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A NOTE ON MULTIPLE ZETA VALUES IN TATE ALGEBRAS

F. PELLARIN

Abstract. In this note, we shall discuss a generalization of Thakur’s multiple zeta values and
allied objects, in the framework of function fields of positive characteristic and more precisely, of
periods in Tate algebras.

1. Introduction

Let A = Fq[θ] be the ring of polynomials in an indeterminate θ with coefficients in Fq the finite
field with q elements and characteristic p, let K be the fraction field of A and K∞ the completion of
K at the infinity place ∞. For d ≥ 0 an integer, we denote by A+(d) the set of monic polynomials
of A of degree d. Carlitz studied, in [9], the so-called Carlitz zeta values:

ζC(n) :=
∑

a∈A+

a−n ∈ K∞, n ≥ 1.

It is likely that the formal analogy of these objects with the classical zeta values

ζ(n) =
∑

i≥1

i−n ∈ R

with n integer (convergence occurs only if n ≥ 2) was the main motivation for his study. In a more
modern approach, we can say that Carlitz suggested, with his first pioneering papers, to develop an
arithmetic theory of periods over the ring Fq[θ] in parallel with the study of the arithmetic theory
of periods over Z.

In all the following, if R is a ring, R× denotes the group of the multiplicative invertible elements
of R. It was proved by Carlitz in [9] that, if n ≡ 0 (mod q − 1),

(1) ζC(n) ∈ K×π̃n,

where π̃ is the value in C∞ = K̂ac
∞ (1) of a convergent infinite product

(2) π̃ := −(−θ)
q

q−1

∞∏

i=1

(1 − θ1−qi)−1 ∈ (−θ)
1

q−1K∞,

uniquely defined up to the multiplication by an element of F×
q = Fq \ {0} (corresponding to the

choice of a root (−θ)
1

q−1 ). It has been proved in a variety of ways (see [19] to see the most relevant
ones) that π̃ is moreover transcendental over K.
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2 F. PELLARIN

The element π̃ is a fundamental period of the Carlitz exponential expC (Goss, [16, §3.2]), that
is, the unique surjective, entire, Fq-linear function

expC : C∞ → C∞

of kernel π̃Fq[θ] such that its first derivative satisfies exp′C = 1 (note that, since we are in a
characteristic p > 0 environment, a function with constant derivative is not necessarily C∞-linear).

In his book [24, §5.10], Thakur also consider several variants of classical multiple zeta values
in the context of the Carlitzian arithmetic over the ring A. We mention here what we think is
the most relevant. For n1, . . . , nr ∈ Z≥1, Thakur defines, as one of the analogues of the classical
multiple zeta values in the Carlitzian setting:

(3) ζC(n1, . . . , nr) =
∑

ai∈A+

|a1|>···>|ar |

1

an1

1 · · ·anr
r

∈ K∞.

Here, for x ∈ C×
∞, we write |x| = q−v∞(x) where v∞ is the valuation of C∞ (so that v∞(θ) = −1)

and we define |0| := 0. If r = 0 we further set the corresponding Thakur multiple zeta value ζC(∅)
to be equal to 1.

Classically, one of the reasons we could get interested in multiple zeta values is the need of
"enveloping" zeta values in the "simplest" Q-algebra possible. From Euler, it is well known that
the zeta values ζ(2), ζ(4), . . . all belong to the Q-algebra Q[ζ(2)]. In general, the other zeta values
are not expected to belong to this algebra. However, they belong to the Q-algebra ZR ⊂ R generated
by the multiple zeta values. It is known that the product of two multiple zeta values is a Q-linear
combination of multiple zeta values, and this algebra also has a more natural structure.

We expect that ZR is isomorphic to the algebra Q〈f3, f5, . . .〉X ⊗QQ[ζ(2)], where Q〈f3, f5, . . .〉X
is the Q-algebra generated by the non-commutative words in the alphabet with letters f3, f5 . . .
with, as a product, the shuffle product X (see Brown’s [8]). A folklore conjecture comes in support
of this guess; the number π and the zeta values ζ(3), ζ(5), . . . are expected to be algebraically
independent over Q. Multiple zeta values are thus expected to provide a natural basis of this Q-
algebra. See also [17] for the definition of a Q-algebra of finite multi-zeta values which could offer
a nice realization of the algebra Q〈f3, f5, . . .〉X .

Similarly, in the Carlitzian setting we note that, after (1), the values ζC(n) with n > 0 divisible
by q − 1 are all contained in the K-algebra K[ζC(q − 1)], which is isomorphic to K[X ] for an
indeterminate X . However, the remaining Carlitz zeta values ζC(1), . . . do not belong to this
algebra (if q > 2). Indeed, Chang and Yu proved in [13] that π̃ and the Carlitz zeta values ζC(n)
with n ≥ 1, q − 1 ∤ n and p ∤ n with p the prime number dividing q are algebraically independent
(we recall that these authors, in ibid., use the powerful algebraic independence methods introduced
by Papanikolas in [18]); see also [10, 11, 12].

Just as for the algebra ZR, Thakur proved in [26] that the product of two multiple zeta values
as in (3) is a linear combination (this time with coefficients in Fp) of such multiple zeta values.
Thakur also mentioned to the author of the present note that G. Todd’s numerical computations
have led to a good understanding of (conjectural) relations among Thakur’s multiple zeta values;
the relations are universal in a sense that is described in ibid. Compared to the classical setting,
the difficulty here is to handle the product of the so-called power sums (see later). We denote by
ZK∞ the K-sub-algebra of K∞ generated by the multiple zeta values (3); even conjecturally, in
spite of the striking results of algebraic independence mentioned above, we know very little about
the structure of this algebra. In particular, we presently do not know what could be the analogue
structure which could play the role of the algebra Q〈f3, f5, . . .〉X in this setting.
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In this note, we shall discuss of a generalization of the Thakur multiple zeta values which, so far,
has no counterpart in the classical setting. For this purpose, we note that A is an algebra over Fq (Z
is not an algebra over a field). Therefore, a series of advantages occurs in the Carlitzian framework,
notably the possibility to use the tensor product over Fq. We consider variables t1, . . . , ts over K
and we write ts for the family of variables (t1, . . . , ts). We denote by F s the field Fq(ts), so that
F 0 = Fq.

In all the following, if R is a ring, we denote by R∗ the underlying multiplicative monoid (inclusive
of the element 0). Note thatA+ is a multiplicative sub-monoid ofA∗. We denote by Fac

q the algebraic
closure of Fq in C∞.

Definition 1. A monoid homomorphism σ : A+ → (Fac
q ⊗Fq

F s)
∗ is called a semi-character. The

trivial semi-character is the map 1 : A+ → {1}. Let σ be a semi-character. We say that it is of
Dirichlet type if there exist Fq-algebra homomorphisms

ρi : A→ Fac
q ⊗Fq

F s, i = 1, . . . , s,

such that σ(a) = ρ1(a) · · · ρs(a) for all a ∈ A+. The integer s is called the length. By convention,
the semi-character 1 is the unique semi-character of Dirichlet type of length 0.

For example, setting t = t1, the map χt : A
+ → Fq[t]

∗ ⊂ (Fac
q ⊗Fq

F s)
∗ defined by χt(a) = a(t)

(2) is a semi-character of Dirichlet type. Let ζ be an element of Fac
q . The map a ∈ A+ 7→ χζ(a) =

a(ζ) ∈ Fac
q ⊂ (Fac

q ⊗Fq
F s)

∗ is also a semi-character of Dirichlet type, and the same can be said if
we now pick elements ζ1, . . . , ζs ∈ Fac

q and consider the map χζ : a 7→ χζ1(a) · · ·χζs(a) (this is more

commonly called a “Dirichlet character"). The map a ∈ A+ 7→ Fq[t]
∗ which sends a to tdegθ(a) is a

semi-character, but it can be proved that it is not of Dirichlet type.

Definition 2. Let σ : A+ → (Fac
q ⊗Fq

F s)
∗ be a semi-character. The associated twisted power sum

of order k and degree d is the sum:

Sd(k;σ) =
∑

a∈A+(d)

a−kσ(a) ∈ Fac
q ⊗Fq

K(ts).

More generally, let σ1, . . . , σr be semi-characters, let n1, . . . , nr be integers, and d a non-negative
integer. The associated multiple twisted power sum of degree d is the sum

Sd

(
σ1 σ2 · · · σr
n1 n2 · · · nr

)
= Sd(n1;σ1)

∑

d>i2>···>ir≥0

Si2(n2;σ2) · · ·Sir (nr;σr) ∈ Fac
q ⊗Fq

K(ts).

The integer
∑

i ni is called the weight and the integer r is called its depth.

We can write in both ways Sd(n;σ) = Sd

(
σ
n

)
. Observe also that

Sd

(
1 1 · · · 1

n1 n2 · · · nr

)
= Sd(n1, n2, . . . , nr) ∈ K,

in the notations of Thakur in [26, §1.2]. We hope that all these slightly different notations will not
bother the reader.

2The "evaluation at θ = t", in other words, the map which sends a polynomial a = a(θ) = a0 + a1θ + · · ·+ arθr

with the coefficients a0, . . . , ar ∈ Fq to the polynomial a(t) = a0 + a1t+ · · ·+ artr ∈ Fq[θ].
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Definition 3. With n1, . . . , nr ≥ 1 and semi-characters σ1, . . . , σr as above, we introduce the
associated multiple zeta value

ζC

(
σ1 σ2 · · · σr
n1 n2 · · · nr

)
:=
∑

d≥0

Sd

(
σ1 σ2 · · · σr
n1 n2 · · · nr

)
∈ ̂K∞ ⊗Fq

Fac
q ⊗Fq

F s.

The sum converges in the completion of the field K∞ ⊗Fq
Fac
q ⊗Fq

F s with respect to the unique
valuation extending the ∞-adic valuation of K∞ and inducing the trivial valuation over Fac

q ⊗Fq
F s.

We will say that this is the multiple zeta value associated to the matrix data
[
σ1 σ2 · · · σr
n1 n2 · · · nr

]
.

The integer
∑

i ni is called the weight of the above multiple zeta value and the integer r is called
its depth. If all the semi-characters σ1, . . . , σr are of Dirichlet type, then, for all 1 ≤ i ≤ r,
σi = ρi,1 · · · ρi,ni

for ring homomorphisms ρi,j . Then, we say that the multiple zeta value associated
to the above matrix data is of Dirichlet type, and the cardinality of the set {ρi,j ; i, j} is called its
length.

Again note that if σ1 = · · · = σr = 1, then, we can write

ζC

(
σ1 σ2 · · · σr
n1 n2 · · · nr

)
= ζC(n1, . . . , nr) ∈ K∞

with ζC(n1, . . . , nr) as in (3) (of Dirichlet type, depth r and length 0). Further, let us assume that
r = 1, n = n1 > 0 and that σ = χt1 · · ·χts . Then, we have that

ζC(n;σ) = ζC

(
σ

n

)
=
∑

a∈A+

a(t1) · · ·a(ts)

an
=
∏

P

(
1−

P (t1) · · ·P (ts)

Pn

)−1

∈ T×
s .

These series have been introduced in [20] and extensively studied in [3, 4, 5]. The product runs over
the irreducible polynomials of A+ and the convergence holds in the standard s-dimensional Tate
algebra, which can be identified with the C∞-algebra of the rigid analytic functions B(0, 1)s → C∞,
where B(0, 1) = {z ∈ C∞; |z| ≤ 1}. In fact, these functions extend to entire functions Cs

∞ → C∞

(see [3, Corollary 8]). More generally, if σ1, . . . , σr are semi-characters of Dirichlet type constructed
as monomials in the ring homomorphisms χt1 , . . . , χts (including the trivial semi-character), the
multiple zeta value

(4) ζC

(
σ1 σ2 · · · σr
n1 n2 · · · nr

)

belongs to Ts.
The following Proposition is easy to prove but the proof will appear elsewhere.

Proposition 4. With the above assumption over the semi-characters σ1, . . . , σr, the multiple zeta
value (4), hence of Dirichlet type and of length ≤ s, extends to an entire function Cs

∞ → Cs.

It is presently a work in progress of the author to show that the product of two multiple zeta
values as in Definition 3 is a linear combination, with coefficients in the field K ⊗Fq

Fac
q ⊗Fq

F s, of
such multiple zeta values (with the various matrices of associated data not including, necessarily,
the same semi-characters). We hope this will allow us to exhibit new multiple zeta values algebras
Z ̂Fac

q ((θ−1))⊗FqF s
containing the algebra ZK∞ and collecting the algebraic relations of ZK∞ in families

by specialization.
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2. Content of the present note

Waiting for more general results, in this note we will accomplish a more modest objective, as
we will only give a few explicit examples of shuffle products of such multiple zeta values in the
following case: s = 2, weight ≤ 2, and the semi-characters 1, σ, ψ and σψ of Dirichlet type, where

σ : a 7→ a(t1) ∈ Fq[t1, t2], ψ : a 7→ a(t2) ∈ Fq[t1, t2], (σψ)(a) = σ(a)ψ(a) = a(t1)a(t2).

As an advantage of our explicit and restrictive viewpoint, we will see beautiful formulas dropping
out from this new theory that we will apply to some new properties of the so-called “Bernoulli-Goss"
polynomials.

The matrix data we are going to handle are:

Four in weight 1. [
c1
1

]
,

[
cσ
1

]
,

[
cψ
1

]
,

[
cσψ
1

]
.

Four in weight 2 depth 1. [
c1
2

]
,

[
cσ
2

]
,

[
cψ
2

]
,

[
cσψ
2

]
.

Nine in weight 2 depth 2.
[
1 1

1 1

]
,

[
σ 1

1 1

]
,

[
1 σ
1 1

]
,

[
ψ 1

1 1

]
,

[
1 ψ
1 1

]
,

[
σψ 1

1 1

]
,

[
σ ψ
1 1

]
,

[
ψ σ
1 1

]
,

[
1 σψ
1 1

]
.

We shall show the following Theorem, which provides, taking into account the above tables, a
complete picture of all the products of two weight one multiple zeta values in the restrictive context
we have prefixed (in two variables t1, t2, and with the semi-characters 1, σ, ψ and σψ), unveiling
partly an extremely complex and mysterious algebra structure. From now on, we suppose that
q > 2. All the arguments presented below under this restriction can be also developed in the case
q = 2 with appropriate modifications, but we refrain from giving full details here.

Theorem 5. The following formulas hold.

(1) ζC(1)
2 = ζC(2) + 2ζC(1, 1),

(2) ζC(1;σ)ζC(1) = ζC(2;σ) + ζC

(
σ 1

1 1

)
,

(3) ζC(1;ψ)ζC(1) = ζC(2;ψ) + ζC

(
ψ 1

1 1

)
,

(4) ζC(1;σ)ζC(1;ψ) = ζC(2;σψ),

(5) ζC(1;σψ)ζC(1) = ζC(2;σψ)− ζC

(
σ ψ
1 1

)
− ζC

(
ψ σ
1 1

)
+ ζC

(
1 σψ
1 1

)
+ ζC

(
σψ 1

1 1

)
.

We observe that the formula (1) can be found in Thakur’s [24, Theorem 5.10.13]. Further, due
to the symmetry of the roles of t1 and t2, the formulas (2) and (3) are equivalent. Moreover, the
formula (4) is in fact well known (see Perkins’ [22] for more general formulas of this type). However,
we will give a proof of this in the spirit of multiple zeta values. The formulas (2) is, on the other
side, new, as far as we can see.
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3. Twisted power sums

We need a few tools in order to obtain our formulas; more precisely, we have to improve our skill
in computing twisted powers sums. For this purpose, we are going to use the tools introduced in
the recent preprint of Perkins and the author [21]; we are going to use for a while the notations of
this reference. Let s be an integer ≥ 0. We set, for an integer d ≥ 0:

Sd(n; s) =
∑

a∈A+(d)

a(t1) · · · a(ts)

an
∈ K[ts].

We are thus considering a special case of Definition 2. We also set, for d ≥ 0, F0(n; s) = 0 and

Fd(n; s) =

d−1∑

i=0

Sd(n; s) ∈ K[ts],

so that

lim
d→∞

Fd(n; s) = ζC(n; s) :=
∏

P

(
1−

P (t1) · · ·P (ts)

Pn

)−1

∈ T×
s ,

where the product runs over the irreducible polynomials of A+ (in general, all along this note,
empty sums are by convention equal to zero). We are using the notation of [21]. In particular, if σ
is the semi-character χt1 · · ·χts (of Dirichlet type), then, the comparison between the notations of
ibid. and those of the present note are:

Sd(n; s) = Sd(n;σ), ζC(n; s) = ζC(n;σ).

It is easy to show that, if 0 ≤ s′ < s, Sd(n; s
′) is the coefficient of (ts′+1 · · · ts)d in Fd+1(n; s). We

define inductively l0 = 1 and li = (θ − θq
i

)li−1, and we set l−n = 0 for n > 0. We denote by bi(Y )

the product (Y − θ) · · · (Y − θq
i−1

) ∈ A[Y ] (for an indeterminate Y ) if i > 0 and we set b0(Y ) = 1.
We also write m = ⌊ s−1

q−1⌋ (the brackets denote the integer part so that m is the biggest integer

≤ s−1
q−1 ). We set

Πs,d =
bd−m(t1) · · · bd−m(ts)

ld−1
∈ K[ts], d ≥ max{1,m}.

Now, we quote [21, Theorem 1]:

Theorem 6. For all integers s ≥ 1, such that s ≡ 1 (mod q − 1), there exists a non-zero rational
fraction Hs ∈ K(Y, ts) such that, for all d ≥ m, the following identity holds:

Fd(1; s) = Πs,dHs|Y=θqd−m .

If s = 1, we have the explicit formula

H1 =
1

t1 − θ
.

Further, if s = 1 +m(q − 1) for an integer m > 0, then the fraction Hs is a polynomial of A[Y, ts]
with the following properties:

(1) For all i, degti(Hs) = m− 1,

(2) degY (Hs) =
qm−1
q−1 −m.

The polynomial Hs is uniquely determined by these properties.
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We apply this Theorem to compute explicitly the twisted power sums associated to the data we
have chosen. For this, it suffices to choose s = q. In this case m = 1 and the Polynomial Hq of
Theorem 6 has degree 0 in Y as well as in t1, . . . , tq. From [21, §2.6] we deduce that Hq = 1 (the
same result is given as an example in Florent Demeslay’s thesis [14]). In particular, to compute
most of the twisted power sums associated to our data it suffices to analyze the polynomials

(5) Fd+1(1; q) =
bd(t1) · · · bd(tq)

ld
.

The coefficients of (t3 · · · tq)d, (t2 · · · tq)d and (t1 · · · tq)d in Fd+1(1; q) are easily computed, and we
get, for all d ≥ 0 (note that these are well known formulas; see [22]):

Sd(1; 0) =
1

ld
,(6)

Sd(1; 1) =
bd(t1)

ld
,(7)

Sd(1; 2) =
bd(t1)bd(t2)

ld
.(8)

To compute Sd(2; 0), Sd(2, 1), Sd(2, 2) (3) we observe that, replacing θ with θq in (5):

Fd+1(q; q) =
bd+1(t1) · · · bd+1(tq)

lqd(t1 − θ) · · · (tq − θ)
.

Note that the former is a polynomial in ts, written as a reducible fraction. We get that

Fd+1(2; 2) =
bd+1(t1) · · · bd+1(tq)

lqd(t1 − θ) · · · (tq − θ)

∣∣∣∣
t3=···=tq=θ

=
bd+1(t1)bd+1(t2)

l2d(t1 − θ)(t2 − θ)
.

Calculating the coefficients of td2 and (t1t2)
d, and subtracting Fd+1(2; 2)−Fd(2; 2), we easily obtain

the formulas, valid for d ≥ 0 (the first one is well known):

Sd(2; 0) =
1

l2d
,

Sd(2; 1) =
bd(t1)

(t1 − θ)l2d
(t1 − θq

d

),(9)

Sd(2; 2) =
bd(t1)bd(t2)

(t1 − θ)(t2 − θ)l2d
(t1t2 − θq

d

(t1 + t2) + 2θ1+qd − θ2)

=
bd(t1)bd(t2)

(t1 − θ)(t2 − θ)l2d
[(t1 − θ)(t2 − θ) + (t1 − θ)(θ − θq

d

) + (t2 − θ)(θ − θq
d

)].(10)

We will also need the next Lemma which is also well known, where τ : A[t] → A[t] is the Fq[t]-linear
endomorphism such that τ(θ) = θq.

Lemma 7. We have the following formula, which holds in A[t].

τ(bd(t)) = ld

d∑

i=0

bi(t)

li
, d ≥ 0.

3In the notations of [21]; in our note, we should write Sd(2; 1), Sd(2; σ), Sd(2; σψ).
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Proof. We recall the proof for convenience of the reader. We proceed by induction over d. If d = 0,
the formula is obvious. If d > 0, it suffices to show that

bd+1(t) = (t− θ)ld

d∑

i=0

l−1
i bi(t).

Now, we compute easily, by using the induction hypothesis:

bd+2(t) = (t− θ + θ − θq
d

)bd+1

= (θ − θq
d

)bd+1 + (t− θ)bd+1

= (t− θ)ld(θ − θq
d

)

(
d∑

i=0

l−1
i bi(t) + l−1

d+1bd+1(t)

)

= (t− θ)ld+1

d+1∑

i=0

l−1
i bi(t).

�

4. Proof of Theorem 5

Proof of Theorem 5, (2). We compute, by using (6) and (7):

Sd(1;σ)Sd(1;1) =
bd(t1)

l2d
.

On the other hand, we have seen in (9) that

Sd(2;σ) =
bd(t1)

l2d

t1 − θq
d

t1 − θ
=
τ(bd(t1))

l2d
,

where τ(bd(t1)) has the obvious meaning. We compute (the third identity follows from Lemma 7):

Sd

(
1 σ
1 1

)
= Sd(1;1)

d−1∑

i=0

Si(1;σ)

=
1

ld

d−1∑

i=0

l−1
i bi(t1)

=
τ(bd−1(t1))

ldld−1

=
bd(t1)

l2d

θ − θq
d

t1 − θ
.

Combining the above formulas, we see that

(11) Sd(1;σ)Sd(1;1) = Sd(2;σ)− Sd

(
1 σ
1 1

)
.
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With the obvious meaning of some new notations introduced below, we deduce:

Fd(1;σ)Fd(1;1) =

d−1∑

i=0

Si(1;σ)

d−1∑

j=0

Sj(1;1)

= Fd

(
1 σ
1 1

)
+ Fd

(
σ 1

1 1

)
+

d−1∑

i=0

Sd(1;σ)Sd(1;1)

= Fd

(
1 σ
1 1

)
+ Fd

(
σ 1

1 1

)
+

d−1∑

i=0

(
Si(2;σ)− Si

(
1 σ
1 1

))

= Fd

(
1 σ
1 1

)
+ Fd

(
σ 1

1 1

)
− Fd

(
1 σ
1 1

)
+ Fd(2;σ)

= Fd

(
σ 1

1 1

)
+ Fd(2;σ),

where we have used (11) in the third equality. We rewrite the resulting formula:

(12) Fd(1;σ)Fd(1;1) = Fd

(
σ 1

1 1

)
+ Fd(2;σ).

Taking the limit d→ ∞ in (12) we obtain the required multiple zeta identity. �

The above also implies the formula (3) of Theorem 5 by interchanging t1 and t2. To continue,
we notice the next Lemma.

Lemma 8. We have that

Sd(2;σψ) =
bd(t1)bd(ts)

(t1 − θ)(t2 − θ)l2d
+ Sd

(
ψ σ
1 1

)
+ Sd

(
σ ψ
1 1

)
.

Proof. We compute:

Sd

(
σ ψ
1 1

)
= Sd(1;σ)

d−1∑

i=0

Si(1;ψ)

=
bd(t1)

ld

d−1∑

i=0

bi(t2)

li

=
bd(t1)bd(ts)

(t1 − θ)(t2 − θ)l2d
[(t1 − θ)(θ − θq

d

)],

in virtue of (7) and Lemma 7. Similarly, we have

Sd

(
ψ σ
1 1

)
=

bd(t1)bd(ts)

(t1 − θ)(t2 − θ)l2d
[(t2 − θ)(θ − θq

d

)].

The lemma follows from (10). �

Proof of Theorem 5, (4). As we have already mentioned, this is a well known formula but we want
to provide a new proof. We note, by (7), that

Sd(1;σ)Sd(1;ψ) =
bd(t1)bd(t2)

(t1 − θ)(t2 − θ)l2d
[(t1 − θ)(t2 − θ)].
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Hence, Lemma 8 implies the formula

(13) Sd(1;σ)Sd(1;ψ) = Sd(2;σψ)− Sd

(
ψ σ
1 1

)
− Sd

(
σ ψ
1 1

)
.

We deduce:

Fd(1;σ)Fd(1;ψ) = Fd

(
ψ σ
1 1

)
+ Fd

(
σ ψ
1 1

)
+

d−1∑

i=0

Sd(1;σ)Sd(1;ψ)

= Fd

(
ψ σ
1 1

)
+ Fd

(
σ ψ
1 1

)
+

d−1∑

i=0

(
Sd(2;σψ)− Sd

(
ψ σ
1 1

)
− Sd

(
σ ψ
1 1

))

= Fd

(
ψ σ
1 1

)
− Fd

(
ψ σ
1 1

)
+ Fd

(
σ ψ
1 1

)
− Fd

(
σ ψ
1 1

)
+ Fd(2;σψ)

= Fd(2;σψ),

where we have applied the formula (13) in the third equality. The formula of the theorem follows
by letting d→ ∞. �

Proof of Theorem 5, (5). The identities (6) and (8) imply that

Sd(1;1)Sd(1;σψ) =
bd(t1)bd(t2)

(t1 − θ)(t2 − θ)l2d
[(t1 − θ)(t2 − θ)].

Lemma 8 then implies that also:

(14) Sd(1;1)Sd(1;σψ) = Sd(2;σψ)− Sd

(
ψ σ
1 1

)
− Sd

(
σ ψ
1 1

)
.

We deduce:

Fd(1;1)Fd(1;σψ) = Fd

(
1 σψ
1 1

)
+ Fd

(
σψ 1

1 1

)
+

d−1∑

i=0

Sd(1;σ)Sd(1;ψ)

= Fd

(
1 σψ
1 1

)
+ Fd

(
σψ 1

1 1

)
+

d−1∑

i=0

(
Sd(2;σψ)− Sd

(
ψ σ
1 1

)
− Sd

(
σ ψ
1 1

))

= Fd(2;σψ) + Fd

(
1 σψ
1 1

)
+ Fd

(
σψ 1

1 1

)
− Fd

(
ψ σ
1 1

)
− Fd

(
σ ψ
1 1

)
,

so we have reached the formula

(15) Fd(1;1)Fd(1;σψ) = Fd(2;σψ) + Fd

(
1 σψ
1 1

)
+ Fd

(
σψ 1

1 1

)
− Fd

(
ψ σ
1 1

)
− Fd

(
σ ψ
1 1

)
.

Letting d tend to ∞ in (15) concludes the proof. �

Remark 9. In fact, it is trivial that

ζC(1)ζC(1;σψ)− ζC(1;σ)ζC(1, ψ) = ζd

(
1 σψ
1 1

)
+ ζd

(
σψ 1

1 1

)
− ζd

(
ψ σ
1 1

)
− ζd

(
σ ψ
1 1

)
,

and that the corresponding identity for the sums Fd holds as well. Indeed, setting αi = Si(1;1) =
l−1
i , βi = Si(1;σ) = bi(t1)l

−1
i , γi = Si(1;ψ) = bi(t2)l

−1
i and δi = Si(1;σψ) = bi(t1)bi(t2)l

−1
i , we see
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that
∑

i≥0

αi

∑

j≥0

δj −
∑

i≥0

βi
∑

j≥0

γj =

=
∑

i>j≥0

αiδj +
∑

j>i≥0

αiδj −
∑

i>j≥0

βiγj −
∑

j>i≥0

βiγj +

+
∑

i≥0

αiδi −
∑

i≥0

βiγi.

But, of course, αiδi = βiγi for all i, from which the identity follows. Up to this simple trick, the
identity (5) of Theorem 5 can be considered as equivalent to the identity (4) of the same result.

5. Some consequences

In virtue of Proposition 4 or by direct verification, the identities of Theorem 5 involve entire
functions in two variables t1, t2. Hence, specializing the variables, we are able to recover identities
in C∞ or in some intermediate Tate algebra. We are going to show several results arising from the
formula (2). We recall the formula (2) of Theorem 5 for convenience:

(16) ζC(1;σ)ζC(1) = ζC

(
σ 1

1 1

)
+ ζC(2;σ).

First of all, we can replace t1 by θ, but this does not give anything interesting; we mention it only
to show how the substitution works. We recall the following formula that the author proved in [20]:

(17) ζC(1;σ) =
π̃

(θ − t1)ω(t1)
,

where

ω(t1) = (−θ)
1

q−1

∏

i≥0

(
1−

t1
θqi

)−1

∈ T×
1 ,

is the Anderson-Thakur function (note that Ω(t1) =
1

(t1−θ)ω(t1)
is an entire function; see [4], con-

taining a recent overview on the known properties of this function). The function ω(t1) having a
simple pole of residue −π̃ at t1 = θ, we see that ζC(1;σ)|t1=θ = 1. Now, it is easy to see that

(18) ζC

(
1 σ
1 1

)
=
∑

d≥0

Sd(1;σ)
d−1∑

i=0

l−1
i =

∑

d≥0

l−1
d bd(t1)

d−1∑

i=0

l−1
i

vanishes at t1 = θ. Further,

ζC(2;σ) =
∑

d≥0

Sd(2;σ)

takes the value ζC(1) at t1 = θ. Hence, with this evaluation, we only get the tautological identity
ζC(1) = ζC(1).

5.1. A family of multiple zeta identitities. We can also evaluate this identity at t1 = θq
−k

with k > 0 and raise the obtained identity to the power qk. Working out the intermediate details,
the reader will easily recover the following sum shuffle formula:

ζC(q
k)ζC(q

k − 1) = ζC(2q
k − 1) + ζC(q

k − 1, qk), k ≥ 1.
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5.2. Evaluation at trivial zeros. Now, we evaluate the second identity of Theorem 5 at t1 equal
to a trivial zero of the function ζC(1;σ) which, as it appears from the computation of the poles of

the gamma factor of (17), means that we replace t1 with θq
d

with d > 0. This implies the following
result.

Theorem 10. The following formula holds

(19) BGqd−2 = −
∑

d≥i>j≥0

bi(θ
qd)

lilj
, d ≥ 1.

Proof. In fact, to make things more transparent, we make a step back to the identity (12) that we
rewrite as

Fk(2;σ) = Fk(1;σ)Fk(1;1)− Fk

(
σ 1

1 1

)
, k ≥ 0.

By Proposition 4, we see that all the sequences Fk(· · · ) involved tend, for k → ∞, to entire
functions of the variable t1. However, we already know from [3, Proposition 6] that Fk(2;σ) and
Fk(1;σ)Fk(1;1) tend to entire functions, so we immediately obtain that Fk ( σ 1

1 1 ) tends to an entire
function as k → ∞ without using Proposition 4 (in fact, this can be also seen directly). Replacing

t1 = θq
d

with d > 0 yields the value zero for the limit limk→∞ Fk(1;σ)Fk(1;1) = ζC(1;σ)ζC(1)

evaluated at t1 = θq
d

. Indeed, after (17), θq
d

is a trivial zero of ζC(1;σ). Further, we see that

ζC(2;σ)|t1=θqd = lim
k→∞

Fk(2;σ)|t1=θqd =
∑

k≥0

∑

a∈A+(k)

aq
d−2 = BGqd−2 ∈ A.

Moreover, by (18) and evaluating at t1 = θq
d

,

ζC

(
σ 1

1 1

)

t1=θqd

= lim
k→∞

Fk

(
σ 1

1 1

)

t1=θqd

=
∑

i>j≥0

bi(θ
qd)

lilj
=

∑

d≥i>j≥0

bi(θ
qd)

lilj
,

because bi(θ
qd) vanishes for all i > d. �

One nice aspect of the formula (19) is that it is easy to reduce it modulo an irreducible polynomial
of A of degree d. The following family of congruences is an immediate consequence of our result,
and was first observed by Thakur in [23], and Anglès and Ould Douh in [2]:

Corollary 11. For all P an irreducible polynomial of A+(d), we have (recall that |P | = qd):

BG|P |−2 ≡
d−1∑

i=0

1

li
≡ Fd(1;1) (mod P ).

Proof. For all i, j with d ≥ i > j ≥ 0, the fraction bi(θ
qd )(lilj)

−1 is P -integral for any P irreducible

of degree d. If i < d, we have that bi(θ
qd)l−1

i ≡ 0 (mod P ), because bi(θ
qd) is divisible, in A, by

θq
d

− θ. Further, bd(θ
qd)/ld = −1, from which the congruence follows. �

Remark 12. The reader can do similar computations with other formulas; more results will appear
elsewhere. Observe, however, that manipulating in the same way the formula (5) of Theorem 5
returns relatively less identities. The reason seems to be that this formula is trivially equivalent
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to the formula (4), as it follows from Remark 9. At least, we deduce, specializing t1 = θq
−k

and

t2 = θq
−h

, the following strange sum shuffle identity, valid for h, k ≥ 0 with h+ k > 0:

ζC(1)
qkζC(q

k+h − qh − 1) =

= ζC(2q
h+k − qh − 1) + ζC(q

k+h, qk+h − qh − 1) + ζC(q
k+h − qh − 1, qk+h)−

−ζC(q
k+h − qh, qk+h − 1)− ζC(q

k+h − 1, qk+h − qh).

The formula (2) of Theorem 5 and especially the formula of Theorem 19 can be seen as some kind
of analogue of Euler’s formula ζ(3) = ζ(2, 1) (for classical Euler multiple zeta values).

5.2.1. A degree computation. In contrast with the universal formulas obtained in [21] for the sums
Fd(n; s) in the case s ≡ n (mod q− 1), there seems to be no such a formula for BGqd−2, for d ≥ 1.
At least, we have a “universal formula" for its degree, and this can be deduced from (19) as we are
going to see in the next result, where it is supposed, again (as we did until now), that q > 2.

Theorem 13. We have

degθ(BGqd−2) = (d− 1)qd −
2q(qd−1 − 1)

q − 1
.

This result should be compared with more classical degree computations by Wan, Diaz-Vargas,
Poonen, Sheats, as well as Böckle’s [7, Theorem 1.2] where the interested reader can find all the
necessary references to the work of these authors on this topic.

Theorem 13 seems to be new. Thomas [28, Theorem 2] already proved an explicit formula to
compute, not only the degree of BGqd−2 for d > 0 but also the degree of BGn for any n > 0 with

q− 1 ∤ n in case q is a prime number (4). It follows from Thomas’ Theorem 1 and Corollary 1 ibid.
that if q − 1 ∤ n, and q is a prime, then BGn = 1 if and only if ℓq(n) < q, where ℓq(n) is the sum
of the digits of the base-q expansion of n. However, Thomas formula contains an iterative process
and for this reason, the identity of Theorem 13 is not immediately recognizable in it, and even if
it was, it would have been valid only for q a prime number. Bruno Anglès has communicated to
the author a simple proof of Theorem 13 in the case of q = p > 2 a prime number by using Sheats’
method. Also, Dinesh Thakur has pointed out to the author that this result, for general q, can be
more simply deduced from an application of his duality formula [27, Theorem 2, (5)].

Remark 14. Note that for all d ≥ 1, qd − 2 is a dual magic number in the sense of [15, §5.7] (see
also [16]). In this paper, Goss points out a result of Thomas which exhibits a computation of the
degree of BGn when q−1 ∤ n and when n is a magic number ([16, §8.22]), in terms of the the degree
of the Carlitz factorial. Our computation involves certain dual magic numbers which are not magic
numbers, and this could also be a new instance of the conjectural functional equation for the Goss
zeta function associated to the algebra A.

More results of the type of Theorem 13 can be obtained from more general consequences of the
sum shuffle relations for our multi-zeta values in the Tate algebras, but they will be described in
another work (the present paper can be considered as a first of more general results that will appear
elsewhere). Before proving the Theorem, we need some notation and Lemmas. For commodity, we
set

αi =
bi(θ

qd)

li
, βj = l−1

j ,

4He obtained a more general result in this direction, also involving “first derivatives" of the Goss zeta function of
A at its “trivial zeroes," the negative integers divisible by q − 1.
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so that the formula (19) rewrites as

BGqd−2 = −
∑

d≥i>j≥0

αiβj .

Then, we have

(20) δi,j := degθ(αiβj) = iqd −
i∑

n=1

qn −

j∑

m=1

qm.

We recall the convention that an empty sum is zero. Moreover, the degree of 0 in θ is set to be
−∞. We have the following Lemma.

Lemma 15. Assuming that d ≥ i > j ≥ 0, d ≥ i′ > j′ ≥ 0, we have that

δi,j = degθ(αiβj) = degθ(αi′βj′ ) = δi′,j′

if and only if the following cases occur.

(1) i = i′, j = j′,
(2) i = d, i′ = d− 1 and j = j′,
(3) i′ = d, i = d− 1 and j = j′.

Proof. For symmetry of the roles of i, i′, we can assume that i ≥ i′. First of all, if i = i′ we have
that

δi,j − δi′,j′ =

j′∑

m′=1

qm
′

−

j∑

m=1

qm,

which equals zero if and only if j = j′; if i = i′, δi,j = δi′,j′ if and only if j = j′. Now, let us suppose
that i > i′. From (20) we deduce that

δi,j − δi′,j′ = (i− i′)qd − ψi,i′,j,j′ ,

where

ψi,i′,j,j′ =

i∑

n=1

qn −
i′∑

n′=1

qn
′

+

j∑

m=1

qm −

j′∑

m′=1

qm
′

∈ Z.

Since i > i′ > j′ and i > j, we have that ψi,i′,j,j′ ≥ 0 and we can find integers cr ∈ {0, 1, 2}, unique,

such that ψi,i′,j,j′ =
∑i

r=0 crq
r, so we see that

0 ≤ ψi,i′,j,j′ < qi+1

(recall that q > 2). If i < d, we see that

δi,j − δi′,j′ = (i− i′)qd − ψi,i′,j,j′ > qd − qi+1 ≥ 0

so that δi,j 6= δi′,j′ in this case. It remains to study the case in which i = d. In this case,
j′ < i′ ≤ d− 1 and we can write:

δi,j − δi′,j′ = (d− i′ − 1)qd − ρi′,j,j′ ,

where

ρi′,j,j′ =
d−1∑

n=i′+1

qn +

j∑

m=1

qm −

j′∑

m′=1

qm
′

∈ Z.

This number is obviously ≥ 0 and the following estimate holds

0 ≤ ρi′,j,j′ < qd.
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If i′ ≤ d− 2, we thus have that δd,j > δi′,j′ for any choice of j < d and j′ < i′. If i′ = d− 1, we have

δi,j − δi′,j′ =

j′∑

m′=1

qm
′

−

j∑

m=1

qm

which equals zero if and only if j = j′. �

In view of the above Lemma, to compute the degree of BGqd−2, we rearrange the sum (19) in
the following way:

BGqd−2 = −

U︷ ︸︸ ︷
αdβd−1 − (αd + αd−1)

d−2∑

j=0

βj

︸ ︷︷ ︸
V

−
d−2∑

i=0

i−1∑

j=0

αiβj

︸ ︷︷ ︸
W

=: −(U + V +W ).

Lemma 16. We have:

(1) degθ(U) = (d− 1)qd − 2(q + · · ·+ qd−1),
(2) degθ(V ) = (d− 2)qd − (q + · · ·+ qd−2),
(3) degθ(W ) = (d− 2)qd − (q + · · ·+ qd−2).

Proof. We compute the degree of U :

degθ(U) = dqd −
d∑

n=1

qn −
d−1∑

m=1

qm = (d− 1)qd − 2

d−1∑

n=1

qn.

To compute the degree of V , we observe:

αd + αd−1 =
bd(θ

qd)

ld
−
bd−1(θ

qd)

ld−1

=
bd(θ

qd)− (θq
d

− θ)bd−1(θ
qd)

ld

=
bd−1(θ

qd)[θq
d

− θq
d−1

− θq
d

+ θ]

ld

=
(θ − θq

d−1

)bd−1(θ
qd)

ld
.

Hence,

degθ(V ) = degθ(αd + αd−1) + degθ




d−2∑

j=0

βj




= degθ(αd + αd−1)

= qd−1 + (d− 1)qd −
d∑

n=1

qn

= (d− 2)qd −
d−2∑

n=1

qn.
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To compute the degree of W , we first notice, by Lemma 20, that all the terms involved in the double
sum have different degrees. The term with the largest degree is the one corresponding to i = d− 2
and j = 0, which is equal to αd−2, and which has the expected degree. �

Proof of Theorem 13. By Lemma 16 and by the assumption q > 2, we have

degθ(U) > degθ(V ), degθ(W ),

and

degθ(BGqd−2) = degθ

(
bd(θ

qd)

ldld−1

)
= (d− 1)qd −

2q(qd−1 − 1)

q − 1
.

�

Remark 17. Anglès and Ould Douh have proved, in [2], that there exist infinitely many irreducible
elements of A+ such that BG|P |−2 6≡ 0 (mod P ) (recall that |P | = qd in (19) and that q > 2 all
along the present note). As a consequence we see, by the fact that

Fdegθ(P )(1;σ) 6≡ 0 (mod P )

for all irreducible P of A+ (easily checked), that the right-hand sides of (12) and (15) determine
non-zero elements of the ring As defined in [21]. This result is an easy consequence of their formula
that we have re-obtained in our Corollary 11.

Let us recall the elegant proof of this property in [2]. Since BGqd−2 ≡
∑d−1

i=0 l
−1
i (mod P ) (for

P irreducible of degree d), we have BGqd−2 ≡ 0 (mod P ) if and only if P divides the polynomial

V (d) = ld−1

d−1∑

i=0

l−1
i ∈ A

which has degree
∑d−1

n=1 q
n = qd−q

q−1 , so that we have at most

qd − q

d(q − 1)

monic irreducible polynomials P of degree d dividing V (d). Now, the number of monic irreducible
polynomials P of degree d is equal to the the necklace polynomial (where µ designates Moebius’
function)

Md(q) =
1

d

∑

l|d

µ(l)q
d
l ,

which is known to have an asymptotic behavior, as d→ ∞, which is of a strictly bigger magnitude
than that of the above fraction if q > 2. For example, if d = p′ is a prime number, the necklace

polynomial Mp′(q) equals qp
′
−q

p′ and we have

qp
′

− q

p′
>

qp
′

− q

p′(q − 1)
,

because q > 2.
The formula (19) does not seem to immediately imply the result of Anglès and Ould Douh

(without using the intermediate congruence with the polynomial V (d)), but we have not tried to
rearrange the terms of the sum completely.



MULTIPLE ZETA VALUES 17

6. Looking for more relations

We gave above some hints of a variant of the shuffle product for the multiple zeta values:

ζC

(
σ1 σ2 · · · σr
n1 n2 · · · nr

)

in the simplest non-trivial cases (weight 2). We shall complete our note by suggesting some other
tools to develop, in order to compute other kinds of relations.

We denote by K{τ} the skew polynomial ring of finite sums
∑

i ciτ
i, with ci ∈ K, with the

non-commutative product uniquely determined by the rule τc = cqτ for c ∈ K. Additionally, let t
be a variable (we can set t = t1 to get compatibility with the first part of the note). We have an
isomorphism of K-vector spaces:

K[t]
η
−→ K{τ}

defined by η(ti) = Cθi = (θ + τ)i for i > 0 and η(1) = 1. Here Cθ = θ + τ is the multiplication by
θ of the Carlitz module. The inverse of this isomorphism sends 1 to 1 and, for j > 0, τ j to bj(t),
where we recall that

bj(t) = (t− θ) · · · (t− θq
j−1

).

To check that η is an isomorphism, one uses the evaluation at the Anderson-Thakur function. The
evaluation f(ω) of an element f = f0+ f1τ + · · ·+ frτ

r ∈ K{τ} at ω is by definition the expression
(f0 + f1b1 + · · ·+ frbr)ω. It is easy to see that Ca(ω) = a(t)ω, so that, for all f(t) ∈ K[t], we have

η(f)(ω) = f(t).

This isomorphism η is useful to construct certain identities for finite sums. We recall, as a first
example, the formula (7):

Sd(1; 1) = Sd(1;σ) =
∑

a∈A+(d)

a−1a(t) =
bd(t)

ld
, d ≥ 0.

It is easy to show that η(a(t)) = Ca ∈ K{τ}. Therefore, the isomorphism η yields the identity:

η(Sd(1; 1)) =
∑

a∈A+(d)

a−1Ca = l−1
d τd, d ≥ 0.

This picture can be generalized. We can use variables t1, . . . , ts, indeterminates τ1, . . . , τs, the
rings K[t1, . . . , ts] (commutative) and K{τ1, . . . , τs} (non commutative, with multiplication rules:
τiτj = τjτi and τic = cqτi for c ∈ K), and the isomorphism

K[t1, . . . , ts]
η
−→ K{τ1, . . . , τs}

uniquely defined by η(tji ) = (θ+τi)
j (we write η instead of the more precise expression ηs we should

have used, to simplify our notations). Then, any time we can show a formula for power sums in
K[t1, . . . , ts], we obtain a similar formula in the ring K{τ1, . . . , τs}.

Florent Demeslay proved, in his Thesis [14], the following result.

Theorem 18. Assume that s > 0. There exists a rational fraction Qk,s ∈ K(t1, . . . , ts)(Y ) such
that

Sd(k; s) =
bd(t1) · · · bd(ts)

ld
Qk,s(θ

qd−m

), d ≥ 0

where m = max{0, ⌊ s−1
q−1⌋}.
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The case s = 0 (no variables) was already known to Anderson and Thakur [1]. We would like to
apply this Theorem for s > 0 to produce identities in the non-commutative indeterminates τ1, . . . , τs
by means of the isomorphism η. For example, if k = 1 and s = 1, we are reduced to the formula
(7) with Q1,1 = 1. However, there is no reason to expect that Qk,s is a polynomial and in fact, in

general, this is false. For example, it is easy to check that Qq,1 = t−Y
t−θ , which is not a polynomial. It

is of course possible to compute the rational fractions Qk,s by using the polynomials Hs of Theorem
6, but even with that in mind, we cannot escape this problem.

A partial solution is given by Lemma 7. We now denote by τ (we do not want to mix it up with
τ which is now an indeterminate!) the Fq[t]-algebra endomorphism of K[t] defined by τ (c) = cq.
Then, Lemma 7 and induction imply the following result.

Proposition 19. For all n > 0 and d ≥ 0, the following formula holds:

τ
n(bd(t)) = lq

n−1

d

∑

d≥i1≥i2≥···≥in−1≥in≥0

lq
n−2−qn−1

i1
lq

n−3−qn−2

i2
· · · l1−q

in−1
l−1
in
bin(t).

In particular, for all n > 0 and d ≥ 0:

Sd(q
n; 1) = lq

n−1−qn

d

∑

d≥i1≥i2≥···≥in−1≥in≥0

lq
n−2−qn−1

i1
lq

n−3−qn−2

i2
· · · l1−q

in−1
l−1
in
bin(t).

Although the rational fraction Qq,1 and more generally the fractions Qqn,1 are certainly not
polynomials, the above formulas in K[t] can be transferred to identities in the ring K{τ}. We
obtain, by applying the map η:

Corollary 20. For all d ≥ 0,

Sd(q
n; 1) :=

∑

a∈A+(d)

a−qnCa = lq
n−1−qn

d

∑

d≥i1≥i2≥···≥in−1≥in≥0

lq
n−2−qn−1

i1
lq

n−3−qn−2

i2
· · · l1−q

in−1
l−1
in
τn.

Let σ1, . . . , σr be semi-characters, let n1, . . . , nr be integers, and d a non-negative integer. We
set, for convenience:

S⋆
d

(
σ1 σ2 · · · σr
n1 n2 · · · nr

)
= Sd(n1;σ1)

∑

d≥i2≥···≥ir≥0

Si2(n2;σ2) · · ·Sir (nr;σr) ∈ Fac
q ⊗Fq

K(ts)

(we have introduced non-strict inequalities in the sum). Further, we set:

ζ⋆C

(
σ1 σ2 · · · σr
n1 n2 · · · nr

)
:=
∑

d≥0

S∗
d

(
σ1 σ2 · · · σr
n1 n2 · · · nr

)
∈ ̂K∞ ⊗Fq

Fac
q ⊗Fq

F s.

We observe that Sd(j;1) = l−j
d if j = kql with l ≥ 0 and k = 1, . . . , q − 1. Hence, the second

identity of Proposition 19 can be rewritten, with σ = χt, in the following way:

Sd(q
n;σ) = S⋆

d

(
1 1 · · · 1 σ

qn−1(q − 1) qn−2(q − 1) · · · q − 1 1

)
.

Summing over d = 0, 1, . . ., we obtain the formula:

ζC(q
n;σ) = ζ⋆C

(
1 1 · · · 1 σ

qn−1(q − 1) qn−2(q − 1) · · · q − 1 1

)
.

We observe that the evaluation at t = θq
k

gives:

. . . , θq
n−1

︸ ︷︷ ︸
special values6=0

, θq
n

︸︷︷︸
value one

, θq
n+1

, θq
n+2

, . . .︸ ︷︷ ︸
trivial zeroes

.
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Evaluating e.g. at t = θ returns us the following identity, with the obvious meaning of the second
sum:

ζC(q
n − 1) = ζ⋆C(q

n−1(q − 1), qn−2(q − 1), . . . , q − 1︸ ︷︷ ︸
n terms

).

We can rewrite the identity of our Corollary 20 as follows:

Sd(q
n; 1) =

∑

a∈A+(d)

a−qnCa =

= Sd(q
n−1(q − 1))

∑

d≥i1≥i2≥···≥in−1≥in≥0

Si1(q
n−2(q − 1))Si2(q

n−3(q − 1)) · · ·Sin−1
(q − 1)Sin(1)τ

n,

with Sd(n) := Sd(n;1). If f = f0 + f1τ + · · ·+ frτ
r ∈ K{τ}, the evaluation at one f(1) of f is the

element f0+f1+ · · ·+fr ∈ K. It is easy to see that the series
∑

d≥0

∑
a∈A+(d) a

−qnCa(1) converges

in K∞. We obtain the formula:

(21)

∞∑

d=0

Sd(q
n; 1)(1) = ζ⋆C(q

n−1(q − 1), qn−2(q − 1), . . . , q − 1︸ ︷︷ ︸
n terms

, 1).

These formulas can be easily related to Thakur’s multiple zeta values ζC (without the ⋆ mark), by
means of simple manipulations. We illustrate this in the case n = 1. We observe that

∞∑

d=0

Sd(q; 1)(1) = ζ⋆C(q − 1, 1) = ζC(q − 1, 1) +
∑

i≥0

Si(q − 1;1)Si(1,1).

Now, since Si(q − 1;1) = l1−q
i and Si(1;1) = li, we get
∑

i≥0

Si(q − 1;1)Si(1;1) =
∑

i≥0

l−q
i = logC(1)

q,

where logC(z) =
∑

i≥0 l
−1
i zq

i

is the Carlitz logarithm of z ∈ C∞, well defined for |z| < qq/(q−1) (we

recall that | · | is the unique norm of C∞ such that |θ| = q) and in particular, well defined at z = 1.
It is plain that logC(1) = ζC(1), an identity which was, essentially, first noticed by Carlitz. Thus
we have that

ζ⋆C(q − 1, 1) = ζC(q − 1, 1) + ζC(1)
q.

The shuffle product of ζC(s1) and ζC(s2) yields, for s1, s2 ∈ N+ such that s1 + s2 ≤ q (see
Thakur, [25, Theorem 1]), the simple formula:

ζC(1)ζC(q − 1) = ζC(q) + ζC(q − 1, 1) + ζC(1, q − 1) = ζC(1)
q + ζC(q − 1, 1) + ζC(1, q − 1).

This means that
∞∑

d=0

Sd(q; 1)(1) = ζ⋆C(q − 1, 1) = ζC(1)ζC(q − 1)− ζC(1, q − 1).

We do not know how to evaluate the sum
∑∞

d=0Sd(q; 1)(1) (and more generally, similar sums we
do not want to introduce in this paper) directly, and it would be nice to develop a technique to
do so independently of the shuffle product, in order to re-obtain the shuffle product formula. Note
also that Thakur demonstrated the formula (see [25, Theorem 5]):

ζC(m,m(q − 1)) =
ζC(mq)

(θ − θq)m
, m = 1, . . . , q − 1.
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Hence, we compute easily, with m = 1:

ζ⋆C(q − 1, 1) = ζC(q − 1, 1) + ζC(1)
q

= ζC(q − 1)ζC(1)− ζC(1, q − 1)

= ζC(1)

(
ζC(q − 1)−

ζC(1)
q−1

θ − θq

)
.

Remark 21. In the examples we have studied above, the semi-characters are all of Dirichlet type
but for no reason this should be considered as a necessary condition for the existence of shuffle-like
formulas. For example, if ν : A+ → Fq[t] is the semi-character which which associates a ∈ A+ to

tdegθ(a) (this is not of Dirichlet type), then the following formula holds in the Tate algebra T, as
the reader can easily check:

ζC(1; ν)ζC(1;1) = ζC(2; ν) + ζC

(
ν 1

1 1

)
+ ζC

(
1 ν
1 1

)
.

Evaluating at t = 1 we deduce the formula (1) of Theorem 5.
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