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Feedback Enhances Simultaneous Energy and
Information Transmission in Multiple Access

Channels
Selma Belhadj Amor, Samir M. Perlaza, Ioannis Krikidis, and H. Vincent Poor

Abstract—In this paper, the fundamental limits of simultaneous
information and energy transmission in the two-user Gaussian
multiple access channel with feedback are fully characterized. All
the achievable information and energy transmission rates (in bits
per channel use and energy-units per channel use, respectively)
are identified. More specifically, the information-energy capacity
region is fully characterized. A simple achievability scheme
based on power-splitting and Ozarow’s scheme is shown to
be optimal. Finally, the maximum individual information rates
and the information sum-capacity that are achievable given a
minimum energy rate constraint of b energy-units per channel use
at the input of the energy harvester are identified. An interesting
conclusion is that for a fixed information transmission rate,
feedback can at most double the energy transmission rate with
respect to the case without feedback.

I. INTRODUCTION

For decades, a common engineering practice has been to
exclusively use radio frequency (RF) signals for information
transmission. However, this practice has been shown to be
suboptimal [1]. Indeed, an RF signal carries both energy
and information. From this standpoint, a variety of modern
wireless systems suggest that RF signals can be simulta-
neously used for information and energy transmission [2].
Nevertheless, information and energy transmission are often
conflicting tasks and thus subject to a trade-off between
the information transmission rate (bits per channel use) and
the energy transmission rate (energy-units per channel use).
This trade-off is evidenced in finite constellation schemes, as
highlighted in Popovski et al.’s [3]. Consider the noiseless
transmission of a 4-PAM signal over a point-to-point channel
in the alphabet {�2,�1, 1, 2}. If there is no received energy
rate constraint, one can clearly convey 2 bits per channel
use by choosing all available symbols with equal probability.
However, if one requires the received energy rate to be for
instance the maximum possible, the maximum transferable
information rate is 1 bit per channel use. This is basically
because communication takes place using only the symbols
carrying the maximum energy. From this simple example, it is
easy to see how additional energy rate constraints may change
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the overall performance of the network. In the context of
multi-user channels, very little is known about the fundamental
limits of simultaneous energy and information transmission
(SEIT). Indeed, most of the existing results in this area
have approached SEIT from a signal-processing or networking
points of view and focused mainly on the feasibility aspects.

A. SEIT in Multiple Access Channels (MACs)
In the particular case of the discrete memoryless multiple

access channel (DM-MAC), the trade-off between information
rate and energy rate has been studied in [4]. Therein, Fouladgar
et al. characterized the information-energy capacity region of
the two-user discrete memoryless MAC, when a minimum
energy rate is required at the input of the receiver. Such a
constraint changes the dynamic of the communication system
in the sense that it requires additional transmitter coordination
to achieve the targeted energy rate. Recently, Belhadj Amor
et al. studied SEIT in the Gaussian MAC (G-MAC) without
feedback and derived the information-energy capacity region
and the maximum sum-rate that can be achieved subject to a
minimum energy rate b. Other types of energy rate constraints
for the G-MAC have been also investigated. For instance,
Gastpar [5] considered the G-MAC under a maximum received
energy rate constraint. Under this assumption, channel-output
feedback has been shown not to increase the capacity region.
However, in the G-MAC under a minimum energy rate con-
straint, the effect of feedback is not yet well understood from
an energy transmission perspective. More generally, the use
of feedback in the K-user G-MAC, even without energy rate
constraints, has been shown to be of limited impact in terms of
sum-rate improvement. This holds even in the case of perfect
feedback. More specifically, the use of feedback in the G-MAC
increases the sum-capacity by at most log2(K)

2

bits per channel
use [6]. Hence, the use of feedback is difficult to justify from
the point of view of information transmission.

B. Contributions
This paper studies the fundamental limits of SEIT in the

two-user G-MAC with feedback (G-MAC-F). It shows that
when the goal is to simultaneously transmit both information
and energy, feedback can significantly improve the global
performance of the system in terms of both information and
energy transmission rates. One of the main contributions is
the identification of all the achievable information and energy
transmission rates in bits per channel use and energy-units per
channel use, respectively. More specifically, the information-
energy capacity region with feedback is fully characterized
and it is shown to be achievable by a simple scheme based on
power-splitting and Ozarow’s capacity achieving scheme [7].
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Fig. 1. Two-user memoryless Gaussian MAC with feedback and energy
harvester.

When a minimum energy rate constraint of b energy-units per
channel use is required at the input of the energy harvester,
the fundamental limits of the information transmission are
identified. In particular, the maximum individual information
rates and the information sum-capacity that are achievable
given a minimum energy rate b are identified.

Two of the most important observations in this work are:
(a) The information-energy capacity region of the G-MAC
without feedback is a proper subset of the information-energy
capacity region of the G-MAC-F, that is, the former is strictly
contained in the latter; and (b) Feedback can at most double
the energy rate for a fixed information rate.

II. GAUSSIAN MULTIPLE ACCESS CHANNEL WITH
FEEDBACK

Consider the two-user memoryless Gaussian multiple access
channel with perfect channel-output-feedback (G-MAC-F) in
Fig. 1. At each channel use t 2 N, X

1,t and X
2,t denote the

real symbols sent by transmitters 1 and 2, respectively. Let
n 2 N denote the blocklength. The symbols Xi,1, . . . , Xi,n

satisfy an expected average input power constraint

1

n

n
X

t=1

E
⇥

X2

i,t

⇤

6 Pi, (1)

where Pi denotes the average transmit power of transmitter i
in energy-units per channel use for i 2 {1, 2}. The receiver
observes the real channel output

Y
1,t = h

11

X
1,t + h

12

X
2,t + Zt, (2)

and the energy harvester (EH) observes

Y
2,t = h

21

X
1,t + h

22

X
2,t + Qt, (3)

where h
1i and h

2i are the corresponding constant non-negative
channel coefficients from transmitter i to the receiver and
EH, respectively. The channel coefficients must satisfy the
following L

2

-norm condition: 8j 2 {1, 2}, khjk2 6 1, with
hj , (hj1, hj2)

T to ensure the principle of conservation of
energy. The noise terms Zt and Qt are realizations of two
identically distributed zero-mean unit-variance real Gaussian
random variables. In the following, there is no particular
assumption on the joint distribution of Qt and Zt.

A perfect feedback link from the receiver to transmitter i
allows at each channel use t, the observation of the channel
output Yt�1

at both transmitters.
The G-MAC-F above is fully described by the signal to

noise ratios (SNRs): SNRji, with 8(i, j) 2 {1, 2}2 are defined
as follows

SNRji , |hji|2Pi, (4)

given the normalization over the noise powers.
Within this context, two main tasks are to be simultaneously

accomplished: information transmission and energy transmis-
sion.

A. Information Transmission
The goal of the communication is to convey the inde-

pendent messages M
1

and M
2

from transmitters 1 and 2
to the common receiver. The messages M

1

and M
2

are
independent of the noise terms Z

1

, . . . , Zn, Q
1

, . . . , Qn and
uniformly distributed over the sets M

1

, {1, . . . , b2nR1c}
and M

2

, {1, . . . , b2nR2c}, where R
1

and R
2

denote the
information rates. The existence of feedback links allows the
t-th symbol of transmitter i to be dependent on all previous
channel outputs Y

1

, . . . , Yt�1

as well as its message index Mi.
More specifically,

Xi,1 = f (n)

i,1 (Mi) and (5)

Xi,t = f (n)

i,t (Mi, Y1

, . . . , Yt�1

), t 2 {2, . . . , n}, (6)

for some encoding functions f (n)

i,1 : Mi ! R and
f (n)

i,t : Mi ⇥ Rt�1 ! R. The receiver produces an estimate
(

ˆM (n)

1

, ˆM (n)

2

) = �

(n)

(Y n
) of the message-pair (M

1

, M
2

) via
a decoding function �

(n)

: Rn ! M
1

⇥M
2

, and the average
probability of error is

P (n)

error(R1

, R
2

) , Pr

�

(

ˆM (n)

1

, ˆM (n)

2

) 6= (M
1

, M
2

)

 

. (7)

B. Energy Transmission
The expected energy transmission rate (in energy-units per

channel use) at the EH is

B(n) , 1

n

n
X

t=1

E
⇥

Y 2

2,t

⇤

. (8)

The goal of the energy transmission is to guarantee that the
average energy rate B(n) is not less than a given (constant)
energy rate B that must satisfy 0 < B 6 1+SNR

21

+SNR
22

+

2

p
SNR

21

SNR
22

, for the problem to be feasible. Hence, the
probability of energy outage is defined as follows:

P (n)

outage(B) = Pr

�

B(n) < B � ✏
 

, (9)

for some ✏ > 0 arbitrarily small.

C. Simultaneous Energy and Information Transmission
The G-MAC-F in Fig. 1 is said to operate at the information-

energy rate triplet (R
1

, R
2

, B) 2 R3

+

considered if (a) reliable
communication at information rates R

1

and R
2

is ensured; and
(b) the average energy rate during the whole block-length is
not lower than B. Under these conditions, the information-
energy rate triplet (R

1

, R
2

, B) is said to be achievable.

Definition 1 (Achievable Rates). The triplet (R
1

, R
2

, B) 2
R3

+

is achievable if there exists a sequence of encoding and de-
coding functions

�

{f (n)

1,t }nt=1

, {f (n)

2,t }nt=1

, �(n)

 1
n=1

such that
lim sup

n!1
P (n)

error(R1

, R
2

) = 0 and lim sup

n!1
P (n)

outage(B) = 0 for

any ✏ > 0.

From Def. 1, it is clear that for any achievable triplet
(R

1

, R
2

, B), whenever the targeted energy rate B is smaller



than the minimum energy rate required to guarantee reliable
communications at the information rates R

1

and R
2

, the
energy rate constraint is vacuous. This is mainly because
the energy rate constraint is always satisfied and thus, the
transmitter can exclusively use the available power budget for
increasing the information rate. Alternatively, when the energy
rate B must be higher than what is strictly necessary to guar-
antee reliable communication, the transmitters face a trade-off
between information and energy rates. Often, increasing the
energy transmission rate implies decreasing the information
transmission rates and vice-versa. This trade-off is accurately
modeled by the notion of information-energy capacity region.

Definition 2 (Information-Energy Capacity Region). The
information-energy capacity region of the G-MAC-F
E
FB

(SNR
11

, SNR
12

, SNR
21

, SNR
22

) is the closure of all
achievable information-energy rate triplets (R

1

, R
2

, B).

III. MAIN RESULTS

A. Information-Energy Capacity Region with Feedback

The information-energy capacity region of the G-MAC-F is
fully characterized by the following theorem.

Theorem 1 (Information-Energy Capacity Region with Feed-
back). The perfect feedback information-energy capacity re-
gion E

FB

(SNR
11

, SNR
12

, SNR
21

, SNR
22

) of the G-MAC-F
is the set of non-negative information-energy rate triplets
(R

1

, R
2

, B) that satisfy

R
1

61

2

log

2

�

1 + �
1

SNR
11

�

1 � ⇢2

��

(10a)

R
2

61

2

log

2

�

1 + �
2

SNR
12

�

1 � ⇢2

��

(10b)

R
1

+ R
2

61

2

log

2

�

1 + �
1

SNR
11

+ �
2

SNR
12

+2⇢
p

�
1

SNR
11

�
2

SNR
12

�

(10c)

B 61 + SNR
21

+ SNR
22

+ 2⇢
p

�
1

SNR
21

�
2

SNR
22

+2

p

(1 � �
1

)SNR
21

(1 � �
2

)SNR
22

, (10d)

with (⇢, �
1

, �
2

) 2 [0, 1]

3.

Proof: The proof of Theorem 1 is presented in [8].
From an achievability standpoint, the parameters �

1

and �
2

in Theorem 1 might be interpreted as the fractions of power
that transmitter 1 and transmitter 2 allocate for information
transmission, respectively. The remaining fraction of power
(1 � �i) is allocated by transmitter i for exclusively trans-
mitting energy to the EH. The information transmission is
made following Ozarow’s perfect feedback capacity-achieving
scheme in [7]. The energy transmission is accomplished by
random symbols that are known at both transmitters and the
receiver. More specifically, transmitter i generates two signals:
an information-carrying (IC) signal with average power �iPi

energy-units per channel use; and a no-information-carrying
(NIC) signal with power (1 � �i)Pi energy-units per channel
use. The role of the NIC signal is exclusively energy trans-
mission from the transmitter to the EH. Conversely, the role
of the IC signal is twofold: information transmission from the
transmitter to the receiver and energy transmission from the
transmitter to the EH.

The parameter ⇢ is the average Pearson correlation co-
efficient between the IC signals sent by both transmitters.
This parameter plays a fundamental role in both information
transmission and energy transmission. If �

1

6= 0 and �
2

6= 0,
let ⇢?(�

1

, �
2

) be the unique solution in (0, 1) to the following
equality:

1 + �
1

SNR
11

+ �
2

SNR
12

+ 2⇢
p

�
1

SNR
11

�
2

SNR
12

=

�

1 + �
1

SNR
11

(1 � ⇢2

)

� �

1 + �
2

SNR
12

(1 � ⇢2

)

�

, (11)

otherwise, let ⇢?(�
1

, �
2

) = 0.
Note that for any power-splitting (�

1

, �
2

) 2 (0, 1]

2, the left
hand side of (11) is monotonically increasing with ⇢ whereas
the right hand side is monotonically decreasing with ⇢. This
implies that ⇢?(�

1

, �
2

) is a maximizer of the sum-rate. More
specifically, at ⇢ = ⇢?(�

1

, �
2

), the sum of (10a) and (10b) is
equal to (10c) and it corresponds to the sum-capacity of the
G-MAC-F.

The Pearson correlation factor between the NIC signals
of both transmitters does not appear in Theorem 1 because
maximum energy transmission occurs using NIC signals that
are fully correlated and thus, the corresponding Pearson cor-
relation coefficient is one. Without loss of optimality, NIC
signals can be chosen to be independent of the messages
M

1

and M
2

as well as the noise sequences, and known by
both the receiver and the transmitters. Hence, NIC signals can
be independent of the IC signals and more importantly, the
interference they create at the receiver can be easily eliminated
via successive interference cancellation.

Under these assumptions, this coding scheme guarantees
the achievability of non-negative rate pairs (R

1

, R
2

) satisfying
(10a)-(10c).

At the EH, both the IC and NIC signals contribute to
the total energy harvested (8). The IC signal is able to
convey at most �

1

SNR
21

+�
2

SNR
22

+2⇢
p

�
1

SNR
21

�
2

SNR
22

energy-units per channel use, while the NIC signal is able
to convey at most (1 � �

1

)SNR
21

+ (1 � �
2

)SNR
22

+

2

p

(1 � �
1

)SNR
21

(1 � �
2

)SNR
22

energy-units per channel
use. The sum of these two contributions as well as the
contribution of the noise at the EH justifies the upper-bound
on the energy transmission rate in (10d).

Remark 1. The information-energy capacity region
without feedback E (SNR

11

, SNR
12

, SNR
21

, SNR
22

)

derived in [9, Theorem 1] is identical to
E
FB

(SNR
11

, SNR
12

, SNR
21

, SNR
22

) in the case in which
channel inputs are chosen to be mutually independent, i.e.,
⇢ = 0. Thus, for any non-zero SNR

11

, SNR
12

, SNR
21

, and
SNR

22

, it holds that

E(SNR
11

, SNR
12

, SNR
21

, SNR
22

)

⇢ E
FB

(SNR
11

, SNR
12

, SNR
21

, SNR
22

). (12)

B. Information Transmission with Feedback Subject to Mini-
mum Energy Rate Constraint b

Let 0 6 b 6 1+SNR
21

+SNR
22

+2

p
SNR

21

SNR
22

denote
the minimum energy rate that must be guaranteed at the input
of the EH in the G-MAC-F with parameters SNR

11

, SNR
12

,
SNR

21

, and SNR
22

. In the following, the maximum individual
information rates as well as the information sum-capacity that
are achievable given a minimum energy rate constraint of



b energy-units per channel use at the input of the EH are
identified.

1) Maximum Individual Information Rates with Feedback
and with Minimum Energy Rate Constraint b: The maximum
individual information rate RFB

i (b), with i 2 {1, 2}, is the
solution to an optimization problem of the form

RFB

i (b) = max

(ri,rj ,c)2EFB(SNR11,SNR12,SNR21,SNR22):c>b
ri. (13)

and is given by the following proposition.

Proposition 1 (Maximum Individual Information Rates). For
a given required minimum energy rate b, transmitter i’s
maximum individual information rate with feedback coincides
with its maximum individual information rate without feedback
and is given by

RFB

i (b)=
1

2

log

2

(1 + �?
(b)SNR

1i) , i 2 {1, 2}, (14)

with �?
(b) 2 [0, 1] defined as follows:

�?
(b) = 1 �

 

(b � (1 + SNR
21

+ SNR
22

))

+

2

p
SNR

21

SNR
22

!

2

. (15)

Proof: The proof of Proposition 1 is provided in [8].
The rate RFB

i (b) is achieved by transmitter i, for instance,
when transmitter j uses all its available power for exclusively
transmitting energy to the EH (�j = 0) by using common
randomness; and transmitter i uses a power split in which the
part of power dedicated for exclusively transmitting energy to
the EH, 1 � �i, is the fraction needed to satisfy

1+SNR
21

+SNR
22

+2

p

(1 � �
1

)SNR
21

(1 � �
2

)SNR
22

> b,
(16)

with equality, that is, �i = �?
(b) (when �j = 0).

2) Information Sum-Capacity with Feedback and with Min-
imum Energy Constraint b: The perfect feedback information
sum-capacity RFB

sum

(b) is the solution an optimization problem
of the form

RFB

sum

(b) = max

(r1,r2,c)2EFB(SNR11,SNR12,SNR21,SNR22):c>b
r
1

+ r
2

, (17)

and is given by the following proposition.

Proposition 2 (Information Sum-Capacity). The perfect feed-
back information sum-capacity of the G-MAC subject to a
minimum energy rate constraint b that must be guaranteed
at the input of the EH is

1) 8b 2
⇥

0,1+SNR
21

+SNR
22

+2⇢?(1,1)

p
SNR

21

SNR
22

⇤

,

RFB

sum

(b) =

1

2

log

2

(1+SNR
11

+SNR
12

+2⇢?(1, 1)

p

SNR
11

SNR
12

); (18)

2) 8b 2
�

1 + SNR
21

+ SNR
22

+ 2⇢?(1, 1)

p
SNR

21

SNR
22

,
1 + SNR

21

+ SNR
22

+ 2

p
SNR

21

SNR
22

�

,

RFB

sum

(b) =

1

2

log

2

(1 + �?
(b)SNR

11

) (19)

+

1

2

log

2

(1 + �?
(b)SNR

12

); (20)

3) 8b 2
⇥

1 + SNR
21

+ SNR
22

+ 2

p
SNR

21

SNR
22

,1],

RFB

sum

(b) = 0, (21)
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Fig. 2. Intersection of the planes B = b0 and B = b1 with the
information-energy capacity region EFB (SNR11, SNR12, SNR21, SNR22),
with SNR11 = SNR12 = SNR21 = SNR22, b0 2

⇥
0, 1+ SNR21 + SNR22

⇤

and b1 = 1 + SNR21 + SNR22 + 2⇢?(1, 1)
p

SNR21SNR22.

with �?
(b) defined in (15) and ⇢?(1, 1) is the unique solution

in (0, 1) to (11) when �
1

= �
2

= 1.

Proof: The proof of Proposition 2 is presented in [8].
Note that even if feedback does not increase the maximal

individual rates that can be achieved for a given received
energy rate b, it increases the sum-rate that can be achieved
(See Proposition 2 in comparison to [9, Theorem 2]).

Fig. 2 shows a general example of the intersection of the
volume E

FB

(SNR
11

, SNR
12

, SNR
21

, SNR
22

), in the Cartesian
coordinates (R

1

, R
2

, B), with a plane B = b when SNR
11

=

SNR
12

= SNR
21

= SNR
22

.
Case 1: In the case where b 2 [0, 1 + SNR

21

+ SNR
22

],
then �?

(b) = 1 and thus, the energy constraint does not add
any additional bound on the individual rates and the sum-rate
other than (10a), (10b), and (10c). In fact, in this case, any in-
tersection of the volume E

FB

(SNR
11

, SNR
12

, SNR
21

, SNR
22

),
in the Cartesian coordinates (R

1

, R
2

, B), with a plane B = b
corresponds to the set of triplets (R

1

, R
2

, b), in which the
corresponding pairs (R

1

, R
2

) form a set that is identical to
the information capacity region of the G-MAC-F, denoted by
C
FB

(SNR
11

, SNR
12

), which is achievable by using Ozarow’s
scheme without any power-splitting, i.e., �

1

= �
2

= 1.
In this case, transmitting information using all the available
power budget is always enough to satisfy the energy con-
straint (see the intersection of the plane B = b

0

and the
volume E

FB

(SNR
11

, SNR
12

, SNR
21

, SNR
22

) in Fig. 2, with
b
0

2
⇥

0, 1 + SNR
21

+ SNR
22

⇤

).
Case 2: In the case where b 2 (1 + SNR

21

+ SNR
22

, 1 +

SNR
21

+ SNR
22

+ 2⇢?(1, 1)

p
SNR

21

SNR
22

], it follows that
1 � (⇢?(1, 1))

2 6 �?
(b) < 1 and thus, the energy constraint

limits the individual rates. That is, transmitter i’s individual
rate is bounded away from 1

2

log

2

(1 + SNR
1i). Let B(b) ⇢

R2

+

be a box of the form

B(b)=
n

(R
1

, R
2

) 2 R2

+

:

Ri 6
1

2

log

2

(1 + �?
(b)SNR

1i) , i 2 {1, 2}
o

.(22)

Any intersection of the volume
E
FB

(SNR
11

, SNR
12

, SNR
21

, SNR
22

) with a plane B = b is a
set of triplets (R

1

, R
2

, b) for which the corresponding pairs
(R

1

, R
2

) satisfy (R
1

, R
2

) 2 B(b) \ C
FB

(SNR
11

, SNR
12

),
which form a proper subset of C

FB

(SNR
11

, SNR
12

). It is
important to highlight that in this case, this intersection
always includes the triplet (R

1

, R
2

, b), with R
1

+ R
2

=

1

2

log

2

�

1 + SNR
11

+ SNR
12

+ 2⇢?(1, 1)

p
SNR

11

SNR
12

�

,



i.e., the information sum-capacity. That is, the power-
split �

1

= �
2

= 1 is always feasible. (see the
intersection of the plane B = b

1

and the volume
E
FB

(SNR
11

, SNR
12

, SNR
21

, SNR
22

) in Fig. 2, with
b
1

= 1 + SNR
11

+ SNR
12

+ 2⇢?(1, 1)

p
SNR

11

SNR
12

).
Case 3: In the case where b 2 (1 + SNR

21

+

SNR
22

+ 2⇢?(1, 1)

p
SNR

21

SNR
22

, 1 + SNR
21

+ SNR
22

+

2

p
SNR

21

SNR
22

], it follows that 0 6 �?
(b) < 1 �

(⇢?(1, 1))

2, and thus, the individual rates are limited
by Ri < 1

2

log

2

⇣

1 +

⇣

1 � (⇢?(1, 1))

2

⌘

SNRi

⌘

. This im-
mediately implies that any intersection of the volume
E
FB

(SNR
11

, SNR
12

, SNR
21

, SNR
22

) with a plane B = b
is a set of triplets (R

1

, R
2

, b) for which the correspond-
ing pairs (R

1

, R
2

) satisfy (R
1

, R
2

) 2 B(b) = B(b) \
C
FB

(SNR
11

, SNR
12

), since B(b) ⇢ C
FB

(SNR
11

, SNR
12

). In
this case, there exists a loss of sum-rate induced by the
fact that at least one of the fractions �

1

and �
2

is smaller
than one. More specifically, for these values of b , Ri <
1

2

log

2

�

1 + (1 � (⇢(1, 1)

?
)

2

)SNR
1i

�

for at least one i 2
{1, 2} and thus, this set does not contain the information
sum-capacity rate pair. Indeed, for any b > 1 + SNR

21

+

SNR
22

+2⇢?(1, 1)

p
SNR

21

SNR
22

, the set B(b) monotonically
shrinks with b. This is clearly shown by Fig. 2. Note that when
b = 1+SNR

21

+SNR
22

+2(⇢?(1, 1) + ✏)
p

SNR
21

SNR
22

, for
some ✏ > 0, it holds that �?

(b) = 1�(⇢?(1, 1) + ✏)2. Plugging
this into (19) and taking the limit when ✏ tends to 0, by
the definition of ⇢?(1, 1), the resulting value is given by (18)
and thus RFB

sum

(b) is a continuous function in b. Clearly, the
maximum energy rate is achieved when �

1

= �
2

= 0, which
implies that no information is conveyed from the transmitters
to the receiver.

C. Energy Transmission Enhancement with Feedback
In this subsection, the enhancement on the energy trans-

mission rate due to the use of feedback is quantized when the
information sum-rate is the information sum-capacity without
feedback. Denote by B

NF

= 1+SNR
21

+SNR
22

the maximum
energy rate that can be guaranteed at the EH in the G-MAC
(without feedback) when the information sum-rate corresponds
to the information sum-capacity without feedback. Denote also
by B

F

the maximum energy rate that can be guaranteed at the
EH in the G-MAC-F when the information sum-rate is the
information sum-capacity without feedback. The exact value
of B

F

is given by the following lemma.

Lemma 1. The maximum energy rate B
F

that can be guaran-
teed at the EH in the G-MAC-F when the information sum-rate
is the information sum-capacity without feedback is

B
F

= 1 + SNR
21

+ SNR
22

+ 2

p

(1 � �)SNR
21

SNR
22

, (23)

with � 2 (0, 1) defined as follows:

�=�SNR
11

+ SNR
12

2SNR
11

SNR
12

+

s

✓

SNR
11

+ SNR
12

2SNR
11

SNR
12

◆

2

+ 2

✓

SNR
11

+ SNR
12

2SNR
11

SNR
12

◆

. (24)

Proof: The proof of Lemma 1 is presented in [8].
The following theorem provides an upper bound on BF

BNF
.

Theorem 2 (Maximum Energy Rate Improvement with Feed-
back). Feedback can at most double the energy rate. That is,

1 6 B
F

B
NF

< 2. (25)

Proof: The proof of Theorem 2 follows immediately from
Lemma 1.

IV. CONCLUSION AND EXTENSIONS

This paper characterizes the information-energy capacity
region of the two-user G-MAC-F and measures the energy
transmission enhancement induced by the use of feedback.
What is important to mention here is that SEIT requires ad-
ditional transmitter cooperation/coordination. From this view-
point, any technique that allows transmitter cooperation (i.e.,
feedback, conferencing, etc.) is likely to provide performance
gains in SEIT in general multi-user networks. For instance,
the results on the energy transmission enhancement induced
by feedback in the two-user G-MAC-F can be extended to
arbitrary K-user G-MAC-F with K > 3. However, such a
cooperation is usually not natural, especially if the transmitters
do not share common information or are not co-located. Not
surprisingly, this requires the transmitters to be “altruistic”
and be always willing to cooperate to improve the overall
system throughput. Consequently, the fundamental limits on
SEIT take different facets depending on whether or not the
network is centralized. In a decentralized network [10], each
decision maker aims to maximize its own individual reward
and its individual choice does not necessarily achieve the
capacity of the network. In other words, the individual choice
is not necessarily optimal from a global viewpoint. Hence,
the information-energy capacity results are not sufficient to
describe the fundamental limits on SEIT in decentralized
networks.
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