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Odyssée Merveille, Hugues Talbot, Member, IEEE, Laurent Najman, Nicolas Passat
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Abstract—The analysis of thin tubular objects in 3D images is a com-
plex and challenging task. In this article, we introduce a new, nonlinear
operator, called RORPO (Ranking Orientation Responses of Path Oper-
ators). Inspired by the multidirectional paradigm currently used in linear
filtering for thin structure analysis, RORPO is built upon the notion of
path operator from mathematical morphology. This operator, unlike the
gold-standard Hessian-based operators commonly used for 3D tubular
structure analysis, is discrete, non linear and non-local. From this new
operator, two main tubular structure characteristics can be estimated:
an intensity feature, that can be assimilated to a quantitative measure of
tubularity; and a directional feature, providing a quantitative measure
of the tubular structure orientation. We provide a full description of
the structural and algorithmic details for computing these two features
from RORPO, and we discuss computational issues. We experimentally
assess RORPO by comparing with gold standard Vesselness and we
show that our method performs better on both features in realistic
conditions.

Index Terms—Thin structures, nonlinear filtering, direction estimation,
mathematical morphology, path opening, 3D grey-level imaging. blood
vessel enhancement, vesselness.

1 INTRODUCTION

THIN structures in nD images are characterized by a
significantly smaller size in at least one of their n

dimensions. In most image-related applications, n is 2
or 3. We can then define two kinds of thin structures:
1D thin structures, typically line-like or tube-like objects
respectively in 2D or 3D images; and 2D thin structures
which are plane-like objects in 3D images. In this article,
we mainly focus on 1D thin structures in 3D images,
which we term tubular structures.

Images of 1D thin structures are among the hardest
to handle in image processing. The difficulty lies both
in the sparsity of the images and their complex geom-
etry. In addition, such structures are naturally fragile,
in that even a small amount of noise may be enough
to disrupt their contours, leading to disconnections or
misconnections. 1D thin structures can also be very
tortuous, possess different orientations and scales and
form a network, making geometric prior difficult to use.
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Many applications involve 1D thin structures e.g., road
extraction in remote sensing images, vessels segmenta-
tion in medical images, or fibre detection in material
science. In order to segment these 1D thin structures,
it is frequent to use a general segmentation framework
(e.g., active contours, region-growing, machine learning)
enriched with some specific prior knowledge associated
with the thin structures.

Various methods have been developed to extract spe-
cific thin structure features. These methods aim at en-
hancing the thin structure signal and decreasing the
response of non-thin structures, which results in the
extraction of features based on their intensity. Higher-
level features can also be estimated, such as orientation,
diameter or curvature of thin structures (see Sec. 2).

The current gold-standard for feature extraction of thin
structures relies on linear, local, continuous, operators,
based on a multidirectional and multiscale paradigm.
More precisely, Hessian-based filters have contributed to
the development of vesselness functions [1]. We recently
introduced a new operator called RORPO (Ranking Ori-
entation Responses of Path Operators) [2]. This operator
still relies on a multidirectional and multiscale paradigm
but it is a non-linear, global, discrete operator. In [3],
it was experimentally observed that RORPO is robust,
competitive and complementary to Hessian-based oper-
ators for the low-level processing of thin structures.

In this article, we present RORPO in more details,
and we propose two fundamental thin structure features,
namely (1) a low-level intensity feature that preserves
the thin structures while removing the signal of other
objects; and (2) a directional feature providing an esti-
mation of the orientation of a putative thin structure.

In Sec. 3, we develop the general strategy behind
RORPO and its underlying concepts. In Sec. 4 we present
the computation of RORPO and of its associated features.
Sec. 5 discusses algorithmic considerations including
RORPO parameters, computational cost, and robustness
to noise. An experimental validation of RORPO is carried
out in Sec. 6. A discussion on extensions and future work
concludes this article (Sec. 7).
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2 RELATED WORKS: TUBULAR STRUCTURE
FILTERING

Tubular structure filtering in 3D grey-level images is an
active research area, that led to the proposal of many
methods over the last two decades. A complete survey
is beyond the scope of this article. The reader may refer
to [4, Chs. 1, 2] for a general overview, and to [5], for
a medical-oriented survey. We propose here a global,
but non-exhaustive vision of the principal families of
approaches, illustrated by representative methods.

Methods devoted to filtering tubular structures can be
divided into two categories, namely those relying on dif-
ferential (mostly linear scale-space) operators, and those
relying on nonlinear (often mathematical morphology)
operators.

2.1 Linear approaches
The majority of linear approaches are based on lo-
cal, scale-space, differential analysis of images, viewed
as continuous functions. In particular, the analysis of
second-order derivative properties of the image were
first proposed in [6], [7]. In these methods, the eigenvec-
tors of multi-scale Hessian matrices and their associated
eigenvalues are analyzed to characterize blobs, planar
and tubular structures as well as their scale and orien-
tation.

This strategy has led to the proposal of several “ves-
selness” measures, combining differential information
into heuristic formulations. The vesselness proposed by
Frangi et al. [1] is often considered as the current gold-
standard. Many methods/variants have been proposed
since then. Some of them also used the eigenvectors
obtained from the Hessian matrix [8], [9], for instance
for guidance of a diffusion framework [10]. In [11] the
second derivatives were associated to first derivatives
and a Canny filter, while in [12], a strain energy function
used a stress tensor computed from the Hessian tensor.

To achieve multi-scale detection, derivative operators
are combined with a convolution kernel. In order to
avoid the induced blurring effects, these may be replaced
by a gradient vector flow [13]. The use of a bi-Gaussian
kernel was proposed to better take into account the
anisotropy of tubular structures [14]. Optimally oriented
flux have also been considered [15].

Alternatively to Hessian-based approaches, steerable
filters are anisotropic filters that can be expressed in
terms of a linear combination of basis filters [16]. In [17],
the convolution between a bar profile and the second
derivative is used to introduce a multi-scale approach.
3D steerable filters were first proposed in [18], using a
nth Gaussian derivative basis. In [19] 3D steerable filters
based on the second and fourth Gaussian derivatives
were used to detect dendritic profiles.

Discrete gradients have also been used. In [20], tube-
like orientation is first estimated using a set of discrete
orientations. Then instead of a classical low pass filter,
an anisotropic filter is used to enhance tube-like features.

The maximum curvature of tube-like structure is also
computed by the second derivative operator along the
13 discrete lines of a 3 × 3 × 3 kernel [21], [22].

2.2 Nonlinear approaches
2.2.1 SE-based approaches
Nonlinear approaches include those based on mathemat-
ical morphology [23]. In this framework, a common no-
tion is the structuring element (SE), a geometric pattern
from which basic operators (erosions, dilations, open-
ings, closings, etc.) can be defined. Considering local
straightness and extremal intensity of tubular structures,
a basic idea is to propose filters using small structuring
elements fitting these properties.

Two dual approaches have been considered. The first
models a tube by a small straight line SE [24], [25], to
carry out opening or closing operations by line segments
of arbitrary orientation [26], [27], [28]. The second mod-
els the background in the orthogonal hyperplane of the
segment, to carry out grey-level hit-or-miss transform
[29], [30], [31].

Even if the shapes of the SEs are hard parame-
ters, the orientation parameters need to be specified,
to form filter banks. Several strategies were experi-
mented: rotating structuring elements [32], knowledge-
based parametrization [30], or spatially-variant mathe-
matical morphology [33]. Blurred operators [31] were
also designed to increase the robustness of the filtering.

Nevertheless, the hard, straight geometry of such SEs
remains a limitation to the accuracy of these approaches,
progressively leading to using more flexible SEs [34].

2.2.2 Connectivity-based approaches
A second notion is that of connectivity, generally han-
dled on graphs. The key notion of connectivity is no
longer the local notion of SE, but a more global notion
of connected component. In this context, the concept of
component-tree [35] and attribute-based methods was
specifically investigated and developed for extensive,
anti-extensive and self-dual filtering.

The attributes were mostly scalar [36], [37], allow-
ing for threshold-based interaction. Recent effort were
specifically conducted towards the development of
geodesic attributes [38], designed for thin structures.
Vectorial attributes have been less frequently used [39],
due to more complex handling.

By construction, connected filters cannot split con-
nected component, which may result in erroneous con-
nections between tubes and artefacts, or between several
branching tubular segments. Some attempts to mini-
mize these drawbacks were proposed, either via till-
ing approaches [39], or with non-directed variants of
component-trees [40].

It is worth mentioning that hybrid SE/connected
strategies were proposed, e.g., in [41] for reconnection
purposes. The links between connectivity-based and
path-based approaches (described below) were also in-
vestigated in [42].
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2.2.3 Path-based approaches
The SE- and connectivity-based approaches present dual
intrinsic strengths and weaknesses. SE-based approaches
can naturally handle anisotropy, which is highly desir-
able for linear structure filtering, but require explicitly
defined families of SEs for orientation sampling. In
comparison, connectivity-based approaches lead to more
global descriptors; unfortunately the isotropic notion
of adjacency cannot efficiently model the anisotropy of
linear structures.

To address this problem, geodesic paths [43] were
introduced to consider long-range, non local interactions
while still coping with the constraints of thin objects,
in particular noise. A thin object detector was proposed
in [44] using geodesic voting, similar to path density.
Polygonal path images [45] extended this idea allowing
for better regularization and fewer artefacts. A recent
formal discussion on optimal global paths was also
proposed in [46]. All these solutions remained costly in
3D.

In [47], a notion of local optimal path was pioneered.
The purpose was to restrict the research to a given dis-
tance, and in a given cone of orientations, in order to find
the best paths starting from a given point. This paradigm
led to the development of a notion of path operator
[48]. These use a family of paths – i.e., connected sets
– instead of a fixed shape as SE, thus enabling a higher
flexibility in geometry and size, while preserving a 1D
semantics. Algorithmic efforts were conducted to make
such approach computationally efficient [49] and robust
to noise [50], [51], leading to a notion of robust path
opening. Sparse paradigms [52] were also proposed to
avoid redundant computation.

3 PROPOSED FRAMEWORK

In this article, we aim to provide two new features char-
acterizing tubular structures: an intensity feature which
can be seen as a measure of presence of such a structure,
and a directional feature providing at each point the
orientation of these tubular structures. Here, we explain
the distinguishing features of tubular structure, then we
motivate the choice of the operator used in our method:
the path opening, and we recall some basic notions.

3.1 General Strategy

Our strategy for distinguishing tubular structures from
planar and blob structures is based on a simple geomet-
ric observation, illustrated in Fig. 1.

Let F be any sort of oriented filter and O be a set of
chosen orientations such as Fo(I), o ∈ O is the response
of this filter using orientation o on image I . Without
loss of generality, we assume a bright structure on a
dark background and a scale compatible with the size
of the considered structure. As the name suggests, 1D
thin (tubular) structures lie in fewer dimensions than
2D (planar) or 3D (blob) structures. Consequently, the

(a) (b) (c)

Fig. 1. In 3D, (a) a blob structure, (b) a planar structure,
and (c) a tubular structure, in blue. Arrows show sampling
along some orientation; a green (resp. red) arrow repre-
sents a high (resp. low) response of an oriented filter. The
blob presents a high response in every orientations; the
planar structure presents a high response in 4 out of the
8 orientations; the tubular structure only presents a high
response in 1 orientation.

number of high responses among {Fo(I), ∀o ∈ O} for
an nD structure (n > 1) is higher than the number of high
responses for a tubular structure. Therefore, counting the
number of high responses of an oriented filter should
allow us to distinguish each kind of nD structures.

Among the large choice of oriented filters in the litera-
ture, we chose the path operators. The main criterion we
considered was their non-locality. Indeed, the majority of
oriented filters compute the response of a structure in an
isotropic neighborhood whose size depends on the scale,
which itself depends on the size of the sought structure.
This approach is not optimal for tubular structures which
are highly anisotropic. In particular, it may lead to false
detection and wrong orientation estimation, especially
near structures borders. Path operators, by computing
the response along an anisotropic neighborhood fitting
in the tubular structure, avoid this pitfall.

Moreover, unlike classical openings, path openings
can efficiently deal with local tortuosity. If a structure
locally diverts from a chosen orientation, path openings
can still detect this structure (see Fig. 2).

As the purpose of our operator is to provide features
suitable for segmentation, an edge preserving filter is
preferable. This excludes all the filters based on the
Gaussian scale-space paradigm.

Finally, the path operators are nearly parameter-free.
The only real parameter is the path length which is
semantically meaningful as related to the length of the
structure of interest.

3.2 Path operators
Path operators include the dual path openings and path
closings. Without loss of generality, we will focus our
explanations on path openings.

Intuitively, a path opening uses a set of oriented
connected pixels of fixed length as a family of structuring
elements. If no such SE fits entirely inside a structure
at some local threshold level, the threshold value is
decreased until at least one does. In this section we
explain more formally this operator.
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(a) (b) (c)

Fig. 2. Comparison on image (a) of a classical path
opening (b) and a path opening (c) with the same SE
length of 10 pixels. The bottom right line is globally vertical
but presents local tortuosity. Only the path opening is able
to detect such structure.

(a) (b)

(c) (d)

Fig. 3. (a) An example of adjacency relation→. (b–d) The
connexity Γ which is a periodic repetition of (a) overX. (b)
A path of length 3 (resp. 4) is depicted in red (resp. blue).
(c) A binary image defined on X. (d) The result of a path
opening of length 4 on the image of (c).

3.2.1 Paths
Let X be the support of an image and → be an irreflex-
ive, non-symmetric binary adjacency relation. For two
points x and y of X , the relation x→ y means that y is
connected to x. We define a path π of length L as a set
σ(π) of L successively connected pixels (see Eq. (1)).

σ(π) = {{x1, x2, ..., xL}, xi → xi+1} ∀i ∈ J1, L− 1K (1)

Practically, a path of length L is defined on a graph
(X,Γ), such that the connexity Γ is the elementary
adjacency relation → periodically reproduced over X
(see Fig. 3.(a,b)). We note ΠΓ

L(X) the set of all paths of
length L on X with connexity Γ.

3.2.2 Binary and grey-level path opening
The binary path opening of length L with connexity Γ
is defined as the union of all paths of length L in X

(see Eq. (2)). This operator preserves each point of X
belonging to at least one path of ΠΓ

L(X) and removes
the others; an example is shown in Fig. 3.(c,d).

αΓ
L(X) =

⋃
{σ(π) | π ∈ ΠΓ

L(X)} (2)

Let I be a grey-level image with intensity I(x) ∈ R
at each point x ∈ X . We note G the set of grey-
levels of I . The extension of the path opening to grey-
level is obtained by stacking the path openings on the
thresholdings of I at every grey-level of G [48]. More
formally, the thresholding of I at grey-level λ is noted
Iλ = {x ∈ X | I(x) > λ}, and Eq. (3) defines the
grey-level path opening. As openings, path openings are
increasing, anti-extensive and idempotent.

AΓ
L(I(x)) = max{λ | x ∈ αΓ

L(Iλ)} (3)

3.2.3 Orientation-space sampling

A path opening is defined over an adjacency relation,
which provides a general orientation. A path opening
preserves the structures compatible with this orientation.
In order to preserve structures in all orientations, several
path openings with n different orientations must be
combined. Consequently, a space sampling is required.

In this article, we chose to consider a set of n = 7
orientations: the 3 main orientations corresponding to
the vectors of the orthogonal basis {0, 0, 1}, {0, 1, 0} and
{0, 1, 0} denoted {e1, e2, e3}, and the 4 diagonals cor-
responding to {1, 1, 1}, {1, 1,−1}, {1,−1, 1}, {−1, 1,−1}
denoted {d1, d2, d3, d4}.

There is a degree of arbitrariness to this choice. Indeed
it depends on some of the underlying properties of the
path operator, like the angular aperture of the cones we
use, themselves dependent on the adjacency relation we
choose. However, this choice is motivated in Sec. 5. In
the remainder we will focus our description using only
these 7 orientations, for simplicity.

In order to cover the whole space using only these 7
vectors, our adjacency relation consists of a 3D discrete
cone centered on them. We associate to e? (resp. d? ) the
cone Ce (resp. Cd ) bounded by the vectors {d1, d2, d3, d4}
(resp. {e1, e2, e3}). We note C the set of the 7 cones
corresponding to the 7 orientations (see Fig. 4). In the
remainder of this article, AcL(I), c ∈ C denotes the path
opening of length L with the orientation c.

4 RORPO: RANKING ORIENTATION
RESPONSES OF PATH OPERATORS

So far we have presented the purpose of our work:
characterizing tubular structures; and the strategy we
have developed: detecting these structures by counting
the number of high responses of an oriented filter, the
path operators. In this section, we first present our
methodology (Sec. 4.1) and how we derive our intensity
(Sec. 4.2) and directional (Sec. 4.3) features from it.
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(a) Ce1 (b) Ce2 (c) Ce3

(d) Cd1 (e) Cd2 (f) Cd3 (g) Cd4

Fig. 4. The 7 orientations of C. The center of the cube,
the centers of faces, and corners represent points of the
image. The blue arrows represent the adjacency relation.

4.1 Methodology
Path operators, as an oriented filter, preserve structures
compatible with specific orientations. However, this is
not sufficient to distinguish tubular from planar and blob
structures. For instance, a path opening on a 2D image
containing an isotropic object (a blob) and a line-like
object with similar diameter/length will preserve both.
The 3D case is even harder since we have to take into
account planar structures, which are also detected by a
path opening.

To tackle this problem, we propose to count the num-
ber of high responses of path openings. This is done by
pointwise ranking the 7 path openings responses. Let
γiL(I) be the image obtained by applying a pointwise
rank filter, RFi, of order i (see Eq. (4)). In particular, RF1,
RF4 and RF7 are respectively the pointwise maximum,
median and minimum operators.

γiL(I(x)) = RFi{AcL(I(x)), c ∈ C} (4)

From the 7 responses of the path opening, {AcL(I)}c∈C ,
we have built the 7 ranked filtered images {γiL(I)}i∈J1,7K.
Let us consider a structure appearing in n (n ≤ 7) of the
7 AcL(I); then this structure now appears in γiL(I)}i∈J1,nK.
In particular, the image γ3

L(I) contains all the structures
detected in at least 3 orientations. An illustration in the
2D case is shown on Fig. 5.

4.2 Filtering tubular structures
We have seen that tubular structures are detected in
fewer path opening orientations than other structures. In
the previous section, we have also proposed a method to
count the number of orientations preserving a structure.

Let it be the maximal number of path opening orien-
tations preserving a tubular structure. Then, we define
the RORPO filter, ΦL as follows:

ΦL(I) = γ1
L(I)− γit+1

L (I) (5)

γ1
L contains structures preserved in all orientations and
γit+1
L contains no tubular structure by definition of it.

RF1

path openings

RF2 RF3 RF4

vertical horizontal diagonal 1 diagonal 2

Fig. 5. 2D illustration of filter response ranking. A struc-
ture present in one orientation (the vertical line) remains
in RF1; structures present in two orientations (the oblique
lines) remain in RF1 and RF2; the disc is present in all the
orientations and thus remains in all the RFs.

All other structures with a diameter/thickness greater
than L are preserved in more orientations than tubular
structures. Consequently, the residual operator ΦL(I)
reduces the signal of all structures except for those
detected in it orientations, and these are the tubular
structures.

The orientation threshold value it depends on the cho-
sen orientation space sampling. With the one we selected
(see Sec. 3.2.3), up to some limit cases we will deal
with later, tubular structures can only be preserved by
up to 3 orientations. We confirmed this geometric result
experimentally by exhaustively analysing a dense sam-
pling of the orientation space using randomly generated
tubular structures. This experiment is fully developed in
Sec. 5.2.3. Based on these results, we selected it = 3.

4.3 Direction estimation of tubular structures

Since RORPO is based on oriented path operators, it
intrinsically carries information about the direction of
the detected tubular structures. In order to retrieve this
directional information, we have to identify which paths
opening orientations fit best at each point. Typically
there will be more than one, so by combining these
orientations, we may obtain a reasonable evaluation of
the tubular structure orientation.

Finding which orientations detect a tubular structure
requires, for each orientation, a binary decision: either an
orientation detects the tubular structure or not. However,
the output of each path opening filter is a grey-level
response. A solution with a threshold t such that if
AΓ
L(I(x)) > t, orientation Γ detects the tubular structure

would be simple but flawed. Indeed the intensity of the
responses depends on the initial grey-level of the image
and the degree of noise of the tubular structure.
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200 25 40 51 233 12 37

233 200 51 40 37 25 12

Ranking

orientations
of interest

orientations which do not
detect the tubular structure

Fig. 6. At each point of an image (red square), 7 path
opening responses AΓ

L(I(x)), associated to each orien-
tation C?, are computed (top right values). After ranking,
the orientations of interest are the first one, two or three
orientations.

Consequently, we propose to determine which path
opening orientations detect a given tubular structure
by separating the 7 orientations in two classes: Those
that detect the tubular structures (called orientations of
interest) and the others. Our expectation is to achieve ho-
mogeneous responses AΓ

L(I(x)) inside each class: a high
response in the orientations of interest and a low one
in the others. (see Fig. 6). For simplicity and efficiency,
we chose the standard deviation at the homogeneity
criterion.

The classification requires little extra computation.
Indeed the 7 AΓ

L(I) have already been ranked into
the γiL(I)i∈J1,7K from which we can derive the ranked
orientations (OiL)i∈J1,7K such that OiL is the orientation
associated to γiL. Moreover, we know that a tubular
structure is detected in at most 3 orientations, so if a
structure is detected in k orientations, 1 ≤ k ≤ 3, the
orientations of interest are the k (OiL)i∈J1,kK. This results
in 3 possible classes: {{O1

L}, {O1
L, O

2
L}, {O1

L, O
2
L, O

3
L}}.

Therefore, for each pixel, we only have to compute
the standard deviation of these 3 possible classes and
choose the class with the lowest (see Alg. 1). Finally,
the direction of the structure is estimated by the mean
of the orientations in the selected class.

Orientation vs. direction: An important point to note
is that we encode a tubular structure orientation by a 3-
vector. However, a vector has a direction which is more
specific than an orientation. If a structure is horizontal,
both vectors [0, 0, 1] and [0, 0,−1] encode its orientation.
When averaging path opening orientations, as we use
the vectors e? and d?, we must ensure that all the vectors
are set to the same half-space, e.g. the mean of the
vectors [0, 1, 0], [0, 0, 1] and [1,−1,−1] is not [ 1

3 , 0, 0] but
[− 1

3 ,
2
3 ,

2
3 ].

4.4 Multiscale length analysis

One of the difficulties in tubular structure analysis is
dealing with multiple scales. Real applications need to
cope with varying diameter, length and curvature, which
are generally highly correlated. To tackle this issue,

Algorithm 1: FindSetOrientations

Data: (γiL)i∈J1,7K, and (OiL)i∈J1,7K
Result: d: image of directions
begin

for each pixel x of I do

# Compute the standard deviation of the 3
possible classes
g1 = std

(
(γiL(x))i∈J2,7K

)
g2 = std

(
(γiL(x))i∈J1,2K

)
+ std

(
(γiL(x))i∈J3,7K

)
g3 = std

(
(γiL(x))i∈J1,3K

)
+ std

(
(γiL(x))i∈J4,7K

)
# Choose the lowest class
g? = argmin(gi)

i∈J1,3K

# Compute the final direction
d(x) = mean((OiL)i∈J1,g?K)

end
end

multiscale approaches have been developed. A com-
mon multiscale approach consists of applying the filter
multiple times while changing scale-related parameters,
and merging the results. In this section, we propose a
multiscale version of our operator based on the length
of the structure.

In the literature on multiscale tubular object analysis,
the scale parameter is usually a diameter. However, in
the case of RORPO, length is the only one available. Had
we wanted to vary the diameter, we would have had
to combine RORPO with another filter. Fortunately, in
many applications, the diameter, curvature and length
of tubular structures are highly correlated. For example
small blood vessels, are generally more tortuous and
shorter than large vessels like the aorta. The same argu-
ment can be made for insulation glass fibers or country
roads vs. highway.

With RORPO, path lengths depend on the curvature
of the structures. Indeed, to be retained, a structure of
a given length must stay within a single cone, which
puts a limit on the degree of its large-scale curvature.
Consequently, a tubular structure with a high large-
scale curvature can only be detected with a smaller
path length than if it were straight. This consideration
is only relevant for large-scale curvature, since small-
scale curvature is already handled by path flexibility.
The reader may refer to Sec. 5.2.1 for more explanations
about path length.

More formally, let S = {L1, L2, ..., Ln} be a set of path
lengths. The multiscale RORPO filter, Φ(I), is obtained
by taking the maximum of each scale response ΦL(I):

Φ(I) =
⋃
L∈S

ΦL(I) (6)

This multiscale paradigm also applies to the direc-
tional feature. Indeed, a direction can be computed for
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Dilation Path Opening

Min

1 2

3

Fig. 7. Illustration of our proposed simplified robust path
opening (see Sec. 5.1).

each scale. The final direction is the one associated with
the highest RORPO response with the lowest scale.

5 ALGORITHMIC CONSIDERATIONS

5.1 Simplified robust path opening

RORPO is based on the path opening. It then inherits
the main weakness of path operators: a relative fragility
to disconnections induced by noise, a fortiori for high
values of L. Several works were conducted to propose
various noise resistant versions of path operators [48],
[50], in particular the robust path opening (RPO) of
Cokelaer et al. [51]. RPO allows for K disconnections
(noisy pixels) between two successive pixels path.

RPO suffers from 2 main drawbacks: 1) the noisy
pixels are not taken into account in the overall path
length calculation; so the parameter L may become
almost meaningless. 2) The algorithmic layer handling
the robustness is time and memory consuming.

We propose an alternative to RPO which yields similar
results but is less time consuming and preserves the
real path length. Our method relies on a mask-based
second-generation connectivity strategy [53] in order to
reconnect the noisy parts of tubular structures. A dilation
by a cubical structuring element of size N is performed
on the initial image I . This dilated image is used to
compute the regular path opening. In order to preserve
the anti-extensivity of the path opening, an infimum
operator is applied (see Eq. (7)). An illustration of this
strategy is shown in Fig. 7.

AcL,N =
∧
{I, AcL(δN (I))} (7)

5.2 Parameters

RORPO only requires a few parameters compared to
other similar filters. In this section, we explain why the
path length L is the only tunable parameter. Then we
analyse why and how the other parameters are set.

Lr

large scale
tortuosity

small scale
curvature

(a)

L1

(b)

L2

(c)

Lr

overlapping
zone

(d)

Fig. 8. The path length also depends on the scale of
the curvature. (a) A thin structure of length Lr presenting
small-scale and large-scale curvature. (b) A path length of
length L1 < Lr along one orientation detects a first part
of the structure. (c) A path length of length L2 < Lr along
another orientation detects a second part of the structure.
(d) The two detected parts overlap.

5.2.1 Path length
Path length intuitively corresponds to the length of
a path that lies in a given orientation. As evoked in
Sec. 4.4, the path length carries both length and curva-
ture information. A tubular structure with a high large-
scale curvature will be detected in several orientations,
each detecting a part of the complete structure. As the
orientations overlap, the parts generally overlap as well
(see Fig. 8).

5.2.2 Robustness parameter
In our simplified version of path opening robustness
(see Sec. 5.1), the robustness parameter N is the size
of the cubical structuring element used for the dilation
of the filtered image. This parameter corresponds to the
maximal number of noisy pixels in a row allowed in a
path, which is exactly N − 1. We do not consider the
robustness parameter tunable, given that in practice, we
recommend N = 3 or N = 5. For higher values, false
detections start appearing and the background noise
reduction is less effective.

5.2.3 Orientations sampling
Working with a finite number of orientations implies to
choose a sampling policy, in order to determine the num-
ber and the shape of the orientations for the computation
of the path openings. Considering the structure of Z3,
isotropy requirements, and the algorithmic constraints of
path opening, three main families of sampling policies
can be considered: along the 3 principal orientations;
along the 3+4 principal orientations and principal diag-
onals; and along the 3+4+6 principal orientations and
principal/secondary diagonals.

As stated earlier, 3 orientations are not sufficient to
accurately capture tubular structures due to the necessity
for orientations to overlap. The 4 principal diagonals
seem essential and offer a high degree of overlap with
the 3 principal orientations. Our working hypothesis
was that, with 3+4=7 orientations, such as described in
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Fig. 9. Number of orientations, computed from 100
synthetic samples, detecting (a) tubes, (b) planes, and (c)
curved planes, within the set of 7 orientations illustrated
in Fig. 4.

Section 3.2.3, a quantitative analysis of the path openings
responses should be sufficient to decide whether a point
belongs to a tubular structure. In order to experimentally
verify this hypothesis, we computed the number of high
responses within the 7 orientations for 100 synthetic
binary tubes, planes and curved planes (half ellipsoid).
The results of this study (Fig. 9) validate this conjecture.
Indeed, nearly all tubular structures are detected in at
most 3 orientations whereas all planar structures are
detected in at least 4 orientations.

Finally, two main reasons led us to reject the possibility
of using all 13 orientations: the multiplication of angular
cones induces the handling of considerably more limit
cases; and the computation time is nearly doubled, for
a questionable benefit.

5.2.4 Angular cones
The basic patterns for each of the 7 orientations need to
fully cover the immediate neighbourhood of any point
x = (x, y, z) of Z3, namely, the 26 points forming a 3 ×
3 × 3 cube around x. Two policies may be considered:
choosing patterns that induce either a partition or a cover
of these 26 points. A partition is not acceptable as it
would eliminate all structures with an orientation lying
between the bounds of two neighbors orientations. A
cover is then the only choice.

In order to respect isotropy requirements and minimal
overlapping, this cover was defined as illustrated in
Fig. 4. The drawback of any covering policy is the
existence of limit cases, corresponding to the paths that
lie exactly at the frontier between three or more orienta-
tions. To solve this problem, we devised a virtually cost-
free solution, described in details in [2]. The essentials
of this solution are given in Appendix.

5.3 Computational cost

The computation cost of RORPO is dominated by the
path openings. Indeed, the robustness step (Eq. (7)),
ranking (Eq. (4)) and limit case handling only require
infimum / supremum operations which have linear cost
O(|Ω|) with respect to the size of the image, Ω.

Two different algorithms were proposed to compute
path openings: the Talbot algorithm [50] and the Luengo
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Fig. 10. Computational cost of RORPO, with respect to
|Ω| (left) and L (right, log scale).

algorithm [49]. The Talbot algorithm has a O(|Ω|log(L))
complexity. We verified experimentally on synthetic im-
ages [54] (see Fig. 10) that the Luengo algorithm is
equivalent. The Luengo algorithm is slightly slower and
is not natively robust, however it is more generic for
defining orientations, and with simplified robustification
(see Sec. 5.1), native robustness does not matter. Conse-
quently we used the Luengo algorithm.

6 EXPERIMENTS AND RESULTS

In this section we present results of both the RORPO
features (intensity and direction). Then we quantitatively
evaluate and compare to gold standard methods.

6.1 Evaluation and comparison of the intensity fea-
ture
6.1.1 Evaluation criteria
For the quantitative evaluation of our method, we used
the standard Dice coefficient and the Matthews Cor-
relation Coefficient (MCC) which is well adapted to
sparse images, i.e. when the structures of interest only
represent a small proportion of the total image size.
These coefficients are defined as follows:

Dice =
2TP

TP+FN+TN+FP

MCC =
TP×TN−FP×FN√

(TP+FP)× (TP+FN)× (TN+FP)× (TN+FN)

With TP/TN the true positives/negatives and FP/FN
the false positives/negatives.

The classical manner for evaluating a grey-level filter-
ing method is to compare all the possible thresholding
results to the ground truth. Results are represented as a
curve: the Receiver Operating Characteristic (ROC). We
chose to compute ROCs of the true positive rate (TPR)
vs. the false positive rate (FPR). Then, the closer to the
point (0, 1) the better the results.

As we deal with sparse features, the set of voxels
belonging to the ground truth objects (TPGT) is always
much smaller than the set of voxels belonging to its
background (TNGT). Consequently, the number of false
positives is much larger than the number of true posi-
tives. To present meaningfull results, we defined the TPR
and FPR with respect to the ground truth objects, i.e.
TPR = TP

TPGT
and FPR = FP

TPGT
. With this convention, the

FPR can exceed 100%.
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(a) (b)

(c) CCM = 0.60, Dice = 0.63 (d) CCM = 0.88, Dice = 0.89

(e) CCM = 0.71, Dice = 0.73 (f) CCM = 0.65, Dice = 0.65

Fig. 11. (a–c) Synthetic image: (a) isosurface rendering;
(b) ground truth; (c) maximum intensity projection. (d–f)
Filtered synthetic image: maximum intensity projection.
(d) RORPO; (e) Frangi’s vesselness; (f) and RPO-top-hat.

6.1.2 Comparison methods
As indicated in Sec. 2, most filtering methods for tubular
structures use a multiscale eigenvalue analysis of the
Hessian tensor. In recent comparison [5], [55], the gold
standard in tubular structure filtering is the Frangi Ves-
selness (FV). We also wanted to compare it to a reference
method in mathematical morphology: a combination of
RPO and a top-hat operator.

6.1.3 Synthetic Image
In a first series of experiments, we use a synthetic image,
see Fig. 7.(a,b) containing isotropic structures synthe-
sized with an additive Gaussian random field, a thin
rectangle as a planar structure and a tubular structure: an
helix with varying diameter and thickness. The ground
truth is a binary image of the helix (see Fig. 11(b)).

We computed RORPO, the Frangi Vesselness and the
RPO + top hat filters on this image. Results and scores
are presented in Fig. 11 and the ROC curve in Fig. 13(a).
Qualitatively, we observe that RORPO is the only fil-
ter that fully removes the rectangle. Frangi Vesselness
removes the interior of the rectangle but the borders

(a) Initial image (b) Initial image

(c) RORPO (d) RORPO

(e) Frangi Vesselness (f) Frangi Vesselness

Fig. 12. (a,c,e) Brain arteries. (a) Time-of-flight magnetic
resonance angiography volume rendering (from low inten-
sities, in red, to high intensities, in yellow). (c) RORPO: 8
lengths from L = 30px to 130px; computation time: 32mn.
(e) Frangi Vesselness: 4 scales from 1 to 3; computation
time: 13mn. (b,d,f) Coronary arteries. (b) Computed to-
mography angiography, viewed in volume rendering (from
low intensities, in red, to high intensities, in yellow); the
coronary centerlines are outlined in white. (d) RORPO
filter: 4 scales from L = 20px to 50px; computation time:
50mn. (f) Frangi Vesselness: 4 scales from 0.4 to 1.8;
computation time: 6mn.

are retained. Hessian eigen-analysis cannot easily distin-
guish a tubular object from the border of a planar object,
which is a known limitation. The RPO + top hat does not
distinguish between tubular and planar objects, and so
fully preserved the plane as expected. These limitations
were among those we wanted to address with RORPO.
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Fig. 13. ROC curves on (a,b) synthetic data, and (c) real data. (a) Comparison of the three filters, plus the native
image. (b) Noise robustness of the RORPO filter. (c) Comparison between RORPO and Frangi Vesselness on the
Rotterdam repository (average ROC curve ± one standard deviation).

6.1.4 Real Images
Next, we compared the results of RORPO with Frangi
vesselness on real 3D images. We considered two types
of images :
• Time-of-Flight Magnetic Resonance Angiography

(MRA) images of the brain vascular network ac-
quired on a whole body scanner (Siemens Magne-
tom Verio 3.0T);

• Computed Tomography Angiography (CTA) images
of the heart from the Rotterdam repository [56] used
in a 2012 MICCAI Challenge.

The analysis presented here is only qualitative for
the MRA data because, to the best of our knowledge,
no ground truth is available for such complicated
networks; for the CTA, both qualitative and quantitative
analyses are presented as the Rotterdam data contains
the centerlines of the coronaries as ground truth.

Visually, on the MRA image (Fig. 12), the RORPO
results seems nicer as it detects less false positives than
FV. Indeed, the Frangi Vesselness tends to detect more
false positives and less false negatives. For example, FV,
due to the Gaussian kernel convolution, overestimates
the volume of the vessels leading to false positives, while
RORPO preserves the initial geometry. These trends are
confirmed by the quantitative evaluation on the CTA
images. Indeed, CTA images are denser leading to even
more false positives for the Frangi Vesselness.

The Rotterdam repository provides 17 different clinical
CT angiography images. We eliminated 2 images due to
poor ground truth and we computed both RORPO and
FV on the remaining 15 images. One result is shown on
Fig. 12, and the average ± 1 standard deviation of the
15 ROC curves is presented in Fig. 13.(c).

The CTA Frangi Vesselness results are even less satis-
factory than the MRA; the still detected coronaries are
surrounded by a lot of false positives, which prevent
a good visualization. In contrast, RORPO efficiently re-
move the heart tissues while preserving the coronaries.
The ROC curves show that the TPR of Frangi Vesselness
is significantly worse than that of RORPO for the entire

exploitable range of false positives.

6.2 Evaluation of the directional feature

Whereas some ground truth is publicly available for
tubular structure segmentation, to the best of our knowl-
edge, no such ground truth for directions exists. Conse-
quently, we mostly evaluated the directional feature on
synthetic images where we can generate the direction
ground truth.

6.2.1 Evaluation criteria
We evaluate directions by estimating the angle between
the ground truth and the RORPO direction at each voxel
included in the segmentation ground truth. I.e, if a voxel
belongs to a tubular structure, we compute the angle
between the ground truth and the RORPO directions
at this voxel, which provides an error measure. Then,
we observe the distribution of the errors over the whole
image.

One should note that the maximum error between two
angle is 90◦ as we compute an orientation difference (i.e.
an angle between lines).

We also need to take into account the false positive rate
(FPR) and false negative rate (FNR) in this evaluation.
While they indicate the quality of the intensity feature,
they also matter for the evaluation of the orientation.
Indeed, the direction is only relevant where the intensity
feature is high (i.e. where the structure is tubular).
Consequently, if the FNR is high, we incorrectly omit
many directions; and if the FPR is high, orientations are
incorrectly computed on isotropic structures.

6.2.2 Evaluation of the intrinsic directional error
The directional feature is computed only from the 7
orientation vectors e? and d?. Consequently, it can never
be very precise.

Our first experiment is designed to evaluate this pre-
cision. We sampled a half sphere homogeneously with
1300 orientations. In each of these, we generated a tube
of length 50 pixels and diameter around 11 pixels. Then
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(a) Binary 1D thin structures
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(b) Grey-level 1D thin structures with noise

Fig. 14. Comparison of the direction feature by RORPO and Frangi Vesselness on binary tubular structures (a)
without and (b) with noise (b). The box plot shows the distribution of errors (in degrees) over the 1300 samples for
each parameter of RORPO (path length) or Frangi Vesselness (size of the Gaussian kernel). The green (resp. blue)
curves are the rate of false negatives (resp. positives) compared with the size of the 1D thin structure (e.g., FP = 100%
means that as many true positives as false positives have been detected).

we applied RORPO on each binary tube and we com-
puted the orientation error with respect to the generated
ground truth.

Using a path length of 40, we obtained a mean error of
12 degrees with a standard deviation of 7. These results
are encouraging given the small number of path opening
orientations used.

One characteristic of our method is that the computed
directions tend to be homogeneous forming large zones
with the same direction. This tends to limit outliers
due to noise, but causes sharp direction transitions even
where a tubular structure is smoothly curved. To en-
hance the results, we propose to apply a local averaging
filter as a post processing on the directional feature using
a 7 × 7 × 7 window. In the following experiments we
always use this post processing.

6.2.3 Comparison with Frangi Vesselness
We have established that the intrinsic directional error
of our method is low, despite the small number of
orientations we used. We now compare our directional
feature with that of the Frangi Vesselness, first on binary
tubes, then on grey level tubes plus noise and finally, we
compare both features on a real application.

In our first experiment, we compare Frangi Vesselness
vs. RORPO on the same binary tubes as in the previous

section. The directions were estimated for several scale
parameters (path length for RORPO and size of the
Gaussian kernel for FV) and the angle error, the FPR
and the FNR were measured in each case. Then, we
performed the same experiment but with Gaussian noise
and small isotropic structures in the background (see
Fig. 15).

Results shown in Fig. 14 indicate that the Frangi
Vesselness generally estimates a more accurate direction
than our method in the perfect case (i.e. a noise-
free binary tube). However, when noise and other
structures are present, the Frangi Vesselness results are
significantly worse than ours. Indeed, as RORPO uses
paths, which are semi global structures. The RORPO
directions integrate the orientation information over the
whole path. It appears that paths, by their non-locality
and anisotropy, are a more meaningful neighborhood
for the analysis of tubular structures than the isotropic
neighborhood used by Frangi. We can observe that
the RORPO length parameter is less sensitive than the
Frangi Vesselness diameter parameter. Indeed, a large
range of RORPO parameters give similar, good results
whereas only one scale of Frangi Vesselness yields the
best results. This stability with respect to the parameters
is important in practice because one generally does not
know the best set of parameter for a given application.



12 O. MERVEILLE ET AL.: TUBULAR STRUCTURE ANALYSIS BY RANKING THE ORIENTATION RESPONSES OF PATH OPERATORS

(a)

(b) med = 13.8 std = 2.2

(c) med = 16.2 std = 13.7

Fig. 15. Projection (MIP) of the noisy image (a) and the
directional feature from RORPO (b) and Frangi Vessel-
ness (c). Median and standard deviation of the noise are
shown below each results.

(a)

(b)

Fig. 16. Directional feature of RORPO (a) and Frangi
Vesselness (b) on the segmentation ground truth (in pink).

To the best of our knowledge, no freely available
ground truth for directions exists for real 3D images.
The company HeartFlowtm [57] kindly provided us with
a CTA exam plus their manually corrected central line
and segmentation of the coronaries. From these data we
were able to generate good enough directional ground
truth to validate our results.

With optimal parameters, we computed both RORPO

mean error std error FP FN

RORPO 18.15 11.21 37.36 71.32

FV 14.85 13.31 566 39.48

Fig. 17. Evaluation of the directional features of RORPO
and FV on a CTA image.

and FV directional features on this exam and evaluated
the angle error and FPR/FNR. A selected example of
results is shown on Fig. 16 and quantitative results of
the comparison are shown on Fig. 17. We see that FV
performs slightly better on the accuracy of directions.
However it is important to note that this error is
computed only for the voxels inside the segmentation
ground truth. That means that all the false positive
directions detected are not taken into account in the
error. Indeed, the Frangi Vesselness provides fourteen
times more false directions on isotropic structures. In
contrast, RORPO provides a slighly worse error (18◦

vs. 14◦) for the blood vessel but also compute far fewer
false positives directions.

In real image processing applications, a directional
feature can usually be used at two different stage: either
to guide a segmentation method directly on the grey-
level image or to guide a post processing pipeline on a
segmentation image. In the first case, RORPO provides
better results than FV as it computes directions with
a similar error but much less false positives, and so
resulting in generally more accurate directions. In the
second case, when the segmentation is already available,
the Frangi Vesselness should be used, but it was not the
problem we sought to address.

7 CONCLUSION

In this article, we have proposed RORPO, a new frame-
work for the characterization of tubular structures. It
consists of an intensity feature which measures the
presence of a tubular structure and a directional feature
providing at each point the orientation of this tubular
structure. We have shown that RORPO is a convincing
alternative to Hessian-based filters which were, until
now, the reference framework proposing both intensity
and directional features for grey level images. Indeed,
the Hessian-based filters are based on local and isotropic
eigen-analysis whereas tubular structures are intrinsi-
cally anisotropic. RORPO, by using path operators, con-
siders non local and anisotropic neighborhods which are
better adapted to tubular structures.

Experimental quantitative and qualitative evaluations
show that both of our features give better results for the
analysis of tubular structures. The intensity feature is
more reliable as it detects much less false positives and
the directional feature is much more robust as it relies
on non local SE.



O. MERVEILLE ET AL.: TUBULAR STRUCTURE ANALYSIS BY RANKING THE ORIENTATION RESPONSES OF PATH OPERATORS 13

As a low level operator for the characterization of
tubular structures, RORPO can be used as prior infor-
mation in segmentation frameworks in the same way
as the Hessian. As future work, we plan on embed-
ding RORPO features in a learning-based framework for
segmentation, and we are working on accelerating the
computations.

RESOURCES

Free, open-source C++ implementation, test data and
documentation is available at http://path-openings.
github.io/RORPO.
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(a) 5-orientation tubes

(b) 4-orientation tubes

Fig. 18. The red tube lies within the border between 5 (a)
or 4 (b) cones resulting in a limit case.

APPENDIX A
LIMIT CASES

In Sec. 4, we propose a method to compute both intensity
and directional features for regular tubular structures,
i.e. the one detected in 1, 2 or 3 path opening ori-
entations. Here we propose a simple post processing
procedure to deal with the 4 and 5-orientations tubes.

Intensity feature
Cones need to overlap in order to detect some tortuous
structures. Tubular structures lying entirely within the
border between more than two cones may be detected
either 4 times or 5 times. We propose a three-step post
processing approach to deal with them.

Detecting the 4- and 5-orientation tubes
The 5-orientation tubes lie in one cone Ce?

plus the 4
cones Cd?

(an example is shown in Fig. 18.(a)) so the
intersection between the 4 cones Cd? , denoted Γ5, detects
them:

Γ5(I) = min
i∈J1,4K

{
A
Cdi

L (I)
}

(8)

The 4-orientation tubes lie in 2 cones Ce? and 2 cones of
Cd? (an example is shown in Fig. 18.(b)) so the union of
every combinations Oi of intersections between 2 pairs
of such cones, denoted Γ4, detects them:

Γ4(I) = max
i∈J1,6K

min
c∈Oi

{
AcL(I)

}
(9)

Removal of remaining non-1D thin structures
Γ4 and Γ5 are computed by intersection of 4 path
opening responses, which means that both may con-
tain non tubular structures. We define ∆i as the first
ranked path opening orientation that does not contain
i-orientation tubes. In particular, we have ∆4(I) = γ5

L(I)
and ∆5(I) = γ6

L(I). ∆i(I) contains more non tubular
structures than those present in Γi(I). Consequently, the
geodilation ρ(∆i(I), γ4

L(I)) of ∆i in γ4
L(I) is used instead

of ∆i. Finally, the removal of remaining non tubular
structures is performed as follows:

LCi(I) = Γi(I)−min
{

Γi(I), ρ(∆i(I), γ4
L(I))

}
(10)

(a) e′1 (b) e′2 (c) d′1 (d) d′2

Fig. 19. 2D orientations. The blue arrows represent the
adjacency relation.

Addition of limit tubes to RORPO result
The post-processed RORPO result is then obtained from
the standard RORPO (Eq. (5)), by adding the extracted
limit cases (Eq. (10)):

Φpost(I) = max
{

Φ(I), LC4(I), LC5(I)
}

(11)

More details and justifications about these steps can be
found in [2].

Directional feature
To deal with 4 and 5-orientations tubes, we need to find
the 4 or 5 path opening orientations involved in their
detection. Then, we can apply the standard procedure,
i.e. compute the mean of the orientations of interest. For-
tunately, the 4 and 5 path opening orientations involved
in each limit case have already been computed while
handling the limit cases as shown above. Each set of
intersection gives us one group of limit cases that we
can then label with the correct direction, i.e. the mean
of all the path openings orientations involved in this
intersection.

APPENDIX B
THE 2D CASE

In this article, we chose to present our operator in 3D.
Nevertheless, a 2D version is simple. The few changes
required are presented here.

2D Orientations
In 2D, space is discretized in 4 orientations. Two main
orientations corresponding to the vectors of the orthog-
onal basis {0, 1}, {1, 0} denoted e′1 and e2’, and two
diagonals corresponding to {1, 1} and {−1, 1} denoted
d′1 and d′2. These orientations are illustrated in Fig. 19.

2D RORPO operator
The only necessary changes is the value of it. In 2D,
we only have to distinguish 1D thin structures (line-line)
from isotropic (blob-like) structures. Blob structures are
detected in all the 2D orientations. Line-like structures
cannot be detected in more than 3 orientations. It is then
trivial to set it = 3 in the 2D case. The reader should
note that this is only a coincidence that the threshold
value it is the same for the 2D and 3D case.
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