d (t 1 ) • • • b d (t s ) l d Q k,s (θ q d-m ), d ≥ 0
where m = max{0, ⌊ s-1 q-1 ⌋}. The case s = 0 (no variables) was already known to Anderson and Thakur [START_REF] Anderson | Tensor powers of the Carlitz module and zeta values[END_REF]. We would like to apply this Theorem for s > 0 to produce identities in the non-commutative indeterminates τ 1 , . . . , τ s by means of the isomorphism η. For example, if k = 1 and s = 1, we are reduced to the formula (7) with Q 1,1 = 1. However, there is no reason to expect that Q k,s is a polynomial and in fact, in general, this is false. For example, it is easy to check that Q q,1 = t-Y t-θ , which is not a polynomial. It is of course possible to compute the rational fractions Q k,s by using the polynomials H s of Theorem 7, but even with that in mind, we cannot escape this problem.

A partial solution is given by Lemma 8. We now denote by τ (we do not want to mix it up with τ which is now an indeterminate!) the F q [t]-algebra endomorphism of K[t] defined by τ (c) = c q . Then, Lemma 8 and induction imply the following result.

Proposition 20. For all n > 0 and d ≥ 0, the following formula holds:

τ n (b d (t)) = l q n-1 d d≥i1≥i2≥•••≥in-1≥in≥0 l q n-2 -q n-1 i1 l q n-3 -q n-2 i2 • • • l 1-q in-1 l -1 in b in (t).
In particular, for all n > 0 and d ≥ 0:

S d (q n ; 1) = l q n-1 -q n d d≥i1≥i2≥•••≥in-1≥in≥0 l q n-2 -q n-1 i1 l q n-3 -q n-2 i2 • • • l 1-q in-1 l -1 in b in (t).
Although the rational fraction Q q,1 and more generally the fractions Q q n ,1 are certainly not polynomials, the above formulas in K[t] can be transferred to identities in the ring K{τ }. We obtain, by applying the map η:

Corollary 21. For all d ≥ 0, S d (q n ; 1) := a∈A + (d) a -q n C a = l q n-1 -q n d d≥i1≥i2≥•••≥in-1≥in≥0 l q n-2 -q n-1 i1 l q n-3 -q n-2 i2 • • • l 1-q in-1 l -1 in τ n .
Let σ 1 , . . . , σ r be semi-characters, let n 1 , . . . , n r be integers, and d a non-negative integer. We set, for convenience:

S ⋆ d σ 1 σ 2 • • • σ r n 1 n 2 • • • n r = S d (n 1 ; σ 1 ) d≥i2≥•••≥ir ≥0 S i2 (n 2 ; σ 2 ) • • • S ir (n r ; σ r ) ∈ F ac q ⊗ Fq K(t s )
(we have introduced non-strict inequalities in the sum). Further, we set:

ζ ⋆ A σ 1 σ 2 • • • σ r n 1 n 2 • • • n r := d≥0 S * d σ 1 σ 2 • • • σ r n 1 n 2 • • • n r ∈ K ∞ ⊗ Fq F ac q ⊗ Fq F s .
We observe that S d (j; 1) = l -j d if j = kq l with l ≥ 0 and k = 1, . . . , q -1. Hence, the second identity of Proposition 20 can be rewritten, with σ = χ t , in the following way:

S d (q n ; σ) = S ⋆ d 1 1 • • • 1 σ q n-1 (q -1) q n-2 (q -1) • • • q -1 1
.

Summing over d = 0, 1, . . ., we obtain the formula:

(22) ζ A (q n ; σ) = ζ ⋆ A 1 1 • • • 1 σ q n-1 (q -1) q n-2 (q -1) • • • q -1 1
.

We observe that the evaluation at t = θ q k gives:

. . . , θ q n-1 special values =0

, θ q n value one , θ q n+1 , θ q n+2 , . . .

trivial zeroes

.

Evaluating e.g. at t = θ returns us the following identity, with the obvious meaning of the second sum:

ζ A (q n -1) = ζ ⋆ A (q n-1 (q -1), q n-2 (q -1), . . . , q -1 n terms

).

We can rewrite the identity of our Corollary 21 as follows:

S d (q n ; 1) = a∈A + (d) a -q n C a = = S d (q n-1 (q -1)) d≥i1≥i2≥•••≥in-1≥in≥0 S i1 (q n-2 (q -1))S i2 (q n-3 (q -1)) • • • S in-1 (q -1)S in (1)τ n , with S d (n) := S d (n; 1). If f = f 0 + f 1 τ + • • • + f r τ r ∈ K{τ }, the evaluation at one f (1) of f is the element f 0 + f 1 + • • • + f r ∈ K.
It is easy to see that the series d≥0 a∈A + (d) a -q n C a (1) converges in K ∞ . We obtain the formula:

∞ d=0 S d (q n ; 1)(1) = ζ ⋆ C (q n-1 (q -1), q n-2 (q -1), . . . , q -1 n terms , (23) 
).

These formulas can be easily related to Thakur's multiple zeta values ζ A (without the ⋆ mark), by means of simple manipulations. We illustrate this in the case n = 1. We observe that

∞ d=0 S d (q; 1)(1) = ζ ⋆ C (q -1, 1) = ζ A (q -1, 1) + i≥0 S i (q -1; 1)S i (1, 1). Now, since S i (q -1; 1) = l 1-q i and S i (1; 1) = l i , we get i≥0 S i (q -1; 1)S i (1; 1) = i≥0 l -q i = log C (1) q ,
where log C (z) = i≥0 l -1 i z q i is the Carlitz logarithm of z ∈ C ∞ , well defined for |z| < q q/(q-1) (we recall that | • | is the unique norm of C ∞ such that |θ| = q) and in particular, well defined at z = 1. It is plain that log C (1) = ζ A (1), an identity which was, essentially, first noticed by Carlitz. Thus we have that ζ ⋆ C (q -1, 1) = ζ A (q -1, 1) + ζ A (1) q . The shuffle product of ζ A (s 1 ) and ζ A (s 2 ) yields, for s 1 , s 2 ∈ N + such that s 1 + s 2 ≤ q (see Thakur, [27, Theorem 1]), the simple formula:

ζ A (1)ζ A (q -1) = ζ A (q) + ζ A (q -1, 1) + ζ A (1, q -1) = ζ A (1) q + ζ A (q -1, 1) + ζ A (1, q -1).
This means that ∞ d=0 S d (q; 1)(1) = ζ ⋆ C (q -1, 1) = ζ A (1)ζ A (q -1)ζ A (1, q -1).

We do not know how to evaluate the sum ∞ d=0 S d (q; 1)(1) (and more generally, similar sums we do not want to introduce in this paper) directly, and it would be nice to develop a technique to do so independently of the shuffle product, in order to re-obtain the shuffle product formula. Note also that Thakur demonstrated the formula (see [START_REF] Thakur | Relations Between Multizeta Values for Fq[t[END_REF]Theorem 5]):

ζ A (m, m(q -1)) =

ζ A (mq) (θθ q ) m , m = 1, . . . , q -1.

Hence, we compute easily, with m = 1:

ζ ⋆ A (q -1, 1) = ζ A (q -1, 1) + ζ A (1) q = ζ A (q -1)ζ A (1)ζ A (1, q -1)

= ζ A (1) ζ A (q -1) -ζ A (1) q-1 θθ q .

Remark 22.

In the examples we have studied above, the semi-characters are all of Dirichlet type but for no reason this should be considered as a necessary condition for the existence of shuffle-like formulas. For example, if ν : A + → F q [t] is the semi-character which which associates a ∈ A + to t deg θ (a) (this is not of Dirichlet type), then the following formula holds in the Tate algebra T, as the reader can easily check:

ζ A (1; ν)ζ A (1; 1) = ζ A (2; ν) + ζ A ν 1 1 1 + ζ A 1 ν 1 1 .
Evaluating at t = 1 we deduce the formula (1) of Theorem 6.

Remark 23. The referee pointed out a possible link between certain series modeled after the finite sums of Corollary 21 (that we also see in the left-hand side of [START_REF] Pellarin | On twisted A-harmonic sums and Carlitz finite zeta values[END_REF], before evaluation at one) and Chieh-Yu Chang's multiple polylogarithms (see [START_REF] Chang | Linear independence of monomials of multizeta values in positive characteristic[END_REF]) which can also be viewed as formal series:

Li (n1,...,ns) = i1>i2>•••>is≥0 l -n1 i1 • • • l -ns is τ i1 1 • • • τ is r ∈ K{{τ 1 , . . . , τ s }},
in the completion of the non-commutative polynomial ring K{τ 1 , . . . , τ s } with respect to the left ideal generated by τ 1 , . . . , τ s . It is easy to see that the K-isomorphism η of ( 21) induces an isomorphism between the K-vector space spanned by the multiple zeta values (4) with σ i = χ ti for all i and 1 ≤ n i ≤ q for all i, and the K-vector space spanned by the multiple polylogarithms Li (n1,...,ns) with this same condition 1 ≤ n i ≤ q. More precisely, we get: a -n a(t i )

η ζ A χ t1 χ t2 • • • χ ts n 1 n 2 • • • n s = Li (
  = l -n d τ d i , 1 ≤ n ≤ q, 1 ≤ i ≤ s, d ≥ 0.
Note also that the identity ( 22) is rewritten, by means of η, as Li q s (τ s ) = Li ⋆ q s-1 (q-1),...,q-1 (1, . . . , 1, τ s ) ∈ K{{τ s }}, with the obvious meaning of the symbol ⋆ and where the list of 1's means that we are replacing τ i = 1 formally for i = 1, . . . , s -1, which gives well defined series for the τ s -adic topology.

This suggests to explore, in parallel of the multiple zeta values (4), also the "non-commutative" counterparts provided by Drinfeld modules themselves, which can also be viewed, formally, as some kind of semi-characters A + → A{τ 1 , . . . , τ s } * . For example, with this viewpoint, we have, with the above conditions on the parameters, Li (n1,...,ns) = It seems that the image in K ∞ {τ 1 , . . . , τ s } of the K ∞ -vector space spanned by the multiple zeta values (4) requires more general functions than Chang's polylogarithms to be generated, and it is an interesting question to see if an appropriate notion of "non-commutative" multiple zeta values associated to the Drinfeld modules of rank one of [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF] would suffice for this purpose.

( 21 )

 21 K[t 1 , . . . , t s ] η -→ K{τ 1 , . . . , τ s }

  n1,...,ns) , 1 ≤ n 1 , . . . , n s ≤ q

-n1 1 •

 1 i1>•••>is≥0 a 1 ,...,as ∈A + deg θ (a j )=i j a • • a -ns s C a1 (τ 1 ) • • • C as (τ s ).

The "evaluation at θ = t", in other words, the map which sends a polynomial a = a(θ) = a 0 + a 1 θ + • • • + arθ r with the coefficients a 0 , . . . , ar ∈ Fq to the polynomial a(t) = a 0 + a1 t + • • • + art r ∈ Fq[θ].

In the notations of[START_REF] Pellarin | On twisted A-harmonic sums and Carlitz finite zeta values[END_REF]; in our note, we should write S d (2; 1), S d (2; σ), S d (2; σψ).
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