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Feedback Enhances Simultaneous Energy and Information Transmission in Multiple Access Channels

In this paper, the fundamental limits of simultaneous information and energy transmission in the two-user Gaussian multiple access channel with feedback are fully characterized. A simple achievability scheme based on power-splitting and Ozarow's scheme is shown to be optimal. Finally, the maximum individual information rates and the information sum-capacity that are achievable given a minimum energy rate constraint of b energy-units per channel use at the input of the energy harvester are identified. An interesting conclusion is that for a fixed information transmission rate, feedback can at most double the energy transmission rate with respect to the case without feedback.

I. INTRODUCTION

For decades, a common engineering practice has been to exclusively use radio frequency (RF) signals for information transmission. However, this practice has been shown to be suboptimal [START_REF] Varshney | On energy/information cross-layer architectures[END_REF]. Indeed, an RF signal carries both energy and information. From this standpoint, a variety of modern wireless systems suggest that RF signals can be simultaneously used for information and energy transmission [START_REF] Bi | Wireless powered communication: Opportunities and challenges[END_REF]. Nevertheless, information and energy transmission are often conflicting tasks and thus subject to a trade-off between the information transmission rate (bits per channel use) and the energy transmission rate (energy-units per channel use). This trade-off is evidenced in finite constellation schemes, as highlighted in Popovski et al. [START_REF] Popovski | Interactive joint transfer of energy and information[END_REF]. Consider the noiseless transmission of a 4-PAM signal over a point-to-point channel in the alphabet {-2, -1, 1, 2}. If there is no received energy rate constraint, one can clearly convey 2 bits per channel use by choosing all available symbols with equal probability. However, if one requires the received energy rate to be for instance the maximum possible, the maximum transferable information rate is 1 bit per channel use. This is basically because communication takes place using only the symbols carrying the maximum energy. From this simple example, it is easy to see how additional energy rate constraints may change the overall performance of the network. In the context of multi-user channels, very little is known about the fundamental limits of simultaneous energy and information transmission (SEIT). Indeed, most of the existing results in this area have Selma Belhadj Amor and Samir M. Perlaza are with the Institut National de Recherche en Informatique et en Automatique (INRIA) at Lyon, France (selma.belhadj-amor@inria.fr,samir.perlaza@inria.fr). They are also with the Department of Electrical Engineering at Princeton University, Princeton, NJ 08544, USA.
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approached SEIT from a signal-processing or networking point of view and focused mainly on feasibility aspects.

A. SEIT in Multiple Access Channels (MACs)

In the particular case of the discrete memoryless multiple access channel (DM-MAC), the trade-off between information rate and energy rate has been studied in [START_REF] Fouladgar | On the transfer of information and energy in multi-user systems[END_REF]. Therein, Fouladgar et al. characterized the information-energy capacity region of the two-user DM-MAC, when a minimum energy rate is required at the input of the receiver. Such a constraint changes the dynamic of the communication system in the sense that it requires additional transmitter coordination to achieve the targeted energy rate. Recently, Belhadj Amor et al. studied SEIT in the Gaussian MAC (G-MAC) without feedback and derived the information-energy capacity region as well as the maximum individual and sum rates that can be achieved subject to a minimum energy rate b. Other types of energy rate constraints for the G-MAC have also been investigated. For instance, Gastpar [START_REF] Gastpar | Gaussian multiple-access channels under received-power constraints[END_REF] considered the G-MAC under a maximum received energy rate constraint. Under this assumption, channel-output feedback has been shown not to increase the capacity region. However, in the G-MAC under a minimum energy rate constraint, the effect of feedback is not yet well understood from an energy transmission perspective. More generally, the use of feedback in the K-user G-MAC, even without energy rate constraints, has been shown to be of limited impact in terms of sum-rate improvement. This holds even in the case of perfect feedback. More specifically, the use of feedback in the G-MAC increases the sum-capacity by at most log 2 (K) 2 bits per channel use [START_REF] Kramer | Feedback strategies for white Gaussian interference networks[END_REF]. Hence, the use of feedback is difficult to justify from the point of view of information transmission.

B. Contributions

This paper studies the fundamental limits of SEIT in the two-user G-MAC with feedback (G-MAC-F). It shows that when the goal is to simultaneously transmit both information and energy, feedback can significantly improve the global performance of the system in terms of both information and energy transmission rates. One of the main contributions is the identification of all the achievable information and energy transmission rates in bits per channel use and energy-units per channel use, respectively. More specifically, the informationenergy capacity region with feedback is fully characterized and it is shown to be achievable by a simple scheme based on power-splitting and Ozarow's capacity achieving scheme [START_REF] Ozarow | The capacity of the white Gaussian multiple access channel with feedback[END_REF]. As a byproduct, the maximum individual information rates and the information sum-capacity that are achievable when there exists a minimum energy rate constraint are fully identified. Two of the most important observations in this work are: (a) the information-energy capacity region of the G-MAC without feedback is a proper subset of the information-energy capacity region of the G-MAC-F, that is, the former is strictly contained in the latter; and (b) feedback can at most double the energy rate for a fixed information rate.

II. GAUSSIAN MULTIPLE ACCESS CHANNEL WITH

FEEDBACK Consider the two-user memoryless G-MAC-F in Fig. 1. Transmitter 1 and transmitter 2 aim at respectively sending the message indices M 1 and M 2 to the receiver. At each channel use t ∈ N, X i,t denotes the real symbol sent by transmitter i, with i ∈ {1, 2}. Let n ∈ N denote the blocklength. The symbols X i,1 , . . . , X i,n satisfy an average input power constraint

1 n n t=1 E X 2 i,t P i , (1) 
where the expectation is over the message indices and P i denotes the average transmit power of transmitter i in energyunits per channel use. The receiver observes the real channel output

Y 1,t = h 11 X 1,t + h 12 X 2,t + Z t , (2) 
and the energy harvester (EH) observes

Y 2,t = h 21 X 1,t + h 22 X 2,t + Q t , (3) 
where h 1i and h 2i are the corresponding constant non-negative channel coefficients from transmitter i to the receiver and EH, respectively. The channel coefficients must satisfy the following L 2 -norm condition: ∀j ∈ {1, 2}, h j 2 1, with h j (h j1 , h j2 ) T to ensure the principle of conservation of energy. The noise terms Z t and Q t are realizations of two identically distributed zero-mean unit-variance real Gaussian random variables. In the following, there is no particular assumption on the joint distribution of Q t and Z t .

A perfect feedback link from the receiver to transmitter i allows at each channel use t, the observation of the channel output Y 1,t-1 at both transmitters.

The G-MAC-F above is fully described by the signal to noise ratios (SNRs) -SNR ji , with ∀(i, j) ∈ {1, 2} 2 , which are defined as follows:

SNR ji |h ji | 2 P i , (4) 
given the normalization over the noise powers. Within this context, two main tasks are to be accomplished simultaneously: information transmission and energy transmission.

A. Information Transmission

The goal of the communication is to convey the independent messages M 1 and M 2 from transmitters 1 and 2 to the common receiver. The messages M 1 and M 2 are independent of the noise terms Z 1 , . . . , Z n , Q 1 , . . . , Q n and uniformly distributed over the sets M 1 {1, . . . , 2 nR1 } and M 2 {1, . . . , 2 nR2 }, where R 1 and R 2 denote the information rates. The existence of feedback links allows the t-th symbol of transmitter i to be dependent on all previous channel outputs Y 1,1 , . . . , Y 1,t-1 as well as its message index M i . More specifically,

X i,1 = f (n) i,1 (M i ) and
(5)

X i,t = f (n) i,t (M i , Y 1,1 , . . . , Y 1,t-1 ), t ∈ {2, . . . , n}, (6) 
for some encoding functions f

(n) i,1 : M i → R and f (n) i,t : M i × R t-1 → R. The receiver produces an estimate ( M (n) 1 , M (n) 2 ) = Φ (n) (Y n 1 ) of the message-pair (M 1 , M 2 ) via a decoding function Φ (n) : R n → M 1 × M 2 ,
and the average probability of error is

P (n) error (R 1 , R 2 ) Pr ( M (n) 1 , M (n) 2 ) = (M 1 , M 2 ) . (7) B.

Energy Transmission

The expected energy transmission rate (in energy-units per channel use) at the EH is

B (n) 1 n n t=1 E Y 2 2,t , (8) 
where the expectation is over the message indices. The goal of the energy transmission is to guarantee that the average energy rate B (n) is not less than a given (constant) energy rate B that must satisfy 0 < B 1+SNR 21 +SNR 22 +2 √ SNR 21 SNR 22 , for the problem to be feasible. Hence, the probability of energy outage is defined as follows:

P (n) outage (B) = Pr B (n) < B -, (9) 
for some > 0 arbitrarily small.

C. Simultaneous Energy and Information Transmission

The G-MAC-F in Fig. 1 is said to operate at the informationenergy rate triplet (R 1 , R 2 , B) ∈ R 3 + considered if (a) reliable communication at information rates R 1 and R 2 is ensured; and (b) the average energy rate during the whole block-length is not lower than B. Under these conditions, the informationenergy rate triplet (R 1 , R 2 , B) is said to be achievable.

Definition 1 (Achievable Rates). The triplet (R 1 , R 2 , B) ∈ R 3
+ is achievable if there exists a sequence of encoding and decoding functions {f

(n) 1,t } n t=1 , {f (n) 2,t } n t=1 , Φ (n) ∞ n=1 such that lim sup n→∞ P (n) error (R 1 , R 2 ) = 0 and lim sup n→∞ P (n) outage (B) = 0 for any > 0.
From Def. 1, it is clear that for any achievable triplet (R 1 , R 2 , B), whenever the targeted energy rate B is smaller than the minimum energy rate required to guarantee reliable communications at the information rates R 1 and R 2 , the energy rate constraint is vacuous. This is mainly because the energy rate constraint is always satisfied, and thus the transmitter can exclusively use the available power budget for increasing the information rate. Alternatively, when the energy rate B must be higher than what is strictly necessary to guarantee reliable communication, the transmitters face a trade-off between information and energy rates. Often, increasing the energy transmission rate implies decreasing the information transmission rates and vice-versa. This trade-off is accurately modeled by the notion of information-energy capacity region.

Definition 2 (Information-Energy Capacity Region). The information-energy capacity region of the G-MAC-F E FB (SNR 11 , SNR 12 , SNR 21 , SNR 22 ) is the closure of all achievable information-energy rate triplets (R 1 , R 2 , B).

III. MAIN RESULTS

A. Information-Energy Capacity Region with Feedback

The information-energy capacity region of the G-MAC-F is fully characterized by the following theorem.

Theorem 1 (Information-Energy Capacity Region with Feedback). The perfect feedback information-energy capacity region E FB (SNR 11 , SNR 12 , SNR 21 , SNR 22 ) of the G-MAC-F is the set of non-negative information-energy rate triplets

(R 1 , R 2 , B) that satisfy R 1 1 2 log 2 1 + β 1 SNR 11 1 -ρ 2 (10a) R 2 1 2 log 2 1 + β 2 SNR 12 1 -ρ 2 (10b) R 1 + R 2 1 2 log 2 1 + β 1 SNR 11 + β 2 SNR 12 +2ρ β 1 SNR 11 β 2 SNR 12 (10c) 
B 1 + SNR 21 + SNR 22 + 2ρ β 1 SNR 21 β 2 SNR 22 +2 (1 -β 1 )SNR 21 (1 -β 2 )SNR 22 , (10d) 
with (ρ,

β 1 , β 2 ) ∈ [0, 1] 3 .
Proof: The proof of Theorem 1 is presented in [START_REF] Belhadj Amor | Feedback enhances simultaneous information and energy transmission in multiple access channels[END_REF]. From an achievability standpoint, the parameters β 1 and β 2 in Theorem 1 might be interpreted as the fractions of power that transmitter 1 and transmitter 2 allocate for information transmission, respectively. The remaining fraction of power (1 -β i ) is allocated by transmitter i for exclusively transmitting energy to the EH. The information transmission follows Ozarow's perfect feedback capacity-achieving scheme in [START_REF] Ozarow | The capacity of the white Gaussian multiple access channel with feedback[END_REF]. The energy transmission is accomplished by random symbols that are known at both transmitters and the receiver. More specifically, transmitter i generates two signals: an information-carrying (IC) signal with average power β i P i energy-units per channel use; and a no-information-carrying (NIC) signal with power (1 -β i )P i energy-units per channel use. The role of the NIC signal is exclusively energy transmission from the transmitter to the EH. Conversely, the role of the IC signal is twofold: information transmission from the transmitter to the receiver and energy transmission from the transmitter to the EH.

The parameter ρ is the average Pearson correlation coefficient between the IC signals sent by both transmitters. This parameter plays a fundamental role in both information transmission and energy transmission. If β 1 = 0 and β 2 = 0, let ρ (β 1 , β 2 ) be the unique solution in (0, 1) to the following equality:

1 + β 1 SNR 11 + β 2 SNR 12 + 2ρ β 1 SNR 11 β 2 SNR 12 = 1 + β 1 SNR 11 (1 -ρ 2 ) 1 + β 2 SNR 12 (1 -ρ 2 ) ; (11) otherwise, let ρ (β 1 , β 2 ) = 0.
Note that for any power-splitting (β 1 , β 2 ) ∈ (0, 1] 2 , the left hand side of (11) is monotonically increasing in ρ whereas the right hand side is monotonically decreasing in ρ. This implies that ρ (β 1 , β 2 ) is a maximizer of the sum-rate. More specifically, at ρ = ρ (β 1 , β 2 ), the sum of (10a) and (10b) is equal to (10c) and it corresponds to the sum-capacity of the G-MAC-F.

The Pearson correlation factor between the NIC signals of both transmitters does not appear in Theorem 1 because maximum energy transmission occurs using NIC signals that are fully correlated, and thus the corresponding Pearson correlation coefficient is one. Without loss of optimality, NIC signals can be chosen to be independent of the messages M 1 and M 2 as well as the noise sequences, and known by both the receiver and the transmitters. Hence, NIC signals can be independent of the IC signals and more importantly, the interference they create at the receiver can be easily eliminated via successive interference cancellation.

Under these assumptions, this coding scheme guarantees the achievability of non-negative rate pairs (R 1 , R 2 ) satisfying (10a)-(10c).

At the EH, both the IC and NIC signals contribute to the total energy harvested [START_REF] Belhadj Amor | Feedback enhances simultaneous information and energy transmission in multiple access channels[END_REF] 

R FB i (b)= 1 2 log 2 (1 + β (b)SNR 1i ) , i ∈ {1, 2}, (14) 
with β (b) ∈ [0, 1] defined as follows:

β (b) = 1 - (b -(1 + SNR 21 + SNR 22 )) + 2 √ SNR 21 SNR 22 2 . ( 15 
)
Proof: The proof of Proposition 1 is provided in [START_REF] Belhadj Amor | Feedback enhances simultaneous information and energy transmission in multiple access channels[END_REF]. The rate R FB i (b) is achieved by transmitter i, for instance, when transmitter j uses all its available power for exclusively transmitting energy to the EH (β j = 0) by using common randomness; and transmitter i uses a power split in which the part of power dedicated for exclusively transmitting energy to the EH, 1 -β i , is the fraction needed to satisfy

1 + SNR 21 + SNR 22 + 2 (1 -β 1 )SNR 21 (1 -β 2 )SNR 22 b, (16) 
with equality, that is,

β i = β (b) (when β j = 0).
2) Information Sum-Capacity with Feedback and with Minimum Energy Constraint b: The perfect feedback information sum-capacity R FB sum (b) is the solution to an optimization problem of the form

R FB sum (b) = max (r1,r2,c)∈EFB(SNR11,SNR12,SNR21,SNR22):c b r 1 + r 2 . ( 17 
)
Proposition 2 (Information Sum-Capacity). The perfect feedback information sum-capacity of the G-MAC subject to a minimum energy rate constraint b that must be guaranteed at the input of the EH is

1) ∀b ∈ 0,1+SNR 21 +SNR 22 +2ρ (1,1) √ SNR 21 SNR 22 , R FB sum (b) = 1 2 log 2 (1+SNR 11 +SNR 12 +2ρ (1, 1) SNR 11 SNR 12 ); (18) 2) ∀b ∈ 1 + SNR 21 + SNR 22 + 2ρ (1, 1) √ SNR 21 SNR 22 , 1 + SNR 21 + SNR 22 + 2 √ SNR 21 SNR 22 , R FB sum (b) = 1 2 log 2 (1 + β (b)SNR 11 ) (19) 
+ 1 2 log 2 (1 + β (b)SNR 12 ); (20) 3 
) ∀b ∈ 1 + SNR 21 + SNR 22 + 2 √ SNR 21 SNR 22 , ∞], R FB sum (b) = 0, (21) 
with β (b) defined in (15) and ρ (1, 1) is the unique solution in (0, 1) to (11) when

β 1 = β 2 = 1.
Proof: The proof of Proposition 2 is presented in [START_REF] Belhadj Amor | Feedback enhances simultaneous information and energy transmission in multiple access channels[END_REF]. Note that even if feedback does not increase the maximal individual rates that can be achieved for a given received energy rate b, it increases the sum-rate that can be achieved (See Proposition 2 in comparison to [9, Theorem 2]). 

B(b)= (R 1 , R 2 ) ∈ R 2 + : R i 1 2 log 2 (1 + β (b)SNR 1i ) , i ∈ {1, 2} .(
(b) = 1 -(ρ (1, 1) + )
2 . Substituting this into (19) and taking the limit when tends to 0, by the definition of ρ (1, 1), the resulting value is given by (18) and thus R FB sum (b) is a continuous function in b. Clearly, the maximum energy rate is achieved when β 1 = β 2 = 0, which implies that no information is conveyed from the transmitters to the receiver.

C. Energy Transmission Enhancement with Feedback

In this subsection, the enhancement of the energy transmission rate due to the use of feedback is quantified when the information sum-rate is the information sum-capacity without feedback. Denote by B NF = 1+SNR 21 +SNR 22 the maximum energy rate that can be guaranteed at the EH in the G-MAC (without feedback) when the information sum-rate corresponds to the information sum-capacity without feedback. Denote also by B F the maximum energy rate that can be guaranteed at the EH in the G-MAC-F when the information sum-rate is the information sum-capacity without feedback. The exact value of B F is given by the following lemma.

Lemma 1. The maximum energy rate B F that can be guaranteed at the EH in the G-MAC-F when the information sum-rate is the information sum-capacity without feedback is Proof: The proof of Lemma 1 is presented in [START_REF] Belhadj Amor | Feedback enhances simultaneous information and energy transmission in multiple access channels[END_REF]. The following theorem provides an upper bound on BF BNF .

B F = 1 +
Theorem 2 (Maximum Energy Rate Improvement with Feedback). Feedback can at most double the energy rate. That is,

1 B F B NF < 2. ( 25 
)
Proof: The proof of Theorem 2 follows immediately from Lemma 1.

IV. CONCLUSION AND EXTENSIONS

This paper has characterized the information-energy capacity region of the two-user G-MAC-F and measured the energy transmission enhancement induced by the use of feedback. What is important to mention here is that SEIT requires additional transmitter cooperation/coordination. From this viewpoint, any technique that allows transmitter cooperation (i.e., feedback, conferencing, etc.) is likely to provide performance gains in SEIT in general multi-user networks. For instance, the results on the energy transmission enhancement induced by feedback in the two-user G-MAC-F can be extended to the arbitrary K-user G-MAC-F with K 3. However, such a cooperation is usually not natural, especially if the transmitters do not share common information or are not co-located. Not surprisingly, this requires the transmitters to be "altruistic" and be always willing to cooperate to improve the overall system throughput. Consequently, the fundamental limits on SEIT take different forms depending on whether or not the network is centralized. In a decentralized network [START_REF] Belhadj Amor | Decentralized simultaneous energy and information transmission in multiple access channels[END_REF], each decision maker aims to maximize its own individual reward and its individual choice does not necessarily achieve the capacity of the network. In other words, the individual choice is not necessarily optimal from a global viewpoint. Hence, the information-energy capacity results are not sufficient to describe the fundamental limits on SEIT in decentralized networks.
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 222 shows a general example of the intersection of the volume E FB (SNR 11 , SNR 12 , SNR 21 , SNR 22 ), in the Cartesian coordinates (R 1 , R 2 , B), with a plane B = b when SNR 11 = SNR 12 = SNR 21 = SNR 22 . Case 1: In the case in which b ∈ [0, 1 + SNR 21 + SNR 22 ], then β (b) = 1, and thus the energy constraint does not add any additional bound on the individual rates and the sum-rate other than (10a), (10b), and (10c). In fact, in this case, any intersection of the volume E FB (SNR 11 , SNR 12 , SNR 21 , SNR 22 ), in the Cartesian coordinates (R 1 , R 2 , B), with a plane B = b corresponds to the set of triplets (R 1 , R 2 , b), in which the corresponding pairs (R 1 , R 2 ) form a set that is identical to the information capacity region of the G-MAC-F, denoted by C FB (SNR 11 , SNR 12 ), which is achievable by using Ozarow's scheme without any power-splitting, i.e., β 1 = β 2 = 1. In this case, transmitting information using all the available power budget is always enough to satisfy the energy constraint. (See the intersection of the plane B = b 0 and the volume E FB (SNR 11 , SNR 12 , SNR 21 , SNR 22 ), with b 0 ∈ 0, 1 + SNR 21 + SNR 22 , in Fig. 2.) Case In the case in which b ∈ (1 + SNR 21 + SNR 22 , 1 + SNR 21 + SNR 22 + 2ρ (1, 1) √ SNR 21 SNR 22 ], it follows that 1 -(ρ (1, 1)) (b) < 1, and thus the energy constraint limits the individual rates. That is, transmitter i's individual rate is bounded away from 1 2 log 2 (1 + SNR 1i ). Let B(b) ⊂ R 2 + be a box of the form

  . The IC signal is able to convey at most β 1 SNR 21 +β 2 SNR 22 +2ρ √ β 1 SNR 21 β 2 SNR 22 energy-units per channel use, while the NIC signal is able to convey at most (1 -β 1 )SNR 21 + (1 -β 2 )SNR 22 + 2 (1 -β 1 )SNR 21 (1 -β 2 )SNR 22 energy-units per channel use. The sum of these two contributions as well as the contribution of the noise at the EH justifies the upper-bound on the energy transmission rate in (10d). FB (SNR 11 , SNR 12 , SNR 21 , SNR 22 ) in the case in which channel inputs are chosen to be mutually independent, i.e., ρ = 0. Thus, for any non-zero SNR 11 , SNR 12 , SNR 21 , and SNR 22 , it holds that E(SNR 11 , SNR 12 , SNR 21 , SNR 22 ) ⊂ E FB (SNR 11 , SNR 12 , SNR 21 , SNR 22 ). (12) Note that the inclusion here is strict. For instance, any rate triplet (R 1 , R 2 , B) for which R 1 + R 2 equals the perfect feedback sum-capacity cannot be achieved without feedback. B. Information Transmission with Feedback Subject to Minimum Energy Rate Constraint b Let 0 b 1 + SNR 21 + SNR 22 + 2 √ SNR 21 SNR 22 denote the minimum energy rate that must be guaranteed at the input of the EH in the G-MAC-F with parameters SNR 11 , SNR 12 , SNR 21 , and SNR 22 . In the following, the maximum individual information rates as well as the information sum-capacity that are achievable given a minimum energy rate constraint of b energy-units per channel use at the input of the EH are identified. 1) Maximum Individual Information Rates with Feedback and with Minimum Energy Rate Constraint b: The maximum individual information rate R FB i (b), with i ∈ {1, 2}, is the solution to an optimization problem of the form

	Remark 1. The information-energy capacity region without feedback E (SNR 11 , SNR 12 , SNR 21 , SNR 22 ) derived in [9, Theorem 1] is identical to E R FB i (b) = max (ri,rj ,c)∈EFB(SNR11,SNR12,SNR21,SNR22):c b r i . (13) Proposition 1 (Maximum Individual Information Rates). For a given required minimum energy rate b, transmitter i's maximum individual information rate with feedback coincides with its maximum individual information rate without feedback and is given by
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  22) FB (SNR 11 , SNR 12 , SNR 21 , SNR 22 ) with a plane B = b is a set of triplets (R 1 , R 2 , b) for which the corresponding pairs(R 1 , R 2 ) satisfy (R 1 , R 2 ) ∈ B(b) ∩ C FB (SNR11 , SNR 12 ), which form a proper subset of C FB (SNR 11 , SNR 12 ). It is important to highlight that in this case, this intersection always includes the triplet (R 1 , R 2 , b), with R 1 + R 2 = 1 2 log 2 1 + SNR 11 + SNR 12 + 2ρ (1, 1) √ SNR 11 SNR 12 , i.e., the information sum-capacity. That is, the power-split β 1 = β 2 = 1 is always feasible. (See the corresponding intersections of the planes B = b 1 and B = b 2 with the volume E FB (SNR 11 , SNR 12 , SNR 21 , SNR 22 ), where b 1 ∈ (1 + SNR 21 + SNR 22 , 1 + SNR 21 + SNR 22 + 2ρ (1, 1) √ SNR 21 SNR 22 ] and b 2 = 1 + SNR 21 + SNR 22 + 2ρ (1, 1) √ SNR 21 SNR 22 , in Fig. 2). Case 3: In the case in which b ∈ (1 + SNR 21 + SNR 22 + 2ρ (1, 1) √ SNR 21 SNR 22 , 1 + SNR 21 + SNR 22 + 2 √ SNR 21 SNR 22 ], it follows that 0 FB (SNR 11 , SNR 12 , SNR 21 , SNR 22 ) with a planeB = b is a set of triplets (R 1 , R 2 , b) for which the corresponding pairs (R 1 , R 2 ) satisfy (R 1 , R 2 ) ∈ B(b).This is basically due to the fact that B(b) = B(b) ∩ C FB (SNR 11 , SNR 12 ), since B(b) ⊂ C FB (SNR 11 , SNR 12 ). In this case, there exists a loss of sum-rate induced by the fact that at least one of the fractions β 1 and β 2 is smaller than one. More specifically, for these values of b, R i 1 2 log 2 + (1 -(ρ(1, 1) )2 1i for at least one i ∈ {1, 2}, and thus this set does not contain the information sum-capacity rate pair. Indeed, for any b > 1 + SNR 21 + SNR 22 + 2ρ (1, 1) √ SNR 21 SNR 22 , the set B(b) monotonically shrinks with b. This is clearly shown by Fig. 2. Finally, note that when b = 1 + SNR 21 + SNR 22 + 2(ρ (1, 1) + ) √ SNR 21 SNR 22 , for some > 0, it holds that β

	Any E β (b) < 1 -2 , and thus the individual rates are limited (ρ (1, 1)) by R i < 1 2 log 2 1 + 1 -(ρ (1, 1)) 2 SNR i . This im-mediately implies that any intersection of the volume E	intersection	of	the	volume

  SNR 21 + SNR 22 + 2 (1 -γ)SNR 21 SNR 22 , (23)with γ ∈ (0, 1) defined as follows:

	γ=-	SNR 11 + SNR 12 2SNR 11 SNR 12				
	+	SNR 11 + SNR 12 2SNR 11 SNR 12	2	+ 2	SNR 11 + SNR 12 2SNR 11 SNR 12	. (24)