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Mathematical Models for Population Dynamics:
Randomness versus Determinism

Jean Bertoin

Abstract. Mathematical models are used more and more frequently in Life Sciences.
Those models may be deterministic, or stochastic. We present some classical models for
population dynamics and discuss in particular the averaging effect in the setting large
populations, to point at circumstances where randomness prevails nonetheless.
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1. Introduction

Without any doubt, Biology is amongst the sciences in which advances accom-
plished during the last century have been the most spectacular. For mathemati-
cians, it is both a source of inspiration (for instance, genetic algorithms mimic
natural selection to solve optimization problems), and raises formidable challenges,
notably in the field of modeling. Actually, most Life Sciences require pertinent
mathematical models, which should not only fit experimental data, but more im-
portantly, should enable practitioners to make reliable analysis and predictions
(for instance, one wishes to predict the outbreak of an epidemic and prevent its
occurence by an appropriate vaccination program). These mathematical models
may be deterministic, in the sense that the outputs are entirely determined by the
values of the parameters of the model, or stochastic, when the model incorporates
inherent randomness and outputs then depend not only on the parameters but also
on some additional stochastic elements.

The study of the dynamics of populations is a tool of fundamental importance
in this area, notably in Genetics, Ecology, and Epidemiology, to name just a few.
In general, deterministic models in this field concern global or averaged features of
the population, typically the size of certain sub-populations, or the proportion of
individuals sharing certain characteristics. That is, the features of the population
are averaged and the model aims at depicting the evolution of those averaged
quantities as time passes. They are based on the implicit assumption that, roughly
speaking, all individuals in a given sub-population behave essentially the same.
Dynamics are usually modeled in discrete times through some difference equations,
and through differential equations in continuous times. The reader is referred
to the textbooks by Allman and Rhodes [1], Edelstein-Keshet [10] or Hofbauer
and Sigmund [15] for some basic models in this framework and their biological
motivations, and to the monograph by Bürger [5] for a comprehensive overview.
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In turn, stochastic models are built either by adding noise terms to determin-
istic evolution equations, in order to take random fluctuations into account, or
more interestingly, by considering individual behaviors which are then viewed as
stochastic processes. Individual-based models permit in particular to consider how
individuals collaborate or compete with each other for resources, or interact with
their environment. Stochastic models of population dynamics rely essentially on
Markov chains in discrete times, Markov jump processes and stochastic differential
equations in continuous times, including notably branching processes and coales-
cent processes. We refer in particular to the monographs by Durrett [9], Haccou,
Jagers and Vatutin [13], and Hein, Schierup, and Wiuf [14], and the lecture notes
by Dawson [8] and Etheridge [11].

“All models are wrong but some are useful” used to say George Box. The
mechanisms driving dynamics of populations in nature are extremely intricate and
involve a number of diverse features, whereas mathematical models must remain
tractable and thus can only incorporate a few of them. In general, mathematical
models for highly complex phenomena focus on a few key variables, and view
the effects of the remains ones as small (possibly random) perturbations of the
simpler model. In this respect, deciding whether to opt for a deterministic versus a
stochastic model may be a delicate issue. Deterministic models are simpler to solve
analytically or numerically; random models can be considerably more complicated,
in particular in the individual-based case, but it is generally admitted that they
may be also more realist. One may wonder whether it is useful to handle more
complex random models when a deterministic answer is expected anyway, and
at the opposite, one may be concerned with the risk of missing some important
consequences of randomness by making an oversimplified deterministic analysis.

Of course, a first key question is whether a given mathematical model accurately
describes a phenomenon of interest, which is usually answered by checking the
agreement with experimental measurements. Once the scope of a model has been
validated and the model is applied in concrete situations, another fundamental
problem for practitioners is the comparison with available data in order to estimate
its parameters, and then to be able to make reliable predictions about the future
(or inferences about the past) of the population. Thus statistical analysis plays
a crucial role in this area; see for instance the books by Allman and Rhodes [1]
and Turchin [20]. However here we shall not discuss applied statistical aspects and
rather focus on more theoretical issues.

In this text, we shall first briefly present some of the simplest, best known
and widely used models for population dynamics, both in the determinist and the
random frameworks. Starting from the most elementary models, which were intro-
duced in the 18th and 19th centuries, and in which the reproduction mechanism
is assumed to independent of the characteristics of the population, we shall then
discuss how models have been thereafter modified and complexified in order to in-
corporate some more realistic features. We further address the question of possible
averaging effects, which may suggest that for large populations, determinist models
should prevail, and then point at simple situations for which naive intuitions may
fail.
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2. Some classical population models

In this section, we briefly review some classical population models, deterministic
or random, both for discrete and continuous times. We shall mainly focus the
simple case where each individual has a single parent, which corresponds to haploid
populations (i.e. individuals have only one set of chromosomes). However this can
be also relevant for sexual reproduction, either by considering the subpopulations
of individuals of the same sex (in most diploid populations, mitochondria DNA are
inherited exclusively from the mother), or by viewing a diploid population with N
individuals each carrying a pair of chromosomes as a haploid population with 2N
individuals each having a single chromosome.

2.1. Exponential growth model and branching processes. The simplest of
all population models was considered by T.M. Malthus at the very end of the 18th
century. If the size of a population at date t is measured by P (t), where t ≥ 0 is
either an integer or a real number, then one assumes that P (t) grows at constant
rate r ∈ R in time. That is, in discrete times, the increment of the population has
the form

∆P (t) := P (t+ 1)− P (t) = rP (t), (1)

whereas in continuous times,

dP (t)

dt
= rP (t).

In terms of the initial population size P (0), one thus gets

P (t) = (1 + r)tP (0) for the discrete time version,

and
P (t) = ertP (0) for the continuous time version.

An individual-based stochastic counterpart of the Malthus growth model in
discrete time was introduced first in the middle of 19th century by I.J. Bienaymé,
and then re-discovered nearly 20 years later by F. Galton and H.W. Watson. Orig-
inally, F. Galton was motivated by the study of the extinction of family names;
the model can also be useful for describing, for instance, the initiation of a nuclear
chain reaction, or the early stages of the spread of contagious diseases.

The building block is an integer valued random variable ξ, which represents
the number of children of a typical individual. The probability distribution of ξ is
called the reproduction law. One imagines that at each generation, each individual
i is replaced by a random number ξi of individuals (the children of i), where ξi has
the same law as ξ, and for different individuals, the ξi’s are given by independent
random variables. If Z(n) denotes the number of individuals at the n-th generation,
the chain (Z(n))n∈N is known as a Bienaymé-Galton-Watson process (thereafter
in short, BGW process), and its dynamics are depicted at each generation by the
identity

Z(n+ 1) = ξN1 + · · ·+ ξNZ(n) (2)
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where ξN1 , . . . denote independent copies of the variable ξ.
BGW processes are merely elementary prototypes of more sophisticated branch-

ing processes, which can be used to model more accurately a variety of dynamics.
In short, multi-type branching processes cover the situation where individuals in
the population may have different types, and the reproduction law of each indi-
vidual depends on its type. Branching processes can also be defined in continuous
time, possibly with values in [0,∞) rather than merely in N. They can incorpo-
rate phenomena such as immigration, spatial displacements, migration, mutations,
random environments, etc. The so-called Crump-Mode-Jagers processes deal with
situations where the rate of reproduction of an individual may depend on a number
of characteristics of that individual, including for instance, its age, and in partic-
ular the reproduction rate varies as time passes. This gives access to probabilistic
models of age-structured populations. We refer to the book by Haccou, Jagers and
Vatutin [13] for much more on this topic.

The connection with the Malthus growth model in discrete times is easy to
explain. Assume that the variable ξ has a finite mathematical expectation E(ξ).
Then it follows from (2) that there is the identity

E(Z(n+ 1)) = E(ξ)× E(Z(n)),

so that, if we set P (n) = E(Z(n)), then we get (1) with r = E(ξ)− 1.
BGW processes fulfill the fundamental branching property, which can be viewed

as the stochastic analogue of the elementary additivity property of the Malthus
growth model. If (Z(n))n∈N and (Z ′(n))n∈N are two independent BGW processes
with the same reproduction law, then their sum, S(n) := Z(n) + Z ′(n) is again a
BGW process, of course with the same reproduction law. Combining the branching
property with the Law of Large Numbers, one sees that the Malthus growth model
can be viewed as the limit of BGW process started with a large initial population.
Indeed, if (Z1(n))n∈N, (Z2(n))n∈N, . . . denote independent BGW processes with
the same reproduction law, each started with a single ancestor, then Sk(n) :=
Z1(n) + · · · + Zk(n) is a BGW process started with k ancestors, and the Law of
Large Numbers entails that, provided that E(ξ) <∞,

lim
k→∞

1

k
Sk(n) = E(Z(n)) = P (n).

This suggests that, on average, when the number of ancestors is large, the
population should increase exponentially fast when E(ξ) > 0 (the super-critical
case), should decay exponentially fast when E(ξ) < 0 (the sub-critical case), and
should remain roughly stable when E(ξ) = 0 (the critical case). However, this
is not entirely correct; in fact a critical BGW process always become eventually
extinct, despite of the fact that the mathematical expectation of Z(n) remains
constant, and no matter how large the initial population is. The analysis of the
extinction is a cornerstone of the theory of branching processes; see in particular
Haccou, Jagers and Vatutin [13].

The fact that in the super-critical case, the size of the population increases
indefinitely exponentially fast is clearly unrealistic. Thus modeling the dynamics
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of a population by a BGW process can only be pertinent at early stages of its
development, and one needs different models to describe the long term behaviors.

2.2. Models with regulated growth. The fact that exponential growth of
populations is unrealistic for a large time horizon yield P.-F. Verhulst to introduce
in 1838 the so-called logistic equation1 to describe the dynamics of populations
with self-limiting growth. Roughly speaking, the underlying idea is that the rate
of growth should be proportional to both the existing population and the amount
of available resources, and informally, the effect of the latter is to slow down the
growth of the population when it is already large. The equation, in continuous
time, has the form

P ′(t) =
dP (t)

dt
= rP (t)(1− P (t)/K)

where r ≥ 0 should be thought of as the growth rate in absence of self-regulation
(typically when the population is small), and K > 0 is known as the carrying
capacity.

The logistic equation can also be written in the form

P ′(t)/P (t) = r(1− P (t)/K);

observe that the rate of growth P ′(t)/P (t) is positive when P (t) < K, negative
when P (t) > K, and approaches 0 when P (t) is close to K. The carrying capacity
K corresponds to the limiting size of the population when times goes to infinity.
Indeed, the logistic equation can be solved,

P (t) =
KP (0)ert

K + P (0)(ert − 1)
,

so in particular limt→∞ P (t) = K.
During the early 20th century, A.J. Lotka proposed a related equation for

predator-prey systems, which was then later on re-derived independently by V.
Volterra. Typically, consider a population of prey, whose size at time t is denoted
by N(t), and a population of predators, whose size at time t is denoted by P (t).
Imagine that the population of prey grows naturally at constant rate and that the
presence of predators induces an additional rate of decay proportional to the size
of the population of predators. That is,

dN(t)

dt
= (a− bP (t))N(t) (3)

where a and b are two positive constants. In turn, the population of predators
declines naturally at a constant rate, and only increases in the presence of preys
with rate proportional to the size of the population of prey:

dP (t)

dt
= (−c+ dN(t))P (t), (4)

1In turn, the equation was re-derived several times in the sequel, notably by R. Pearl, and is
sometimes also known as the Verhulst-Pearl equation.
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where c and d are also two positive constants. Informally, the growth of the prey
population is regulated by the predator population, and vice-versa. The system
formed by (3) and (4) is known as the Lotka-Volterra equations; although it has
no simple explicit solution, it can be proved that solutions are always periodic.

The Lotka-Volterra equations can be modified and incorporate a further logistic
growth element reflecting the competition between individuals of the same species
(these are known as the competitive Lotka-Volterra equations), or to any number
of species competing against each other. We refer the interested reader to Chapter
2 in Hofbauer and Sigmund [15]. We also mention that there exist other differential
equations for modeling regulated growth, for instance those named after Gompertz,
von Bertalanffy, Weibull, ...

In turn, there exist stochastic versions of the logistic growth equation and of the
Lotka-Volterra equations, which mainly rely on stochastic calculus. In particular,
Lambert [19] introduced branching processes with logistic growth, which, in the
simpler case of continuous processes, are viewed as solutions to the stochastic
differential equation

dZ(t) = aZ(t)dt− bZ2(t)dt+ c
√
Z(t)dW (t)

with (W (t))t≥0 a Brownian motion. Providing a detailed account of the meaning of
such stochastic differential equation would drift us too far away from our purpose,
let us simply mention that, in comparison with the deterministic logistic equation,
the additional stochastic term c

√
Z(t)dW (t) is meant to take into account random

fluctuations of the model.
Somewhat similarly, the stochastic version of the Lotka-Volterra equations takes

the form {
dX(t) = (aX(t)− bY (t)X(t))dt+ σ1

√
X(t)dW1(t)

dY (t) = (cY (t)− dX(t)Y (t))dt+ σ2
√
Y (t)dW2(t)

where (W1(t))t≥0 and (W2(t))t≥0 are two (possibly correlated) Brownian motions.
Let us simply observe that, since stochastic integrals have (usually) zero mathe-
matical expectation, E(Z(t)) (respectively, E(X(t)) and E(Y (t))) solve the deter-
ministic logistic (respectively, Lotka-Volterra) equation.

In Section 4, we shall further see that the logistic growth model is also related to
other random individual-based models with large constant size population, which
describe the evolution of the size of a sub-population carrying a favorable allele in
the regime of strong selection.

2.3. Constant size populations. We shall now present some basic (stochastic)
population models with constant total size N ≥ 2, where subpopulations of dif-
ferent types can be distinguished. One is then interested in the evolution of these
subpopulations as time passes. First, the Wright-Fisher model was introduced
around 1930 for studying the transmission of genes for diploid populations, but
for the sake of simplicity, we shall consider here a haploid version. Imagine thus a
population with fixed size N and non-overlapping generations, such that for each
individual i at generation n+ 1, the parent of i is an individual chosen uniformly
at random amongst the N individuals at generation n, independently of the other
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individuals. Because for a given individual j at generation n, the event that j is
the parent of i has probability 1/N , and is independent of the event that j is the
parent of another individual i′ at generation n + 1, the number of children νj of
j is given by the sum of N independent Bernoulli variables with parameter 1/N ,
and has therefore the binomial distribution with parameter (N, 1/N), that is

P(νj = k) =

(
N

k

)
N−k(1− 1/N)N−k for k = 0, 1, . . . , N.

Note that the sequence of the numbers of children for individuals at the same
generation, (νj : j = 1, . . . , N), must fulfill the identity ν1 + · · · + νN = N , and
thus does not consist of independent variables.

In this setting, one often supposes that individuals have types, or that their
chromosomes carry certain alleles, which are transmitted to their descend; and one
is interested in the propagation of those types or alleles. Assume for simplicity,
that one gene has just two alleles, a and A, which are neutral for the reproduction,
in the sense that the reproduction laws are the same for individuals, no matter
which allele they carry. If PN (n) denotes the number of individuals carrying al-
lele a at generation n, then (PN (n) : n ≥ 0) is a Markov chain with values in
{0, 1, . . . , N}. That is to say, roughly speaking, that conditionally on PN (n), the
statistics of PN (n+ 1) are independent of the values of the chain PN for the pre-
ceding generations. Specifically, conditionally on PN (n) = j, as each individual
at generation n + 1 has probability j/N of having a parent that carries allele a,
independently of the other individuals at the same generation, one has thus

P(PN (n+ 1) = k | PN (n) = j) =

(
N

k

)(
j

N

)k (
1− j

N

)N−k
for k = 0, 1, . . . , N . The states j = 0 and j = N are called absorbing, as once the
chain reaches state 0 (respectively, N), there are no more individuals carrying allele
a (respectively, A), and allele a (respectively, A) has therefore disappeared forever
in the population. One then says that fixation occurred for allele A (respectively,
a). It is easy to check, that the probability that allele a eventually fixates is simply
given by the proportion of individuals carrying allele a in the initial population.

In 1958, P. Moran introduced a somewhat even simpler model, now in continu-
ous time, that can be described as follows. Each individual lives for an exponential
time, say with fixed rate r > 0 (that is the probability that the lifetime is larger
than t equals e−rt), and then dies and is instantaneously replaced by a clone of an
individual sampled uniformly at random in the remaining population. Using ele-
mentary properties of independent exponential variables, we can also reformulate
the evolution as follows. Starting from a population with N individuals, after an
exponential time with parameter 2rN , we select a pair of individuals uniformly at
random and then replace one of them by a copy of the other.

If one assumes, just as in the Wright-Fisher model, that the population has
a fixed size N and that individuals carry a neutral allele a or A, and if PN (t)
denotes the number of individuals carrying allele a at time t, then the process in
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continuous time (PN (t))t≥0 is Markovian, and more precisely is a so-called birth
and death process. Its dynamics are determined by the transition semigroup

TN,tf(j) = Ej(f(PN (t))), j = 0, 1, . . . , N,

where f : {0, 1, . . . , N} → R denotes a generic function on the state space and Ej
the mathematical expectation given PN (0) = j (that is, there are j individuals
carrying allele a at the initial time t = 0). However, the transition semigroup is
not so simple to express explicitly, and one rather works with its time differential.
Specifically, the infinitesimal generator of the process is defined as

ANf(j) = lim
t→0+

TN,tf(j)− f(j)

t
,

and fulfills the Kolmogorov’s forward and backward equations

dTN,tf(j)

dt
= TN,t(ANf)(j) = AN (TN,tf)(j).

This forms a systems of linear differential equations, and enables to recover the
transition semigroup as the exponential of a matrix:

TN,t = exp(tAN ).

Roughly speaking, the infinitesimal generator provides an analytic description
for the evolution of a Markov process in terms of its rates of jumps. In the setting
of the Moran process, one has for every j = 1, . . . , N − 1, that

ANf(j) = r (f(j + 1) + f(j − 1)− 2f(j))
j(N − j)
N − 1

. (5)

Indeed, j(N−j)/(N−1) is both the rate at which an individual is picked amongst
the j individuals carrying the allele a and is replaced by a clone of one of the
N − j individuals carrying allele A, resulting in a decay of one unit for PN , and
the rate at which an individual is picked amongst the N − j individuals carrying
the allele A and is replaced by a clone of one of the j individuals carrying allele
a, resulting in an increase of one unit for PN . Finally, the states 0 and N are
absorbing, therefore ANf(0) = ANf(N) = 0. It is easy to check, that, just as for
the Wright-Fisher model, the probability that allele a eventually fixates when j
individuals carry allele a in the initial population equals j/N .

Both the Wright-Fisher model and the Moran model can be considerably gener-
alized by considering several alleles, or by changing the reproduction laws (which
yields the Cannings model [6]), or by incorporating further phenomena such as
mutations, selection, competition, etc. In this direction, we shall see in the forth-
coming Section 4.2 that introducing a strong selection mechanism in Moran’s model
yields the deterministic logistic growth model of Section 2.2 in the limit when the
size of the population goes to infinity.
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2.4. Genealogies. In the early 1980’s, J.F.C. Kingman [17, 18] formalized the
idea of building the genealogical tree of a population by tracing backwards the
ancestral lineages, and since then, his new approach has had a considerable impact
on the way genealogies are viewed and studied. Roughly speaking, the object
of interest is the process obtained by letting time run backward and observing
the partition of the present population into the sub-populations, called blocks
thereafter, which have the same ancestors at time −t < 0 as t increases.

To describe both its mechanism and its purposes as simply as possible, we start
by considering the Moran population model which was presented in the preceding
section. Recall that for a population with size N , a pair of individuals is picked
uniformly at random after an exponential time with parameter rN , one of them
is replaced by a copy of the other, and thereafter the process continues to evolve
according to the same dynamics, independently of its past. We now assume that
r = (N −1)/2, which induces no loss of generality since we can simply rescale time
as a function of the size of the population. Loosely speaking, this means that one
unit of time corresponds in average to (N − 1)/2 generations. Observe that then
rN =

(
N
2

)
is the number of pairs of individuals at any given time. Now imagine

that the present time is used as the origin of times, and that we follow the ancestral
lineages of individuals backward in time. Specifically, we label the individuals in
the present population by {1, . . . , N} uniformly at random, and for every t ≥ 0,
we obtain a partition ΠN (t) of {1, . . . , N} into subpopulations which stem from
the same ancestor at time −t; see Figure 1 below. The process (ΠN (t))t≥0 is
called the N -coalescent. Plainly, as t increases, these partitions get coarser, and
(ΠN (t))t≥0 evolves by coalescent events which are related to certain reproduction
events in the past of the Moran process. More precisely, ΠN (0) is the partition
into singletons, and the first instant t > 0 at which ΠN (t) does not only consists of
singletons, corresponds to the last reproduction event before the present time. It
has an exponential distribution with parameter

(
N
2

)
. At this instant, the ancestral

lineages of two individuals chosen uniformly at random coalesce (i.e. merge).

• • • • • • •5 3 1 7 4 2 6

?

−t .................................................................

0 .................................................................

Figure 1: N -coalescent for N = 7

ΠN (t) = ({1, 3}, {2, 6}, {4, 7}, {5})
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By iteration, one can check that the process (ΠN (t))t≥0 is Markov and its rates
of jumps are given as follows. When the state of the process is given by some par-
tition of {1, . . . , N}, say with blocks B1, . . . , Bk, where k ≥ 2, then it stays at this
state during an exponential time with parameter

(
k
2

)
, and then two blocks chosen

uniformly at random amongst B1, . . . , Bk (and independently of the waiting time)
merge into a single block of the new partition. This corresponds to focussing on
the k ancestors in the population at time −t who generate the k subpopulations
that form the entire present population, and letting time run further backward
until a pair of their ancestral lineages meets. Equivalently, we may equip each pair
of blocks {Bi, Bj} with an independent standard (i.e., with mean 1) exponential
variable, say ei,j , so that the minimum of those exponential variables over all pos-
sible pairs, e = min1≤i<j≤k ei,j , has the exponential distribution with parameter(
k
2

)
= k(k−1)/2. If we denote by {i0, j0} the pair of indices for which the minimum

is achieved, then the two blocks Bi0 and Bj0 are merged at the instant e, that is,
they are replaced by Bi0 ∪ Bj0 . The process eventually reaches the trivial parti-
tion with a single block, which is the absorbing state. The time ζN to absorption
is the age of the most recent common ancestor to all individuals in the present
population. Note that it can be expressed as

ζN =

N∑
k=2

2

k(k − 1)
εk

where the εk are independent standard exponential variables, since then εk/
(
k
2

)
has

the exponential law with parameter
(
k
2

)
. In particular there is the bound

E(ζN ) ≤
∞∑
k=2

2

k(k − 1)
= 2.

Kingman pointed at the remarkable property of sampling consistency of N -
coalescents. For every integer N ′ < N , if we write Π′N (t) for the restriction of
the random partition ΠN (t) to {1, . . . , N ′}, then the process (Π′N (t))t≥0 is an N ′-
coalescent. By taking projective limits, this enables the construction of a version
for infinite populations. Namely, there is a process with values in the space of
partitions of N = {1, 2, . . .}, which we denote by (Π(t))t≥0, such that for every
integer N , the restriction of Π(t) to {1, . . . , N} is an N -coalescent. One calls
(Π(t))t≥0 Kingman’s coalescent.

The calculations for the expected absorption time in the paragraph above show,
that even though Π(0) is the partition into singletons and has thus infinitely many
blocks, for every t > 0, Π(t) has almost surely finitely many blocks. One says
that the coalescent comes down from infinity. This property has notably a key
role in the problem of estimating the age of “mitochondrial Eve”, i.e. the most-
recent common female ancestor of all present-date humans; see Chang [7] and the
discussion thereafter. This is an interesting instance of a concrete problem where a
mathematical model is crucially needed in order to infer estimations of quantities
to which it impossible to have a direct access.
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During the last 15 years or so, various extensions of Kingman’s coalescent have
been considered. The so-called Λ-coalescents, which were introduced indepen-
dently by Pitman and Sagitov, cover situations where multiple mergers may occur,
whereas in Kingman’s coalescent, each coalescent event involves exactly 2 blocks.
In particular, this may be relevant to describe genealogies for species with extreme
reproductive behavior (occasionally, a single parent may have a huge offspring of
the same order as the whole population), such as certain marine species. In a dif-
ferent direction, the analysis of the genealogy of spatially structured populations
motivated the introduction of spatial versions of coalescent processes. Overall,
coalescent theory has been mainly developed in the neutral case (absence of selec-
tion), with the notable exception of recent developments initiated by Brunet and
Derrida. These authors considered population of branching type in which only the
best fitted children are selected for the next generation. This changes considerably
the genealogy. Roughly speaking it is no longer described by Kingman’s coalescent
as one might have expected, but rather by the Bolthausen-Sznitman coalescent,
an important special case of a Λ-coalescent which has first appeared in connec-
tion with spin-glass models in Statistical Physics. See Berestycki, Berestycki and
Schweinsberg [3] and references therein for much more on this topic.

Kingman’s analysis of genealogies relies crucially on the hypothesis that pop-
ulations have a constant size, which is of course not very realistic when applied
to real life models (think for instant of the growth of the human population in
history), and a difficult question is to develop useful models which cover the case
when the size of the population is time-varying. Further Kingman’s coalescent
only applies to haploid populations, and genealogies for in the diploid situation
is far more complex. In particular, key biological phenomena such as recombina-
tion have to be taken into account, see in particular the work of Baake [2] and
collaborators in this area.

3. When should one expect deterministic averages ?

Roughly speaking, the pertinence of deterministic models is often justified by the
assertion that, due to the Law of Large Numbers, a quantity evaluated for each
individual and averaged over a large population shall be nearly deterministic. A
possible objection when applying bluntly this simple rule of thumb, is that the
implicit hypothesis that the population can be modeled as a family of independent
individuals with the same distribution may be unrealistic in practice, putting in
doubt the legitimacy of the conclusions. Actually, much less restrictive require-
ments than independence are needed for the validity of the conclusions of Law of
Large Numbers; and the issue of whether an average over a large population is es-
sentially deterministic or random, can be clarified by a simple covariance analysis.
Recall that, roughly speaking, a square integrable random variable is close to a
constant (which then coincides with its mathematical expectation) if and only if
its variance is small. We shall now present this covariance analysis tailored for our
purposes.



12 Jean Bertoin

Consider for every integer n ≥ 1, a random population of size P (n) ≥ 1, say
Pn = {xi : i = 1, . . . , P (n)}, where the labelling of the individuals is irrelevant for
our purposes, and let fn : Pn → R denote some real-valued function evaluated for
each individual of the population. We may think of fn(x) as some real trait, that
is, a real number measuring some characteristic of the individual x; for instance,
fn(x) may denote the adult size of x, or the weight of x at birth, etc. We are
interested in the average of fn over the population,

f̄n =
1

P (n)

P (n)∑
i=1

fn(xi),

which is a random quantity since the population is random. Roughly speaking, the
next result provides an elementary answer – actually, almost a tautology – to the
question of whether f̄n is nearly deterministic when n is large. Recall that when ξ
and ξ′ are two (real) random variables, their covariance is denoted by

Cov(ξ, ξ′) = E(ξξ′)− E(ξ)E(ξ′),

whenever this quantity is well-defined.

Lemma 3.1. For each n ≥ 1, sample two individuals Xn and X ′n in the population
Pn uniformly at random with replacement, and set ξn = fn(Xn) and ξ′n = fn(X ′n).
Assume further that

sup
n≥1

E(ξ2n) <∞.

Then for every ` ∈ R, the following two assertions are equivalent:

(i) limn→∞ f̄n = ` in L2(P).

(ii) limn→∞ E(ξn) = ` and limn→∞Cov(ξn, ξ
′
n) = 0.

Proof. Because ξn and ξ′n are two traits sampled uniformly at random with re-
placement, we have

E (g(ξn, ξ
′
n)) = E

 1

P (n)2

P (n)∑
i=1

P (n)∑
j=1

g(fn(xi), fn(xj))


for every measurable function g : R2 → R+. We deduce that

E(f̄n) = E(ξn) = E(ξ′n) and E(f̄2n) = E(ξnξ
′
n) .

As a consequence, the variance of f̄n is simply given by

Var(f̄n) = Cov(ξn, ξ
′
n),

and our claim then follows easily.
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Remark 3.2. This elementary second moment analysis lies at the heart of the
notion of propagation of chaos, developed by Marc Kac [16], which is also relevant
for asymptotic study of large populations.

Roughly speaking, Lemma 3.1 shows that for the empirical average of a real
trait over a large random population to be close to a constant, the correlation
between the traits of two randomly sampled individuals has to be small. Let us
now conclude this section by illustrating Lemma 3.1 with the following simple
example. Consider a population model with non-overlapping generations, and
some real trait t for that population. Imagine now that traits are transmitted
from parents to children up-to an independent perturbation η which has a fixed
distribution. That is, if y is a child of x, then t(y) = t(x) + ηy, where ηy is a
random variable distributed as η. Assume also that the ηy are further independent
for different individuals, and that η is centered [E(η) = 0], and has finite variance
σ2 = E(η2) <∞.

We write Pn for the population at the n-th generation, which has size Card(Pn) =
P (n). For every r ∈ R, we are interested in the proportion of individuals at the
n-th generation having a trait smaller than rσ2

√
n, that is

f̄n(r) =
Card{x ∈ Pn : t(x) ≤ rσ2

√
n}

Card(Pn)
.

Let us assume that if Xn and X ′n denote two individuals picked uniformly at
random in the population Pn, and if γn ≤ n denotes the generation of the most
recent common ancestor of Xn and X ′n, then

lim
n→∞

E
(
γn√
n

)
= 0. (6)

This is a very mild assumption which is fulfilled by many natural models; note that
it also implies that limn→∞ P (n) =∞, as otherwise the probability that Xn = X ′n
would not tend to 0 as n→∞ and (6) would fail.

We assert that then, the repartition of traits in the population is asymptotically
Gaussian, viz.

lim
n→∞

f̄n(r) =
1√
2π

∫ r

∞
exp(−x2/2)dx. (7)

Let us now briefly show how this follows from Lemma 3.1. Note that the traits
of Xn and X ′n can be expressed in terms of the trait, say τn, of their most recent
common ancestor, in the form

t(Xn) = τn + βn, t(Xn) = τn + β′n

with
βn = ηγn+1 + · · ·+ ηn, β′n = η′γn+1 + · · ·+ η′n,

where γn stands for the generation of the most recent common ancestor of the two
individuals, and η1, . . . , ηn and η′1, . . . , η

′
n are independent copies of η.
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On the one hand, the trait of the most recent common ancestor of Xn and X ′n
has the same law as t0 +η1 + · · ·+ηγn , where t0 denotes the trait of the ancestor of
the entire population and may be assumed deterministic for the sake of simplicity,
and as a consequence

E(τn) = t0 and Var(τn) = E(η)× E(γn).

We then see from (6) that E(τ2n/n) converges to 0 as n→∞.
On the other hand, an easy application of the Central Limit Theorem combined

with the assumption (6) shows that βn/σ
√
n and β′n/σ

√
n converge in distribution

as n tend to ∞ towards a pair of independent standard Gaussian variables. We
conclude from above that the same holds for the rescaled traits t(Xn)/σ

√
n and

t(X ′n)/σ
√
n. In particular, if fn denotes the indicator function of the interval

(−∞, rσ2
√
n], then, as n→∞

E(fn(Xn)) = P(t(Xn) ≤ rσ2
√
n) −→ 1√

2π

∫ r

∞
exp(−x2/2)dx,

and Cov(fn(Xn), fn(X ′n))→ 0. Since f̄n(r) can be expressed in the form

f̄n(r) = P (n)−1
∑
x∈Pn

fn((x)),

the conclusion (7) follows from Lemma 3.1.

Remark 3.3. The example presented above can be considerably generalized in
the setting of branching random walk, where (7) can be viewed as an elementary
version of much deeper limit theorems due mainly to Biggins; see e.g. [4].

4. Sources of random averages in large populations

We shall now discuss situations where the empirical average of a trait remains
intrinsically random, even for large populations. Keeping in mind the elementary
Lemma 3.1, we shall describe circumstances where, even though the size of the
population tends to infinity, the traits of two randomly sampled individuals re-
main correlated. We stress that these simple examples aim at illustrating typical
phenomena rather than at describing realistic population models.

4.1. The effect of small ancestral populations. The first example illustrates
the classical effect of small ancestral populations; the informal idea is that ran-
dom events should have in general a larger stochastic impact on small populations
than on large ones, due to averaging effects for large populations, and that this
randomness can then propagates to the next generations.

We consider a population modeled by a simple Pólya urn. That is, imagine
that at initial time, we have two individuals, one carrying allele A and the other
one carrying allele a, which are viewed as two balls, one labelled A and one labelled
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a, placed in a urn with infinite capacity. At each step, we pick a ball in the urn
uniformly at random, note its label, and then replace it into the urn together with
an additional ball having the same label. The interpretation in terms of population
dynamics is that at each step, an individual is picked uniformly at random in the
current population, and gives birth to a clone, that is that types are transmitted
without change from parents to children.

At first sight, it may seem awkward to model a population as an urn2, however,
this is precisely what happens in the following situation. A Yule process (Y (t))t≥0
is one of the simplest random population process in continuous time. It is a pure
birth process, which describes the evolution of the size of a population in which each
individual gives birth to a clone at rate 1, independently of the other individuals.
Imagine now that a two-type Yule process starts from an individual with allele A
and an individual with allele a (alleles are implicitly assumed to be neutral for the
reproduction). When the population reaches size n, it remains unchanged for an
exponentially distributed time with parameter n, and then an individual is selected
uniformly at random in the current population and duplicated. So if we observe a
two-type Yule process at the sequence of times when individuals duplicate, we get
precisely the dynamics of a Pólya urn.

We are interested in the repartition of alleles in the population, and write R(n)
for the proportion of individuals carrying allele A when the total population reaches
size n, that is after n− 2 steps. It is well-known and easy to prove that as n→∞,
R(n) converges to a random variable R(∞) which has the uniform distribution on
[0, 1]. For instance, one can use the easy fact that a Yule process started from
a single individual grows exponentially fast as a function of time; more precisely
limt→∞ e−tY (t) = W where W is a random variable with the standard exponential
distribution, viz. P(W > x) = e−x for all x ≥ 0. In our situation, we have two
independent Yule processes, say (YA(t))t≥0 and (Ya(t))t≥0 in the obvious notation,
and the proportion of individuals carrying allele A thus fulfills

lim
t→∞

YA(t)

YA(t) + Ya(t)
= lim
t→∞

e−tYA(t)

e−tYA(t) + e−tYa(t)

=
WA

WA +Wa

where WA and Wa are two independent standard exponential random variables,
so that the ratio WA/(WA +Wa) has the uniform distribution on [0, 1].

So even though the size of the population tends to infinity, the repartition of
alleles remains intrinsically random. Actually, the randomness of the repartition is
essentially built at the early stages of the process when the population is still small.

2Actually, urn models can be quite useful for population modeling. A further important
example is Hoppe’s urn which can be depicted as follows. We start with an urn with two balls,
one with a label, say A, and one unlabeled ball and proceed as in Pólya’s model, except that
when the unlabelled ball is picked, then it is replaced in the urn together with a ball having a new
label which was not present in the urn before. This can be used as a simple model for neutral
mutations, and explain the celebrated Ewens sampling formula (which is further discussed in
the next section) and its connections to Poisson-Dirichlet random partition for the repartition of
alleles.
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Figure 2 :
Two simulations of a Polya urn illustrating convergence to a random limit.

This phenomenon is course much more general than discussed in this elementary
example.

Last, it may be also interesting to compare with Lemma 3.1. What goes wrong
when we try to apply Lemma 3.1, is that when we sample at random two individuals
in the population when it reaches size n, and for i = 1, 2, write ξi(n) = 1 if the
i-th sampled individual carries allele A and ξi(n) = 0 otherwise, then when n is
large

P(ξ1(n) = ξ2(n) = 1) = P(ξ1(n) = ξ2(n) = 0) ∼ 1/3

and
P(ξ1(n) = 1, ξ2(n) = 0) = P(ξ1(n) = 0, ξ2(n) = 1) ∼ 1/6.

That is, the correlation between two randomly sampled individuals persists even
when the population is large.

4.2. Role of the regimes. Lemma 3.1 shows that non-deterministic averages
over large populations should be expected whenever two randomly picked individ-
uals remain asymptotically correlated when the size of the population tends to
infinity. Intuitively, the correlation between individuals stems from their common
history, whereas the genetic material transmitted from an ancestor tends to fade
away generation after generation, for instance due to new mutations. Roughly
speaking, we may expect that the older the common ancestors are and the faster
traits evolve, the smaller the correlation between individuals is.

We shall illustrate this idea with two fairly different examples which are both
based on Moran’s model for a population with large size. In the first example,
neutral mutations are superposed to the model, whereas in the second example,
we shall be interested in the invasion of an advantageous allele.

4.2.1. Rare mutations. So let us consider Moran’s population model, for a
population with a large size N . Imagine that some gene has different alleles,
which are all neutral for the reproduction. Let A = {a1, . . . , aj} denote the set of
alleles, and for the purpose of modeling, simply assume that a mutation process



Mathematical Models for Populations: Randomness versus Determinism 17

is superposed (independently) to the evolution of the Moran process. Specifically,
consider a transition kernel q on A, that is, for each a ∈ A, q(a, ·) is a probability
measure on A with q(a, a) = 0 for all a ∈ A. So for two different alleles, a
and a′, q(a, a′) is the probability that, provided that a mutation occurs while
an individual carrying allele a duplicates, this produces an individual with allele
a′. In other words, during a reproduction event when an individual, say x, is
replaced by a copy y′ of an individual, say y, if y carries allele a ∈ A, then y′ also
carries allele a with probability 1− p(N), and carries a different allele a′ ∈ A with
probability p(N)q(a, a′), where p(N) is a small parameter which depends only on
N and represents the rate of mutations.

We are interested in the repartition of alleles in the current population, and
more precisely, in the proportion f̄N of individuals carrying a given allele a. That
is, for every individual x, we write fN (x) = 1 if x carries allele a and fN (x) = 0
otherwise, and f̄N = 1

N

∑
fN (x), where the sum is taken over the N individuals of

the present population. For this, we pick two individuals XN and X ′N uniformly
at random in the present population, and write ξN = fN (XN ) and ξ′N = fN (X ′N ).
With no loss of generality, we assume that the lifetime of each individual in the
Moran model has the exponential distribution with parameter r = (N − 1)/2, so
that the genealogy is described by an N -coalescent; see Section 2.4. In particular,
the age of the most recent common ancestor, say YN , of XN and X ′N has a standard
exponential distribution, say e, and therefore there are about e×N/2 individuals
along the ancestral lineage from XN (respectively, X ′N ) to YN .

We now see that the asymptotic correlation between ξN and ξ′N depends on
whether the rate of mutations p(N) is much smaller than 1/N , or much larger that
1/N , or of order 1/N . Specifically:

• if p(N)� 1/N , then the probability that a mutation occurred on the ances-
tral lineages from XN and from X ′N to their common ancestor is small when
N is large, and therefore ξN = ξ′N with high probability. In this situation,
the population at the present time is essentially monomorphic, that is nearly
all individuals carry the same allele (which is the allele carried by their most
recent common ancestor YN ). The precise value of that allele is random, its
distribution being given by the invariant law π of the Markov chain on A
with transition kernel q. Then f̄N is statistically close to a Bernoulli random
variable β, with P(β = 1) = π(a) and P(β = 0) = 1− π(a).

• if p(N) � 1/N , then with high probability, a large number of random mu-
tations have occurred on the ancestral lineages from XN and from X ′N to
their common ancestor, and ξN and ξ′N are asymptotically uncorrelated.
The proportion of individuals carrying allele a is nearly deterministic, with
f̄N ∼ π(a).

• In the critical case when p(N) ∼ θ/N for some constant θ > 0, then one can
prove that the pair (ξN , ξ

′
N ) converges in distribution to a pair of random

variables which are neither identical, nor independent. It follows that f̄N
converges in distribution to a random variable, which has not a Bernoulli
law.
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We further mention that in the same circle of ideas, but now in the setting of the
infinite allele model of Kimura and Crow, one of the most remarkable applications
of Kingman’s coalescent is an illuminating explanation of the celebrated sampling
formula due to Warren Ewens. Roughly speaking, imagine that each individual
in Moran’s model may mutate at (critical) rate θ/N , and then bears a new (neu-
tral) allele which was never observed before. Each allelic population eventually
becomes extinct, and one can check that the partition of the population at time t
into subfamilies sharing the same allele converges in distribution to a certain sta-
tistical equilibrium as t goes to infinity. Ewens obtained an explicit formula for the
equilibrium distribution, which arises not only in the context of population mod-
els, but much more generally in a variety of combinatorial structures. Kingman
has shown that Ewens sampling formula can be recovered by superposing random
marks on the branches of the genealogical tree describing an N -coalescent, and
then analyzing the clusters of individuals which are connected by branches having
no mark.

4.2.2. Strong or weak selection. Here, just as in Section 2.4, we work with
Moran’s model for a population of size N � 1, and suppose for simplicity that
individuals carry either allele a or allele A. Whereas we assumed in Section 2.4
that these two alleles are neutral for reproduction, we suppose here that allele a
is advantageous with selection coefficient s ∈ (0, 1), which may depend on the size
of the population. This means that for each reproduction event, when a pair of
individuals of different types (a,A) is picked, then it is replaced by a pair (a, a)
with probability (1 + s)/2, and by a pair (A,A) with probability (1− s)/2 (so the
neutral case would correspond to setting the selection coefficient s = 0). Writing
P sN (t) for the number of individuals carrying allele a at time t, just as in the
case without selection discussed in Section 2.4, one easily checks that the process
(P sN (t) : t ≥ 0) is Markovian, now with infinitesimal generator

AsNf(j) = r ((1 + s)f(j + 1) + (1− s)f(j − 1)− 2f(j))
j(N − j)
N − 1

Note that this can also be expressed in the form

AsNf(j) = ANf(j) + rs (f(j + 1)− f(j − 1))
j(N − j)
N − 1

,

where ANf(j) = A0
Nf(j) is given in (5).

The upshot of computing explicitly infinitesimal generators is that this enables
the use of powerful techniques known as diffusion-approximation to establish limit
theorems (in a strong or in a weak sense) for Markov processes from the asymptotic
behaviour of their infinitesimal generators. We refer to Ethier and Kurtz [12] or
Etheridge [11] for a detailed account of this concept, which is especially useful for
the study of large population models. In the present setting, this enables to prove
that as the size N of the total population goes to infinity, in the regime of called
strong selection when the parameter s does not depend on N , the ratio process
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Figure 3 : Ratio process for a Moran process with selection:
strong selection (left) and weak selection (right)

RsN (t) = P sN (t)/N converges, limN→∞RsN (t) = Rs(t), where Rs : [0,∞) → [0, 1]
is a deterministic function which solves the logistic growth equation

dRs(t)

dt
= rsRs(t)(1−Rs(t)).

On the other hand, when the selection parameter s depends on N such that s ∼
c/N with c > 0 constant, which is known as a regime of weak selection, the ratio
process properly time-rescaled, RsN (tN) = P sN (tN)/N , converges, now merely in
distribution, to a Wright-Fisher diffusion process with selection; see for instance
Etheridge [11]. Figure 3 above illustrates these two cases; note that in the strong
selection case, the ratio process is close to the curve of a deterministic logistic
growth function, and that in the weak selection case, the favorable allele may
nonetheless disappear (which would be much more unlikely in the strong selection
regime).

5. Conclusions

Modeling biological phenomena has been an important source of studies in ap-
plied mathematics for many years. The main issues are to come up with models
which are both realistic enough, and thus capture the essence of the phenomena
of interest, and nonetheless simple enough, and thus remain tractable for statis-
tical analysis. Finding the right trade-off between realism and simplicity is often
a difficult problem, and depends of the nature of the questions to be answered.
The same applies when deciding whether to opt for a deterministic or a stochastic
model.

In this text, we have merely discussed a few important population models,
even though of course, mathematical modeling in Biology, and more generally in
Life Sciences, concerns a great variety of aspects aside from population dynam-
ics. Further, many more population models can be found in the literature, e.g.
for propagation of infectious diseases, evolutionary invasion or adaptive dynamics,
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parasites, etc. For individual-based models, traits of individuals are correlated
through common ancestors, and in general cannot be viewed as independent vari-
ables. This may play an important role for determining whether average features
over large populations are nearly deterministic or intrinsically random quantities.
We have illustrated the possible impact of the small size of ancestral populations
(which is often referred to as bottleneck), of the rates of mutations, and of the
strength of selection. Other phenomena may of course also have a crucial role, for
instance rare extreme events (think of the impact of the collision of a large asteroid
with Earth).

Without any doubt, Life Sciences will continue to motivate frontline researches
in mathematical modeling for many more years. Let us merely point at one chal-
lenging problem amongst others in this area. Most models of evolution focus on
the haploid case and on already-existing genes, and describe how natural selection
affects their frequencies depending on their relative fitnesses. The problem of mod-
eling sexual reproduction, including genetic recombination and generation of new
alleles that may appear through mutations, and of describing their dynamics and
their genealogies, has only been partly addressed so far and should be the subject
of deeper investigations in the future.
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