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Distributed Storage in Mobile Wireless Networks
with Device-to-Device Communication

Jesper Pedersen, Alexandre Graell i Amat, Senior Member, IEEE,
Iryna Andriyanova, Member, IEEE, and Fredrik Brännström, Member, IEEE

Abstract—We consider the use of distributed storage (DS) to
reduce the communication cost of content delivery in a wireless
network. Content is stored (cached) in a number of mobile devices
using an erasure correcting code. A user retrieves content from
other mobile devices using device-to-device communication or
from the base station (BS), at the expense of a higher communica-
tion cost. We address the repair problem when a device that stores
data leaves the network. We introduce a repair scheduling where
repair is performed periodically. We derive analytical expressions
for the overall communication cost of content download and
data repair as a function of the repair interval. The derived
expressions are then used to evaluate the communication cost
entailed by DS using maximum distance separable (MDS) codes,
regenerating codes, and locally repairable codes. Our results
show that DS can reduce the communication cost with respect
to the case where content is downloaded only from the BS,
provided that repairs are performed frequently enough. The
required repair frequency depends on the code used for storage
and network parameters. Interestingly, we show that MDS codes,
which do not perform well for classical DS, can yield a low overall
communication cost in wireless DS.

Index Terms—Caching, device-to-device communication, dis-
tributed storage, erasure correcting codes.

I. INTRODUCTION

It is predicted that the global mobile data traffic will reach
24.3 exabytes per month by 2019, nearly a tenfold increase
compared to the traffic in 2014 [1]. This dramatic increase
threatens to completely congest the already burdened wireless
networks. One popular approach to reduce peak traffic is to
store popular content closer to the end users, a technique
known as caching. The idea is to deploy a number of access
points (called helpers) with large storage capacity, but low-rate
wireless backhaul, and store data across them [2], [3]. Users
can then download content from the helpers, resulting in a
higher throughput per user. In [4] it was suggested to store
content directly in the mobile devices, taking advantage of the
high storage capacity of modern smart phones and tablets.
The requested content can then be directly retrieved from
neighbouring mobile devices, using device-to-device (D2D)
communication. This allows for a more efficient content
delivery at no additional infrastructure cost. Caching in the
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mobile devices to alleviate the wireless bottleneck has attracted
a significant interest in the research community in the recent
years [5]–[8]. In all these works, simple content caching and/or
replication (i.e., a number of copies of a content are stored in
the network) is considered.

A relevant problem in D2D-assisted mobile caching net-
works is the repairing of the lost data when a storage device
is unavailable, e.g., when a storage device fails or leaves the
network. Repairing of the lost data was considered in [9],
where the communication cost incurred by data download and
repair was analyzed for a caching scheme where data is stored
in the mobile devices using replication and regenerating codes
[10]. A strong assumption in [9] is that the repair of the lost
content is performed instantaneously. As a result, content can
always be downloaded from the mobile devices. Under the
assumption of instantaneous repair, the caching strategy that
minimizes the overall communication cost is 2-replication.

In this paper, we consider content caching in a wireless
network scenario using erasure correcting codes. To avoid
confusion with standard caching, we will use the term wire-
less distributed storage, highlighting the resemblance with
distributed storage (DS) using erasure correcting codes in,
e.g., data centers. Similar to the scenario in [9], we consider a
cellular system where mobile devices roam in and out of a cell
according to a Poisson random process and request content
at random times. The cell is served by a base station (BS),
which always has access to the content. Content is also stored
across a limited number of mobile devices using an erasure
correcting code. Our main focus is on the repair problem when
a device that stores data leaves the network. In particular, we
introduce a more realistic repair scheduling than the one in
[9] where lost content is repaired (from storage devices using
D2D communication or from the BS) at periodic intervals.

We derive analytical expressions for the overall communi-
cation cost of content download and data repair as a function
of the repair interval. The derived expressions are then used
to analyze the overall communication cost incurred by using
erasure correcting codes for DS. More precisely, we analyze
maximum distance separable (MDS) codes, regenerating codes
[10], and locally repairable codes (LRCs) [11]. As opposed
to [9], content cannot always be retrieved from the mobile
devices, therefore the download cost is dependent on the repair
process (in particular the repair interval). We show that DS
can reduce the overall communication cost as compared to
the basic scenario where content is only downloaded from the
BS. However, this is provided that repairs can be performed
frequently enough. The repair interval that minimizes the over-
all communication cost depends on the network parameters
and the underlying erasure correcting code. We show that,
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in general, instantaneous repair is not optimal. The derived
expressions can also be used to find, for a given repair
interval, the erasure correcting code yielding the lowest overall
communication cost.

Non-instantaneous repairs, the so called “lazy” repairs, have
already been proposed for DS in data centers [12], [13] to
reduce the amount of data that has to be transmitted within the
storage network during the repair process, known as the repair
bandwidth. However, contrary to [12], [13], in the wireless
scenario considered here the non-instantaneous repairs impact
both data repair and download. We show that, somewhat
interestingly, erasure correcting codes achieving a low repair
bandwidth do not always perform well in a wireless DS setting.
On the other hand, MDS codes, which entail a high repair
bandwidth, can yield a low overall communication cost for
some repair intervals.

The remainder of this paper is organized as follows. In
Section II, we describe the system model and main assump-
tions. In Section III, we derive analytical expressions for
the overall communication cost as a function of the repair
interval. In Section IV, we extend the analysis to the case when
repair and download can be carried out jointly from storage
devices and the BS. In Section V we introduce the erasure
correcting codes used for DS. Finally, we give numerical
results in Section VI and provide a discussion and draw some
conclusions in Section VII.

II. SYSTEM MODEL

We consider a single cell in a cellular network, served by a
BS, where mobile devices (referred to as nodes) arrive and
depart according to a Poisson random process. The initial
number of nodes in the network is M . Nodes wish to download
content from the network. For simplicity, we assume that there
is a single object (file), of size F bits, stored at the BS. We
further assume that nodes can store data and communicate
between them using D2D communication. The considered
scenario is depicted in Fig. 1.

Arrival-departure model. Nodes arrive according to a Pois-
son process with exponential independent, identically dis-
tributed (i.i.d.) random inter-arrival times Ta with probability
density function (pdf)

fTa(t) = Mλe−Mλt, λ ≥ 0, t ≥ 0, (1)

where Mλ is the expected arrival rate of a node and t is time,
measured in time units (t.u.).

The nodes stay in the cell for an i.i.d. exponential random
lifetime Tl with pdf

fTl(t) = µe−µt, µ ≥ 0, t ≥ 0, (2)

where µ is the expected departure rate of a node. The number
of nodes in the cell can be described by an M/M/∞ queuing
model where the probability that there are i nodes in the cell
is [14]

π(i) =
(Mλ/µ)i

i!
e−(Mλ/µ). (3)

For simplicity, we assume that µ = λ, i.e., the flow in and out
from the cell is the same and the expected number of nodes
in the cell stays constant (equal to M ).

Mλ

α α

α
α
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µ

Figure 1. A wireless network with data storage in the mobile devices (nodes).
A new node arrives to the network at rate Mλ. The departure rate per node is
µ. Blue nodes store exactly α bits each. The green node requests the file and
downloads it from the storage nodes (solid arrows), or from the BS (dashed
arrow). The repair onto a node (in red) is carried out by transmitting γD2D bits
from storage nodes (solid arrows) or γBS bits from the BS (dashed arrow).

Data storage. The file is partitioned into k packets, called
symbols, of size F

k bits and is encoded into n coded symbols
using an (n, k) erasure correcting code of rate R = k/n < 1.
The encoded data is stored in m ≤ n nodes, referred to as
storage nodes. For simplicity, we assume m�M , hence the
probability that the number of nodes in the cell is smaller than
m is negligibly small, i.e.,

m−1∑
i=0

π(i)� 1, (4)

using (3). Therefore, with high probability the file can be
stored in the cell. In particular, each storage node stores exactly
α bits, i.e., we consider a symmetric allocation [15]. Hence1,

α =
1

m
· F
R
≥ F

k
. (5)

Data delivery. Nodes request the file at random times with
i.i.d. random inter-request time Tr with pdf

fTr(t) = ωe−ωt, ω ≥ 0, t ≥ 0, (6)

where ω is the expected request rate per node. Whenever pos-
sible, the file is downloaded from the storage nodes using D2D
communication, referred to as D2D download. In particular,
we assume that data can be downloaded from any subset of
h < m storage nodes, which we will refer to as the download
access. In other words, D2D download is possible if h or more
storage nodes remain in the cell. In this case, the amount of
downloaded data is hα ≥ F bits.2 In the case where there are

1Without loss of generality, we assume α ∈ N.
2To simplify the analysis in Sections III and IV, we assume that the

download bandwidth is the same irrespective of whether the request comes
from a storage node itself or not, i.e., users do not have access to their own
stored data. This is a reasonable approximation if m�M . Furthermore, this
may be a practical assumption. Due to concerns about security in systems that
allow for D2D connectivity, it has been proposed to isolate part of the memory
in the mobile devices to be used only for DS, so that devices cannot have
access to their own cached data [16].
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less than h storage nodes in the cell, the file is downloaded
from the BS, which we refer to as BS download. In this case,
F bits are downloaded.

Communication cost. We assume that transmission from the
BS and from a storage node (in D2D communication) have
different costs. We denote by ρBS and ρD2D the cost (in cost
units (c.u.) per bit, [c.u./bit]) of transmitting one bit from
the BS and from a node, respectively. Therefore, the cost
of downloading a file from the BS and the storage nodes
is ρBSF and ρD2Dhα, respectively. Furthermore, we define
ρ , ρBS/ρD2D and assume that ρ ≥ 1, hence transmission
from the BS is at least as costly as transmission in D2D
communication.

A. Repair Process

When a storage node leaves the cell, its stored data is
lost (see blue node with orange stripes in Fig. 1). Therefore,
another node needs to be populated with data to maintain the
initial state of reliability of the DS network, i.e., m storage
nodes. The restore (repair) of the lost data onto another node,
chosen uniformly at random from all nodes in the cell that do
not store any content, will be referred to as the repair process.
We introduce a scheduled repair scheme where the repair
process is run periodically. We denote the interval between two
repairs by ∆ (in t.u.), ∆ ≥ 0. Note that ∆ = 0 corresponds
to the case of instantaneous repair, considered in [9].

Similar to the download, repair can be accomplished from
the storage nodes (D2D repair) or from the BS (BS repair),
with cost per bit ρD2D and ρBS, respectively. The amount of
data (in bits) that needs to be retrieved from the network
to repair a single failed node is referred to as the repair
bandwidth, denoted by γ. For simplicity, we assume that each
repair is handled independently of the others. In particular,
we assume that D2D repair can be performed from any subset
of r < m storage nodes by retrieving β ≤ α bits from each
node. In other words, D2D repair is possible if there are at
least r storage nodes in the cell at the moment of repair. In this
case, γD2D = rβ ≥ α, and the corresponding communication
cost is ρD2DγD2D. Parameter r is usually referred to as the
repair access in the DS literature. If there are less than r
storage nodes in the cell at the moment of repair, then the
repair is carried out by the BS. In this case, γBS = α, with
communication cost ρBSγBS. For both repair and download,
we assume error-free transmission.

Parameters m, h, r, α and β, and subsequently γD2D and
γBS, depend on the erasure correcting code used for storage.
Since m, h and r are very important parameters, an erasure
correcting code in DS is typically defined with the triple
[m,h, r]. This will be further explained in Section V.

III. REPAIR AND DOWNLOAD COST

In this section, we derive analytical expressions for the
repair and download cost, and subsequently for the overall
communication cost, as a function of the repair interval ∆.
We denote by C̄r the average communication cost of repairing
lost data, and refer to it as the repair cost. Also, we denote by
C̄d the average communication cost of downloading the file,

and refer to it as the download cost. The (average) overall
communication cost is denoted by C̄, where C̄ , C̄r + C̄d.
The costs are defined in cost units per bit and time unit
[c.u./(bit×t.u.)].

For later use, we denote by bi(m, p) the probability mass
function (pmf) of the binomial distribution with parameters m
and p,

bi(m, p) ,

(
m

i

)
pi(1− p)m−i, 0 ≤ i ≤ m. (7)

A. Repair Cost

The repair cost C̄r has two contributions, corresponding to
the cases of BS repair and D2D repair. Denote by mD2D

r and
mBS

r the average number of nodes repaired from the storage
nodes and from the BS, respectively, in one repair interval.
Then, C̄r (in [c.u./(bit×t.u.)]) is given by

C̄r =
1

F∆

(
ρBSγBSm

BS
r + ρD2DγD2Dm

D2D
r

)
, (8)

where ρBSγBS and ρD2DγD2D (in c.u.) are the cost of repairing
a single storage node from the BS and from storage nodes,
respectively (see Section II-A), and we normalize by F such
that C̄r does not depend on the file size.

The repair cost, C̄r, is given in the following theorem.

Theorem 1. Consider the DS network in Section II with
departure rate µ, communication costs ρBS and ρD2D, BS
repair bandwidth γBS, file size F , and repair interval ∆. Fur-
thermore, consider the use of an [m,h, r] erasure correcting
code with D2D repair bandwidth γD2D. The repair cost is given
by

C̄r =
1

F∆

(
ρBSγBS

r−1∑
i=0

(m− i)bi(m, p)

+ρD2DγD2D

m∑
i=r

(m− i)bi(m, p)
)
, (9)

Proof: As the inter-departure times are exponentially
distributed, the probability that a storage node has not left
the network during a time ∆ and is available for repair is

p = Pr(Tl > ∆) = e−µ∆.

Hence, the probability that i storage nodes are available for
repair is bi(m, p). If i storage nodes remain in the cell, then
m− i repairs need to be performed. D2D repair is performed
if i ≥ r, and BS repair is performed otherwise. Therefore,

mD2D
r =

m∑
i=r

(m− i)bi(m, p), mBS
r =

r−1∑
i=0

(m− i)bi(m, p).

Using these expressions in (8), we obtain (9).

Remark 1. We see from (8) that if ρBSγBS < ρD2DγD2D, i.e.,
ρ < γD2D

γBS
, D2D repair should never be performed, as repairing

always from the BS yields a lower repair cost. In this case the
repair cost would be

C̄BS
r =

1

F∆
ρBSγBSm(1− e−µ∆).
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Figure 2. Number of available storage nodes within the repair interval ∆.
At t = 0, there are m storage nodes available. Sh is the time after which
less than h storage nodes are available, hence D2D download is no longer
possible.

B. Download Cost

Similarly to C̄r, the download cost C̄d has two contributions,
corresponding to the case where content is downloaded from
the BS and from the storage nodes. Denote by pBS and pD2D
the probability that, for a request, the file is downloaded from
the BS and from the storage nodes, respectively. Then, C̄d can
be written as

C̄d =
Mω

F

(
ρBSFpBS + ρD2DhαpD2D

)
, (10)

where ρBSF and ρD2Dhα are the cost of downloading the file
from the BS and from the storage nodes, respectively (see
Section II), and Mω is the overall request rate per t.u.. Again,
we normalize by F so that the cost does not depend on the
file size. The download cost is given in the following theorem.

Theorem 2. Consider the DS network in Section II with
expected number of nodes in the cell M , departure rate µ,
request rate ω, file size F , and repair interval ∆. Furthermore,
consider the use of an [m,h, r] erasure correcting code that
stores α bits per node. Let µi = iµ for i = h, . . . ,m, and
pi = e−µi∆. The download cost is given by

C̄d = Mω

(
ρBS +

(
ρD2D

hα

F
−ρBS

)
1

∆

m∑
i=h

1− pi
µi

m∏
j=h
j 6=i

j

j − i

)
.

(11)

The proof is given in Appendix A. Here, we give a sketch
of the proof. Since pD2D +pBS = 1, it follows from (10) that to
derive C̄d is sufficient to derive pD2D. Let m(t) be the number
of storage nodes alive in the cell within a repair interval, i.e.,
for t ∈ [0,∆), with m(0) = m. It is important to observe
that m(t) is described by a Poisson death process [14], since
storage nodes may leave the cell, and no repair is attempted
before a time ∆. This random process is illustrated in Fig. 2.
At some point, too many storage nodes have left the network,
such that the number of available storage nodes goes below h
and D2D download is no longer possible. Denote the (random)
time this occurs by Sh, i.e., m(t) < h ∀ t ≥ Sh, t ∈ [0,∆)
(see Fig. 2). Denote by W̃` the arrival time of the `th file
request within a repair interval, t ∈ [0,∆). The probability
pD2D can then be derived in two steps.

1) Find the pdf of the arrival time of the file requests within
a repair interval ∆, W̃`.

2) Find the probability that a request arrives before Sh,
pD2D = Pr(W̃` < Sh) (i.e., D2D download is possible).

Remark 2. If ρBSF < ρD2Dhα, i.e., ρ < hα
F , performing BS

download only is optimal. The download cost is then

C̄BS
d = MωρBS. (12)

We also have the following result about the behavior of C̄d
in (11).

Corollary 1. For µ > 0, C̄d is monotonically increasing with
∆ if ρ > hα

F , monotonically decreasing with ∆ if ρ < hα
F ,

and constant otherwise.

Proof: The proof follows directly from differentiating C̄d
with respect to ∆ and is therefore omitted.

C. Overall Communication Cost

Combining Theorems 1 and 2, one obtains the expression
for the overall communication cost,

C̄ = C̄r + C̄d. (13)

Note that, in general, C̄ is not monotone with ∆. We can
derive the following result for ∆ = 0 (instantaneous repair)
and ∆→∞ (no repair).

Corollary 2.

lim
∆→0

C̄ =
ρD2D

F
(γD2Dmµ+Mωhα). (14)

Moreover, for µ > 0,

lim
∆→∞

C̄ = MωρBS. (15)

Proof: See Appendix B.
For instantaneous repair (∆ = 0), both repair and download

are always performed from the storage nodes. Thus, the
two terms in (14) correspond to the D2D repair and D2D
download, and we recover the result in [9]. For ∆→∞, data
is never repaired (hence, C̄r = 0). For µ > 0, the number of
storage nodes in the cell will become smaller than h at some
point, and D2D download is no longer possible. Therefore, the
overall communication cost in (15) is the BS download cost
in (12).

IV. HYBRID REPAIR AND DOWNLOAD

In the system model in Section II and the analysis in
Section III we assumed that if repair (resp. download) cannot
be completed from storage nodes (because there are less than
r (resp. h) storage nodes available in the cell), BS repair
(resp. download) is performed. Alternatively, for both repair
and download, a node might retrieve data from the available
storage nodes using D2D communication and retrieve the rest
from the BS to complete the repair or the download. We
will refer to this setup as partial D2D repair and partial D2D
download, and the scheme that implements it as the hybrid
repair and download scheme. In the following, we extend the
analysis in Section III to the hybrid scheme.
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A. Repair Cost

Assume that, at the time of repair, i < r storage nodes
are available, i.e., repair cannot be accomplished exclusively
from the storage nodes. However, iβ bits could be retrieved
from the i available storage nodes and the remaining γD2D −
iβ = (r − i)β bits to complete the repair from the BS. The
corresponding communication cost is (ρBS(r − i) + ρD2Di)β.
For the conventional scheme, D2D repair is not possible for
i < r, and the repair cost corresponds to that of BS repair,
i.e., ρBSγBS. This implies that, if i < r, partial repair leads
to a reduced repair cost if (ρBS(r − i) + ρD2Di)β < ρBSγBS

or, equivalently, i > ρBS
ρBS−ρD2D

(
r − γBS

β

)
, c. For i < r, the

hybrid scheme performs partial D2D repair if i > c and BS
repair otherwise. The repair cost is given in the following
theorem.

Theorem 3. Consider the DS network in Section II using the
hybrid scheme. The repair cost is given by

C̄hybrid
r =

1

F∆

(
ρBSγBS

a∑
i=0

(m− i)bi(m, p)

+

r−1∑
i=a+1

(m− i)(ρBS(r − i) + iρD2D)βbi(m, p)

+ ρD2DγD2D

m∑
i=r

(m− i)bi(m, p)
)
,

where a = min
{⌊

ρBS
ρBS−ρD2D

(
r − γBS

β

)⌋
, r − 1

}
,
(
r − γBS

β

)
≥

0 for all codes in Section V, and p = e−µ∆.

Proof: It follows the same lines as the proof of Theo-
rem 1.

B. Download Cost

Similar to the repair case, if i < h storage nodes are
available at the time of a file request, the file cannot be
downloaded solely from the storage nodes. However, iα bits
could be downloaded from the i available storage nodes and
the remaining (h− i)α bits from the BS, with communication
cost (ρBS(h − i) + ρD2Di)α. For the conventional scheme,
the download cost corresponds to that of BS download, i.e.,
ρBSF . Hence, the hybrid scheme leads to a lower download
cost if (ρBS(h − i) + ρD2Di)α < ρBSF , or equivalently, i >

ρBS
ρBS−ρD2D

(
h− F

α

)
, d. For i < r, the hybrid scheme performs

partial D2D download if i > d and BS download otherwise.
The download cost is given in the following theorem.

Theorem 4. Consider the DS network in Section II using the
hybrid scheme. Let µi = iµ and pi = e−µi∆, for i = 1, . . . ,m.

The download cost is given by

C̄hybrid
d =

Mω

F

(
ρBSF

(
1− 1

∆

m∑
i=1

1− pi
µi

m∏
j=1
j 6=i

j

j − i

)

+ ρBSF

a∑
i=1

ci +

h−1∑
i=a+1

(ρBS(h− i) + iρD2D)αci

+ ρD2Dhα
1

∆

m∑
i=h

1− pi
µi

m∏
j=h
j 6=i

j

j − i

)
, (16)

where a = min
{⌊

ρBS
ρBS−ρD2D

(
h− F

α

)⌋
, h− 1

}
,
(
h− F

α

)
≥ 0,

and

ci =
1

∆

m∑
i′=i

1− pi′
µi′

m∏
j=i
j 6=i′

j

j − i′

− 1

∆

m∑
i′=i+1

1− pi′
µi′

m∏
j=i+1
j 6=i′

j

j − i′ .

Proof: See Appendix C.

V. ERASURE CORRECTING CODES IN DISTRIBUTED
STORAGE

From Sections III and IV, it can be seen that the overall
communication cost C̄ depends on the network parameters
µ (λ) and ω, and on the parameters m, h, r, α, and β
(and subsequently on γD2D = rβ and γBS = α), which
are determined by the erasure correcting code used for DS.
An erasure correcting code for DS is typically described in
terms of the number of nodes used for storage, the download
access and the repair access, and is defined using the notation
[m,h, r]. In this section, we briefly describe MDS codes [17],
regenerating codes [10] and LRCs [11] in the context of DS.
We also connect the code parameters [m,h, r] with the code
parameters (n, k). In Section VI, we then evaluate the overall
communication cost of DS using these three code families.

We remark that the analysis in the previous sections applies
directly to MDS and regenerating codes. However, due to the
specificities of LRCs, Theorem 1 needs to be slightly modified,
as shown in Section V-C below.

A. Maximum Distance Separable Codes

Assume the use of an (n, k) MDS code for DS. In this case,
each storage node stores one coded symbol, hence m = n
and αMDS = F

k . Due to the MDS property, D2D repair and
D2D download require to contact r = h = k storage nodes.
Therefore, an (n, k) MDS code in a DS context is described
with the triple [n, k, k]. Moreover, βMDS = αMDS = F

k , i.e.,
γD2D = F . The fact that an amount of information equal to
the size of the entire file has to be retrieved to repair a single
storage node is a known drawback of MDS codes [10]. The
simplest MDS code is the n-replication scheme. In this case,
each storage node stores the entire file, i.e., αrep = F and
r = h = k = 1.
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B. Regenerating Codes

A lower repair bandwidth γD2D (as compared to MDS codes)
can be achieved by using regenerating codes [10], at the
expense of increasing r [10]. Two main classes of regener-
ating codes are covered here, minimum storage regenerating
(MSR) codes and minimum bandwidth regenerating (MBR)
codes. MSR codes yield the minimum storage per node, i.e.,
αMSR is minimum, while MBR codes achieve minimum D2D
repair bandwidth. Regenerating codes have two repair models,
functional repair and exact repair [18]. In exact repair, the lost
data is regenerated exactly [18]. In functional repair, the lost
data is regenerated such that the initial state of reliability in
the DS system is restored [18], but the regenerated data does
not need to be a replica of the lost data [18]. Here, we consider
only exact repair, since it is of more practical interest [19].

An exact-repair [m,h, r] MSR code in a DS system has k =
h(r−h+1) and n = m(r−h+1), with r = 2(h−1), . . . ,m−1
[19].3 Hence, using (5),

αMSR =
1

m
· F
R

=
F

m
· m(r − h+ 1)

h(r − h+ 1)
=
F

h
.

Furthermore [19],

βMSR =
F

k
=
F

h
· 1

r − h+ 1
≤ αMSR,

with equality only when r = h, which is only possible for
h = 1 and h = 2 due to the restriction on the values for the
repair access. The repair bandwidth,

γD2D = rβMSR =
F

h
· r

r − h+ 1
≤ F,

is minimized for r = m− 1 [10]. We remark that the storage
per node α (and hence the average download cost) for an
(m,h) ≡ [m,h, h] MDS code and an [m,h, r] MSR code are
equal.

An MBR code further reduces the repair bandwidth at the
expense of increasing the storage per node. An exact-repair
[m,h, r] MBR code has k = hr −

(
h
2

)
and n = mr for r =

h, . . . ,m− 1 [19]. Using (5), we have

αMBR =
1

m
· F
R

=
F

m
· 2mr

h(2r − h+ 1)
=
F

h
· 2r

2r − h+ 1
.

Furthermore [19],

βMBR =
F

k
=
F

h
· 2

2r − h+ 1
≤ αMBR.

Similarly to the MSR codes, the repair bandwidth of an MBR
code,

γD2D = rβMBR =
F

h

2r

2r − h+ 1
≤ F,

is minimized for r = m− 1 [10].
Note that an [m, 1, r] regenerating code has exactly the same

overall communication cost as an m-replication scheme.

3The design of linear, exact-repair MSR codes with r < 2(h−1) has been
proven impossible [20].

C. Locally Repairable Codes

A lower repair access r (as compared to MDS codes) is
achieved by using LRCs [11]. An [m,h, r] LRC has k = rh
and n = m(r + 1), where r < h and (r + 1) | m. Each node
stores

αLRC =
1

m
· F
R

=
F

m
· m(r + 1)

rh
=
F

h
· r + 1

r

bits. The storage nodes are arranged in G , m
r+1 disjoint repair

groups with r+1 nodes in each group. Any single storage node
can be repaired locally by retrieving γD2D = rβLRC bits from r
nodes in the repair group [11]. A storage node involved in the
repair process transmits all its stored data, i.e., βLRC = αLRC,
hence

γD2D = rβLRC =
F

h
(r + 1) ≤ F.

If local D2D repair is not possible, repair can be carried
out globally by retrieving hαLRC bits from any subset of h
storage nodes. Since it is necessary to distinguish between
local and global repairs (as opposed to MDS and regenerating
codes), the expression of the repair cost C̄r in Theorem 1 does
not apply to LRCs and needs to be modified. We denote by
mD2D

r,l and mD2D
r,g the average number of nodes repaired from

the storage nodes locally and globally, respectively, in one
repair interval. We will also need the following definitions.
Let X , (X0, X1, . . . , Xr+1) be the random vector whose
component Xi is the random variable giving the number of
repair groups with i storage node departures in a repair interval
∆. Note that Xi takes values in {0, 1, . . . , G} and

∑
iXi =

G. The probability of i storage node departures in a repair
group is qi ,

(
r+1
i

)
pr+1−i(1 − p)i, where p = e−µ∆ is the

probability that a storage node has not left the network during
a time ∆. Let x , (x0, x1, . . . , xr+1) be a realization of X
and let q , (q0, q1, . . . , qr+1). Then,

Pr(X = x) =
∑

x:|x|=G

(
G

x

)
qx, (17)

where |x| , ∑
i xi,

(
G
x

)
, G!

x0!x1!···xr+1! is the multinomial
coefficient, and qx ,

∏
i q
xi
i .

The repair cost for LRCs is given in the following theorem.

Theorem 5. Consider the DS network in Section II with
departure rate µ, communication costs ρBS and ρD2D, BS
repair bandwidth γBS, file size F , and repair interval ∆.
Furthermore, consider the use of an [m,h, r] LRC with G
disjoint repair groups and D2D repair bandwidth γD2D. The
repair cost is given by

C̄r =
1

F∆

(
ρBSγBSm

BS
r + ρD2D

(
γD2Dm

D2D
r,l + hαLRCm

D2D
r,g

))
,

(18)
where

mD2D
r,l = mpr(1− p),

mD2D
r,g =

∑
x:|x|=G

(
G

x

)
qx ·

r+1∑
i=2

ixi · 1
{
r+1∑
i=1

ixi ≤ m− h
}
,

mBS
r = m(1− p)−mD2D

r,l −mD2D
r,g ,
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Figure 3. Normalized overall communication cost C̄/Mωρ versus the repair
interval ∆ for a selection of MDS codes, regenerating codes and LRCs with
R = 1/3, compared to the normalized BS download cost (dotted line).

p = e−µ∆ and 1{·} is an indicator function.

Proof: See Appendix D.
It is easy to verify that Corollary 2 holds also for LRCs.

D. Lowest Overall Communication Cost for Instantaneous
Repair

For instantaneous repair, the minimum overall communica-
tion cost is given in the following lemma.

Lemma 1. For ∆ = 0 (instantaneous repair), the lowest
possible overall communication cost for any [m,h, r] linear
code with m = n, regenerating codes and LRCs is

C̄min(∆ = 0) , min
m,h,r

lim
∆→0

C̄ = ρD2D(2µ+Mω),

where lim∆→0 C̄ is given in (14) in Corollary 2. The minimum
is achieved by 2-replication.

Proof: See Appendix E.
This is in agreement with the result in [9], where 2-

replication was shown to be optimal.

VI. NUMERICAL RESULTS

In this section, we evaluate the overall communication cost
C̄ (computed using (9) and (11)) for the erasure correcting
codes discussed in the previous section. For the results, we
consider a network with M = 30 nodes, where the number of
storage nodes is m ≤ 10. This gives a probability smaller than
7.2 · 10−6 of having less than m nodes in the cell (see (4)),
which is considered negligible. Without loss of generality, we
set the departure rate µ = 1 and ρD2D = 1, i.e., ρ = ρBS.

Fig. 3 shows C̄ normalized to the cost of downloading from
the BS, Mωρ, i.e., C̄/Mωρ, as a function of the normalized
repair interval, µ∆ = ∆, for a selection of MDS codes,
regenerating codes and LRCs with R = 1/3. The ratio
between the request rate and departure rate is ω/µ = 0.02,

i.e., the average request rate in the cell is Mω = 0.6 requests
per t.u., and ρ = 40. The meaning of ω/µ = 0.02 is that
each node places in average 0.02 requests per node life time.
Also, in the figure ∆ = 1 means that the repair interval is
equal to one average node lifetime. Simulation results are
also included in the figure (markers). Note that since we
normalize C̄ to the BS download cost, values below ordinate
1 correspond to the case where DS is beneficial. For relatively
high repair frequencies, all codes yield lower C̄ than BS
download. However, C̄/Mωρ exceeds 1, i.e., BS download
is less costly than the DS communication cost, for values of
the repair interval larger than a threshold, which we define as

∆max , sup
{

∆ : C̄ < Mωρ
}
. (19)

For ∆ > ∆max, retrieving the file from the BS is always less
costly, therefore storing data in the nodes is useless. ∆max
depends on the network parameters M , ω, µ and ρ as well as
the code parameters m, h and r.

We see from Fig. 3 that the value of ∆ that minimizes C̄,
denoted by ∆opt, depends on the code used for storage. In
particular, ∆opt = 0 for the [9, 3, 8] MSR code, i.e., instanta-
neous repair is optimal. Performing an exhaustive search for
m ≤ 10, it is readily verified that the same is true for any of
the codes in Section V with r = m − 1. It is reasonable to
assume that this will be the case also for m > 10. On the other
hand, ∆opt > 0 for the [9, 3, 3] MDS code. ∆opt depends on
the network and code parameters. In particular, the tolerance
to storage node departures in a repair interval affects ∆opt.
In Section VI-A, we investigate how the network parameters
affect C̄ and ∆max. In Section VI-B, we explore how the code
parameters affect C̄.

A. Effect of Varying Network Parameters

Fig. 4 shows how ∆max increases with ρ for the same codes
as in Fig. 3 and ω/µ = 0.05. For ρ < 5, approximately,
∆max = −∞ for all considered codes, i.e., it is never beneficial
to use the devices for storage and the file should always
be downloaded from the BS. It is worth noticing that, for
moderate-to-large ρ, the [9, 3, 8] MSR code requires in the
order of 10 repairs per average node lifetime while the [9, 3, 3]
MDS code requires only around 0.66 repairs per node lifetime
for DS to be beneficial over BS download. The main difference
between the [9, 3, 3] MDS code and the [9, 3, 8] MSR code is
the number of storage node departures in a repair interval that
the code can tolerate such that D2D repair is still possible, i.e.,
m− r. The [9, 3, 3] MDS code can handle the departure of up
to 6 storage nodes while the [9, 3, 8] MSR code can tolerate a
single departure only. This explains the higher repair frequency
required by the MSR code.

For the [6, 3, 2] LRC and ρ = 20, Fig. 5 shows how
C̄/Mωρ and ∆max are affected by the ratio ω/µ. We see
that increasing ω/µ reduces C̄/Mωρ for all ∆ and that ∆max
increases with ω/µ. The same behavior is observed using
any of the codes in Section V, which can be verified by
the following manipulations of the equations in Section III.
The case ω/µ → ∞ corresponds to C̄/Mωρ → C̄d/Mωρ,
which can be readily seen by taking the limit ω →∞ in (13),
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Figure 4. The maximum repair interval ∆max versus the transmission cost
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Figure 5. Normalized overall cost C̄/Mωρ versus the repair interval ∆ for
the [6, 3, 2] LRC for different values of the ratio ω/µ, as compared with the
normalized BS download cost (straight dotted line). The arrow points in the
direction of increasing ω/µ.

using (9) and (11), for fixed and finite µ. This shows that the
overall communication cost is essentially the download cost
for a sufficiently high ω/µ. Since C̄d/Mωρ is monotonically
increasing in ∆ (Corollary 1) and C̄/Mωρ → 1 as ∆ → ∞
(Corollary 2), we also have that ∆max → ∞ for ω/µ → ∞.
Hence, DS always leads to a lower overall communication
cost, as compared to the BS download cost, for sufficiently
large ω/µ.

B. Results of Changing Code Parameters

We investigate how the repair access r affects C̄. Fig. 6
shows C̄/Mωρ versus ∆ for the [9, 3, r] MSR code for ρ = 40
and ω/µ = 0.02. We observe that for ∆ = 0 the lowest
C̄ is achieved for r = 8, i.e., the highest possible repair
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4

5

∆

C̄
/M

ω
ρ

r = 4

r = 5

r = 6

r = 7
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Figure 6. Normalized overall cost C̄/Mωρ versus the repair interval ∆
for the [9, 3, r] MSR code compared with the normalized BS download cost
(dotted line). The arrow shows the direction of increasing r.

access. This is due to the fact that for regenerating codes γD2D
is minimized for r = m − 1 (see [10] and Section V-B).
However, increasing ∆ requires decreasing r to yield the
lowest C̄. This is due to the improved tolerance to storage node
departures as r decreases. The result is interesting, because it
means that in wireless DS, if repairs cannot be accomplished
very frequently, repair access is a more important parameter
than repair bandwidth. On the other hand, if repairs can be
performed very frequently, repair bandwidth becomes more
important than repair access, because tolerance to storage
node departures is not critical. In general, there is a tradeoff
between the repair bandwidth and the tolerance to storage node
departures (i.e., repair access), which holds true for any of the
codes in Section V. How to set the the parameter r depends
on how frequently we can repair the DS system.

C. Improved Communication Cost Using the Hybrid Scheme

We return to the hybrid repair and download scheme
presented in Section IV to investigate the gains in overall
communication cost as compared to the cost when using the
conventional scheme. We remark that the hybrid scheme does
not improve C̄ for all codes in Section V. In particular, for
finite ρ, C̄r is only reduced if β < α (Theorem 3) and
C̄d is only improved if α < F (Theorem 4). Fig. 7 shows
C̄/Mωρ versus ∆ for all codes in Fig. 3 that achieve lower
C̄ when using the hybrid scheme. We set ω/µ = 0.1 and
ρ = 10 and include simulation results in the figure (markers).
Dashed curves correspond to the conventional scheme, and
solid curves to the hybrid scheme. We see from the figure that
regenerating codes achieve a large cost reduction, especially
for small ∆, when using the hybrid scheme. This is since both
C̄r and C̄d are reduced. A smaller cost reduction is observed
for MDS codes and LRCs.



9

0 1 2 3 4
0.2

0.4

0.6

0.8

1

1.2

∆

C̄
/M

ω
ρ

[9, 3, 3] MDS

[9, 3, 8] MSR

[9, 4, 6] MBR

[6, 3, 2] LRC

Simulation
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∆ when using the conventional scheme (dashed curves) and hybrid scheme
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Figure 8. Codes achieving minimum C̄ for some ∆ for ω/µ = 0.02, ρ = 40
and Γ = 3.

D. Codes Achieving Minimum Cost for Given ∆

The analytical expressions for the overall communication
cost derived in Sections III and IV can be used to find, for a
given repair interval, the code achieving the lowest C̄. We have
performed an exhaustive search for all MDS codes (including
replication), regenerating codes and LRCs, with m ≤ 10, to
find the code achieving the lowest C̄ for each ∆. Like [15],
we also introduce an overall storage budget constraint of Γ
files (ΓF bits) across the nodes in the cell, i.e., mα ≤ ΓF .
In particular, we set Γ = 3, meaning that the code rate is
R ≥ 1/3.

Fig. 8 shows C̄/Mωρ for all codes that entail the lowest C̄
for some value of ∆ for ω/µ = 0.02 and ρ = 40. For ∆ = 0
(instantaneous repair) 2-replication is optimal (see Lemma 1).
However, 2-replication remains optimal only if repair can
be accomplished at least around 80 times per average node
lifetime. For slightly larger ∆, MBR codes achieve the lowest

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

∆

C̄
h
y
b
ri
d
/M

ω
ρ

2-replication

3-replication

[9, 3, 5] MSR

[9, 3, 4] MSR

[9, 3, 3] MDS

Figure 9. Codes achieving minimum C̄ with the hybrid repair and download
scheme for some ∆ for ω/µ = 1, ρ = 40 and Γ = 3.

cost. It is worth stressing that the MBR codes achieving the
lowest C̄ for some ∆ are characterized by a low repair access
(r = h and r = h + 1), i.e., fault tolerance to storage node
departures to allow D2D repair is more important than the
repair bandwidth. Somewhat surprisingly, MDS codes offer
the best performance for higher ∆, despite the large γD2D.
We remark that LRCs are not optimal for any ∆ due to the
poor tolerance to storage node departures in local D2D repair
and a larger α than MDS codes for a given global tolerance to
storage node departures. ∆max ≈ 0.8 is the largest ∆ such that
DS is beneficial over BS download, using any of the codes in
Section V.

Fig. 9 shows the codes that achieve lowest C̄ for some
values of ∆ for the hybrid scheme with ω/µ = 1 and
ρ = 40. Increasing ω/µ, C̄d is the main contribution to C̄
(see Section VI-A). Since α has significant impact on C̄d,
we expect codes with small α to achieve the minimum cost.
Indeed, we note that MDS codes and MSR codes, which have
minimum α, achieve the lowest C̄ for a region of values of ∆.
As expected, 2-replication is optimal for instantaneous repair.

VII. CONCLUSIONS

We investigated the use of distributed storage in the mobile
devices in a wireless network to reduce the communication
cost of content delivery to the users. We introduced a repair
scheduling where the repair of the data lost due to device
departures is performed periodically. For this scenario, we
derived analytical expressions for the overall communication
cost, due to data download and repair, as a function of the
repair interval. Using these expressions, we then investigated
the performance of MDS codes, regenerating codes and LRCs.

We showed that DS can reduce the overall communication
cost with respect to the scenario where content is downloaded
solely from the BS. However, there exists a maximum value of
the repair interval after which retrieving the file from the BS
is always less costly. Therefore, DS is useful if repairs can be
performed frequently enough. The required repair frequency
depends on the network parameters and the code used for
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storage. Interestingly, MDS codes yield better performance
than codes specifically designed for DS, such as regenerating
codes and LRCs, if repair cannot be performed very frequently.
The reason is that in this case a large tolerance to node failures
and low repair access is required.

APPENDIX A
PROOF OF THEOREM 2

To derive pD2D we first have to find the distribution of file
requests within a repair interval ∆. Let W` be the time instant
of the `th request and let W̃` , W` mod ∆ be the time of
the `th request in relation to a repair interval. The pdf of W̃`

is given by the following lemma.

Lemma 2. The distribution of W̃` for t ∈ [0,∆) is

fW̃`
(t) =

ω`e−ωt

(`− 1)!

∞∑
i=0

(t+ i∆)`−1e−ω∆i. (20)

Proof: W` is computed as the sum of ` inter-request
times with pdf given by (6). Thus, W` is an Erlang distributed
random variable with pdf [14, Sec. 3.4.5]

fW`
(t) =

ω`t`−1e−ωt

(`− 1)!
, t ≥ 0. (21)

The transformation g : W` → W̃` is given by t = g(x),
where

g(x) = x− i∆, x ∈ [i∆, (i+ 1)∆), i ≥ 0, (22)

Note that g′(x) = 1 for x ∈ (i∆, (i + 1)∆). Moreover,
limx→i∆− g

′(x) = limx→i∆+ g
′(x) = 1 and g′(x) is con-

tinuous and well defined. Let xi be the roots of (22),

xi = g−1(t) = t+ i∆, t ∈ [0,∆).

Then, [14, Th. 4.2]

fW̃`
(t) =

∑
xi

fW`
(xi)

∣∣∣∣ 1

g′(xi)

∣∣∣∣ =

∞∑
i=0

fW`
(t+ i∆),

and (20) is obtained using (21).
Define W̃∞ , lim`→∞ W̃`. We have the following result.

Lemma 3. The distribution of W̃∞ for t ∈ [0,∆) is

fW̃∞(t) =
1

∆
,

and the limit is achieved exponentially fast in `.

Proof: Using the Lerch’s transcendent [21, Sec. 25.14]

Φ

(
e−ω∆, 1− `, t

∆

)
,
∞∑
i=0

(
t

∆
+ i

)`−1

e−ω∆i, ` > 1,

the pdf of W̃` (Lemma 2) can be rewritten as

fW̃`
(t) =

(ω∆)`e−ωt

∆ · (`− 1)!
Φ

(
e−ω∆, 1− `, t

∆

)
.

According to [22, Cor. 4],

lim
`→∞

(ω∆)`

(`− 1)!
Φ

(
e−ω∆, 1− `, t

∆

)
= eωt.

Hence, for an infinite number of requests

lim
`→∞

fW̃`
(t) =

e−ωt

∆
lim
`→∞

(ω∆)`

(`− 1)!
Φ

(
e−ω∆, 1− `, t

∆

)
=

1

∆
.

Furthermore, using [22, Th. 3], as `→∞,

fW̃`
(t) ≤ 1

∆
+O

((√
4π2 + (ω∆)2

ω∆

)−`)
, (23)

where
√

4π2+(ω∆)2

ω∆ ≥ 1. Therefore, the convergence is expo-
nentially fast in `.

We proceed with the second step of the proof. Within a
repair interval, the number of storage nodes m(t) in the cell
is described by a Poisson death process [14, Sec. 8.6]. Denote
by Ti the time interval for which m(t) = i, i = h, . . . ,m
(see Fig. 2 for an illustration). Note that Ti is exponentially
distributed with rate µi = iµ, since there are i storage nodes
in the cell and the departure rate per node is µ (see Section II).
Denote by Sh the time instant at which m(t) changes from h
to h−1, i.e., the time after which D2D download is no longer
possible. Sh can be written as

Sh =

m∑
i=h

Ti.

The pdf of Sh is given by [23, Sec. 1.3.1]

fSh
(t) =

m∑
i=h

µmµm−1 . . . µh∏m
j=h
j 6=i

(µj − µi)
e−µit, t ≥ 0. (24)

Note that Pr(Sh ≥ ∆) > 0 for finite ∆, which implies that,
with some probability, m(t) ≥ h for the duration of the repair
interval. In this case, pD2D = 1.

We now have all the prerequisites to derive pD2D. D2D
download is possible if at least h storage nodes are available
in the cell. Thus,

pD2D = lim
L→∞

1

L

L∑
`=1

Pr
(
W̃` < Sh

)
From the convergence result of Lemma 3, it follows that

pD2D = Pr
(
W̃∞ < Sh

)
= Pr

(
W̃∞ − Sh < 0

)
=

∫ 0

−∞
fW̃∞−Sh

(t) dt,

where [14]

fW̃∞−Sh
(t) =

∫ ∞
−∞

fW̃∞(t+ s)fSh
(s) ds.

Using the results of Lemma 3 and (24), we get after some
calculation

pD2D =
1

∆

m∑
i=h

∫ 0

−∞
eµitdt

(
1− e−µi∆

) m∏
j=h
j 6=i

j

j − i

=
1

∆

m∑
i=h

1− pi
µi

m∏
j=h
j 6=i

j

j − i . (25)

By inserting (25) into (10) and using pD2D + pBS = 1, we
obtain (11).
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APPENDIX B
PROOF OF COROLLARY 2

Consider the case when ∆ → 0. For the repair cost
(Theorem 1),

lim
∆→0

C̄r =
1

F

(
ρBSγBS

r−1∑
i=0

(m− i) lim
∆→0

bi(m, p)

∆

+ρD2DγD2D

m∑
i=r

(m− i) lim
∆→0

bi(m, p)

∆

)
,

where bi(m, p) is given in (7) and p = e−µ∆. Note that

lim
∆→0

bi(m, p)

∆
=

(
m

i

)
lim

∆→0

e−µ∆i(1− e−µ∆)m−i

∆

(a)
= µ

(
m

i

)
lim

∆→0
e−µ∆i

(
1− e−µ∆

)m−i−1 (
me−µ∆ − i

)
=

{
mµ, if i = m− 1,
0, otherwise. ,

where in (a) we used l’Hôpital’s rule. Hence,

r−1∑
i=0

(m− i) lim
∆→0

bi(m, p)

∆
= 0,

and
m∑
i=r

(m− i) lim
∆→0

bi(m, p)

∆
= (m− (m− 1))mµ = mµ.

This implies
lim

∆→0
C̄r = ρD2DγD2Dmµ. (26)

For the download cost (Theorem 2),

lim
∆→0

C̄d = Mω

(
ρBS

+

(
ρD2D

hα

F
− ρBS

) m∑
i=h

1

µi
lim

∆→0

1− pi
∆

m∏
j=h
j 6=i

j

j − i

)

= Mω

(
ρBS +

(
ρD2D

hα

F
− ρBS

) m∑
i=h

m∏
j=h
j 6=i

j

j − i

)
. (27)

To simplify the expression, consider the function

f(x) =
1∏m

i=h(i− x)
, (28)

which can be expanded as the sum of partial fractions as [24,
Ch. 6]

f(x) =

m∑
i=h

1

(i− x)
∏m
j=h
j 6=i

(j − i) . (29)

Now, note that the sum in (27) can be expressed as
m∑
i=h

m∏
j=h
j 6=i

j

j − i =

m∑
i=h

∏m
j=h j

i
∏m
j=h
j 6=i

(j − i)
(a)
= f(0)

m∏
j=h

j
(b)
= 1,

where in (a) we used (29), and in (b) we used (28). Using
this in (27) we obtain

lim
∆→0

C̄d = MωρD2D
hα

F
. (30)

Finally, the expression (14) is obtained by using

lim
∆→0

C̄ = lim
∆→0

C̄r + lim
∆→0

C̄d.

Now, assume ∆ → ∞. For the average repair cost (Theo-
rem 1)

lim
∆→∞

C̄r =
1

F

(
ρBSγBS

r−1∑
i=0

(m− i) lim
∆→∞

bi(m, p)

∆

+ρD2DγD2D

m∑
i=r

(m− i) lim
∆→∞

bi(m, p)

∆

)
.

Now,

lim
∆→∞

bi(m, p)

∆
=

(
m

i

)
lim

∆→∞

e−µ∆i(1− e−µ∆)m−i

∆
= 0,

which implies lim∆→∞ C̄r = 0.
For the average download cost (Theorem 2),

lim
∆→∞

C̄d = Mω

[
ρBS

+

(
ρD2D

hα

F
− ρBS

) m∑
i=h

1

µi
lim

∆→∞

1− pi
∆

m∏
j=h
j 6=i

j

j − i

]
,

where µi = iµ, pi = e−µi∆. As lim∆→∞
1−pi

∆ = 0 ∀ i, then

lim
∆→∞

C̄d = MωρBS,

and (15) follows.

APPENDIX C
PROOF OF THEOREM 4

Following the proof of Theorem 2 (Appendix A), the
probability that there are m(t) = i storage nodes available
at the time of a request is

ci , Pr(Si+1 < W̃∞ < Si)

= Pr(W̃∞ − Si < 0)− Pr(W̃∞ − Si+1 < 0). (31)

The two probabilities in (31) can be obtained by replacing h
with i and i+ 1 in (25),

Pr(W̃∞ − Si < 0) =
1

∆

m∑
i′=i

1− pi′
µi′

m∏
j=i
j 6=i′

j

j − i′

Pr(W̃∞ − Si+1 < 0) =
1

∆

m∑
i′=i+1

1− pi′
µi′

m∏
j=i+1
j 6=i′

j

j − i′ .

If no storage nodes are available, we always have to rely on
BS download. By replacing h with 1 in (25), we get that this
occurs with probability

pBS = 1− 1

∆

m∑
i=1

1− pi
µi

m∏
j=1
j 6=i

j

j − i . (32)
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If m(t) ≥ h, D2D download is performed. This occurs with
probability pD2D, derived in Theorem 2.

For m(t) = i, 1 ≤ i ≤ h−1, the hybrid scheme will achieve
a lower download cost if ρBSF > (ρBS(h− i) + iρD2D)α, i.e.,
if

i >
ρBS

ρBS − ρD2D

(
h− F

α

)
, d.

Let
a , min {bdc , h− 1} .

For 1 ≤ i ≤ a, downloading F bits from the BS will give the
lowest possible cost. For a+ 1 ≤ i ≤ h− 1, downloading iα
bits through D2D communication and (h− i)α bits from the
BS will give the lowest possible cost. The average download
cost in the hybrid regime is hence

C̄hybrid
d =

Mω

F

(
ρBSFpBS + ρBSF

a∑
i=1

ci

+

h−1∑
i=a+1

(ρBS(h− i) + iρD2D)αci + ρD2DhαpD2D

)
.

(33)

Finally, (16) is obtained by using (25) and (32) in (33).

APPENDIX D
PROOF OF THEOREM 5

Recall that a storage node can be repaired locally or globally
in D2D communication. Only single node departures (within
a repair group) can be repaired locally. Using (7), the average
number of local D2D repairs in a repair group is

br(r + 1, p) = (r + 1)pr(1− p),
where p = e−µ∆. Since there are G = m

r+1 disjoint repair
groups, the average number of local D2D repairs per m storage
nodes is

mD2D
r,l = G(r + 1)pr(1− p) = mpr(1− p).

This entails a cost ρD2DγD2Dm
D2D
r,l [c.u.].

We now compute the average number of global D2D
repairs mD2D

r,g . Let X = (X0, X1, . . . , Xr+1), where Xi ∈
{0, 1, . . . , G}, ∑iXi = G, is the random variable giving the
number of repair groups with i storage node departures in
a repair interval ∆. The number of global repairs is given
by
∑r+1
i=2 iXi, under the constraint that there are at least

h storage nodes available at the time of a repair, i.e., if∑r+1
i=1 iXi ≤ m−h. Therefore, by averaging over all possible

realizations x = (x0, x1, . . . , xr+1) of X , we obtain

mD2D
r,g =

∑
x:|x|=G

(
G

x

)
qx ·

r+1∑
i=2

ixi · 1
{
r+1∑
i=1

ixi ≤ m− h
}
,

where |x| , ∑
i xi,

(
G
x

)
, G!

x0!x1!···xr+1! , and qx ,
∏
i q
xi
i .

The communication cost associated to global D2D repairs is
ρD2DhαLRCm

D2D
r,g [c.u.].

Finally, using (7), the average total number of storage node
departures in a repair interval is

m∑
i=0

(m− i)bi(m, p) = m(1− p).

All storage nodes that are not repaired in D2D are repaired
by the BS. Therefore,

mBS
r = m(1− p)−mD2D

r,l −mD2D
r,g ,

with communication cost ρBSγBSm
BS
r [c.u.]

Finally, adding the three contributions ρD2DγD2Dm
D2D
r,l ,

ρD2DhαLRCm
D2D
r,g and ρBSγBSm

BS
r , and dividing by ∆ and

normalizing by F , we obtain (18).

APPENDIX E
PROOF OF LEMMA 1

The overall communication cost for ∆ = 0 is (Corollary 2)

lim
∆→0

C̄ =
ρD2D

F
(γD2Dmµ+Mωhα). (34)

Consider an [m,h, r] linear code with m = n and minimum
Hamming distance d ≥ 2. It follows that α = F

k , β = α,
and h ≥ k, where the equality is achieved for MDS codes.
Furthermore, note that d = m− h+ 1. Also, from [25],

d ≤ n− k −
⌈
k

r

⌉
+ 2. (35)

Using m = n and the fact that d ≥ 2 in (35), we can write

m ≥ k +

⌈
k

r

⌉
≥ k +

k

r
.

Now, using this, γD2D = rβ = rα and α = F
k in (34) we

obtain

lim
∆→0

C̄ =
ρD2D

F
(γD2Dmµ+Mωhα)

= ρD2D

(
r

k
mµ+Mω

h

k

)
≥ ρD2D

(
(r + 1)µ+Mω

h

k

)
≥ ρD2D (2µ+Mω) , (36)

where in the last inequality we used r ≥ 1 and h ≥ k. It
is easy to verify that the lower bound in (36) is achieved by
2-replication.

Now, consider LRCs. We get

mγD2D = F
m

h
(r + 1) > 2F,

since h < m and r ≥ 1. Also,

hαLRC = F
r + 1

r
> F.

Inserting this into (34) gives that LRCs yield a higher overall
communication than (36).

Consider now MBR codes. We would like to minimize
mγD2D under the constraints m ≥ 2, h ≥ 1 and h < m,
for r = m−1. For h = m−1, mγD2D = 2F . For h < m−1,
relaxing the integer constraints on m and h,

∂

∂m
mγD2D = 4

F

h

m2 −m(h+ 1) + 1

(2m− h− 1)2
> 0.

Consequently, mγD2D is minimized for h = m − 1 and the
minimum is equal to 2F . We proceed to minimize hαMBR for
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r = m − 1 under the same constraints. For h = 1, we have
hαMBR = F . Also, for h > 1,

∂

∂h
hαMBR = 2F

m− 1

(2m− h− 1)2
> 0.

As a result, mγD2D and hαMBR are jointly minimized for
m = 2 and h = 1. Thus, the MBR code, which is indeed
2-replication, achieves the lower bound in (36).

We proceed to investigate the overall communication cost
when ∆ = 0 for MSR codes. By setting r = m − 1
we minimize γD2D with respect to r. We relax the integer
constraints on m and h. By differentiating mγD2D with respect
to h and setting the derivative equal to zero, we find

arg min
h

mγD2D =
m

2
.

Under the constraints m ≥ 2, h ≥ 1 and h < m, we have

∂

∂m
mγD2D

∣∣∣∣
m=2h

=
F

h2
> 0.

This implies that mγD2D is minimized for m = 2 and h = 1
and that the minimum is equal to 2F . Since hαMSR = F ,
mγD2D and hαMSR are jointly minimized for m = 2 and h = 1.
Therefore, the [2, 1, 1] MSR code, which corresponds to 2-
replication, achieves the lower bound in (36). This concludes
the proof.
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