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We consider the use of distributed storage (DS) to reduce the communication cost of content delivery in a wireless network. Content is stored (cached) in a number of mobile devices using an erasure correcting code. A user retrieves content from other mobile devices using device-to-device communication or from the base station (BS), at the expense of a higher communication cost. We address the repair problem when a device that stores data leaves the network. We introduce a repair scheduling where repair is performed periodically. We derive analytical expressions for the overall communication cost of content download and data repair as a function of the repair interval. The derived expressions are then used to evaluate the communication cost entailed by DS using maximum distance separable (MDS) codes, regenerating codes, and locally repairable codes. Our results show that DS can reduce the communication cost with respect to the case where content is downloaded only from the BS, provided that repairs are performed frequently enough. The required repair frequency depends on the code used for storage and network parameters. Interestingly, we show that MDS codes, which do not perform well for classical DS, can yield a low overall communication cost in wireless DS.

I. INTRODUCTION

It is predicted that the global mobile data traffic will reach 24.3 exabytes per month by 2019, nearly a tenfold increase compared to the traffic in 2014 [START_REF]Cisco visual networking index: Global mobile data traffic forecast update[END_REF]. This dramatic increase threatens to completely congest the already burdened wireless networks. One popular approach to reduce peak traffic is to store popular content closer to the end users, a technique known as caching. The idea is to deploy a number of access points (called helpers) with large storage capacity, but low-rate wireless backhaul, and store data across them [START_REF] Shanmugam | Femtocaching: Wireless content delivery through distributed caching helpers[END_REF], [START_REF] Bioglio | Optimizing MDS codes for caching at the edge[END_REF]. Users can then download content from the helpers, resulting in a higher throughput per user. In [START_REF] Golrezaei | Basestation assisted device-to-device communications for high-throughput wireless video networks[END_REF] it was suggested to store content directly in the mobile devices, taking advantage of the high storage capacity of modern smart phones and tablets. The requested content can then be directly retrieved from neighbouring mobile devices, using device-to-device (D2D) communication. This allows for a more efficient content delivery at no additional infrastructure cost. Caching in the mobile devices to alleviate the wireless bottleneck has attracted a significant interest in the research community in the recent years [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF]- [START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF]. In all these works, simple content caching and/or replication (i.e., a number of copies of a content are stored in the network) is considered.

A relevant problem in D2D-assisted mobile caching networks is the repairing of the lost data when a storage device is unavailable, e.g., when a storage device fails or leaves the network. Repairing of the lost data was considered in [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF], where the communication cost incurred by data download and repair was analyzed for a caching scheme where data is stored in the mobile devices using replication and regenerating codes [START_REF] Dimakis | Network coding for distributed storage systems[END_REF]. A strong assumption in [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF] is that the repair of the lost content is performed instantaneously. As a result, content can always be downloaded from the mobile devices. Under the assumption of instantaneous repair, the caching strategy that minimizes the overall communication cost is 2-replication.

In this paper, we consider content caching in a wireless network scenario using erasure correcting codes. To avoid confusion with standard caching, we will use the term wireless distributed storage, highlighting the resemblance with distributed storage (DS) using erasure correcting codes in, e.g., data centers. Similar to the scenario in [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF], we consider a cellular system where mobile devices roam in and out of a cell according to a Poisson random process and request content at random times. The cell is served by a base station (BS), which always has access to the content. Content is also stored across a limited number of mobile devices using an erasure correcting code. Our main focus is on the repair problem when a device that stores data leaves the network. In particular, we introduce a more realistic repair scheduling than the one in [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF] where lost content is repaired (from storage devices using D2D communication or from the BS) at periodic intervals.

We derive analytical expressions for the overall communication cost of content download and data repair as a function of the repair interval. The derived expressions are then used to analyze the overall communication cost incurred by using erasure correcting codes for DS. More precisely, we analyze maximum distance separable (MDS) codes, regenerating codes [START_REF] Dimakis | Network coding for distributed storage systems[END_REF], and locally repairable codes (LRCs) [START_REF] Papailiopoulos | Locally repairable codes[END_REF]. As opposed to [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF], content cannot always be retrieved from the mobile devices, therefore the download cost is dependent on the repair process (in particular the repair interval). We show that DS can reduce the overall communication cost as compared to the basic scenario where content is only downloaded from the BS. However, this is provided that repairs can be performed frequently enough. The repair interval that minimizes the overall communication cost depends on the network parameters and the underlying erasure correcting code. We show that, in general, instantaneous repair is not optimal. The derived expressions can also be used to find, for a given repair interval, the erasure correcting code yielding the lowest overall communication cost.

Non-instantaneous repairs, the so called "lazy" repairs, have already been proposed for DS in data centers [START_REF] Giroire | Peer-to-peer storage systems: A practical guideline to be lazy[END_REF], [START_REF] Silberstein | Lazy means smart: Reducing repair bandwidth costs in erasure-coded distributed storage[END_REF] to reduce the amount of data that has to be transmitted within the storage network during the repair process, known as the repair bandwidth. However, contrary to [START_REF] Giroire | Peer-to-peer storage systems: A practical guideline to be lazy[END_REF], [START_REF] Silberstein | Lazy means smart: Reducing repair bandwidth costs in erasure-coded distributed storage[END_REF], in the wireless scenario considered here the non-instantaneous repairs impact both data repair and download. We show that, somewhat interestingly, erasure correcting codes achieving a low repair bandwidth do not always perform well in a wireless DS setting. On the other hand, MDS codes, which entail a high repair bandwidth, can yield a low overall communication cost for some repair intervals.

The remainder of this paper is organized as follows. In Section II, we describe the system model and main assumptions. In Section III, we derive analytical expressions for the overall communication cost as a function of the repair interval. In Section IV, we extend the analysis to the case when repair and download can be carried out jointly from storage devices and the BS. In Section V we introduce the erasure correcting codes used for DS. Finally, we give numerical results in Section VI and provide a discussion and draw some conclusions in Section VII.

II. SYSTEM MODEL

We consider a single cell in a cellular network, served by a BS, where mobile devices (referred to as nodes) arrive and depart according to a Poisson random process. The initial number of nodes in the network is M . Nodes wish to download content from the network. For simplicity, we assume that there is a single object (file), of size F bits, stored at the BS. We further assume that nodes can store data and communicate between them using D2D communication. The considered scenario is depicted in Fig. 1.

Arrival-departure model. Nodes arrive according to a Poisson process with exponential independent, identically distributed (i.i.d.) random inter-arrival times T a with probability density function (pdf)

f Ta (t) = M λe -M λt , λ ≥ 0, t ≥ 0, (1) 
where M λ is the expected arrival rate of a node and t is time, measured in time units (t.u.). The nodes stay in the cell for an i.i.d. exponential random lifetime T l with pdf

f Tl (t) = µe -µt , µ ≥ 0, t ≥ 0, ( 2 
)
where µ is the expected departure rate of a node. The number of nodes in the cell can be described by an M/M/∞ queuing model where the probability that there are i nodes in the cell is [START_REF] Miller | Probability and Random Processes[END_REF] 

π(i) = (M λ/µ) i i! e -(M λ/µ) . (3) 
For simplicity, we assume that µ = λ, i.e., the flow in and out from the cell is the same and the expected number of nodes in the cell stays constant (equal to M ). A new node arrives to the network at rate M λ. The departure rate per node is µ. Blue nodes store exactly α bits each. The green node requests the file and downloads it from the storage nodes (solid arrows), or from the BS (dashed arrow). The repair onto a node (in red) is carried out by transmitting γ D2D bits from storage nodes (solid arrows) or γ BS bits from the BS (dashed arrow).

Data storage. The file is partitioned into k packets, called symbols, of size F k bits and is encoded into n coded symbols using an (n, k) erasure correcting code of rate R = k/n < 1. The encoded data is stored in m ≤ n nodes, referred to as storage nodes. For simplicity, we assume m M , hence the probability that the number of nodes in the cell is smaller than m is negligibly small, i.e.,

m-1 i=0 π(i) 1, (4) 
using [START_REF] Bioglio | Optimizing MDS codes for caching at the edge[END_REF]. Therefore, with high probability the file can be stored in the cell. In particular, each storage node stores exactly α bits, i.e., we consider a symmetric allocation [START_REF] Leong | Distributed storage allocations[END_REF]. Hence1 ,

α = 1 m • F R ≥ F k . (5) 
Data delivery. Nodes request the file at random times with i.i.d. random inter-request time T r with pdf

f Tr (t) = ωe -ωt , ω ≥ 0, t ≥ 0, ( 6 
)
where ω is the expected request rate per node. Whenever possible, the file is downloaded from the storage nodes using D2D communication, referred to as D2D download. In particular, we assume that data can be downloaded from any subset of h < m storage nodes, which we will refer to as the download access. In other words, D2D download is possible if h or more storage nodes remain in the cell. In this case, the amount of downloaded data is hα ≥ F bits. 2 In the case where there are less than h storage nodes in the cell, the file is downloaded from the BS, which we refer to as BS download. In this case, F bits are downloaded. Communication cost. We assume that transmission from the BS and from a storage node (in D2D communication) have different costs. We denote by ρ BS and ρ D2D the cost (in cost units (c.u.) per bit, [c.u./bit]) of transmitting one bit from the BS and from a node, respectively. Therefore, the cost of downloading a file from the BS and the storage nodes is ρ BS F and ρ D2D hα, respectively. Furthermore, we define ρ ρ BS /ρ D2D and assume that ρ ≥ 1, hence transmission from the BS is at least as costly as transmission in D2D communication.

A. Repair Process

When a storage node leaves the cell, its stored data is lost (see blue node with orange stripes in Fig. 1). Therefore, another node needs to be populated with data to maintain the initial state of reliability of the DS network, i.e., m storage nodes. The restore (repair) of the lost data onto another node, chosen uniformly at random from all nodes in the cell that do not store any content, will be referred to as the repair process. We introduce a scheduled repair scheme where the repair process is run periodically. We denote the interval between two repairs by ∆ (in t.u.), ∆ ≥ 0. Note that ∆ = 0 corresponds to the case of instantaneous repair, considered in [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF].

Similar to the download, repair can be accomplished from the storage nodes (D2D repair) or from the BS (BS repair), with cost per bit ρ D2D and ρ BS , respectively. The amount of data (in bits) that needs to be retrieved from the network to repair a single failed node is referred to as the repair bandwidth, denoted by γ. For simplicity, we assume that each repair is handled independently of the others. In particular, we assume that D2D repair can be performed from any subset of r < m storage nodes by retrieving β ≤ α bits from each node. In other words, D2D repair is possible if there are at least r storage nodes in the cell at the moment of repair. In this case, γ D2D = rβ ≥ α, and the corresponding communication cost is ρ D2D γ D2D . Parameter r is usually referred to as the repair access in the DS literature. If there are less than r storage nodes in the cell at the moment of repair, then the repair is carried out by the BS. In this case, γ BS = α, with communication cost ρ BS γ BS . For both repair and download, we assume error-free transmission.

Parameters m, h, r, α and β, and subsequently γ D2D and γ BS , depend on the erasure correcting code used for storage. Since m, h and r are very important parameters, an erasure correcting code in DS is typically defined with the triple [m, h, r]. This will be further explained in Section V.

III. REPAIR AND DOWNLOAD COST

In this section, we derive analytical expressions for the repair and download cost, and subsequently for the overall communication cost, as a function of the repair interval ∆. We denote by Cr the average communication cost of repairing lost data, and refer to it as the repair cost. Also, we denote by Cd the average communication cost of downloading the file, and refer to it as the download cost. 

i (m, p) m i p i (1 -p) m-i , 0 ≤ i ≤ m. (7) 

A. Repair Cost

The repair cost Cr has two contributions, corresponding to the cases of BS repair and D2D repair. Denote by m D2D r and m BS r the average number of nodes repaired from the storage nodes and from the BS, respectively, in one repair interval. Then, Cr (in [c.u./(bit×t.u.)]) is given by

Cr = 1 F ∆ ρ BS γ BS m BS r + ρ D2D γ D2D m D2D r , (8) 
where ρ BS γ BS and ρ D2D γ D2D (in c.u.) are the cost of repairing a single storage node from the BS and from storage nodes, respectively (see Section II-A), and we normalize by F such that Cr does not depend on the file size. The repair cost, Cr , is given in the following theorem.

Theorem 1. Consider the DS network in Section II with departure rate µ, communication costs ρ BS and ρ D2D , BS repair bandwidth γ BS , file size F , and repair interval ∆. Furthermore, consider the use of an [m, h, r] erasure correcting code with D2D repair bandwidth γ D2D . The repair cost is given by

Cr = 1 F ∆ ρ BS γ BS r-1 i=0 (m -i)b i (m, p) +ρ D2D γ D2D m i=r (m -i)b i (m, p) , (9) 
Proof: As the inter-departure times are exponentially distributed, the probability that a storage node has not left the network during a time ∆ and is available for repair is

p = Pr(T l > ∆) = e -µ∆ .
Hence, the probability that i storage nodes are available for repair is b i (m, p). If i storage nodes remain in the cell, then mi repairs need to be performed. D2D repair is performed if i ≥ r, and BS repair is performed otherwise. Therefore,

m D2D r = m i=r (m -i)b i (m, p), m BS r = r-1 i=0 (m -i)b i (m, p).
Using these expressions in [START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF], we obtain (9).

Remark 1. We see from (8) that if ρ BS γ BS < ρ D2D γ D2D , i.e., ρ < γD2D γBS , D2D repair should never be performed, as repairing always from the BS yields a lower repair cost. In this case the repair cost would be At t = 0, there are m storage nodes available. S h is the time after which less than h storage nodes are available, hence D2D download is no longer possible.

CBS r = 1 F ∆ ρ BS γ BS m(1 -e -µ∆ ). t 0 m(t) ∆ m • • • • • • • • • T m T m-1 T h storage node departure h S h

B. Download Cost

Similarly to Cr , the download cost Cd has two contributions, corresponding to the case where content is downloaded from the BS and from the storage nodes. Denote by p BS and p D2D the probability that, for a request, the file is downloaded from the BS and from the storage nodes, respectively. Then, Cd can be written as

Cd = M ω F ρ BS F p BS + ρ D2D hαp D2D , (10) 
where ρ BS F and ρ D2D hα are the cost of downloading the file from the BS and from the storage nodes, respectively (see Section II), and M ω is the overall request rate per t.u.. Again, we normalize by F so that the cost does not depend on the file size. The download cost is given in the following theorem.

Theorem 2. Consider the DS network in Section II with expected number of nodes in the cell M , departure rate µ, request rate ω, file size F , and repair interval ∆. Furthermore, consider the use of an [m, h, r] erasure correcting code that stores α bits per node. Let µ i = iµ for i = h, . . . , m, and p i = e -µi∆ . The download cost is given by

Cd = M ω ρ BS + ρ D2D hα F -ρ BS 1 ∆ m i=h 1 -p i µ i m j=h j =i j j -i . ( 11 
)
The proof is given in Appendix A. Here, we give a sketch of the proof. Since p D2D +p BS = 1, it follows from (10) that to derive Cd is sufficient to derive p D2D . Let m(t) be the number of storage nodes alive in the cell within a repair interval, i.e., for t ∈ [0, ∆), with m(0) = m. It is important to observe that m(t) is described by a Poisson death process [START_REF] Miller | Probability and Random Processes[END_REF], since storage nodes may leave the cell, and no repair is attempted before a time ∆. This random process is illustrated in Fig. 2. At some point, too many storage nodes have left the network, such that the number of available storage nodes goes below h and D2D download is no longer possible. Denote the (random) time this occurs by S h , i.e., m(t) < h ∀ t ≥ S h , t ∈ [0, ∆) (see Fig. 2). Denote by W the arrival time of the th file request within a repair interval, t ∈ [0, ∆). The probability p D2D can then be derived in two steps.

1) Find the pdf of the arrival time of the file requests within a repair interval ∆, W . 2) Find the probability that a request arrives before S h , p D2D = Pr( W < S h ) (i.e., D2D download is possible).

Remark 2. If ρ BS F < ρ D2D hα, i.e., ρ < hα F , performing BS download only is optimal. The download cost is then

CBS d = M ωρ BS . (12) 
We also have the following result about the behavior of Cd in [START_REF] Papailiopoulos | Locally repairable codes[END_REF].

Corollary 1. For µ > 0, Cd is monotonically increasing with ∆ if ρ > hα F , monotonically decreasing with ∆ if ρ < hα F , and constant otherwise.

Proof: The proof follows directly from differentiating Cd with respect to ∆ and is therefore omitted.

C. Overall Communication Cost

Combining Theorems 1 and 2, one obtains the expression for the overall communication cost,

C = Cr + Cd . ( 13 
)
Note that, in general, C is not monotone with ∆. We can derive the following result for ∆ = 0 (instantaneous repair) and ∆ → ∞ (no repair).

Corollary 2.

lim ∆→0 C = ρ D2D F (γ D2D mµ + M ωhα). (14) 
Moreover, for µ > 0,

lim ∆→∞ C = M ωρ BS . (15) 
Proof: See Appendix B. For instantaneous repair (∆ = 0), both repair and download are always performed from the storage nodes. Thus, the two terms in [START_REF] Miller | Probability and Random Processes[END_REF] correspond to the D2D repair and D2D download, and we recover the result in [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF]. For ∆ → ∞, data is never repaired (hence, Cr = 0). For µ > 0, the number of storage nodes in the cell will become smaller than h at some point, and D2D download is no longer possible. Therefore, the overall communication cost in [START_REF] Leong | Distributed storage allocations[END_REF] is the BS download cost in [START_REF] Giroire | Peer-to-peer storage systems: A practical guideline to be lazy[END_REF].

IV. HYBRID REPAIR AND DOWNLOAD

In the system model in Section II and the analysis in Section III we assumed that if repair (resp. download) cannot be completed from storage nodes (because there are less than r (resp. h) storage nodes available in the cell), BS repair (resp. download) is performed. Alternatively, for both repair and download, a node might retrieve data from the available storage nodes using D2D communication and retrieve the rest from the BS to complete the repair or the download. We will refer to this setup as partial D2D repair and partial D2D download, and the scheme that implements it as the hybrid repair and download scheme. In the following, we extend the analysis in Section III to the hybrid scheme.

A. Repair Cost

Assume that, at the time of repair, i < r storage nodes are available, i.e., repair cannot be accomplished exclusively from the storage nodes. However, iβ bits could be retrieved from the i available storage nodes and the remaining γ D2Diβ = (ri)β bits to complete the repair from the BS. The corresponding communication cost is (ρ BS (ri) + ρ D2D i)β. For the conventional scheme, D2D repair is not possible for i < r, and the repair cost corresponds to that of BS repair, i.e., ρ BS γ BS . This implies that, if i < r, partial repair leads to a reduced repair cost if (ρ BS (ri) + ρ D2D i)β < ρ BS γ BS or, equivalently, i > ρBS ρBS-ρD2D r -γBS β c. For i < r, the hybrid scheme performs partial D2D repair if i > c and BS repair otherwise. The repair cost is given in the following theorem.

Theorem 3. Consider the DS network in Section II using the hybrid scheme. The repair cost is given by

Chybrid r = 1 F ∆ ρ BS γ BS a i=0 (m -i)b i (m, p) + r-1 i=a+1 (m -i)(ρ BS (r -i) + iρ D2D )βb i (m, p) + ρ D2D γ D2D m i=r (m -i)b i (m, p) ,
where a = min Proof: It follows the same lines as the proof of Theorem 1.

B. Download Cost

Similar to the repair case, if i < h storage nodes are available at the time of a file request, the file cannot be downloaded solely from the storage nodes. However, iα bits could be downloaded from the i available storage nodes and the remaining (hi)α bits from the BS, with communication cost (ρ BS (hi) + ρ D2D i)α. For the conventional scheme, the download cost corresponds to that of BS download, i.e., ρ BS F . Hence, the hybrid scheme leads to a lower download cost if

(ρ BS (h -i) + ρ D2D i)α < ρ BS F , or equivalently, i > ρBS ρBS-ρD2D h -F α d.
For i < r, the hybrid scheme performs partial D2D download if i > d and BS download otherwise. The download cost is given in the following theorem.

Theorem 4. Consider the DS network in Section II using the hybrid scheme. Let µ i = iµ and p i = e -µi∆ , for i = 1, . . . , m.

The download cost is given by

Chybrid d = M ω F ρ BS F 1 - 1 ∆ m i=1 1 -p i µ i m j=1 j =i j j -i + ρ BS F a i=1 c i + h-1 i=a+1 (ρ BS (h -i) + iρ D2D )αc i + ρ D2D hα 1 ∆ m i=h 1 -p i µ i m j=h j =i j j -i , ( 16 
)
where a = min

ρBS ρBS-ρD2D h -F α , h -1 , h -F α ≥ 0, and 
c i = 1 ∆ m i =i 1 -p i µ i m j=i j =i j j -i - 1 ∆ m i =i+1 1 -p i µ i m j=i+1 j =i j j -i .
Proof: See Appendix C.

V. ERASURE CORRECTING CODES IN DISTRIBUTED STORAGE

From Sections III and IV, it can be seen that the overall communication cost C depends on the network parameters µ (λ) and ω, and on the parameters m, h, r, α, and β (and subsequently on γ D2D = rβ and γ BS = α), which are determined by the erasure correcting code used for DS. An erasure correcting code for DS is typically described in terms of the number of nodes used for storage, the download access and the repair access, and is defined using the notation [m, h, r]. In this section, we briefly describe MDS codes [START_REF] Ryan | Channel Codes: Classical and Modern[END_REF], regenerating codes [START_REF] Dimakis | Network coding for distributed storage systems[END_REF] and LRCs [START_REF] Papailiopoulos | Locally repairable codes[END_REF] in the context of DS. We also connect the code parameters [m, h, r] with the code parameters (n, k). In Section VI, we then evaluate the overall communication cost of DS using these three code families.

We remark that the analysis in the previous sections applies directly to MDS and regenerating codes. However, due to the specificities of LRCs, Theorem 1 needs to be slightly modified, as shown in Section V-C below.

A. Maximum Distance Separable Codes

Assume the use of an (n, k) MDS code for DS. In this case, each storage node stores one coded symbol, hence m = n and α MDS = F k . Due to the MDS property, D2D repair and D2D download require to contact r = h = k storage nodes. Therefore, an (n, k) MDS code in a DS context is described with the triple [n, k, k]. Moreover, β MDS = α MDS = F k , i.e., γ D2D = F . The fact that an amount of information equal to the size of the entire file has to be retrieved to repair a single storage node is a known drawback of MDS codes [START_REF] Dimakis | Network coding for distributed storage systems[END_REF]. The simplest MDS code is the n-replication scheme. In this case, each storage node stores the entire file, i.e., α rep = F and r = h = k = 1.

B. Regenerating Codes

A lower repair bandwidth γ D2D (as compared to MDS codes) can be achieved by using regenerating codes [START_REF] Dimakis | Network coding for distributed storage systems[END_REF], at the expense of increasing r [START_REF] Dimakis | Network coding for distributed storage systems[END_REF]. Two main classes of regenerating codes are covered here, minimum storage regenerating (MSR) codes and minimum bandwidth regenerating (MBR) codes. MSR codes yield the minimum storage per node, i.e., α MSR is minimum, while MBR codes achieve minimum D2D repair bandwidth. Regenerating codes have two repair models, functional repair and exact repair [START_REF] Dimakis | A survey on network codes for distributed storage[END_REF]. In exact repair, the lost data is regenerated exactly [START_REF] Dimakis | A survey on network codes for distributed storage[END_REF]. In functional repair, the lost data is regenerated such that the initial state of reliability in the DS system is restored [START_REF] Dimakis | A survey on network codes for distributed storage[END_REF], but the regenerated data does not need to be a replica of the lost data [START_REF] Dimakis | A survey on network codes for distributed storage[END_REF]. Here, we consider only exact repair, since it is of more practical interest [START_REF] Rashmi | Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction[END_REF].

An exact-repair [m, h, r] MSR code in a DS system has k = h(r-h+1) and n = m(r-h+1), with r = 2(h-1), . . . , m-1 [START_REF] Rashmi | Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction[END_REF]. 3 Hence, using [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF],

α MSR = 1 m • F R = F m • m(r -h + 1) h(r -h + 1) = F h .
Furthermore [START_REF] Rashmi | Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction[END_REF],

β MSR = F k = F h • 1 r -h + 1 ≤ α MSR ,
with equality only when r = h, which is only possible for h = 1 and h = 2 due to the restriction on the values for the repair access. The repair bandwidth,

γ D2D = rβ MSR = F h • r r -h + 1 ≤ F,
is minimized for r = m -1 [START_REF] Dimakis | Network coding for distributed storage systems[END_REF]. We remark that the storage per node α (and hence the average download cost) for an (m, h) ≡ [m, h, h] MDS code and an [m, h, r] MSR code are equal.

An MBR code further reduces the repair bandwidth at the expense of increasing the storage per node. An exact-repair [m, h, r] MBR code has k = hr -h 2 and n = mr for r = h, . . . , m -1 [START_REF] Rashmi | Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction[END_REF]. Using (5), we have

α MBR = 1 m • F R = F m • 2mr h(2r -h + 1) = F h • 2r 2r -h + 1
.

Furthermore [START_REF] Rashmi | Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction[END_REF],

β MBR = F k = F h • 2 2r -h + 1 ≤ α MBR .
Similarly to the MSR codes, the repair bandwidth of an MBR code,

γ D2D = rβ MBR = F h 2r 2r -h + 1 ≤ F, is minimized for r = m -1 [10].
Note that an [m, 1, r] regenerating code has exactly the same overall communication cost as an m-replication scheme.

C. Locally Repairable Codes

A lower repair access r (as compared to MDS codes) is achieved by using LRCs [START_REF] Papailiopoulos | Locally repairable codes[END_REF]. An [m, h, r] LRC has k = rh and n = m(r + 1), where r < h and (r + 1) | m. Each node stores

α LRC = 1 m • F R = F m • m(r + 1) rh = F h • r + 1 r
bits. The storage nodes are arranged in G m r+1 disjoint repair groups with r+1 nodes in each group. Any single storage node can be repaired locally by retrieving γ D2D = rβ LRC bits from r nodes in the repair group [START_REF] Papailiopoulos | Locally repairable codes[END_REF]. A storage node involved in the repair process transmits all its stored data, i.e.,

β LRC = α LRC , hence γ D2D = rβ LRC = F h (r + 1) ≤ F.
If local D2D repair is not possible, repair can be carried out globally by retrieving hα LRC bits from any subset of h storage nodes. Since it is necessary to distinguish between local and global repairs (as opposed to MDS and regenerating codes), the expression of the repair cost Cr in Theorem 1 does not apply to LRCs and needs to be modified. We denote by m D2D r,l and m D2D r,g the average number of nodes repaired from the storage nodes locally and globally, respectively, in one repair interval. We will also need the following definitions. Let X (X 0 , X 1 , . . . , X r+1 ) be the random vector whose component X i is the random variable giving the number of repair groups with i storage node departures in a repair interval ∆. Note that X i takes values in {0, 1, . . . , G} and i X i = G. The probability of i storage node departures in a repair group is q i r+1 i p r+1-i (1p) i , where p = e -µ∆ is the probability that a storage node has not left the network during a time ∆. Let x (x 0 , x 1 , . . . , x r+1 ) be a realization of X and let q (q 0 , q 1 , . . . , q r+1 ). Then,

Pr(X = x) = x:|x|=G G x q x , (17) 
where andq x i q xi i . The repair cost for LRCs is given in the following theorem.

|x| i x i , G x G! x0!x1!•••xr+1! is the multinomial coefficient,
Theorem 5. Consider the DS network in Section II with departure rate µ, communication costs ρ BS and ρ D2D , BS repair bandwidth γ BS , file size F , and repair interval ∆. Furthermore, consider the use of an [m, h, r] LRC with G disjoint repair groups and D2D repair bandwidth γ D2D . The repair cost is given by

Cr = 1 F ∆ ρ BS γ BS m BS r + ρ D2D γ D2D m D2D r,l + hα LRC m D2D r,g , (18) 
where p = e -µ∆ and 1{•} is an indicator function.

m D2D r,l = mp r (1 -p), m D2D r,g = x:|x|=G G x q x • r+1 i=2 ix i • 1 r+1 i=1 ix i ≤ m -h , m BS r = m(1 -p) -m D2D r,l -m D2D r,g ,
Proof: See Appendix D. It is easy to verify that Corollary 2 holds also for LRCs.

D. Lowest Overall Communication Cost for Instantaneous Repair

For instantaneous repair, the minimum overall communication cost is given in the following lemma.

Lemma 1. For ∆ = 0 (instantaneous repair), the lowest possible overall communication cost for any [m, h, r] linear code with m = n, regenerating codes and LRCs is

Cmin (∆ = 0) min m,h,r lim ∆→0 C = ρ D2D (2µ + M ω),
where lim ∆→0 C is given in (14) in Corollary 2. The minimum is achieved by 2-replication.

Proof: See Appendix E. This is in agreement with the result in [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF], where 2replication was shown to be optimal.

VI. NUMERICAL RESULTS

In this section, we evaluate the overall communication cost C (computed using ( 9) and ( 11)) for the erasure correcting codes discussed in the previous section. For the results, we consider a network with M = 30 nodes, where the number of storage nodes is m ≤ 10. This gives a probability smaller than 7.2 • 10 -6 of having less than m nodes in the cell (see (4)), which is considered negligible. Without loss of generality, we set the departure rate µ = 1 and ρ D2D = 1, i.e., ρ = ρ BS .

Fig. 3 shows C normalized to the cost of downloading from the BS, M ωρ, i.e., C/M ωρ, as a function of the normalized repair interval, µ∆ = ∆, for a selection of MDS codes, regenerating codes and LRCs with R = 1/3. The ratio between the request rate and departure rate is ω/µ = 0.02, i.e., the average request rate in the cell is M ω = 0.6 requests per t.u., and ρ = 40. The meaning of ω/µ = 0.02 is that each node places in average 0.02 requests per node life time. Also, in the figure ∆ = 1 means that the repair interval is equal to one average node lifetime. Simulation results are also included in the figure (markers). Note that since we normalize C to the BS download cost, values below ordinate 1 correspond to the case where DS is beneficial. For relatively high repair frequencies, all codes yield lower C than BS download. However, C/M ωρ exceeds 1, i.e., BS download is less costly than the DS communication cost, for values of the repair interval larger than a threshold, which we define as

∆ max sup ∆ : C < M ωρ . ( 19 
)
For ∆ > ∆ max , retrieving the file from the BS is always less costly, therefore storing data in the nodes is useless. ∆ max depends on the network parameters M , ω, µ and ρ as well as the code parameters m, h and r.

We see from Fig. 3 that the value of ∆ that minimizes C, denoted by ∆ opt , depends on the code used for storage. In particular, ∆ opt = 0 for the [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF][START_REF] Bioglio | Optimizing MDS codes for caching at the edge[END_REF][START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF] MSR code, i.e., instantaneous repair is optimal. Performing an exhaustive search for m ≤ 10, it is readily verified that the same is true for any of the codes in Section V with r = m -1. It is reasonable to assume that this will be the case also for m > 10. On the other hand, ∆ opt > 0 for the [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF][START_REF] Bioglio | Optimizing MDS codes for caching at the edge[END_REF][START_REF] Bioglio | Optimizing MDS codes for caching at the edge[END_REF] MDS code. ∆ opt depends on the network and code parameters. In particular, the tolerance to storage node departures in a repair interval affects ∆ opt . In Section VI-A, we investigate how the network parameters affect C and ∆ max . In Section VI-B, we explore how the code parameters affect C.

A. Effect of Varying Network Parameters

Fig. 4 shows how ∆ max increases with ρ for the same codes as in Fig. 3 and ω/µ = 0.05. For ρ < 5, approximately, ∆ max = -∞ for all considered codes, i.e., it is never beneficial to use the devices for storage and the file should always be downloaded from the BS. It is worth noticing that, for moderate-to-large ρ, the [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF][START_REF] Bioglio | Optimizing MDS codes for caching at the edge[END_REF][START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF] MSR code requires in the order of 10 repairs per average node lifetime while the [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF][START_REF] Bioglio | Optimizing MDS codes for caching at the edge[END_REF][START_REF] Bioglio | Optimizing MDS codes for caching at the edge[END_REF] MDS code requires only around 0.66 repairs per node lifetime for DS to be beneficial over BS download. The main difference between the [9, 3, 3] MDS code and the [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF][START_REF] Bioglio | Optimizing MDS codes for caching at the edge[END_REF][START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF] MSR code is the number of storage node departures in a repair interval that the code can tolerate such that D2D repair is still possible, i.e., mr. The [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF][START_REF] Bioglio | Optimizing MDS codes for caching at the edge[END_REF][START_REF] Bioglio | Optimizing MDS codes for caching at the edge[END_REF] MDS code can handle the departure of up to 6 storage nodes while the [START_REF] Pääkkönen | Device-to-device data storage for mobile cellular systems[END_REF][START_REF] Bioglio | Optimizing MDS codes for caching at the edge[END_REF][START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF] MSR code can tolerate a single departure only. This explains the higher repair frequency required by the MSR code.

For the [START_REF] Golrezaei | Scaling behavior for deviceto-device communications with distributed caching[END_REF][START_REF] Bioglio | Optimizing MDS codes for caching at the edge[END_REF][START_REF] Shanmugam | Femtocaching: Wireless content delivery through distributed caching helpers[END_REF] LRC and ρ = 20, Fig. 5 shows how C/M ωρ and ∆ max are affected by the ratio ω/µ. We see that increasing ω/µ reduces C/M ωρ for all ∆ and that ∆ max increases with ω/µ. The same behavior is observed using any of the codes in Section V, which can be verified by the following manipulations of the equations in Section III. The case ω/µ → ∞ corresponds to C/M ωρ → Cd /M ωρ, which can be readily seen by taking the limit ω → ∞ in ( 13), using ( 9) and ( 11), for fixed and finite µ. This shows that the overall communication cost is essentially the download cost for a sufficiently high ω/µ. Since Cd /M ωρ is monotonically increasing in ∆ (Corollary 1) and C/M ωρ → 1 as ∆ → ∞ (Corollary 2), we also have that ∆ max → ∞ for ω/µ → ∞. Hence, DS always leads to a lower overall communication cost, as compared to the BS download cost, for sufficiently large ω/µ.

B. Results of Changing Code Parameters

We investigate how the repair access r affects C. Fig. 6 shows C/M ωρ versus ∆ for the [9, 3, r] MSR code for ρ = 40 and ω/µ = 0.02. We observe that for ∆ = 0 the lowest C is achieved for r = 8, i.e., the highest possible repair access. This is due to the fact that for regenerating codes γ D2D is minimized for r = m -1 (see [START_REF] Dimakis | Network coding for distributed storage systems[END_REF] and Section V-B). However, increasing ∆ requires decreasing r to yield the lowest C. This is due to the improved tolerance to storage node departures as r decreases. The result is interesting, because it means that in wireless DS, if repairs cannot be accomplished very frequently, repair access is a more important parameter than repair bandwidth. On the other hand, if repairs can be performed very frequently, repair bandwidth becomes more important than repair access, because tolerance to storage node departures is not critical. In general, there is a tradeoff between the repair bandwidth and the tolerance to storage node departures (i.e., repair access), which holds true for any of the codes in Section V. How to set the the parameter r depends on how frequently we can repair the DS system.

C. Improved Communication Cost Using the Hybrid Scheme

We return to the hybrid repair and download scheme presented in Section IV to investigate the gains in overall communication cost as compared to the cost when using the conventional scheme. We remark that the hybrid scheme does not improve C for all codes in Section V. In particular, for finite ρ, Cr is only reduced if β < α (Theorem 3) and Cd is only improved if α < F (Theorem 4). Fig. 7 shows C/M ωρ versus ∆ for all codes in Fig. 3 that achieve lower C when using the hybrid scheme. We set ω/µ = 0.1 and ρ = 10 and include simulation results in the figure (markers). Dashed curves correspond to the conventional scheme, and solid curves to the hybrid scheme. We see from the figure that regenerating codes achieve a large cost reduction, especially for small ∆, when using the hybrid scheme. This is since both Cr and Cd are reduced. A smaller cost reduction is observed for MDS codes and LRCs. 

D. Codes Achieving Minimum Cost for Given ∆

The analytical expressions for the overall communication cost derived in Sections III and IV can be used to find, for a given repair interval, the code achieving the lowest C. We have performed an exhaustive search for all MDS codes (including replication), regenerating codes and LRCs, with m ≤ 10, to find the code achieving the lowest C for each ∆. Like [START_REF] Leong | Distributed storage allocations[END_REF], we also introduce an overall storage budget constraint of Γ files (ΓF bits) across the nodes in the cell, i.e., mα ≤ ΓF . In particular, we set Γ = 3, meaning that the code rate is R ≥ 1/3. Fig. 8 shows C/M ωρ for all codes that entail the lowest C for some value of ∆ for ω/µ = 0.02 and ρ = 40. For ∆ = 0 (instantaneous repair) 2-replication is optimal (see Lemma 1). However, 2-replication remains optimal only if repair can be accomplished at least around 80 times per average node lifetime. For slightly larger ∆, MBR codes achieve the lowest cost. It is worth stressing that the MBR codes achieving the lowest C for some ∆ are characterized by a low repair access (r = h and r = h + 1), i.e., fault tolerance to storage node departures to allow D2D repair is more important than the repair bandwidth. Somewhat surprisingly, MDS codes offer the best performance for higher ∆, despite the large γ D2D . We remark that LRCs are not optimal for any ∆ due to the poor tolerance to storage node departures in local D2D repair and a larger α than MDS codes for a given global tolerance to storage node departures. ∆ max ≈ 0.8 is the largest ∆ such that DS is beneficial over BS download, using any of the codes in Section V.

Fig. 9 shows the codes that achieve lowest C for some values of ∆ for the hybrid scheme with ω/µ = 1 and ρ = 40. Increasing ω/µ, Cd is the main contribution to C

(see Section VI-A). Since α has significant impact on Cd , we expect codes with small α to achieve the minimum cost. Indeed, we note that MDS codes and MSR codes, which have minimum α, achieve the lowest C for a region of values of ∆.

As expected, 2-replication is optimal for instantaneous repair.

VII. CONCLUSIONS

We investigated the use of distributed storage in the mobile devices in a wireless network to reduce the communication cost of content delivery to the users. We introduced a repair scheduling where the repair of the data lost due to device departures is performed periodically. For this scenario, we derived analytical expressions for the overall communication cost, due to data download and repair, as a function of the repair interval. Using these expressions, we then investigated the performance of MDS codes, regenerating codes and LRCs.

We showed that DS can reduce the overall communication cost with respect to the scenario where content is downloaded solely from the BS. However, there exists a maximum value of the repair interval after which retrieving the file from the BS is always less costly. Therefore, DS is useful if repairs can be performed frequently enough. The required repair frequency depends on the network parameters and the code used for storage. Interestingly, MDS codes yield better performance than codes specifically designed for DS, such as regenerating codes and LRCs, if repair cannot be performed very frequently. The reason is that in this case a large tolerance to node failures and low repair access is required.

APPENDIX A PROOF OF THEOREM 2

To derive p D2D we first have to find the distribution of file requests within a repair interval ∆. Let W be the time instant of the th request and let W W mod ∆ be the time of the th request in relation to a repair interval. The pdf of W is given by the following lemma.

Lemma 2. The distribution of W for t ∈ [0, ∆) is f W (t) = ω e -ωt ( -1)! ∞ i=0 (t + i∆) -1 e -ω∆i . (20) 
Proof: W is computed as the sum of inter-request times with pdf given by [START_REF] Golrezaei | Scaling behavior for deviceto-device communications with distributed caching[END_REF]. Thus, W is an Erlang distributed random variable with pdf [START_REF] Miller | Probability and Random Processes[END_REF]Sec. 3.4.5] 

f W (t) = ω t -1 e -ωt ( -1)! , t ≥ 0. (21) 
The transformation g : W → W is given by t = g(x), where

g(x) = x -i∆, x ∈ [i∆, (i + 1)∆), i ≥ 0, (22) 
Note that g (x) = 1 for x ∈ (i∆, (i + 1)∆). Moreover, lim x→i∆-g (x) = lim x→i∆+ g (x) = 1 and g (x) is continuous and well defined. Let x i be the roots of [START_REF] Navas | Asymptotic behavior of the lerch transcendent function[END_REF],

x i = g -1 (t) = t + i∆, t ∈ [0, ∆).
Then, [START_REF] Miller | Probability and Random Processes[END_REF]Th. 4.2]

f W (t) = xi f W (x i ) 1 g (x i ) = ∞ i=0 f W (t + i∆),
and ( 20) is obtained using [START_REF] Olver | NIST Handbook of Mathematical Functions[END_REF]. Define W∞ lim →∞ W . We have the following result.

Lemma 3. The distribution of W∞ for t ∈ [0, ∆) is f W∞ (t) = 1 ∆ ,
and the limit is achieved exponentially fast in .

Proof: Using the Lerch's transcendent [START_REF] Olver | NIST Handbook of Mathematical Functions[END_REF]Sec. 25.14]

Φ e -ω∆ , 1 -, t ∆ ∞ i=0 t ∆ + i -1 e -ω∆i , > 1,
the pdf of W (Lemma 2) can be rewritten as

f W (t) = (ω∆) e -ωt ∆ • ( -1)! Φ e -ω∆ , 1 -, t ∆ .
According to [START_REF] Navas | Asymptotic behavior of the lerch transcendent function[END_REF]Cor. 4],

lim →∞ (ω∆) ( -1)! Φ e -ω∆ , 1 -, t ∆ = e ωt .
Hence, for an infinite number of requests

lim →∞ f W (t) = e -ωt ∆ lim →∞ (ω∆) ( -1)! Φ e -ω∆ , 1 -, t ∆ = 1 ∆ .
Furthermore, using [START_REF] Navas | Asymptotic behavior of the lerch transcendent function[END_REF]Th. 3], as → ∞,

f W (t) ≤ 1 ∆ + O 4π 2 + (ω∆) 2 ω∆ - , (23) 
where

√ 4π 2 +(ω∆) 2 ω∆ ≥ 1.
Therefore, the convergence is exponentially fast in .

We proceed with the second step of the proof. Within a repair interval, the number of storage nodes m(t) in the cell is described by a Poisson death process [START_REF] Miller | Probability and Random Processes[END_REF]Sec. 8.6]. Denote by T i the time interval for which m(t) = i, i = h, . . . , m (see Fig. 2 for an illustration). Note that T i is exponentially distributed with rate µ i = iµ, since there are i storage nodes in the cell and the departure rate per node is µ (see Section II). Denote by S h the time instant at which m(t) changes from h to h -1, i.e., the time after which D2D download is no longer possible. S h can be written as

S h = m i=h T i .
The pdf of S h is given by [START_REF] Bolch | Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications[END_REF]Sec. 1.3.1] 

f S h (t) = m i=h µ m µ m-1 . . . µ h m j=h j =i (µ j -µ i ) e -µit , t ≥ 0. (24) 
Note that Pr(S h ≥ ∆) > 0 for finite ∆, which implies that, with some probability, m(t) ≥ h for the duration of the repair interval. In this case, p D2D = 1.

We now have all the prerequisites to derive p D2D . D2D download is possible if at least h storage nodes are available in the cell. Thus,

p D2D = lim L→∞ 1 L L =1 Pr W < S h
From the convergence result of Lemma 3, it follows that

p D2D = Pr W∞ < S h = Pr W∞ -S h < 0 = 0 -∞ f W∞-Sh (t) dt,
where [START_REF] Miller | Probability and Random Processes[END_REF] 

f W∞-Sh (t) = ∞ -∞ f W∞ (t + s)f S h (s) ds.
Using the results of Lemma 3 and (24), we get after some calculation

p D2D = 1 ∆ m i=h 0 -∞ e µit dt 1 -e -µi∆ m j=h j =i j j -i = 1 ∆ m i=h 1 -p i µ i m j=h j =i j j -i . (25) 
By inserting ( 25) into (10) and using p D2D + p BS = 1, we obtain [START_REF] Papailiopoulos | Locally repairable codes[END_REF].

APPENDIX B PROOF OF COROLLARY 2

Consider the case when ∆ → 0. For the repair cost (Theorem 1),

lim ∆→0 Cr = 1 F ρ BS γ BS r-1 i=0 (m -i) lim ∆→0 b i (m, p) ∆ +ρ D2D γ D2D m i=r (m -i) lim ∆→0 b i (m, p) ∆ ,
where b i (m, p) is given in [START_REF] Yang | Performance analysis of wireless heterogeneous networks with pushing and caching[END_REF] and p = e -µ∆ . Note that

lim ∆→0 b i (m, p) ∆ = m i lim ∆→0 e -µ∆i (1 -e -µ∆ ) m-i ∆ (a) = µ m i lim ∆→0 e -µ∆i 1 -e -µ∆ m-i-1 me -µ∆ -i = mµ, if i = m -1, 0, otherwise. ,
where in (a) we used l'Hôpital's rule. Hence,

r-1 i=0 (m -i) lim ∆→0 b i (m, p) ∆ = 0, and m i=r (m -i) lim ∆→0 b i (m, p) ∆ = (m -(m -1))mµ = mµ. This implies lim ∆→0 Cr = ρ D2D γ D2D mµ. (26) 
For the download cost (Theorem 2),

lim ∆→0 Cd = M ω ρ BS + ρ D2D hα F -ρ BS m i=h 1 µ i lim ∆→0 1 -p i ∆ m j=h j =i j j -i = M ω ρ BS + ρ D2D hα F -ρ BS m i=h m j=h j =i j j -i . (27) 
To simplify the expression, consider the function

f (x) = 1 m i=h (i -x) , (28) 
which can be expanded as the sum of partial fractions as [24, Ch. 6]

f (x) = m i=h 1 (i -x) m j=h j =i (j -i) . (29) 
Now, note that the sum in (27) can be expressed as

m i=h m j=h j =i j j -i = m i=h m j=h j i m j=h j =i (j -i) (a) = f (0) m j=h j (b) = 1,
where in (a) we used (29), and in (b) we used (28). Using this in (27) we obtain

lim ∆→0 Cd = M ωρ D2D hα F . (30) 
Finally, the expression ( 14) is obtained by using lim ∆→0 C = lim ∆→0 Cr + lim ∆→0 Cd . Now, assume ∆ → ∞. For the average repair cost (Theorem 1)

lim ∆→∞ Cr = 1 F ρ BS γ BS r-1 i=0 (m -i) lim ∆→∞ b i (m, p) ∆ +ρ D2D γ D2D m i=r (m -i) lim ∆→∞ b i (m, p) ∆ . Now, lim ∆→∞ b i (m, p) ∆ = m i lim ∆→∞ e -µ∆i (1 -e -µ∆ ) m-i ∆ = 0,
which implies lim ∆→∞ Cr = 0.

For the average download cost (Theorem 2),

lim ∆→∞ Cd = M ω ρ BS + ρ D2D hα F -ρ BS m i=h 1 µ i lim ∆→∞ 1 -p i ∆ m j=h j =i j j -i ,
where µ i = iµ, p i = e -µi∆ . As lim ∆→∞ 1-pi ∆ = 0 ∀ i, then lim ∆→∞ Cd = M ωρ BS , and (15) follows.

APPENDIX C PROOF OF THEOREM 4

Following the proof of Theorem 2 (Appendix A), the probability that there are m(t) = i storage nodes available at the time of a request is

c i Pr(S i+1 < W∞ < S i ) = Pr( W∞ -S i < 0) -Pr( W∞ -S i+1 < 0). (31) 
The two probabilities in (31) can be obtained by replacing h with i and i + 1 in (25),

Pr( W∞ -S i < 0) = 1 ∆ m i =i 1 -p i µ i m j=i j =i j j -i Pr( W∞ -S i+1 < 0) = 1 ∆ m i =i+1 1 -p i µ i m j=i+1 j =i j j -i .
If no storage nodes are available, we always have to rely on BS download. By replacing h with 1 in (25), we get that this occurs with probability

p BS = 1 - 1 ∆ m i=1 1 -p i µ i m j=1 j =i j j -i . (32) 
If m(t) ≥ h, D2D download is performed. This occurs with probability p D2D , derived in Theorem 2.

For m(t) = i, 1 ≤ i ≤ h-1, the hybrid scheme will achieve a lower download cost if ρ

BS F > (ρ BS (h -i) + iρ D2D )α, i.e., if i > ρ BS ρ BS -ρ D2D h - F α d. Let a min { d , h -1} .
For 1 ≤ i ≤ a, downloading F bits from the BS will give the lowest possible cost. For a + 1 ≤ i ≤ h -1, downloading iα bits through D2D communication and (hi)α bits from the BS will give the lowest possible cost. The average download cost in the hybrid regime is hence

Chybrid d = M ω F ρ BS F p BS + ρ BS F a i=1 c i + h-1 i=a+1 (ρ BS (h -i) + iρ D2D )αc i + ρ D2D hαp D2D . (33) 
Finally, ( 16) is obtained by using ( 25) and (32) in (33).

APPENDIX D PROOF OF THEOREM 5

Recall that a storage node can be repaired locally or globally in D2D communication. Only single node departures (within a repair group) can be repaired locally. Using [START_REF] Yang | Performance analysis of wireless heterogeneous networks with pushing and caching[END_REF], the average number of local D2D repairs in a repair group is We now compute the average number of global D2D repairs m D2D r,g . Let X = (X 0 , X 1 , . . . , X r+1 ), where X i ∈ {0, 1, . . . , G}, i X i = G, is the random variable giving the number of repair groups with i storage node departures in a repair interval ∆. The number of global repairs is given by r+1 i=2 iX i , under the constraint that there are at least h storage nodes available at the time of a repair, i.e., if r+1 i=1 iX i ≤ mh. Therefore, by averaging over all possible realizations x = (x 0 , x 1 , . . . , x r+1 ) of X, we obtain 

where in the last inequality we used r ≥ 1 and h ≥ k. It is easy to verify that the lower bound in (36) is achieved by 2-replication. Now, consider LRCs. We get

mγ D2D = F m h (r + 1) > 2F,
since h < m and r ≥ 1. Also,

hα LRC = F r + 1 r > F.
Inserting this into (34) gives that LRCs yield a higher overall communication than (36). Consider now MBR codes. We would like to minimize mγ D2D under the constraints m ≥ 2, h ≥ 1 and h < m, for r = m -1. For h = m -1, mγ D2D = 2F . For h < m -1, relaxing the integer constraints on m and h,

∂ ∂m mγ D2D = 4 F h m 2 -m(h + 1) + 1 (2m -h -1) 2 > 0.
Consequently, mγ D2D is minimized for h = m -1 and the minimum is equal to 2F . We proceed to minimize hα MBR for r = m -1 under the same constraints. For h = 1, we have hα MBR = F . Also, for h > 1,

∂ ∂h hα MBR = 2F m -1 (2m -h -1) 2 > 0.
As a result, mγ D2D and hα MBR are jointly minimized for m = 2 and h = 1. Thus, the MBR code, which is indeed 2-replication, achieves the lower bound in (36).

We proceed to investigate the overall communication cost when ∆ = 0 for MSR codes. By setting r = m -1 we minimize γ D2D with respect to r. We relax the integer constraints on m and h. By differentiating mγ D2D with respect to h and setting the derivative equal to zero, we find

arg min h mγ D2D = m 2 .
Under the constraints m ≥ 2, h ≥ 1 and h < m, we have

∂ ∂m mγ D2D m=2h = F h 2 > 0.
This implies that mγ D2D is minimized for m = 2 and h = 1 and that the minimum is equal to 2F . Since hα MSR = F , mγ D2D and hα MSR are jointly minimized for m = 2 and h = 1. Therefore, the [2, 1, 1] MSR code, which corresponds to 2replication, achieves the lower bound in (36). This concludes the proof.
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 1 Figure 1. A wireless network with data storage in the mobile devices (nodes).A new node arrives to the network at rate M λ. The departure rate per node is µ. Blue nodes store exactly α bits each. The green node requests the file and downloads it from the storage nodes (solid arrows), or from the BS (dashed arrow). The repair onto a node (in red) is carried out by transmitting γ D2D bits from storage nodes (solid arrows) or γ BS bits from the BS (dashed arrow).
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 2 Figure 2. Number of available storage nodes within the repair interval ∆.At t = 0, there are m storage nodes available. S h is the time after which less than h storage nodes are available, hence D2D download is no longer possible.

  ρBS ρBS-ρD2D r -γBS β , r -1 , r -γBS β ≥ 0 for all codes in Section V, and p = e -µ∆ .
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 3 Figure 3. Normalized overall communication cost C/M ωρ versus the repair interval ∆ for a selection of MDS codes, regenerating codes and LRCs with R = 1/3, compared to the normalized BS download cost (dotted line).
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 45 Figure 4. The maximum repair interval ∆max versus the transmission cost ratio ρ.
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 6 Figure 6. Normalized overall cost C/M ωρ versus the repair interval ∆ for the [9, 3, r] MSR code compared with the normalized BS download cost (dotted line). The arrow shows the direction of increasing r.
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 7 Figure 7. The normalized overall cost C/M ωρ versus the repair interval ∆ when using the conventional scheme (dashed curves) and hybrid scheme (solid curves).
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 8 Figure 8. Codes achieving minimum C for some ∆ for ω/µ = 0.02, ρ = 40 and Γ = 3.

Figure 9 .

 9 Figure 9. Codes achieving minimum C with the hybrid repair and download scheme for some ∆ for ω/µ = 1, ρ = 40 and Γ = 3.

  b r (r + 1, p) = (r + 1)p r (1p), where p = e -µ∆ . Since there are G = m r+1 disjoint repair groups, the average number of local D2D repairs per m storage nodes is m D2D r,l = G(r + 1)p r (1p) = mp r (1p). This entails a cost ρ D2D γ D2D m D2D r,l [c.u.].

≥

  mh ,where |x| i x i , G x G! x0!x1!•••xr+1! ,and qx i q xi i . The communication cost associated to global D2D repairs is ρ D2D hα LRC m D2D r,g [c.u.]. Finally, using[START_REF] Yang | Performance analysis of wireless heterogeneous networks with pushing and caching[END_REF], the average total number of storage node departures in a repair interval ism i=0 (mi)b i (m, p) = m(1p).All storage nodes that are not repaired in D2D are repaired by the BS. Therefore,m BS r = m(1p)m D2D r,l m D2D r,g , with communication cost ρ BS γ BS m BS r [c.u.] Finally, adding the three contributions ρ D2D γ D2D m D2D r,l , ρ D2D hα LRC m D2D r,gand ρ BS γ BS m BS r , and dividing by ∆ and normalizing by F , we obtain[START_REF] Dimakis | A survey on network codes for distributed storage[END_REF].APPENDIX E PROOF OF LEMMA 1The overall communication cost for ∆ = 0 is (Corollary 2) mµ + M ωhα).(34)Consider an [m, h, r] linear code with m = n and minimum Hamming distance d ≥ 2. It follows that α = F k , β = α, and h ≥ k, where the equality is achieved for MDS codes. Furthermore, note that d = mh + 1. Also, from[START_REF] Gopalan | On the locality of codeword symbols[END_REF],d ≤ nk -k r + 2. (35)Using m = n and the fact that d ≥ 2 in (35), we can writem ≥ k + k r ≥ k + k r .Now, using this, γ D2D = rβ = rα and α = F k in (34) we obtain lim ρ D2D (r + 1)µ + M ω h k ≥ ρ D2D (2µ + M ω) ,

Without loss of generality, we assume α ∈ N.

To simplify the analysis in Sections III and IV, we assume that the download bandwidth is the same irrespective of whether the request comes from a storage node itself or not, i.e., users do not have access to their own stored data. This is a reasonable approximation if m M . Furthermore, this may be a practical assumption. Due to concerns about security in systems that allow for D2D connectivity, it has been proposed to isolate part of the memory in the mobile devices to be used only for DS, so that devices cannot have access to their own cached data[START_REF] Golrezaei | Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution[END_REF].

The design of linear, exact-repair MSR codes with r < 2(h -1) has been proven impossible[START_REF] Shah | Interference alignment in regenerating codes for distributed storage: Necessity and code constructions[END_REF].
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