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ON SARNAK’S CONJECTURE AND VEECH’S QUESTION FOR INTERVAL
EXCHANGES

SÉBASTIEN FERENCZI AND CHRISTIAN MAUDUIT

ABSTRACT. Using a criterion due to Bourgain [10] and the generalization of the self-dual induction
defined in [18], for each primitive permutation we build a large family of k-interval exchanges
satisfying Sarnak’s conjecture, and, for at least one permutation in each Rauzy class, smaller families
for which we have weak mixing, which implies a prime number theorem, and simplicity in the sense
of Veech.

1. INTRODUCTION

Interval exchanges were originally introduced by Oseledec [44], following an idea of Arnold [3]
(see also Katok and Stepin [35]). An exchange of k intervals, denoted throughout this paper by I,
is given by a probability vector of k lengths together with a permutation π on k letters. The unit
interval is partitioned into k subintervals of lengths α1, . . . , αk which are rearranged by I accord-
ing to π.

The history of interval exchanges is made of big questions. The question whether almost ev-
ery k-interval exchange is (measure-theoretically) weakly mixing, for every given π not satisfying
i ≡ πi + j mod k for some j and all 1 ≤ i ≤ k, was open for twenty years before being solved
by Avila and Forni [5]. Veech asked whether almost every interval exchange is simple [50], which
is again a measure-theoretic property, and this has now been open for more than thirty years.
Recently Sarnak [46] stated a conjecture on the orthogonality of the Möbius function with any
sequence produced by a dynamical system of zero topological entropy. This class includes interval
exchanges, or rather any topological model which makes the transformation continuous: we shall
use the associated symbolic systems through the natural coding.

The aim of this note is to build explicitly (i.e. with an explicit algorithm) examples of interval
exchanges satisfying these properties. Even for the weak mixing, explicit constructions (as op-
posed to existence theorems) are scarce: the only weakly mixing k-interval exchanges we have
been able to find in the literature are for the symmetric permutation πi = k + 1 − i and k = 3
[35][22], k = 4 [25][47], and k = 5, 6 [47], while Theorem 13 of [16] gives a construction for
every value of k; for permutations outside the hyperelliptic Rauzy class, the only examples are in
Theorem 4.3 of [18] (for all even k ≥ 6).

The situation is much worse for the very difficult question of simplicity: after a pioneering, but
atypical, family of examples by del Junco [32] for k = 3, with the stronger property of minimal
self-joinings, the only examples which are simple and rigid (rigidity is a typical property for in-
terval exchanges, and excludes minimal self-joinings) appear for k = 3 [23] and k = 4 [25]. For
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larger values of k not even an existence theorem appears in the literature.

As for Sarnak’s conjecture, it came later. For exchanges of two intervals, which are just rota-
tions, it follows from the Prime Number Theorem [30] [49] when the rotation is rational and from
a result of Davenport [12] (using a result of Vinogradov [53]) when the rotation is irrational. In
the last five years, many other examples of sequences or dynamical systems verifying Sarnak’s
conjecture have been given: the Thue-Morse sequence [34, 31][1][42], translations on a compact
nilmanifold [29], the horocycle flow [11], several classes of distal homogeneous flows [39], Rudin-
Shapiro sequences [43], some classes of extensions of rotations on the torus [38].

For exchanges of more than two intervals, Bourgain remarks in [10] that, for uniquely ergodic
systems, minimal self-joinings for the invariant measure imply Sarnak’s conjecture through a prop-
erty of spectral disjointness, hence Del Junco’s examples do satisfy it. Then Bourgain proves that
it is satisfied also by a large class of 3-interval exchanges, including all the examples of [22][23].
Bourgain’s results use the self-dual induction defined for 3-interval exchanges in [20][21][22].
The examples in [25][16][18] are built by this technique, which was generalized beyond k = 3
in [24][18], though it cannot be called self-dual outside the hyperellliptic Rauzy class (the au-
thors of [13] call it the Ferenczi-Zamboni induction). Thus it is not surprising, and easy to prove,
that all those examples satisfy the conditions which imply Theorem 3 of [10], and thus Sarnak’s
conjecture, with a prime numbers theorem whenever they are uniquely ergodic and weakly mixing.

In the present paper we show that a criterion deduced from [10] applies to a large family of
constructions of k-interval exchanges built by the self-dual induction and its generalization, for all
k, for at least one permutation (called standard) in every Rauzy class. Then we build two different
families of examples which are uniquely ergodic and satisfy Sarnak’s conjecture, using techniques
of finite rank in one case, rank one in the other. The three families of examples mentioned so
far can be lifted to every primitive permutation by an inverse of the Rauzy induction. Then, for
standard permutations, we build smaller subfamilies with weak mixing and thus a prime number
theorem by Bourgain’s criterion. In the case of rank one, we get also simplicity and rigidity, by
isomorphism with a variant of del Junco-Rudolph’s map [33] as in [23][25]. Thus not only we
build the first explicit weakly mixing examples in every Rauzy class, but also we prove that there
are interval exchanges answering positively to Veech’s question for more than four intervals, and
outside the hyperelliptic Rauzy class. The existence of such examples and a fortiori explicit con-
structions were not known previously.

Acknowledgement: Most of this research was carried out while the first author was in Unité
Mixte IMPA-CNRS in Rio de Janeiro and the second author was a temporary visitor of IMPA.
The first author was also partially supported by the ANR GeoDyn and the ANR DYna3S, and the
second author by the ANR MUNUM, Réseau Franco-Brésilien en Mathématiques (Proc. CNPq
60-0014/01-5 and 69-0140/03-7), Math Am Sud program DYSTIL, BREUDS (IRSES GA318999)
and Ciência sem Fronteiras (PVE 407308/2013-0).

2. DEFINITIONS AND NOTATIONS

2.1. Interval exchanges. Throughout the paper, intervals are semi-open as [a, b[. For any ques-
tion about interval exchanges, we refer the reader to the surveys [52][54][17].
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Definition 2.1. A k-interval exchange I with probability vector (α1, α2, . . . , αk), and permutation
π is defined by

Ix = x+
∑

π−1(j)<π−1(i)

αj −
∑
j<i

αj.

when x is in the interval

∆i =

[∑
j<i

αj,
∑
j≤i

αj

[
.

We denote by βi, 1 ≤ i ≤ k − 1, the i-th discontinuity of I−1, namely βi =
∑

π−1(j)≤π−1(i) αj ,
while γi is the i-th discontinuity of I, namely γi =

∑
j≤i αj , we define also γ0 = 0, γk = 1. Then

∆i is the interval [γi−1, γi[ if 1 ≤ i ≤ k.

Warning: roughly half the texts on interval exchanges re-order the subintervals by π−1; the
present definition corresponds to the following ordering of the I∆i: from left to right, I∆π(1), ...I∆π(k).

Definition 2.2. A k-interval exchange I has alternate discontinuities if β1 < γ1 < . . . , βk−1 <
γk−1.

Definition 2.3. A k-interval exchange I satisfies the infinite distinct orbit condition or i.d.o.c. of
Keane [36] if the k − 1 negative orbits {I−nγi, n ≥ 0} ,1 ≤ i ≤ k − 1, of the discontinuities of I
are infinite disjoint sets.

As is proved in [36], the i.d.o.c. condition implies that I has no periodic orbit and is minimal:
every orbit is dense. The permutation π is primitive (or irreducible) if π({1, . . . j}) 6= {1, . . . j}
for every 1 ≤ j ≤ k − 1; in this case, the i.d.o.c. condition is (strictly) weaker than the total
irrationality, where the only rational relation satisfied by αi, 1 ≤ i ≤ k, is

∑k
i=1 αi = 1 (see [52]).

Definition 2.4. For every point x in [0, 1[, its trajectory is the infinite sequence (xn)n∈IN defined by
xn = i if Inx falls into ∆i, 1 ≤ i ≤ k.

Definition 2.5. The induced map of a map T on a set Y is the map y → T r(y)y where, for y ∈ Y ,
r(y) is the smallest r ≥ 1 such that T ry is in Y (in all cases considered in this paper, r(y) is finite).

Definition 2.6. The Rauzy induction [45] associates to a k interval exchange I, with probability
vector α and primitive permutation π, its induced map on [0, βk−1 ∨ γk−1[, which is a k-interval
exchange I ′, with probability vector α′ and primitive permutation π′. The set of possible π′ which
can be reached from π by iterations of the Rauzy induction is the Rauzy class of π.

The link between Rauzy classes and connected components of strata in the moduli space of
abelian differentials is described in [37][55]. The hyperelliptic Rauzy class is the class which
contains the symmetric permutation πi = k + 1− i, 1 ≤ i ≤ k. The Rauzy induction will be used
in Section 6. Propositions 2.1 and 2.2 below sum up what we need to know about it, and can be
found either in the original text [45] or in the surveys [52] [54].

Proposition 2.1. (Rauzy [45]) Each Rauzy class contains a standard permutation, that is a permu-
tation such that π1 = k and πk = 1.
If π and π′ are two primitive permutations in the same Rauzy class, for any i.d.o.c. interval ex-
change I with permutation π, there exists an i.d.o.c. interval exchange I ′ with permutation π′

and an integer p smaller than the cardinality of the Rauzy class such that I is reached from I ′ by
applying the Rauzy induction p times.
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2.2. Symbolic dynamics. We look at finite words on a finite alphabet A = {1, . . . k}. A word
w1 · · ·wt has length |w| = t (not to be confused with the length of a corresponding interval). The
empty word is the unique word of length 0. The concatenation of two words w and w′ is denoted
by ww′. A word w = w1 · · ·wt appears at place i in a word v = v1 · · · vs or an infinite sequence
v = v1v2 · · · if w1 = vi. . . , wt = vi+t−1, we say that w is a factor of v.

Definition 2.7. The symbolic dynamical system defined by an interval exchange I is the one-sided
shift S(x0x1x2 · · · ) = x1x2 · · · on the subset XL ofAIN made with the infinite sequences such that
for every t < s, xt · · ·xs is a factor of a trajectory of I.

Definition 2.8. A topological dynamical system is uniquely ergodic if it admits only one invariant
probability measure.

The Rauzy induction has a nice symbolic translation:

Proposition 2.2. (Rauzy [45]) If J is the Rauzy induced map of I, each trajectory of I is the
image of a trajectory of J by an application of the form x0x1x2 . . .→ φ(x0)φ(x1)φ(x2) . . . where,
for 1 ≤ i ≤ k, φ(i) is a word of length 1 or 2.

2.3. Veech’s question.

Definition 2.9. (X,T, µ) is ergodic if the only invariant functions for the operator f ◦ T in
L2(X, IR/ZZ) are the constants. (X,T, µ) is weakly mixing if it is ergodic and that operator has
no nonzero eigenvalue (denoted additively, f ◦ T = f + ζ).

Definition 2.10. A self-joining (of order two) of a system (X,T, µ) is any measure ν on X × X ,
invariant under T × T , for which both marginals are µ. An ergodic system (X,T, µ) is simple
(of order two) if any ergodic self-joining of order two ν is either the product measure µ × µ or a
measure defined by ν(A×B) = µ(A∩U−1B) for some measurable transformation U commuting
with T .

Definition 2.11. (X,T, µ) is rigid if there exists a sequence sn →∞ such that for any measurable
set A µ(T snA∆A)→ 0.

In 1982, Veech asked the following question (4.9 of [50]):

Question (Veech): Are almost all interval exchange transformations simple?

Here “almost all” means for Lebesgue-almost every vector α, for every given permutation π.
Veech remarked also that almost all interval exchanges are rigid, thus simple non-rigid examples,
as those of del Junco mentioned in the introduction, are not relevant to his question.

2.4. Rokhlin towers.

Definition 2.12. In (X,T ), a Rokhlin tower is a collection of disjoint measurable sets called levels
F , TF , . . . , T h−1F . If X is equipped with a partition P such that each level T rF is contained in
one atom Pw(r), the name of the tower is the word w(0) . . . w(h− 1).

Definition 2.13. A system (X,T, µ) is of rank one if there exists a sequence of Rokhlin towers such
that the whole σ-algebra is generated by the partitions {Fn, TFn, . . . , T hn−1Fn, X\.∪hn−1

j=0 T jFn}.
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When we have the same result but with R sequences of Rokhlin towers, the system is of finite
rank; the rank is R if the above is true for R sequences but not for R − 1 sequences, see [14] for
more details.

For topological systems, there is no canonical notion of rank, but the useful notion is that of adic
presentation [51], which we translate here from the original vocabulary into the one of Rokhlin
towers.

Definition 2.14. An adic presentation of a topological system (X,T ) is given by, for each n ≥ 0,
a finite collection Zn of Rokhlin towers, such that

• the levels of the towers in Zn partition X ,
• each level of a tower in Zn is a union of levels of towers in Zn+1,
• the levels of the towers in ∪n≥0Zn form a basis of the topology of X .

In that case, the towers ofZn+1 are built from the towers ofZn by cutting and stacking, following
recursion rules: a given tower in Zn+1 can be build by taking columns of successive towers in
Zn and stacking them successively one above another. Thus, for a partition P whose atoms are
unions of levels of the towers in Z0, the names of the towers in Zn+1 are concatenations of names
of towers in Zn, of the form Z = Z1 · · ·Zq; we always choose to write the unique decomposition
corresponding to the construction of the towers. If the #Zn are bounded, then the system (equipped
with an invariant measure) is of finite rank, with the additional property that, because of the first
condition from Definition 2.14, the towers fill all the space (and not only up to a measure zero set).

2.5. The self-dual induction and its generalization. Ferenczi and Zamboni defined in [24] the
self-dual induction for the symmetric permutation πi = k + 1 − i, and a geometric interpretation
was provided in [13]. It was generalized by Ferenczi to all permutations in [18], with geometric
interpretation in [19]. Here we sum up the results we shall use; they do not require the knowledge
of the whole theory as the examples we shall build are particular cases where the method of [13]
applies.

Starting from an interval exchange I, satisfying the i.d.o.c. condition and with alternate discon-
tinuities, the induction builds families of disjoint intervalsEi,n = [βi−li,n, βi+ri,n[, 1 ≤ i ≤ k−1,
such that Ei,n contains the discontinuity βi, and converges to it when n tends to infinity. At a given
stage, the induced map Sn of I is described by either a combinatorial [24][18] or a geometric
[13][19] object, or else by train-track equalities [18][19] between the parameters li,n and ri,n.
These objects constitute the states of the induction; they allow us to know, for all i in a nonempty
subset Hn of {1, . . . k− 1} (determined by the description of the map Sn), the point γ(Ei,n) which
is defined to be the first (in the increasing order of m) point I−mγi which falls in the interior of
Ei,n; the i.d.o.c. condition implies that γ(Ei,n) 6= βi. Then for all i in Hn we define a choice
cn(i) to be + if γ(Ei,n) is left of βi, − if γ(Ei,n) is right of βi; cn(i) can be computed from the
li,n and ri,n. For any nonempty subset Fn of Hn, the induction with decision Fn creates the new
subintervals Ei,n+1, where

• if i is not in Fn, Ei,n+1 = Ei,n,
• if i is in Fn and cn(i) = +, Ei,n+1 = Ei,n ∩ [γ(Ei,n), 1[,
• if i is in Fn and cn(i) = −, Ei,n+1 = Ei,n ∩ [0, γ(Ei,n)[.
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These in turn define a new set Hn+1 (which is not related in a simple way with Hn) and a descrip-
tion of the new Sn+1, which allow to iterate the process.

The result which allows us to use this induction to build examples is Theorem 2.28 of [18]: any
sequence of choices cn and decisions Fn satisfying compatibility conditions (cn must be compati-
ble with the description of Sn determined by the previous choices, the new subintervals created by
cn must have positive length for at least one set of parameters li,n and ri,n satisfying the train-track
equalities at stage n, Fn is included in the Hn determined by the previous choices, cn+1 = cn
outside of Fn) and such that for any i in {1, . . . k−1}, i is in Fn with cn(i) = + for infinitely many
n, i is in Fn with cn(i) = − for infinitely many n, defines at least one interval exchange which
generates it through the induction. This interval exchange satisfies the i.d.o.c. condition. Then it
can be studied by Proposition 2.24 of [18], which states that we can build setsZn of 2k−2 Rokhlin
towers, which form an adic presentation of the system in the sense of Definition 2.14 above, and
whose names (for the partition {∆1, . . . ,∆k}) have concatenation rules expressed in Proposition
2.21 of [18]; the Rokhlin towers are, up to some technical modification, those created naturally by
the induced map Sn.

Here we are interested in some particular cases, namely when the train-track equalities are of
the form li + ri = rm(i) + lp(i), 1 ≤ i ≤ k − 1, for two bijective maps m and p; in that case we
say the induction is in a binary state. In a binary state, the set H is {1, . . . , k− 1}, the point γ(Ei)
used above is the point βi − li + rm(i) = βi + ri − lp(i); the families of names of towers can be
denoted by Mi,m(i) and Pi,p(i), 1 ≤ i ≤ k − 1.

Indeed, we want that the induction always stays in binary states; in [24] and [13] it is shown
that we can choose decisions to ensure this property, (always under the condition of alternate
discontinuities, ultimately in general) for any interval exchange such that the permutation π is in
the hyperelliptic Rauzy class, but that it is not true in general outside that class. However, if π is
standard, with the condition of alternate discontinuities, the initial state is binary. Then a sufficient
(and indeed necessary) condition for the induction with choice c and decision F , starting from a
binary state, to lead to a new binary state, is that the induction is made on disjoint unions of circuits
(equivalently, of staircases in the terminology of [13]):

Definition 2.15. An induction on the M circuit containing i is defined by any choice such that
c(i) = c(m(i)) = . . . = c(ms−1(i)) = − and by the decision F made with i,m(i), . . . ,ms−1(i)
for a minimal s such that ms(i) = i.
An induction on the P circuit containing i is defined by any choice such that c(i) = c(p(i)) =
. . . = c(ps−1(i)) = + and the decision F made with i, p(i), . . . , ps−1(i), for a minimal s such that
ps(i) = i.
An induction on a disjoint union of circuits is made by successive inductions on each circuit, in
any order.

It is a direct consequence of Proposition 2.17 in [18], which uses the cumbersome machinery
of the general theory, but it could also be proved by the simpler techniques of Proposition 2.4 of
[24], that, when we start from a binary state G, with names M and P , one induction on a circuit
creates nonempty subintervals, and leads to another binary state, with names M ′ and P ′ built by
Proposition 2.21 of [18], which in that case have a simpler form, similar to the names built by
Theorem 2.8 of [24], namely

• if i is not in F , M ′
m−1(i),i = Mm−1(i),i, P ′p−1(i),i = Pp−1(i),i,
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• if i is in Fn and cn(i) = +, M ′
m−1(i),p(i) = Mm−1(i),iPi,p(i), P ′p−1(i),i = Pp−1(i),i,

• if i is in Fn and cn(i) = −, M ′
m−1(i),i = Mm−1(i),i, P ′p−1(i),m(i) = Pp−1(i),iMi,m(i).

These formulas give us also the m′ and p′; as a consequence, the same cycle appears again in the
new state. Thus we can make several consecutive inductions on a given circuit; moreover, if from
G we make s successive inductions on an M circuit where s is the length of the cycle, then we
arrive at G (with the same train-track equalities and bijections m, p), and at the end the new names
have the form M ′

i,j = Mi,j , P ′i,j = Pi,jMj,m(j) · · ·Mms−1(j),j , and mutatis mutandis for a P circuit.

For a standard permutation π, with the condition of alternate discontinuities, in the initial state of
the constructions we are in a binary state G0. The bijections p and m are retrieved from the knowl-
edge of the initial names, namely Mπi,i−1,0 = i− 1, Pπi,i,0 = i, 2 ≤ i ≤ k − 1, M1,k−1,0 = k − 1,
P1,1,0 = k1 (note that k1 is a word of two symbols, not a typographical error).

3. SARNAK’S CONJECTURE AND BOURGAIN’S CRITERION

We denote by µ the Möbius function, defined by µ(1) = 1, µ(p1 . . . ps) = (−1)s if p1, . . . , ps
are distinct prime numbers and µ(n) = 0 if n is divisible by the square of a prime number.

Definition 3.1. A sequence u = (u(n))n∈N of complex numbers of modulus less than 1 is (asymp-
totically) orthogonal to the Möbius function if

∑
n≤x µ(n)u(n) = o(x).

Definition 3.2. Let X be a compact metric space, T be a continuous transformation of X and
(X,T ) the associated dynamical system. A sequence u = (u(n))n∈N of elements of X is produced
by (X,T ) if there exist x0 ∈ X and f continuous on X such that for any n in IN, we have
u(n) = f(T n(x0)).

Conjecture (Sarnak): Any bounded sequence of complex numbers produced by a zero topolog-
ical entropy dynamical system is orthogonal to the Möbius function.

We want to test this conjecture for an interval exchange I, where the topological model we
choose is the symbolic dynamical system of Definition 2.7 above. All the results quoted in the
introduction are valid for this model; note that this model is not always uniquely ergodic, but
Sarnak’s conjecture does not require that property.

3.1. Bourgain’s criterion. The following result is not completely explicit in [10], as it is stated
only in a particular case, as Theorem 3, and its proof is understated; here we give a general result
and explain how to deduce it from [10]:

Theorem 3.1. For every positive integer K there exists a constant C(K) such that Sarnak’s con-
jecture is satisfied by any topological dynamical system (X,T ) admitting an adic presentation as
in Defintion 2.14 such that, if the names (for some partition whose atoms are union of levels of
the towers in Z0) of the towers in Zn form sets of words Wn, every W ∈ Wn has a canonical
decomposition (deduced from the construction of the towers) of the form

W = W k1
1 · · ·W kr

r ,

for r ≤ K words Wi, 1 ≤ i ≤ r inWn−1, integers k1, . . . , kr, all depending on W , and for any W
inWn and any s ≤ n, if we decompose W into words Wl inWn−s by iteration of the above for-
mula, then for all l we have |W | > β(s)|Wl|, for s large enough and some function β(s) > C(K)s.
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If such a system is uniquely ergodic, and weakly mixing for its invariant probability, it satisfies
also a prime number theorem for any word W = w1 . . . wN which is a factor of a word in anyWn,
namely

N∑
i=1

Λ(i)wi =
N∑
i=1

wi + o(N),

where Λ is the von Mangoldt function defined by Λ(n) = ln p if n = pk, p prime and k ≥ 1,
Λ(n) = 0 otherwise.

Proof
Theorem 2 of [10], together with the Remark at the beginning of Section 2, page 119 in that paper,
gives, for any word w1 · · ·wN in someWm and N large enough, an estimate for∫

|
N∑
1

wne(nθ)||
N∑
1

µ(n)e(nθ)|dθ,

and this, through the relation 1.62 on p. 118, implies that
∑N

1 wnµ(n) = o(N), Note that the
assumption in [10] that the words Wn are on the alphabet {0, 1} is not used in the proof, which
works for any finite alphabet, while the condition β(s) > C0swritten in p. 119 of [10] is a misprint
for β(s) > Cs

0 , corrected in Theorem 3.1 above.

Now, if we replace wn by u(n) = f(T n(x0)), because of Definition 2.14 above we can first
assume that f is constant on all levels of the towers of some stage m, and then conclude by ap-
proximation. Such an f is also constant on all levels of all towers at stages q > m; fixing x0 and
N , except for some initial values u(1) to u(N0) where N0 is much smaller than N , we can replace
u(n) by w′n, where w′n is the value of f on the n-th level of some tower with name W in some
Wq for q ≥ m. Then the w′1 · · ·w′N are built by the same induction rules as the w1 · · ·wN , and the
estimates using the w′n are computed as those using the wn in the proof of Theorem 2 of [10], thus
we get the same result.

The prime number theorem is in (3.4), (3.7), (3.14) of [10] ((3.14) is proved for the particular
case of 3-interval exchanges but holds in the same way for the more general case). �

The orthogonality of an infinite sequence w = (wi)i∈N with the Möbius function, namely∑N
i=1 µ(i)wi = o(N), does not imply the existence of a prime number theorem for the sequence

w, that is to say a control of the sums
∑N

i=1 Λ(i)wi (or
∑

i<N,i prime wi). Much better qualita-
tive estimates (e.g. for type II sums in the Vinogradov method) are usually needed to obtain a
prime number theorem (see [48] for interesting comments on this question). Such examples of
prime number theorems can be found in [42][29][28][9][39][40, 41][43]. Bourgain succeeded in
obtaining such estimates, by using the Hardy-Littlewood method for all systems satisfying all the
hypotheses of Theorem 3.1 above.

We remark that the paper [10] is apparently focused on rank one systems (see also [2] for some
improvement on the rank one results). But indeed the hidden Theorem 3.1 above applies to a much
wider class of systems, generally but not necessarily of finite rank, and even for some famous rank
one systems this criterion works while the supposedly main Theorem 1 of [10] does not apply; this
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will also be the case for the rank one systems we shall build in Section 5.

To show what Bourgain’s criterion may mean, we look at the Sturmian symbolic systems defined
by i.d.o.c. 2-interval exchanges, aka irrational rotations. Then it can be deduced from [4], or
reproved using Section 2.5, that the system admits an adic presentation with sets Zn consisting
of two Rokhlin towers, with names (for the partition defined by the value of the first coordinate)
form the set Wn = {An−1, An} with the recursion formula An+1 = Aan+1

n An−1 if the angle of
the rotation has a continued fraction expansion [0, a1 + 1, a2, a3, . . .]. As |An| > |An−1| we get
that Bourgain’s criterion is satisfied if all the an, for n large enough, are greater than C(2); thus it
applies to a class of rotations but falls short of proving the conjecture for all irrational rotations, by
which it is known to be satisfied, as mentioned in the introduction.

3.2. Constructions. We shall now build examples using successive inductions on circuits as in
Section 2.5. We fix a few notations.

A circuit is given by a cycle ofm, resp. p, in a given state; we describe it formally as a succession
of vertices i,m(i), . . . ,ms−1(i), resp. i, p(i), . . . , ps−1(i) and edgesMi,m(i), . . . ,Mms−1(i),i, resp.
Pi,p(i), . . . , Pps−1(i),i (these are indeed vertices and edges in some graphs defined in [18]). A given
edge Pi,j orMi,j may appear several times in a construction; the varying names Pi,j,n, resp. Mi,j,n,
build recursively as in Section 2.5, are called the n-labels of the edges Pi,j , resp.Mi,j .

An M circuit is denoted asMv =Mi,m(i), . . . ,Mms−1(i),i, where i is any of its vertices, and the
numbering v is partly arbitrary and may change according to our needs. Any concatenated name
Mj,m(j),n · · ·Mms−1(j),j,n, for any vertex j, is called an n–label ofMv, and all these n-labels have a
common length denoted by |Mv,n|; if Mv,n and M ′

v,n are two different n-labels of the same circuit,
any cycle (M ′

v,n)q contains M q−1
v,n . We define similar notions for P circuits. The P circuit made

with the single edge P1,1 is always numbered P1,1, and the M circuit containing the vertex 1 is
M1. The number of vertices ofMv, resp. Pu, is denoted by sv, resp. s′u.

In state G0 described in Section 2.5 for a given standard permutation π, all the edgesMi,j , resp.
Pi,j , are partitioned in r disjoint M circuits, resp. r′ disjoint P circuits, denoted by
Mit,m(it), . . . ,Mmst−1(it),it , 1 ≤ t ≤ r, Pjt,p(jt), . . . ,Pps′t−1(jt),jt

, 1 ≤ t ≤ r′; r, r′ and the circuits
depend on π; there are several possible choices for i1, . . . , ir, j1, . . . , jr′ , we fix one. There is a
circuit P1,1; in Theorems 4.3 and 5.2 we shall use the fact that |P1,1,0| = 2 while |Mv,0| = sv and
|Pu,0| = s′u for the other circuits.

We can now build a large family of interval exchanges which satisfy Sarnak’s conjecture (in a
forthcoming paper, we shall show that it corresponds to a set of parameters of measure zero but
positive Hausdorff dimension):

Theorem 3.2. Let π be a standard permutation on {1, . . . , k}. Any k-interval-exchange with
permutation π, defined from state G0 by a finite preliminary sequence of inductions leading to G0,
and then successively for each n ≥ 1,

• stqt,n > 0 consecutive inductions on the M circuit containing it, for each 1 ≤ t ≤ r, in
any order on t,
• s′tq′t,n > 0 consecutive inductions on the P circuit containing jt, for each 1 ≤ t ≤ r′, in

any order on t,
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satisfies Bourgain’s criterion and thus Sarnak’s conjecture if there exists N0 such that

min
1≤t≤r

1≤t′≤r′
n>N0

{qt,n, q′t′,n} > C(2k − 2).

Proof
At the beginning of the runs of stqt,n inductions on M circuits, we are in state G0; the circuits have
edges Pi,j whose labels we denote by Pi,j,n, n ≥ 1,Mi,j whose labels we denote by Mi,j,n, n ≥ 1.
At the end of all these runs, we have G0 again with the same M edge labels, while the P labels
become

Pj,p(j),n+1 = Pj,p(j),n(Mp(j),mp(j),n . . .Mmst−1p(j),p(j),n)qt,n

whenever p(j) = ml(it) for some 0 ≤ l ≤ st − 1, 1 ≤ t ≤ r.

Similarly, the runs of s′tq
′
t,n inductions on P circuits keep the P labels, while the M labels

become
Mi,m(i),n+1 = Mi,m(i),n(Pm(i),pm(i),n+1 . . . Pps′t−1m(i),m(i),n+1

)q
′
t,n

whenever m(i) = pl(jt) for some 0 ≤ l ≤ s′t − 1, 1 ≤ t ≤ r′.

By the remarks in Section 2.5, the system admits an adic presentation, where the set of names
of the towers in Z2n is the set of all labels Mi,j,n−1 and Pi′,j′,n, while for Z2n+1 it is the set of all
labels Mi,j,n and Pi′,j′,n. We split the towers further: for each tower of name Pi′,j′,n in Z2n with
i′ 6= j′, we keep in the tower of name Pi′,j′,n only the part corresponding to this Pi′,j′,n which in
the next stage of concatenation is isolated at the beginning of Pi′,j′,n+1, and stack all the other parts
to form new towers whose names are all the n-labels of the P circuits with at least two edges; for
each tower of name Mi,j,n in Z2n+1 with i 6= j, we keep in the tower of name Mi,j,n only the part
corresponding to this Mi,j,n which in the next stage of concatenation is isolated at the beginning
of Mi,j,n+1, and stack all the other parts to form new towers whose names are all the n-labels of
the M circuits with at least two edges. We still have an adic presentation, but now we use the
sets of namesW2n, made of all labels Mi,j,n−1, all labels Pi′,j′,n, and all the n-labels of all the P
circuits with at least two edges, whileW2n+1 is made of all labels Mi,j,n, all the n-labels of all the
M circuits with at least two edges, and all labels Pi′,j′,n. The concatenation formulas giving the
decomposition of Mi,j,n inW2n+1 into words ofW2n are the formulas computed above under the

form Mi,j,n = Mi,j,n−1P
q′t,n
v,n , for some label of some circuit Pv, which is an edge label if the circuit

has only one edge, while the new n-labels of the circuits are then written by concatenating these
formulas; for Pi,j,n inW2n+1, we write just that it is equal to Pi,j,n inW2n; and mutatis mutandis
for the decomposition of words inW2n. Thus we generate theWn by formulas as in Theorem 3.1
with K ≤ 2k − 2 (the number r is 2 for the new labels of edges, and up to k − 1 of them are
concatenated to make the new labels of circuits).

We check now the condition on lengths. Let Q = min 1≤t≤r
1≤t′≤r′
n>N0

{qt,n, q′t′,n}; we look first at the M

words ofW2n+1 and suppose 2n + 1 is larger than 2N0 + 1 + s. The word Mi,j,n gets the decom-

position Mi,j,n−1P
q′t,n
v,n , thus its length is at least Q|Pv,n|. The circuit Pv has j as one of its vertices,

thus Pv,n contains some label Pi′,j,n = Pi′,j,n−1M
q′t,n−1

u,n−1 , and the circuitMu contains the edgeMi,j ,
thus Pv,n is longer than Mi,j,n−1, |Mi,j,n| > Q|Mi,j,n−1|, and |Mi,j,n| > Q|W ′| for every W ′ in its
decomposition into words of W2n. Then we make the next step of the decomposition of Mi,j,n;
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Mi,j,n−1 stays, and each edge label Pi′,j′,n in the labels Pv,n gets a decomposition Pi′,j′,n−1M
qt′,n−1

u,n−1 ,
for some M circuit. Each of these Mu,n−1 appears at least Q2 times in the decomposition of Mi,j,n;
we have just seen that Mi,j,n−1 is the label of an edge in one of these circuits, and thus shorter than
some Mu,n−1. As for the Pi′,j′,n−1, the same reasoning as just above proves that each one is shorter
than some Mu,n−1; thus |Mi,j,n| > Q2|W ′| for every W ′ in its decomposition into words ofW2n−1.
Iterations of these computations give |Mi,j,n| > Qs|W ′| for every W ′ in its decomposition into
words ofW2n+1−s. The same happens when we start from the n-labels of M circuits. When we
start from labels of P edges inW2n+1, then we begin by an equality with the same name inW2n,
and then the computation proceeds similarly at each stage, thus we get the same estimate with Qs

replaced by Qs−1; and mutatis mutandis if we start from names inW2n.
Thus, if we take the setW2N0 as initial words instead ofW0, we get always β(s) > Qs−1, and

we have the required condition for large s. �

Note that we have used a finite rank property (see after Definition 2.13 above), with 2k − 2
towers at each stage (the further splitting is just an auxiliary step), but this bound for the rank is
not optimal. In contrast, the examples on k = 3 intervals in [10] and k = 4 intervals in [25] used
a further induction on one interval, which reduces the number of towers, giving the optimal bound
k on the rank, but seems very difficult to generalize to a larger number of intervals.

4. EXAMPLES WITH COMPARABLE TOWERS

To go further towards a prime number theorem we need unique ergodicity. The standard way to
get it would be to ensure all the towers have comparable measures at each stage. However, in our
constructions, the M towers and the P towers will not have comparable measures in general; we
shall show that comparability inside each family is enough, but this requires a new nontrivial proof.

We need first the following lemma, which comes from the minimality of the system in any of
our constructions.

Lemma 4.1. For any 1 ≤ j ≤ k − 1, let Ξ0(j) = j, then Ξ2i+1(j) is the set of all vertices of all
M circuits which have at least one vertex in Ξ2i(j), i ≥ 0, Ξ2i+2(j) is the set of all vertices of
all P circuits which have at least one vertex in Ξ2i+1(j), i ≥ 0. Similarly we define the Ξ′i(j) by
Ξ′0(j) = j, then Ξ′2i+1(j) is the set of all vertices of all P circuits which have at least one vertex in
Ξ′2i(j), i ≥ 0, Ξ′2i+2(j) is the set of all vertices of all M circuits which have at least one vertex in
Ξ2i+1(j), i ≥ 0.

Then there exists L such that for all i ≥ L and every 1 ≤ j ≤ k − 1, Ξ′i(j) = Ξi(j) =
{1, . . . , k − 1}.

Proof
For all t large enough Ξt+1(j) = Ξt(j); for such a t, Ξt(j) is such that for all i in Ξt(j), p(i) and
m(i) are also in Ξt(j), thus Ξt(j) = {1, . . . , k− 1} (this can be checked on the definition of G0, or
comes from the fact that there exist minimal interval exchanges with initial state G0), and similarly
for the Ξ′. �

Here is now a still large family of uniquely ergodic interval exchanges satisfying Sarnak’s con-
jecture. Note that here we use Rokhlin towers and finite rank but, in contrast with Section 5 below,
not rank-one techniques; ergodicians who are not afraid of technicalities can verify that the follow-
ing examples are of rank k − 1.
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Proposition 4.2. A k-interval-exchange defined as in Theorem 3.2 is uniquely ergodic if there
exist a constant z and two sequences q̄n and q̄′n such that, for all n and t, 1 ≤ q̄n ≤ qt,n ≤ zq̄n,
1 ≤ q̄′n ≤ q′t,n ≤ zq̄′n. Then it satisfies Sarnak’s conjecture if minn>N0{q̄n, q̄′n} > C(2k − 2) for
some N0.

Proof
At each stage the space is filled by 2k− 2 Rokhlin towers, whose names are the labels of theMi,j

and Pi,j (the auxilary towers whose names form the Wn are used only for Bourgain’s criterion,
not for other properties). The towers are made by cutting and stacking following the recursion
rules above; thus, for any invariant measure µ, the vector made of the measures of a level in the
s-th tower, 1 ≤ s ≤ 2k − 2 at stage t1 is given by applying to the corresponding vector at stage
t2 > t1 the matrix At1,t2 which has on its line α and column β the number of times the name of
the β-th tower at stage t1 appears in the decomposition of the name of the α-th tower at stage t2
into names of towers at stage t1. Unique ergodicity is equivalent to the fact that ∩t>0A1,tC is one-
dimensional, where C is the positive cone. The matrixA1,t is a product of matrices corresponding to
transitions between each stage and the next one. We shall first get some estimates on the matrixBn

corresponding to the transitions between the stage situated just before the runs of stqt,n inductions
on M circuits and the stage just before the runs of stqt,n+L+1 inductions on M circuits (for an
L which will come from Lemma 4.1). The coefficients of Bn are the number of times we see
the Mi,j,n, and Pi,j,n in the decompositions of the Mi′,j′,n+L+1, and Pi′,j′,n+L+1. Fix first some
Mi,j,n; this appears one time in one M circuit whose vertices form Ξ1(i), thus in any of its n-labels
Mn; the labels Mn appears in the decomposition of labels Pn+1 of all the circuits with vertices
in Ξ2(i), and in each of those Pn+1 the labels Mn appears at least q̄n times and at most zk2q̄n
times, as each of these Pn+1 is made with one label Pn and between 1 and k labels Mn, each one
being iterated between q̄n and zkq̄n times. Similarly, the labels Pn+1 appear in all labels Mn+1

of the circuits with vertices in Ξ3(i), and in each of those Mn+1 the labels Pn+1 appear at least
q̄′n times and at most zk2q̄′n times. We continue until we reach labels Mn+L of circuits whose
vertices form Ξ2L+1(i) = {1, . . . , k − 1} by Lemma 4.1. Each label Pc,d,n+L+1 contains at least
q̄n+L and at most zkq̄n+L occurrences of these labels Mn+L. Now the occurrences of our Mi,j,n in
Pc,d,n+L+1 are those who are inside successive labels Mn, Pn+1, Mn+2, . . . plus some which come
from an initial Pα,β,n+j in Pα,β,n+j+1, or Mα,β,n+j in Mα,β,n+j+1, which at worst will multiply
the number of occurrences by a fixed factor, because all the q̄n and q̄′n are at least one (to take
these into account we replace z by a larger z′). Thus the total number of these occurrences is
at least Πn+L−1

j=n (q̄j q̄
′
j)q̄n+L and at most 2k4L+2(z′)2L+1Πn+L−1

j=n (q̄j q̄
′
j)q̄n+L times. By continuing to

circuits Pn+L+1 we reach the labels Ma,b,n+L+1, each of whom contains our initial Mi,j,n between
Πn+L
j=n (q̄j q̄

′
j) and 2k4L+4(z′)2L+2Πn+L

j=n (q̄j q̄
′
j) times.

If we start from a fixed Pi,j,n; it appears one time in one label Pi,j,n+1, from which we go
similarly to labels Pn+1 for one circuit whose vertices are in Ξ′1(i), labels Mn+2 of circuits with
vertices in Ξ′2(i), and so on. At the end, as Ξ′2L(i) is {1, . . . , k − 1}, we get that the num-
ber of occurrences of that Pi,j,n in any Pc,d,n+L+1 is at least q̄′nΠn+L−1

j=n+1 (q̄j q̄
′
j)q̄n+L and at most

2k4L+1(z′)2Lq′nΠn+L−1
j=n+1 (q̄j q̄

′
j)q̄n+L, and in any Ma,b,n+L+1 is at least q̄′nΠn+L

j=n+1(q̄j q̄
′
j) and at most

2k4L+1(z′)2L+1q̄′nΠn+L
j=n+1(q̄j q̄

′
j) (the main difference with the case starting from an M circuit at

stage n is the absence of q̄n in the formulas).

Now, we use a theory of Garrett Birkhoff [6][7] as described in [26], see also [27]. For some
projective metric d on the convex cone, by Theorem 7.8 of [26] a positive matrix Λ contracts the
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distances by a factor e
θ
4−e

−θ
4

e
θ
4 +e

−θ
4

, where by Proposition 7.13 of [26] θ(Λ) = maxi,j,i′,j′ log
Λi,i′Λj,j′

Λj,i′Λi,j′
.

By the above estimates, if Λ = Bn, all the Λi,i′Λj,j′

Λj,i′Λi,j′
are bounded by a constant C independent of

n: when both i and j correspond to M (resp. P ) coordinates, Λi,i′

Λj,i′
and Λj,j′

Λi,j′
are bounded, while if

i corresponds to an M coordinate and j to a P coordinate Λi,i′

Λj,i′
will be bounded by C ′q̄′n+L, and

Λj,j′

Λi,j′
by C ′′(q̄′n+L)−1, and similarly in the opposite case. Thus Bn contracts the distances by a fixed

factor. As the matrix A1,t is indeed a product of infinitely many Bn, we get the required character-
ization of ∩t>0A1,tC. And Sarnak’s conjecture comes from Theorem 3.2. �

To get weak mixing and a prime number theorem, we need more work: the following examples
generalize to every standard permutation the weakly mixing families built for particular cases in
Theorem 13 of [16] and Theorem 4.3 of [18].

Theorem 4.3. Let k ≥ 3, and π a standard permutation on {1, . . . , k}. Let q be the least common
multiple of s1, . . . , sr, q′ the least common multiple of s′1, . . . , s

′
r′ . One can construct recursively

two sequences (qn)n≥1 and (q′n)n≥1, such that the k-interval-exchange built as in Theorem 3.2, with
the preliminary sequence of inductions defined in 1.1 to 2.4 below and qt,n = qn

q
st

, q′t,n = q′n
q′

s′t
is

uniquely ergodic, weakly mixing, and satisfies Sarnak’s conjecture with a prime number theorem.

Proof
The words Pi,j,n and Mi,j,n are built as in the proof of Theorem 3.2; again, we use the 2k − 2
Rokhlin towers whose names are the labels of the Mi,j and Pi,j , and not the auxilary towers of
Theorem 3.1. Note that stqt,n = qqn, s′tq

′
t,n = q′q′n, and the qn and q′n differ by a constant from q̄n

and q̄′n of Proposition 4.2.
We choose some circuit Pu to be precised later, with Pu 6= P1,1. Then |P1,1,n+1| = |P1,1,n|+ qnXn,
|Pu,n+1| = |Pu,n|+qnYn, with Xn = q

s1
|M1,n|, and Yn =

∑r′′

i=1 ci
q
si
|Mi,n|, where the vertices of Pu

are partitioned among the M circuitsMi, 2 ≤ i ≤ r′′, the circuitMi having ci common vertices
with Pu; theMi and ci do not depend on n; for a given Pu theMi, 2 ≤ i ≤ r′′, are all different
but one of them may beM1.

Let Dn = Yn|P1,1,n| −Xn|Pu,n| for n ≥ 1. We make the recursion hypothesis that |P1,1,n| and
|Pu,n| are coprime andDn 6= 0. We show first how, by a suitable choice of Pu and initial inductions
we can ensure it is satisfied at stage 1. Let Y1 (determined by the choice of Pu) andX1 be as above,
we define an auxiliary D0 = Y1|P1,1,0| −X1|Pu,0|.

• If there exists at least one circuit Pu 6= P1,1 with an odd number of vertices,
1.1 if D0 6= 0 with one of these choices of Pu, |Pu,0| is odd, and the hypothesis is satisfied

without any initial induction, as then |P1,1,1| = |P1,1,0| and |Pu,1| = |Pu,0| are coprime,
D1 = D0 6= 0; this is true in particular if for such a Pu, r′′ = 2 andM1 = M2, as
then X1 = q

s1
|M1,1|, Y1 = c q

s1
|M1,1|, D0 = (2c− |Pu,0|) q

s1
|M1,1| and |Pu,0| is odd;

1.2 if for all such Pu, we have D0 = 0, then there exists someMj 6=M1, and we choose
one such Pu and a correspondingMj; at the beginning we make q0sj inductions on
Mj . After that, we get new values |P1,1,1| = |P1,1,0|, |Pu,1| = |Pu,0| + q0m for some
m 6= 0; we take q0 6= 0 and even, thus D1 6= D0 and our hypothesis is satisfied at this
stage.

• If every circuit Pv 6= P1,1 has an even number of vertices, then k−1 is odd and there exists
at least one circuitM in G0 with an odd number s of vertices;
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2.1 if there is such an M 6= M1; there is at least one circuit Pu 6= P1,1 with an odd
number c of common vertices withM; we choose such a circuit Pu and make first sq0

inductions onM; after these inductions |P1,1,1| = |P1,1,0| = 2, |Pu,1| = |Pu,0|+ q0m,
where m is c times the length of the 0-label ofM and thus is odd also, D1 = 2Y1 −
(|Pu,0|+ q0m)X1. By taking an odd q0, we get |Pu,1| odd; at most one of the possible
such q0 gives a D1 = 0, and by avoiding it we get our hypothesis;

2.2 if the only possible M is M = M1 and there is at least one circuit Pu 6= P1,1

with no common vertex with M1; we choose such a circuit Pu and make first s1q0

inductions onM1; after these inductions |P1,1,1| = 2 + q0m where m = |M1,0| is odd,
|Pu,1| = |Pu,0|, D1 = (2 + q0m)Y1 − |Pu,0|X1.. Let 2, d1, . . . , dz be the prime factors
of |Pu,0|; if di 6= 2 divides m, it cannot divide 2 + q0m. Then if we choose a q0 not
congruent to 0 modulo 2, and with 2 + q0m not congruent to 0 modulo any of the di
which do not divide m, which is possible by the Chinese reminder theorem, we get
that |P1,1,1| and |Pu,1| are coprime; at most one of the possible such q0 gives a D1 = 0,
and by avoiding it we get our hypothesis;

2.3 ifM =M1, every circuit Pv has common vertices withM1, at least one circuit Pu 6=
P1,1 has c common vertices withM1 and 2e 6= 2c vertices; we choose such a circuit
Pu and make first s1q0 inductions onM1; after these inductions |P1,1,1| = 2 + q0m for
some odd m = |M1,0|, |Pu,1| = 2e+ cq0m, X1 = q

s1
m, Y1 = c q

s1
m+m′ for some m′

corresponding to the (possible) otherM circuits which have common vertices with Pu.
Then any common divisor of |P1,1,1| and |Pu,1|must divide 2 + q0m and |2c−2e| 6= 0,
and by the same reasoning as in 2.2 we find q0 such |P1,1,n| and |Pu,1| are coprime.
Then D1 = (2c − 2e) q

s1
m + 2m′ + q0mm

′, thus if m′ = 0 we have always D1 6= 0,
and if m′ 6= 0 at most one of the possible q0 gives a D1 = 0, and by avoiding it we get
our hypothesis;

2.4 ifM =M1 and every circuit Pu 6= P1,1 has 2c vertices and c common vertices with
M1 for some c; we choose any one of these Pu; then Pu has 2c vertices, c of which are
common withM1; we choose a circuitM2 6=M1 which has c′ > 0 common vertices
with Pu. By making s2 preliminary inductions on M2, we change y0 to something
larger than 2c while the other parameters are unchanged, and we get to case 2.3, from
which we proceed as above.

We suppose now that the recursion hypothesis is satisfied for n, and shall choose qn and q′n such
that they will be satisfied for n+1. Namely, |P1,1,n+1| = |P1,1,n|+ qnXn, |Pu,n+1| = |Pu,n|+ qnYn.
Any common factor of |P1,1,n+1| and |Pu,n+1| has to divide Yn|P1,1,n+1|−Xn|Pu,n+1| = Yn|P1,1,n|−
Xn|Pu,n| = Dn 6= 0, which is independent of qn. Let D be the set of all prime factors of Dn, D1

the set of those factors which divide also |P1,1,n|, D2 the set of the other factors. If d is in D2 and
divides Xn, any choice of qn ensures that d does not divide |P1,1,n+1|; if d is in D2 and does not
divide Xn, d does not divide |P1,1,n+1| for any qn such that qn ≡ X−1

n (z − |P1,1,n|) modulo d, for
any z 6≡ 0 modulo d. Similarly if d is in D1, and therefore does not divide |Pu,n|, either d does
not divide |Pu,n+1| for any value of qn, or this can be ensured by a congruence condition modulo
d. Thus, by the Chinese remainder theorem, we can find infinitely many values of qn such that
no prime number d divides the three numbers Dn, |P1,1,n+1| and |Pu,n+1| , and this ensures that
|P1,1,n+1| and |Pu,n+1| are coprime. Note that qn depends only on the parameters q1, ... qn−1, q′1, ...
q′n−1.
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Thus for any n there exist positive integers Un and Vn such that |Un|P1,1,n| − Vn|Pu,n|| = 1. As
the value of |P1,1,n+1| and |Pu,n+1| depend only on the parameters q1, ... qn, q′1, ... q′n−1, we can then
choose q′n larger than Un+1 ∨ Vn+1. We also ask that q′n is large enough to ensure that Dn+1 6= 0:
indeed, by construction Dn+1 = Dn + qnθn for a θn independent of q′n, thus if θn = 0 any choice
of q′n is good, and otherwise q′n|θn| > |Dn| is sufficient.

We shall now prove that, with the choices of the qn and q′n made above, I is weakly mixing by
using a standard technique known as the Chacon trick, see [17] [8]. At the beginning of the run of
qqn inductions, the name (P1,1,n)q

′
n−1 appears in every Mi,j,n such that i and 1 are in the same M

circuit; similarly, if Pu,n is one fixed n-label of the circuit Pu, the name (Pu,n)q
′
n−1−1 appears in one

Mi,j,n. Thus in some M tower we see (P1,1,n)q
′
n−1 , when we read the name along some sequence

of levels. Let τn be the union of all these levels. For any point ω in τn, I |P1,1,n|ω, I2|P1,1,n|ω,....
IUn|P1,1,n|ω are in the same level of the tower with name P1,1,n as ω. Similarly, in the name of some
other M tower we see P

q′n−1
u,n along a sequence of levels; let τ ′n be the union of all these levels. For

any point ω in τ ′n, I |Pu,n|ω, I2|Pu,n|ω,.... IVn|Pu,n|ω are in the same level of the tower with name
Pu,n as ω.

Let µ be an invariant probability for I, f be an eigenfunction for the eigenvalue ζ . For each ε > 0
there exists N(ε) such that for all n > N(ε) there exists fn, which satisfies

∫
||f − fn||dµ < ε and

is constant on each level of each tower at the beginning of the run of qqn negative choices (where
||x|| denotes its distance to the nearest integer). Thus for µ-almost every ω in τn, fn(IUn|P1,1,n|ω) =
fn(ω) while f(IUn|P1,1,n|ω) = ζUn|P1,1,n|+ f(ω); we have∫

τn

||fn ◦ IUn|P1,1,n| − ζUn|P1,1,n| − fn||dµ =

∫
τn

||ζUn|P1,1,n|||dµ =

||ζUn|P1,1,n|||µ(τn) and∫
τn

||fn◦IUn|P1,1,n|−ζUn|P1,1,n|−fn||dµ ≤
∫
τn

||fn◦IUn|P1,1,n|−f◦IUn|P1,1,n|||dµ+

∫
τn

||fn−f ||dµ < 2ε.

Thus µ(τn)||ζUn|P1,1,n||| < 2ε, and similarly µ(τ ′n)||ζVn|Pu,n||| < 2ε; as Un|P1,1,n| − Vn|Pu,n| =
±1, we shall conclude that ζ = 0, and thus get the weak mixing, if we can prove that µ(τn) and
µ(τ ′n) are bounded away from 0.

For this, we need first to check that all the lengths of the Mi,j,n, resp. Pi,j,n, are comparable.
But each recursion formula giving Pi,j,n+1 has exactly qqn + 1 terms, and each recursion formula
giving Mi,j,n+1 has exactly q′q′n + 1 terms. Thus, starting from the lengths at stage 1 which are
fixed, we get that c1|Pi,j,n| ≤ |Pi′,j′,n| ≤ c2|Pi,j,n|, c1|Mi,j,n| ≤ |Mi′,j′,n| ≤ c2|Mi,j,n| for any given
n and all i, j, i′, j′.

Let the Ξi and L be as in Lemma 4.1. For a given n the strings P
q′n−1

1,1,n appear in all the n-labels
of the M circuits whose vertices form Ξ1(1) where they fill at least a fixed proportion c1

q′
of the

length; then they appear in all the n + 1-labels of the M circuits whose vertices form Ξ2(1), and
where they fill at least a fixed proportion c1

q′
of the length, and so on, thus eventually they fill a

fixed proportion κ of the lengths of all the Mi,j,n+L+1 and P,i,j,n+L+1, and these are the names of
Rokhlin towers filling all the space. This implies that µ(τn) ≥ κ, and a similar reasoning works
for µ(τ ′n) .
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On the other hand, it is immediate that these systems satisfy Proposition 4.2 (the final condition
in that proposition may be easily satisfied as we were able to choose the values qn and q′n in this
proof to be as large as desired), which completes the proof of Theorem 4.3. �

5. EXAMPLES WITH RANK ONE AND SIMPLICITY FOR EVERY STANDARD PERMUTATION

A different way to ensure unique ergodicity is to have, at each stage, one tower much larger than
all the others. This means we shall build rank one examples, and these are the first ones for which
we are able to use directly the 2k − 2 Rokhlin towers given by the induction (see the remark after
Theorem 3.2), and thus can work with all k.

Proposition 5.1. A k-interval-exchange defined as in Theorem 3.2 is uniquely ergodic, of rank one,
and satisfies Sarnak’s conjecture if there exists a sequence (an)n∈N, tending to infinity with n, such
that, for all n and t 6= 1, q1,n ≥ anqt,n, q′1,n ≥ anq

′
t,n.

Proof
We use again the 2k − 2 Rokhlin towers whose names are the labels of the Mi,j and Pi,j . For
n ≥ 2, we consider the towers just before the runs of s′tq

′
t,n inductions, which have names Pi,j,n

and Mi′,j′,n−1. Like in Proposition 4.2, we compute how many times these appear in the labels
Ma,b,n+L+1 and Pc,d,n+L+1.The number of occurrences of Pi,j,n into Ma,b,n+L+1 is split into at most
(2k)2L terms, each one corresponding to those who are inside successive labels Mn or Pn, Pn+1 or
Mn+1,Mn+2 or Pn+2, . . . , or come from an initial Pα,β,n+j in Pα,β,n+j+1, orMα,β,n+j inMα,β,n+j+1.
Each of this terms is a product involving some bounded quantities, and some or all of the the q1,n+1

to q1,n+L, q′1,n to q′1,n+L. For all m, 1 is the only vertex of the circuit with label P1,1,m, and is a
vertex of one M circuit, the one with label M1,m. Thus, if (i, j) = (1, 1), at least one of these
terms does involve all the q1,m and q′1,m, n ≤ m ≤ n + L, while if (i, j) 6= (1, 1), in every one of
these terms at least one q′1,m is replaced by either a q′t,m, t > 1, or nothing, or else at least one q1,m

is replaced by either a qt,m, t > 1, or nothing. Thus in each given Ma,b,n+L+1, we see at least anC ′

more times labels P1,1,n than any other Pi,j,n, for a constant C ′. The same is true if we compare
P1,1,n with any Mi′,j′,n−1 inside any Ma,b,n+L+1, as each Mi′,j′,n−1 appears only in the labels of one
M circuit, and the same is true, mutatis mutandis, if we compare P1,1,n with any other Pi,j,n, or any
Mi′,j′,n−1, inside any Pc,d,n+L+1. Thus, for any invariant measure, the measure of any level of the
tower with name P1,1,n is much larger than the measure of any level of any other tower just after
the runs of stqt,n−1 inductions.

As for the lengths of these names, the M1,n−1 are C ′an−1 times longer than all the labels of the
other M circuits at that stage, and thus the name P1,1,n is C ′an−1 times longer than any name Pi,j,n
where j is not a vertex of the circuit with label M1,n−1, and of a comparable length with any name
Pi,j,n where j is a vertex of the circuit with label M1,n−1 (namely, at most such a name could be k
times longer than P1,1,n) ; P1,1,n is also C ′an times longer than the name M1,n−1 and thus than any
name Mi,j,n−1. Thus the measure of the whole tower with name P1,1,n is also much larger than the
measure of any other tower just before the runs of s′tq

′
t,n inductions, thus is close to one, and the

system is of rank one.

Because our system is of rank one for any invariant measure, every invariant measure is ergodic,
thus there is only one, and we have unique ergodicity.

Note that if we consider the towers just before the runs of stqt,n inductions, they have names
Pi,j,n and Mi′,j′,n; the new tower with name Pi,j,n is much thinner than the previous tower with
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name Pi,j,n, and the new tower with nameP1,1,n is not of large measure anymore: at this stage, the
tower with largest measure is the one with name Mm−1(1),1,n, though it will lose its pre-eminence
to the one with name P1,1,n+1 after the runs of stqt,n inductions.

Sarnak’s conjecture is ensured by a weaker condition than the one in Theorem 3.2 because we
can identify the longest names (for the auxiliary towers with names in Wn) at each stage. Let
Q = minn>N0{q1,n, q

′
1,n}; for some N ′0 and n > N ′0, the maximal length of a word in W2n+1 is

reached by the n-labels of the circuitM1, containing M1,m(1),n and is at most twice the length of
M1,m(1),n (the other edge labels are much shorter); the minimal length of a word inW2n+1 is the
length of some Pi,j,n; the maximal length of a word in W2n is reached by the n-labels of some
fixed P circuit Pv and is at most k2 times the length of P1,1,n (we have seen that there might be
longer Pi,j,n, and they might form a circuit, thus the factor k2). The minimal length of a word in
W2n is the length of some Mi,j,n−1. If n > N ′0, by Lemma 4.1 the minimal length of an M word in
W2n+L+1 is at least |M1,n|; then this length is at least Q|P1,1,n| > Q2|M1,n−1| > Q3|P1,1,n−1| . . . as
long as we are above N0. Thus, if 2n+1−s is at least 2N1 +1, where N1 = N0∨N ′0, the minimal
length of an M word inW2n+L+1 is at least 1

k2
Qs times the maximal length of a word inW2n+1−s,

and similarly for P words. Thus, if take as initial words by theWN1 , we get β(s+L+ 1) > 1
k2
Qs.

Hence, if we choose N0 such that an > C(2k − 2) for all n > N0, the hypothesis is enough to
satisfy Bourgain’s criterion. �

In this class, we can have not only weak mixing, but also simplicity.

Theorem 5.2. Let k ≥ 3, and π a standard permutation on {1, . . . , k}: one can construct recur-
sively sequences q′t,n, 1 ≤ t ≤ r′, and qt,n, 1 ≤ t ≤ r, n ≥ 1, such that the k-interval-exchange
defined as in Theorem 3.2, with the preliminary sequence of inductions defined in 3.1 to 3.m below,
is uniquely ergodic, rank one, weakly mixing, simple, rigid, and satisfies Sarnak’s conjecture with
a prime number theorem.

Proof
We fix first the preliminary inductions so that |P1,1,1| and |M1,1| are coprime.

3.1 IfM1 has an odd number of vertices, its label has odd length, and we have what we require
without any preliminary induction.

3.2 If the label ofM1 has even length,M1 has an even number of vertices; then there exists
a P circuit P2 6= P1,1 with an odd number of common vertices withM1; if P2 has an odd
number s′2 of vertices, we make s′2 inductions on P2; after that the length of the label of
M1 becomes odd, the label of P1,1 is unchanged and we have what we require.

3.3 If the label of P2 has even length, there exists an M circuit M2 6= M1 with an odd
number of common vertices with P2; ifM2 has an odd number s2 of vertices, we make s2

inductions onM2; after that the length of the label of P2 becomes odd, the labels of P1,1

andM1 are unchanged, we are as in 3.2, and can continue to get what we require.
3.4 If the label ofM2 has even length, there exists a P circuit P3 6= P2, P3 6= P1,1 with an odd

number of common vertices withM2; if P3 has an odd number s′3 of vertices, we make s′3
inductions on P3; after that the length of the label ofM2 becomes odd, the labels of P1,1,
P2 andM1 are unchanged, we are as in 3.3, and can continue to get what we require.

3.m We continue in the same way, possibly with Pl+2 = Pl orMl+2 = Ml for some l, until
we cannot find any new circuits P or M ; if we can stop somewhere with a circuit of odd
length, we go back through the steps to get what we require.
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Suppose we cannot stop anywhere with a circuit of odd length; having defined ourMi and Pi
as above, we denote the remaining circuits by M̄j and P̄j . We have partitioned all the vertices
{1, . . . k− 1} into circuitsMi with an even number of vertices, M̄j , P1,1, Pi with an even number
of vertices, P̄j; because we have added everything we can to the Mi and Pi, each Mi and P̄j ,
resp. Pi and M̄j , have an even (possibly zero) number of common vertices. But then the number
of vertices of M̄ = ∪M̄j and P̄ = ∪P̄j have the same parity (namely, the parity of the number of
vertices of P̄ ∩ M̄), thus because of P1,1, the size of the set of vertices, that is the number k − 1,
has two different parities, which gives a contradiction.

Then the words Pi,j,n and Mi,j,n are built as in the proof of Theorem 3.2. We fix some P circuit
different from P1,1, but with b1 6= 0 common vertices with the circuitM1 (this is possible asM1

is not reduced to the vertex 1, by minimality) and denote it by P2. We shall now choose our qt,n
and q′t,n so that for each n ≥ 2 the lengths |P1,1,n| and b1|P2,n| are coprime, and |M1,n| is congruent
to 1 modulo |P1,1,n|. We make the induction hypothesis that |P1,1,n| and |M1,n| are coprime: it is
satisfied for n = 1.

Knowing the Pi,j,n and Mi′,j′,n, we choose first the qi,n so that |P1,1,n+1| and b1|P2,n+1| are
coprime. We have

|P1,1,n+1| = |P1,1,n|+ q1,n|M1,n|,

|P2,n+1| = |P2,n|+ b1q1,n|M1,n|+
V∑
v=2

bvqv,n|Mv,n|,

where the vertices of P2 belong to circuitsMv, 1 ≤ v ≤ Vu, with bv common vertices between
Mv and P2. Every common divisor to |P1,1,n+1| and b1|P2,n+1| divides also

Dn =

∣∣∣∣∣−b2
1|P1,1,n|+ b1|P2,n|+ b1

V∑
v=2

bvqv,n|Mv,n|

∣∣∣∣∣ .
The integerDn does not depend on q1,n. If there exists v 6= 1 such that bv 6= 0 then we can choose

the qt,n, 2 ≤ t ≤ r, such that Dn 6= 0. Otherwise, for all v we have bv = 0; then all P circuits
which have a common vertex with M1 have all their vertices in M1. Again by minimality this
implies thatM1 is the only M circuit, and b1 = s′2, Dn = | − b2

1|P1,1,n|+ b1|P2,n||. The recursion
formulas give |P1,1,n| = |P1,1,n−1| + q1,n−1|M1,n−1| and |P2,n| = |P2,n−1| + s′2q1,n−1|M1,n−1|,
thus Dn = Dn−1 = . . . = D1. In this situation, either M1 has an odd number of vertices, or
we can choose the circuit P2 such that it has an odd number of vertices; thus in the preliminary
inductions, we stop at 3.1 or 3.2: either we change nothing or we change only the M edges, thus
D1 = D0 = s′2 6= 0.

We know that |P1,1,n+1| = |P1,1,n| + q1,n|M1,n| and that |P1,1,n| and |M1,n| are coprime. By the
Chinese remainder theorem, we can find infinitely many values of q1,n such that no prime number
d divides the numbers Dn and P1,1,n+1. This is done by choosing the congruences of q1,n modulo
those prime factors of Dn which do not divide |M1,n|, while any congruence is permitted modulo
the divisors of Dn which divide |M1,n|. Thus we get that |P1,1,n+1| and b1|P2,n+1| are coprime.
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We choose now the q′i,n such that |M1,n+1| is congruent to 1 modulo |P1,1,n+1|, which in particular
implies the induction hypothesis at stage n+ 1.. We have

|M1,n+1| = |M1,n|+ q′1,n|P1,1,n+1|+
U∑
u=1

cuq
′
u,n|Pu,n+1|,

where the vertices of M1 belong to P1,1 or to circuits Pu, 1 ≤ u ≤ U , with cu common vertices be-
tween M1 and Pu, and c2 = b1. Now we choose first q′u,n = |P1,1,n| for the u ≥ 3 such that cu 6= 0
(if they exist); then q′2,n such that |M1,n|+ b1q

′
2,n|P2,n+1| is congruent to 1 modulo |P1,1,n+1|, which

is possible as b1|P2,n+1| is invertible modulo |P1,1,n+1|; then we fix q′1,n (which will be required
later to be much larger than the q′i,n, i > 1), and we have what we require.

We add the conditions that for all n ≥ 1, q1,n > 2nqt,n and q′1,n > 2nq′t,n, for every 2 ≤ t ≤ k−1,
which can be ensured in the previous construction. Then our system satisfies the conditions of
Proposition 5.1.

We look at the actual expressions of the names; if the vertex ml(1) is in the circuit Pul , 1 ≤
l ≤ s1 − 1, Pui,n denotes the n-label of this circuit which begins with Mml(1),pml(1),n, while M1,n

denotes the n-label of the circuitM1 which begins with M1,m(1),n. Then we have

M1,n = M1,m(1),n−1(Pu1,n)q
′
u1,n−1Mm(1),m2(1),n−1(Pu2,n)q

′
u2,n−1 . . .

Mms1−2(1),ms1−1(1),n−1(Pus1−2,n)
q′us1−2,n−1Mms1−1(1),1,n−1(P1,1,n)q

′
1,n−1 ,

P1,1,n+1 = P1,1,nM
q1,n
1,n ,

hence
P1,1,n+1 = P1,1,n(RnP

q′1,n−1

1,1,n )q1,n ,

where |Rn| = q̄n−1|P1,1,n|+ 1, for some q̄n−1 large enough if q′2,n−1 is large, but much smaller than
q′1,n−1.

Thus our system is measure-theoretically isomorphic to the rank one system built by towers of
name Hn+1 = Hn(H q̄n−1

n sH
q′1,n−1
n )q1,n , the isomorphism being made by turning the strings Rn on

one side, the strings H q̄n−1
n on the other side, into spacers, see Definition 1.8 and Theorem 4.8 of

[25]. If q̄n and q′1,n are large enough, this last system is weakly mixing, rigid and simple exactly
in the same way as the rank one map of del Junco - Rudolph [33], which is the rank one system
build by towers of names H0 = 0, Hn+1 = H2n

n 1H2n

n ; the main (and quite involved) argument in
Theorem 1 of [33] uses only the fact that there are isolated spacers between long concatenations of
the same tower. �

6. OTHER PERMUTATIONS

We have used twice the standardness of the permutation: to get a binary initial state (under the
condition of alternate discontinuities), and to have enough knowledge on the lengths of the initial
circuits to begin the control of lengths which is crucial in Theorems 4.3 and 5.2. These two theo-
rems seem difficult to generalize to a larger class of permutations, and indeed would be false for
circular permutations, for which weak mixing cannot occur (though it can, and does occur, in their
Rauzy class, except for k = 2).

As for Theorem 3.2, Propositions 4.2 and 5.1, they are valid, by the same method, for any
permutation and order of the discontinuities for which the initial state is binary, and these include
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all permutations with π1 = k under the condition of alternate discontinuities, and all permutations
with πk = 1 under the dual condition γ1 < β1 < γ2 < . . . Indeed, they are also valid if a binary
state can be reached after a finite sequence of initial inductions; this requires the description and
knowledge of our induction in every case: it is true for every permutation in the hyperelliptic
Rauzy class [24], whatever the order of the discontinuities, and we have checked it experimentally
for every permutation we have tried; we conjecture that, with the new induction, we can make
similar families of examples for any permutation.

But if we want to build examples for every primitive permutation, the Rauzy induction does the
trick, as, when it is applied backwards, it preserves Bourgain’s criterion:

Proposition 6.1. Let I be an interval exchange satisfying the hypotheses of Theorem 3.2, resp.
Proposition 4.2, resp. Proposition 5.1. Then any pre-image of I for a finite iterate of the Rauzy
induction satifies its conclusions.

Proof
The system I has an adic presentation with towers of names W in Wn described in the proof of
Theorem 3.2; by applying Proposition 2.2 p times, we get that a pre-image I ′ for p iterates of the
Rauzy induction has an adic presentation with towers of names ψW , where the map ψ is defined
by applying the composition of the p (possibly different) maps φ of Proposition 2.2 letter by letter.
The words ψW , W ∈ Wn, are built by the same recursion formulas as the W , with different initial
words, and all the results depend only on these recursion rules. �

This does not apply to weak mixing or simplicity, which rely on the lengths of the initial words.
But, by Proposition 2.1, the examples satisfying Sarnak’s conjecture, unique ergodicity or rank one
built in Theorem 3.2, Propositions 4.2 and 5.1 for every standard permutation yield examples for
every primitive permutation.
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formations and Möbius orthogonality, Funct. Anal. 266 (2014), 284-317.

[3] V.I. ARNOLD: Small denominators and problems of stability of motion in classical and celestial mechanics,
Usp. Math. Nauk. 18 (1963), 91–192, (in Russian) translated in Russian Math. Surveys 18 (1963), 86–194.
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[38] J. KUŁAGA-PRZYSMUS, M. LEMAŃCZYK: The Möbius function and continuous extensions of rotations,

arXiv:1310.2546.
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