
HAL Id: hal-01263078
https://hal.science/hal-01263078

Submitted on 17 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The QoCIM framework : concepts and tools for quality
of context management

Pierrick Marie, Thierry Desprats, Sophie Chabridon, Michelle Sibilla

To cite this version:
Pierrick Marie, Thierry Desprats, Sophie Chabridon, Michelle Sibilla. The QoCIM framework : con-
cepts and tools for quality of context management. Brézillon, Patrick; Gonzalez, Avelino J. Context in
computing : a cross-disciplinary approach for modeling the real world, Chapter 11, Springer, pp.155-
172, 2014, 978-1-4939-1886-7. �10.1007/978-1-4939-1887-4_11�. �hal-01263078�

https://hal.science/hal-01263078
https://hal.archives-ouvertes.fr

Chapter 11
The QoCIM framework: concepts and tools for
quality of context management

Pierrick MARIE, Thierry DESPRATS, Sophie CHABRIDON, Michelle SIBILLA

Abstract In the last decade, several works proposed their own list of quality of
context (QoC) criteria. This article relates a comparative study of these successive
propositions and shows that no consensus has been reached about the semantic
and the comprehensiveness of QoC criteria. Facing this situation, the QoCIM
meta-model offers a generic, computable and expressive solution to handle and
exploit any QoC criterion within distributed context managers and context-aware
applications. For validation purposes, the key modelling features of QoCIM are
illustrated as well as the tool chain that provides developers with QoCIM based
models editor and code generator. With the tool chain, developers are able to define
and use their own QoC criteria within context and quality aware applications.

11.1 Introduction

The expansion of the Internet of Things (the extension of the Internet to objects
of the real world), cloud computing, big data and mobile technologies foster the
development of new ubiquitous, context- and situation-aware applications. These
situations are computed from ambient data, profiles of users and information
collected from heterogeneous and spatially distributed sources. Context-aware
applications become more and more usual. These applications require a fine and
efficient management of the quality of the context information (QoC) they rely
on. QoC is related to any information that describes the quality of context data as
stated by the seminal definition proposed by [4]. QoC specializes the general notion

Pierrick MARIE, Thierry DESPRATS, Michelle SIBILLA
IRIT UMR 5505 Université Paul SABATIER, 31062 TOULOUSE, France
e-mail: <Firstname>.<NAME>@irit.fr

Sophie CHABRIDON
Institut Mines-Télécom, CNRS UMR 5157 SAMOVAR, Télécom SudParis, 91011 Évry, France
e-mail: Sophie.Chabridon@telecom-sudparis.eu

1

2 Pierrick MARIE, Thierry DESPRATS, Sophie CHABRIDON, Michelle SIBILLA

of Quality of Information (QoI) for context information. A relevant behaviour of
the QoC-aware applications strongly depends on the QoC they receive. However,
according to the business objectives of these applications, some QoC criteria may
appear more important than others. Sometimes the freshness criterion is sufficient,
sometimes it is the precision criterion and other times both are necessary. A
solution to handle this need is to use context managers. They support context
information throughout their life cycle. The life cycle of a piece of context
information begins at its creation by a sensor and ends at its consumption by a
context-aware application. Between these two events, context data are aggregated,
filtered, deduced or transformed many times [3]. These data are intrinsically
incomplete and inaccurate [8]. A bad quality of context information could lead to
wrong decisions and irrelevant reactions. That is why context managers must take
into account QoC at each step of the context information life cycle. This challenge
logically remains in the case of the next generation of multi-scale distributed context
managers.

The extension of the scope of context managers from local ambient environments
to the Internet of Things (IoT) leads to a spatio-temporal decoupling between
context providers like raw data producers close to RFID readers or sensors networks,
and context consumers that are context-aware applications running, for example,
on mobile devices close to users. This kind of middleware must be deployed
over various devices or servers, spread across various networks or clouds, and we
name them Multiscale Distributed Context Managers (MDCM). Several solutions
have already been proposed. In 2007, the AWARENESS project [17] proposed a
middleware to manage context information and offered a way to manipulate the
QoC. In 2009, the COSMOS project [1] proposed mechanisms for the efficient
management of QoC for ambient intelligence. In 2011 [9] proposed a DSL
(MLContext) and a process to easily develop context-quality aware applications.
With the DSL developers are able to create new context and QoC aware applications.
MLContext offers the benefits of considering the QoC in terms of guaranties for
the producers of context and in terms of QoC requirements for the consumers of
context. Finally, one of the objectives of the INCOME project [2], started in 2012,
is to design solutions able to handle QoC as well as to preserve privacy within a new
MDCM.

We intend to provide future context managers with a generic, computable and
expressive way to manipulate and exploit QoC simply and efficiently. Generic,
because our solution has to model complex and heterogeneous QoC criteria.
Computable, because the estimation of the quality level of context information is
based on treatments and operations on QoC criteria. Lastly, expressive, because
context-aware applications must be able to express their QoC requirements to
different context managers.

This paper is organized as follows. Section 11.2 compares the lists of QoC criteria
that have been proposed over the last decade. Section 11.3 illustrates with a fictional
scenario what kind of services the new generation of context manager have to fulfil.
After having found, in Section 11.2, no standard list of criteria to measure QoC
and illustrate, in Section 11.3, the necessity to handle the QoC within MDMC, we

11 The QoCIM framework: concepts and tools for quality of context management 3

propose the Quality of Context Information Meta-model (QoCIM) in Section 11.4.
It brings a generic, computable and expressive solution to manipulate and manage
QoC. The modelling key points of QoCIM are illustrated in Section 11.5. Finally,
Section 11.6 presents the software tool chain we have built to produce and to manage
libraries of QoCIM-based QoC criteria models and Section 11.7 concludes this
paper.

11.2 Comparative study of existing QoC criteria lists

We study in this section the existing works about QoC measurement. Many authors
have already established their own list of QoC criteria to measure QoC. We first
enumerate the main proposals published over the last decade, and finally we
compare the proposed criteria with regard to their semantics. The study highlights
the existing variations in terms of name and meaning of QoC criteria. Different
authors define a same meaning but associate it with a different denomination. On
the contrary, a same denomination defined by different authors may correspond to
different meanings.

11.2.1 Overview of QoC criteria lists

Buchholz et al., 2003 [4] proposed the first list of QoC criteria for context-aware
services. This list is composed of five criteria : precision, probability of correctness,
trust-worthiness, resolution and up-to-dateness. All of them are defined through a
textual description. No computation method is formulated for their estimation, but
the authors provide examples to illustrate each of them.

Kim and Lee, 2006 [11] proposed a new list of QoC criteria built by confronting
Buchholz et al.’s QoC criteria to generic criteria to measure quality. The authors
provided five criteria associated to a definition from the point of view of the
end-users of the context information. The end-user is the last entity which
consumes context information. The proposed criteria are accuracy, completeness,
representation consistency, access security and up-to-dateness. Then, they defined
a mathematical formula to estimate the value of their first two criteria : accuracy
and completeness.

Sheikh et al., 2007 [17] formulated their own list of QoC criteria for the
AWARENESS project. These criteria are precision, freshness, temporal resolution,
spatial resolution, and probability of correctness. Although these criteria are
textually described, no method is provided to estimate their value. Like Buchholz
et al., Sheikh et al. gave examples to illustrate the definitions of their criteria. The
descriptions of the criteria adopt successively the points of view of the consumer and
of the producer of the context information. Producers are entities that create context
information such as sensors, while consumers are context-aware applications.

4 Pierrick MARIE, Thierry DESPRATS, Sophie CHABRIDON, Michelle SIBILLA

Filho, 2010 [7] studied the lists of QoC criteria that had been previously listed
in [4], [11] and [17] and proposed a new list of QoC criteria for the access control
security domain. Filho redefined up-to-dateness, sensitiveness, access security,
completeness, precision and resolution criteria. For each criterion, Filho offered an
example to illustrate the notion which is measured. He also provided a mathematical
formula or a sample Java program that he used to estimate these criteria.

Neisse, 2012 [14] suggested adapting the ISO standard used in metrology to
define QoC criteria. He established that the concepts of accuracy and precision
used as QoC criteria are just an approximative definition of the precision criterion
used in metrology. In the same way, Neisse estimated that the concepts of spatial
resolution and temporal resolution defined by [17] are just a redefinition of the ISO
standard of precision applied to spatial and temporal information. Neisse suggested
measuring the QoC with only two criteria: the age and the precision of the context
information. The age is the elapsed time since the production of the information. The
precision criterion applies the ISO standard of measurement precision to other kinds
of information depending on the needs of the application. So, this precision criterion
could be applied to the location of the source of the information, for example.

Manzoor et al., 2012 [12] offered the most complete list of QoC criteria.
They defined seven high level QoC criteria which depend on other lower
level QoC criteria. For each of these high level QoC criteria, the authors
associates a mathematical formula. The proposed criteria are reliability, timeliness,
completeness, significance, usability, access right, representation consistency. The
definition of some criteria, like the significance, adopts the point of view of the
context producer. The significance “indicates the worth or the preciousness of
context information in a specific situation” where the context producer is a sensor.
Whereas the definition of other criteria adopts the point of view of the context
consumer. For example, the criterion representation consistency is computed with
information coming from requirements expressed by the context-aware applications
in terms of QoC. The criterion “depends upon the amount of effort that is needed
to transform that context object according to the data model presented by context
consumer”.

11.2.2 Discussion

The study of the semantics of the QoC criteria listed above shows some divergences.
The same name of a criterion appears in several lists with a different meaning.
Conversely, a same meaning appears in several lists with different denominations.
There are also meanings associated with denominations that appear only once into
all the lists. Table 11.1 groups together the studied criteria by author and highlights
the differences that exist between all of these criteria.

The different lists of QoC criteria are represented vertically. The name and the
year of the first author of each list are mentioned on the first line and are sorted
chronologically. We associate a number to each criterion, which is indicated in

11 The QoCIM framework: concepts and tools for quality of context management 5

Table 11.1 Comparison of different lists of QoC criteria
Buchholz et al.

2003 [4]
Kim and Lee

2006 [11]
Sheikh et al.

2007 [17]
Filho

2010 [7]
Manzoor et al.

2012 [12]
Neisse

2012 [14]

1
Probability
context is free
of errors

Correctness Accuracy Precision Accuracy

2 Max. distance to
get context Sensor range

3 Location of the
real world entity Entity location

4 Location of the
sensor

Sensor
location

5
Time between
production of
contexts

Temporal
resolution X Time period

6
Date of
collection
of context

X X X X Measurement
time Timestamps

7 Granularity of
location

Spatial
resolution Resolution

8
Rate the
confidence
of the provider

Trust
worthiness

9 Critical value of
context Significance

10

Closeness,
Repeatability of
measurements
(ISO)

Precision

11
Granularity
(detail level) of
context

Precision Precision Sensitiveness Usability

12

Context
consumer
have access to
context

X Access right

13

Context
transfers
restricted,
secured

Access
security

(11)

Access
security

14 Format respects
consumer needs Consistency Consistency

15
Validity of
context based
on freshness

Up to
dateness

(6)

Up to
dateness

(6)

Freshness
(6)

Up to
dateness

(5, 6)

Timeliness
(5, 6)

16
All aspects
of entity are
available

Resolution Completeness Completeness
(15) Completeness

17
Belief in the
correctness of
context

Correctness Reliability
(1, 2, 3, 4)

Meaning Meaning used by all authors

Name Criterion (name + meaning) only defined by one author

Name Name only defined by one author

Name Name defined by different authors with different meanings

Name Name defined by different authors with the same meaning

Name (X) The definition of this criterion depends on the criterion number X

X Criterion not defined by author but another criterion depends on it

6 Pierrick MARIE, Thierry DESPRATS, Sophie CHABRIDON, Michelle SIBILLA

the first column of the table. The second column summarizes the meaning of each
criterion. The cells of the table which contain a name correspond to criteria proposed
by the authors. An empty cell indicates that the authors did not propose the criterion
on this line. A cell with a check-mark represents a criterion implicitly used by
the corresponding author but not clearly defined in its list of QoC criteria. Grey
cells represent criteria defined by only one author. The lightgrey color indicates that
there is one common meaning used by all authors. The criteria written in italic are
names used only once. The criteria written in bold are names used by at least two
different authors with different meanings. Some names of criterion are followed by
numbers. For example, on line 17, the reliability criterion defined by Manzoor [12]
is followed by the numbers 1, 2, 3 and 4. These numbers reference the numbers in
the first column and indicate that this criterion is composed of other criteria. For this
example, the criterion is computed using the first four criteria listed in this table.

Lastly, QoC criteria are sorted in the table by following a specific order. Criteria
extracted directly from raw sensor data and which do not need computation or
statistical analysis are placed on the top of the table. Whereas criteria at the bottom
of the table require historical analysis or data from many sensors to be estimated.
The more a criterion requires computations and data, the lower it is placed in the
table. Manzoor [12] classifies criteria into two categories, objective and subjective
criteria; an objective criterion does not depend on the final application whereas
a subjective criterion depends on the purpose of the final application. Table 11.1
orders criteria as a function of the effort that is required to estimate them.

Table 11.1 highlights that there is no consensus about which QoC criteria have
to be used to measure the QoC of context information. This supports the idea of [3]
indicating that a consensus about the definition of a common list of QoC criteria
is still an open problem. Moreover the table provides a way to compare different
lists of QoC criteria. This makes it possible to compare new specific lists between
them. Indeed, with the development of context-aware applications, if a new high
level criteria appears, Table 11.1 offers a method to classify lists of QoC criteria
relatively to one another.

Despite the plethora of QoC criteria, MDCM still have to handle the QoC all
along the life cycle of context information. Using MDCMs implies that it is no
longer possible to establish a kind of “one-to-one QoC-based contract” between
context data producers and respective consumers. Nevertheless, QoC requirements
subsist and MDCMs have to match the quality of the context information that is
delivered to a consumer with its expectations. Symmetrically, MDCMs have to
know about the guarantees that a context data producer claims about some related
QoC criteria. Lastly, because one of the main functionalities of context managers
is to apply some processing to context information (aggregation, inference and so
on), they also have to tackle the QoC during the execution of these operations.
Consequently, MDCMs should be extensible by enabling the definition of any QoC
criterion including their associated computation algorithm. A solution to supply
QoC management within MDCM is to use a common way to model QoC criteria, to
compute the value of the QoC and to express requirements and guarantees. The next

11 The QoCIM framework: concepts and tools for quality of context management 7

Section presents an example to illustrate the services that new generation of context
manager have to fulfil.

11.3 Scenario

Pollution + location
QoC requirements:

● High freshness
● High precision

Collection Aggregation Presentation

Multi-Scale Distributed Context Manager

Pollution + location
QoC requirements:

● Medium freshness
● Medium precision

Context information with QoCLegend:

Pollution
QoC guarantees:
● high precision

Heterogeneous
context producers

Heterogeneous
context consumers

Intermediate context consumers/producers

Location
QoC guarantees:
● low freshness
● medium precision

Pollution
QoC guarantees:
● medium precision

3

4

1

2

Fig. 11.1 QoC for the pollution measurement scenario

This Section describes a fictional scenario inspired from an existing concern: the
urban pollution. We plan to develop the scenario in the future to experiment our
solution. The future experimentations may be based on real pollution measurements
realised with sensors networks or with simulated and random measurements. In our
scenario, a city installs on its public transportation buses a pollution sensor and a
location sensor like a GPS to inform users about the most polluted streets. The city
also installs more sophisticated pollution sensors in each bus station. To improve the
performance and increase the utility of the offered services, an embedded software
is associated to the pollution and location measurement sensors. The software uses
both the precision, criterion number 10 defined by [14], and the freshness, criterion
number 15 defined by [17], to qualify the location of the buses, and it only uses the
precision to qualify the pollution measured on the buses and the bus stations. The
MDCM provides different QoC-aware applications with context information about
the pollution measured by the buses and the bus stations in the city. The MDCM
also provides information about the quality of the context information. The QoC
is presented to the QoC-aware applications as meta-data associated to the context
information.

In this example, as shown on Figure 11.1, the buses (1) are committed to
providing their location with at least low freshness and medium precision and their
pollution measurement with at least medium freshness. The bus stations (2) are
committed to providing their pollution measurement with at least high precision.

8 Pierrick MARIE, Thierry DESPRATS, Sophie CHABRIDON, Michelle SIBILLA

Context-aware applications will receive information concerning the location of the
most polluted streets. The health care application (3) requires context information
with at least high freshness and high precision. The application is used by asthmatic
people to avoid the most polluted streets when they walk in the city. A general
mass-market mobile application (4) requires context information with at least
medium freshness and medium precision. This application is used by healthy people
to get news about the pollution in the city.

In the case where the health care application does not receive context information
with the expected QoC, the application will stop its services and display a message
to indicate it does not have enough information to provide its services. Indeed, the
health care application is critical for asthmatic people. It is preferable to not provide
any service instead of providing erroneous indications. For the second application,
if it does not receive the QoC that it expected, the application will continue to
provide its services but a warning will be displayed. It indicates the users have
to momentarily decrease their confidence into the application. This architecture
highlights the necessity to use a common model of QoC criteria to: (i) measure
the QoC of a context information, (ii) express QoC requirements and guarantees,
(iii) help context manager to deal with the QoC. The next Section presents QoCIM,
our solution to answer to these problems.

11.4 QoCIM : A new QoC meta-model

QoCCriterion

id : EString

QoCMetricDefinition

id : EString
isInvariant : EBoolean
unit : EString
direction : Order
providerUri : EString
minValue : EInt
maxValue : EInt

isDefinedBy 1

contains

1..*

value

0..*

primitiveDefinition

0..*

0..*

isDescribedBy

definition

0..1

Description

name : EString
keywords : EString
informalDefinition : EString

0..1

compositeDefinition

<<enumeration>>
Order

INF
SUP
UNDEF

QoCIndicator

id : EInt
isQualifiedBy

0..*

QoCMetricValue

id : EInt
value : EInt
creationDate : EDate

has
0..*

ContextInformation

uri : EString
value : EInt

Fig. 11.2 QoCIM : QoC Information Model

QoCIM is our proposed meta-model for designing and representing QoC.
According to [16] a meta-model “is used to refer to a model of some kind of
meta-data” and meta-data “is used to refer to data whose purpose is to describe

11 The QoCIM framework: concepts and tools for quality of context management 9

other data”. As described in the next section, we use QoCIM to build other models
of QoC indicators, that is why we consider QoCIM as a meta-model. QoCIM is not
dependent on any QoC criterion. It offers a unified solution to model, at design time,
heterogeneous QoC criteria. The key modelling points of QoCIM are inspired from
interesting concepts or modelling patterns used in several existing models studied
in [13]. Thus, models based on QoCIM could be used, at runtime, by both MDCM
and QoC-aware applications, for the dynamic handling of QoC. This section briefly
describes the QoCIM meta-model introduced in [13].

11.4.1 Presentation of QoCIM

Figure 11.2 presents the QoCIM meta-model. QoCIM qualifies context information
represented with the class ContextInformation. An indicator is represented with
the class QoCIndicator, it contains the quality of context information and is
defined by one criterion, with the class QoCCriterion. Indicators and criteria are
identified uniquely with the attribute id. At runtime, a valuation of the QoC is
available with instances of the class QoCMetricValue, identified with the attribute
id. Its value attribute provides a valuation of the QoC. The date of creation of
a value is contained into the attribute creationDate. The attributes of the class
QoCMetricDefinition define the production of instances of QoCMetricValues:

• isInvariant indicates whether the produced value is a constant, neither
editable, nor dynamically computed.

• unit represents the unit of the produced value. It could be one of the units of the
International System.

• direction compares different QoCMetricValues based on their attribute
value from the point of view of the consumer of context information. The
possible values of this attribute are INF , SUP and UNDEF :

– INF means that a high value induces a better QoC level. For example, the
freshness, or age, of a piece of context information is usually computed with
the following formula:
f reshness = current date−date o f the production o f the context.
The result of this operation increases with the time whereas the quality of the
information decreases.

– SUP means that a high value induces a worse QoC level. For example, the
spatial reliability of a piece of context information, that indicates how much
we can trust a sensor according to its distance to the observed entity, could be
computed with the following formula:

spatial reliability = 1 − distance between sensor and observed entity
maximum distance f or sensor to get context

If the sensor is close to the context, the result of this operation and the quality
of context will be greater than if the sensor is far to the context.

– UNDEF is used when neither INF nor SUP can be expressed.

10 Pierrick MARIE, Thierry DESPRATS, Sophie CHABRIDON, Michelle SIBILLA

• providerUri identifies the resource that provides the QoCMetricValue. This
attribute brings a way to filter the QoC based on the entity which computed it at
runtime.

• minValue and maxValue respectively define the minimum and the maximum
allowed value of the attribute value of the class QoCMetricValue.

The class Description brings semantics for the class QoCMetricDefinition.
The attribute name contains the name of the description. The attribute
keywords is a list of keywords. Finally, the attribute informalDefinition is
a text that informally describes the QoCMetricDefinition. For the purpose
of building composite indicators, the recursive association set on the class
QoCMetricDefinition supports the ability to model and use a resulting indicator
based on other indicators. Therefore, QoCIM authorizes QoCMetricDefinition
depending on other classes QoCMetricDefinition.

11.4.2 Discussion

The analysis of existing models presented in [13] highlights interesting concepts
of modelling patterns used in QoCIM. The first concept comes from the
meta-model of the IoT-A [10] project. It proposes to associate meta-data
with context information. QoCIM also uses this technique with the classes
ContextInformation and QoCIndicator. Like the DMTF CIM metrics
model [6], QoCIM separates the metrics definition, QoCMetricDefinition, from
the metrics value, QoCMetricValue. QoCIM reuses a few attributes of the
Object Management Group (OMG) QoS meta-model [15] like isInvariant,
direction and unit. QoCIM adds other attributes, like providerUri, and the
class Description which are not specified in the OMG QoS meta-model. The
DMTF CIM metrics model and the OMG QoS meta-model build higher level
complex definitions of metrics based on other definitions of metrics. With the same
objective, QoCIM also gives designers of context-aware applications the ability to
specify new composite QoC indicators thanks to the recursive link set on the class
QoCMetricDefinition.

11.5 The key modelling features of QoCIM

The following paragraphs describe Figures 11.3 and 11.4 and illustrate the six main
modelling features of QoCIM. The figures are two UML1 class diagrams based on
QoCIM. Figures 11.3 and 11.4 have been built with a “QoCIM models editor” that
we present in the next Section.

1 Unified Modeling Language: www.uml.org

11 The QoCIM framework: concepts and tools for quality of context management 11

Feature 1: Qualifying information with several QoC indicators
With the example of two pieces of context information, the pollution measurement
and the location, Figure 11.3 exhibits how QoCIM qualifies context information.
In this example, the location information is qualified with two QoC indicators,
the freshness and the precision. Freshness corresponds to the fifteenth definition
referenced in Table 11.1. According to [17], freshness “is the time that elapses
between the determination of context information and its delivery to a requester”.
Precision corresponds to the tenth definition referenced in Table 11.1. According
to [14] and [5], precision “is defined as how close together or how repeatable the
results from a measurement are”. Qualifying a piece of context information with
different QoC indicators allows to analyse the information from different points
of view. It is thus possible to get a complete opinion of the real quality of the
information and provides QoC-aware applications with all they need to deliver
relevant services to end-users.

Feature 2: Reusing a QoC indicator
Offering a way to reuse already defined QoC indicators eases the development of
QoC-aware applications. This feature is supported by QoCIM. It enables developers
of QoC-aware applications to reuse already defined QoC indicators for their needs.
As illustrated in Figure 11.3, the precision indicator qualifies two pieces of context
information at the same time, the pollution measurement and the location. With a
collection of QoC indicators, developers indeed just have to pick-up what indicators
they need for their QoC-aware applications.

Fig. 11.3 QoCIM based model of multiple QoC criteria definitions

Feature 3: Defining a QoC criterion with one definition
In Figure 11.3, the definition of freshness provided by [17] is evaluated in a single
way. Only one definition, FreshnessDefinition, is used to measure the freshness
of the location context information. This is the simplest way to define a QoC

12 Pierrick MARIE, Thierry DESPRATS, Sophie CHABRIDON, Michelle SIBILLA

criterion with QoCIM, with only one definition per criterion. The next paragraph
describes a more complex way to define a criterion.

Feature 4: Defining a QoC criterion with multiple definitions
In Figure 11.3, the definition of precision provided by [5] can be evaluated
in multiple ways. In our example, we illustrate this plurality by providing two
different definitions associated to the precision criterion. One definition expresses
the precision in percent while the other definition expresses the precision in per
thousand. They still have the same semantics but their implementation will differ.
Providing multiple definitions for a same criterion allows different sensors with
different capabilities to choose which definition is more appropriate to qualify their
measurements according to their properties. For example, in the scenario described
in Section 11.3, sensors placed on bus stations are more sophisticated than sensors
placed on buses. A consequence of this difference could be a different definition
used to compute the value of the precision. The precision of the measurements
made with the sensors placed on the buses will be express in per-hundred while
the precision of the measurements made with the sensors placed on the bus stations
will be express in per-thousand.

Feature 5: Composing multiple definitions
Figure 11.4 presents the definition of a composite indicator. The composite
indicator depends on the classes PercentPrecisionDefinition and
FreshnessDefinition. These classes are the implementation of the freshness
and the precision indicator presented previously adapted from the class
QocMetricDefinition described in Section 11.4. The id of the composite
indicator is 18 because it could be classified into Table 11.1 as a new
indicator, that is to say the eighteenth indicator. The value of the id of the
class CompositeCriterion is “15.1 − 10.1”. This value corresponds to the
concatenation of the value of the id of the classes FreshnessDefinition,
which is “15.1”, and PercentPrecisionDefinition, which is “10.1”. The
value of the attribute id of the class CompositeDefinition is “18.1”, because
the CompositeDefinition is the first definition of the eighteenth indicator.
As for the precision indicator, the value of the attributes direction of the
class CompositeDefinition is SUP. It means that the more the value of this
indicator increases, the more the quality of the context information increases.
The computation of these values depends on the combined evaluation of the two
primitive indicators, precision and freshness.

Feature 6: Producing discrete values
In Figure 11.4, the high level indicator may take three different QoCMetricValues:
HighValue, MediumValue and LowValue. These QoCMetricValues are
respectively associated to a default value: 1, 2 or 3. The computation of these
values are specified with the Object Constraint Language (OCL)2. As an example,
listing 11.1 shows the mandatory constraints to produce a HighValue. With few
OCL constraints, QoCIM allows to create discrete values based on two continuous
values, in this example: the values of the precision and freshness.

2 Object Constraint Language: www.omg.org/spec/OCL

11 The QoCIM framework: concepts and tools for quality of context management 13

Fig. 11.4 QoCIM based model of a QoC composite indicator

c o n t e x t C o m p o s i t e D e f i n i t i o n : : v a l u e () : HighValue
p r e : s e l f . P e r C e n t P r e c i s i o n D e f i n i t i o n . QoCMetricValue . v a l u e >=

85 % s e l f . P r e c i s i o n D e f i n i t i o n . maxValue
p r e : s e l f . F r e s h n e s s D e f i n i t i o n . QoCMetricValue . v a l u e <=

15 % s e l f . F r e s h n e s s D e f i n i t i o n . maxValue

Listing 11.1 OCL constraints to define HighValue for the composite indicators

Figures 11.3 and 11.4 illustrate the six most important modelling features
of QoCIM. However, manipulating a meta-model to build new models without
dedicated tools rapidly becomes complex and error prone. If the developers of
QoC-aware applications cannot easily handle models based on QoCIM, they will
prefer to build their own QoC solution to the detriment of the interoperability with
MDCMs or with the other QoC-aware applications.

11.6 QoCIM software engineering tool chain

This section presents the software tool chain that we developed to build a library
of QoCIM-based QoC indicator models. The purpose of the tool chain is a first
step to easily defining new primitive or composite models of QoC indicators. As
examples, Figures 11.3 and 11.4 have been produced with the tool. In a second
step, the tool chain can automatically generate the source code corresponding to the
models previously defined. Figure 11.5 illustrates the two steps of this process to
build a library with the source code of QoC indicator models.

14 Pierrick MARIE, Thierry DESPRATS, Sophie CHABRIDON, Michelle SIBILLA

Fig. 11.5 Software tool chain process

Step 1, designing new QoCIM-based QoC indicator models

With the graphical tool, the designers define new QoC indicators based on QoCIM.
The graphical tool is a dedicated software that aims to graphically produce new
UML class diagrams of QoC indicators. It is possible to edit the indicators models
by adding new definitions, new descriptions or new discrete values. With the tool,
it is also possible to define new composite indicators depending on other already
defined indicators. The designers are able to create and handle their own library
of QoC indicator models. The tool offers a unified way to create QoCIM-based
indicators model and manage them within libraries. The graphical models handled
by the editor are stored into XML files, enabling sharing and maintaining a library
of QoC indicators. Then, the designers may share their library of QoC indicators
models with others by using an online repository of models, for example. The
other designers just have to use the tool to pick-up, modify or complete the models
according to their needs. Using a graphical tool is a solution to easily handle a
collection of QoC indicator models.

Fig. 11.6 Screenshot of the part of the tool dedicated to edit models

11 The QoCIM framework: concepts and tools for quality of context management 15

Step 2, generating the source code of QoC indicators

At the end of the first step, designers will possess a set of QoC indicator diagrams. At
programming time, developers choose from the set of QoC indicator diagrams what
they desire for their QoC-aware applications and with the tool generate the code
corresponding to the indicators. The generated code will handle the QoC within
QoC-aware applications or MDCMs. Currently, the software is able to generate Java
code but, for future works, the QoC indicator diagrams could be translated into
many different programming languages. We use the strength of the Object-oriented
paradigm supported by Java to manipulate the generated classes through the factory
method pattern. This provides developers with an easy way to manipulate the classes
of the models within their applications. Then, computing the right value of QoC
according to the definition of the indicator is based on the delegation pattern and
isolated into an empty method. Once the code corresponding to the QoC indicators
is produced, the developers just have to complete this empty method to evaluate the
QoC within QoC-aware applications.

Figure 11.6 and 11.7 are two screenshots of the tool. Figure 11.6 shows the
graphical editor used to design new QoC indicators diagrams. Figure 11.7 represents
a sample of the Java code generated with the editor from a QoC indicator diagram.

The QoC indicator manipulation tool that we developed is built with the
Open Source Obeo technology3. It is a software based on the Eclipse Modelling
Framework (EMF) technology4. With the Obeo software, it is possible to easily
create and configure new software dedicated to the manipulation of models based on
a meta-model. The resulting software that we configured is able to graphically create
new models based on QoCIM. The configuration files that we wrote are specific to
the Obeo technology. We also wrote template files that are used by our graphical
editor to generate source code corresponding to models based on QoCIM. The editor
analyses the models and applies instructions contained in the template to generate
new text files. We configured the template files to generate new Java classes.

Four steps are necessary to develop a QoC-aware application with the DSL
and the process proposed by [9]: (1) describe the observed context entities, (2)
express the capabilities of the context sources, (3) specify the QoC attributes of
the providers of context, (4) identify the QoC requirements of the applications.
MLContext handles the QoC in the steps 3 and 4 but with “the most commonly
used quality attributes in the literature” and a key-values system. Our solution is
focused on QoC management and is able to defining and handling a large collection
of QoC criteria. That is why, to extend the usability of QoCIM and improve its
expressiveness to develop QoC-aware applications, future works could consist to
integrate QoCIM within MLContext to express QoC requirements and guaranties
with a generic model of QoC criteria instead of using a pre-defined list of criteria.

3 Obeo Designer v6.2: www.obeodesigner.com/download
4 Eclipse Modelling Framework: www.eclipse.org/modeling/emf

16 Pierrick MARIE, Thierry DESPRATS, Sophie CHABRIDON, Michelle SIBILLA

Fig. 11.7 Screenshot of the part of the tool dedicated to the code generation

11.7 Conclusion and perspectives

In the last decade, several works have addressed QoC modelling and management.
This article presents the result of our analysis of some of the QoC criteria lists
proposed by different authors. The analysis explicitly demonstrates the existence of
divergences and concludes on the difficulty to converge to a unique and exhaustive
QoC criteria list. Facing this situation, we propose the QoCIM meta-model. QoCIM
is dedicated to exploit and manipulate any QoC indicator within MDCM and
QoC-aware applications. This article introduces the informational core of QoCIM.
Then, it presents the key modelling elements of QoCIM that ease the definition
of QoC indicators and the qualification of context information. Because reasoning
with a meta-model is not convenient, the article describes a graphical model editor
that helps developers to build and integrate QoC models within their QoC-aware
applications. We are currently working on identifying and defining QoC processing
functions that occur all along the life cycle of context information. The purpose
is to find the potential relationships that exist between the functions of context
information transformation (fusion, aggregation, interpretation, inference) and QoC
processing functions. Identifying QoC processing functions will allow us to build
graphs, such as coloured Petri nets, to visualize and formalize the construction of
high level context information delivered to context consumers.

11 The QoCIM framework: concepts and tools for quality of context management 17

Acknowledgment

This work is part of the French National Research Agency (ANR) INCOME project
(ANR-11-INFR-009, 2012-2015, http://anr-income.fr).

References

1. Abid, Z., Chabridon, S., Conan, D.: A Framework for Quality of Context Management. In:
First Int. Workshop on Quality of context, Lecture Notes in Computer Science (2009)

2. Arcangeli, J.P., et al.: INCOME - Multi-scale Context Management for the Internet of Things.
In: Conf. on Ambient Intelligence (AmI), LNCS 7683. Pisa, Italy (2012)

3. Bellavista, P., Corradi, A., Fanelli, M., Foschini, L.: A Survey of Context Data Distribution
for Mobile Ubiquitous Systems. ACM Computing Surveys (2012)

4. Buchholz, T., Kupper, A., Schiffers, M.: Quality of Context Information: What it is and why
we Need it. In: 10th Int. Workshop of the HP OpenView University Association (2003)

5. CEI and ISO: International vocabulary of basic and general terms in metrology (VIM) (2004)
6. Distributed Management Task Force: Base Metric Profile (2009)
7. Filho, J.B.: A family of context-based access control models for pervasive environments.

Ph.D. thesis, University of Grenoble Joseph Fourier (2010)
8. Henricksen, K., Indulska, J.: Modelling and using imperfect context information. In: Proc. 1st

PerCom Workshop CoMoRea (2004)
9. Hoyos, J., Preuveneers, D., García-Molina, J., Berbers, Y.: A dsl for context quality modeling

in context-aware applications. In: Ambient Intelligence - Software and Applications,
Advances in Intelligent and Soft Computing (2011)

10. Internet of Thing Architecture Project: Deliverable 1.3 (2012)
11. Kim, Y., Lee, K.: A quality measurement method of context information in ubiquitous

environments. In: Proceedings of the International Conference on Hybrid Information
Technology (2006)

12. Manzoor, A., Truong, H.L., Dustdar, S.: Quality of context models and applications for
context-aware systems in pervasive environments. Knowledge Engineering Review Special
Issue on Web and Mobile Information Services (2012)

13. Marie, P., Desprats, T., Chabridon, S., Sibilla, M.: QoCIM: a meta-model for quality of
context. In: CONTEXT’13 : Eighth International and Interdisciplinary Conference on
Modeling and Using Context (2013)

14. Neisse, R.: Trust and privacy management support for context-aware service platforms. Ph.D.
thesis, University of Twente, Enschede (2012)

15. Object Management Group: UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms Specification (2008)

16. Open Geospatial Consortium: Meta Object Facility (MOF) Specification (2005)
17. Sheikh, K., Wegdam, M., Van Sinderen, M.: Middleware Support for Quality of Context

in Pervasive Context-Aware Systems. In: Fifth Annual IEEE International Conference on
Pervasive Computing and Communications Workshops (2007)

