
HAL Id: hal-01262663
https://hal.science/hal-01262663v1

Submitted on 27 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Curvature Tensor Visualization on Digital
Surfaces

Hélène Perrier, Jérémy Levallois, David Coeurjolly, Jean-Philippe Farrugia,
Jean-Claude Iehl, Jacques-Olivier Lachaud

To cite this version:
Hélène Perrier, Jérémy Levallois, David Coeurjolly, Jean-Philippe Farrugia, Jean-Claude Iehl, et al..
Interactive Curvature Tensor Visualization on Digital Surfaces. DGCI2016, Apr 2016, Nantes, France.
pp.282–294, �10.1007/978-3-319-32360-2_22�. �hal-01262663�

https://hal.science/hal-01262663v1
https://hal.archives-ouvertes.fr

Interactive Curvature Tensor Visualization on
Digital Surfaces?

Hélène Perrier1, Jérémy Levallois1,2, David Coeurjolly1, Jean-Philippe
Farrugia1, Jean-Claude Iehl1, and Jacques-Olivier Lachaud2

1 Université de Lyon, CNRS
LIRIS, UMR5205, F-69621, France

2 Université de Savoie Mont Blanc, CNRS
LAMA, UMR5127, F-73776, France

Abstract. Interactive visualization is a very convenient tool to explore
complex scientific data or to try different parameter settings for a given
processing algorithm. In this article, we present a tool to efficiently an-
alyze the curvature tensor on the boundary of potentially large and dy-
namic digital objects (mean and Gaussian curvatures, principal curva-
tures, principal directions and normal vector field). More precisely, we
combine a fully parallel pipeline on GPU to extract an adaptive triangu-
lated isosurface of the digital object, with a curvature tensor estimation
at each surface point based on integral invariants. Integral invariants be-
ing parametrized by a given ball radius, our proposal allows to explore
interactively different radii and thus select the appropriate scale at which
the computation is performed and visualized.

Keywords: Isosurface Visualization, Digital Geometry, Curvature Es-
timation, GPU.

1 Introduction

Volumetric objects are being more and more popular in many applications rang-
ing from object modeling and rendering in Computer Graphics to geometry
processing in Medical Imaging or Material Sciences. When considering large vol-
umetric data, interactive visualization of those objects (or isosurfaces) is a com-
plex problem. Such issues become even more difficult when dynamic volumetric
datasets are considered. Beside visualization, we are also interested in perform-
ing geometry processing on the digital object and to explore different parameter
settings of the geometry processing tool. Here, we focus on curvature tensor
estimation (mean/Gaussian curvature, principal curvatures directions. . .). Most
curvature estimators require a parameter fixing the scale at which the compu-
tation is performed. For short, such parameter (integration radius, convolution

? This work has been mainly funded by DigitalSnow ANR-11-BS02-009, KIDICO
ANR-2010-BLAN-0205 and PRIMES Labex ANR-11-LABX-0063/ ANR-11-IDEX-
0007 research grants.

kernel size. . .) specifies a scale for analyzing the object surface, and is natu-
rally related to the amount allowed perturbations on input data. As a conse-
quence, when using such estimators, exploring different values of this parameter
is mandatory. However, this is usually an offline process, due to the amount of
computations that need to be done.

Contributions In this work, we propose a framework to perform interactive
visualization of complex 3D digital structures combined with a dynamic cur-
vature tensor estimation. We define a fully data parallel process on the GPU
(Graphics Processor Unit) to both efficiently extract adaptive isosurface and
compute per vertex curvature tensor using Integral Invariants estimators. This
system allows us to visualize curvature tensor in real-time on large dynamic
objects. Our approach combines a GPU implementation of pointerless octrees
to represent the data, an adaptive viewpoint-dependent mesh extraction, and a
GPU implementation of integral invariant curvature estimators.

Related works Extracting and visualizing isosurface on volumetric data
has been widely investigated since the seminal Marching Cubes approach by
Lorensen and Cline [11]. This approach being data parallel, GPU implemen-
tation of this method is very efficient [16]. However, such technique generates
a lot of triangles which is not well suited to large digital data. Hence, adaptive
approaches have been proposed in order to optimize the triangulated mesh reso-
lution according to the object geometry or the viewpoint. In this topic, many so-
lutions have been developed in Computer Graphics [15, 14, 6, 9, 10]. The method
developed by Lengyel et al. [6] suits best our needs. It combines an octree
space partitioning with new Marching Cubes configurations to generate adap-
tive meshes on CPU from static or near static data. We propose here a full GPU
pipeline inspired by this method, that maintains a view dependent triangulation.
Our high framerate allows us to inspect dynamic 3D data in real-time.

Curvature estimation on discrete or digital surface has also been widely inves-
tigated. In [2], authors propose digital versions of Integral Invariant estimators
[13, 12] in order to estimate the complete curvature tensor (mean/Gaussian cur-
vatures, principal curvatures, principal curvature directions, normal vector field)
on digital surfaces. Such approaches are based on an integration principle using
a ball kernel of a given radius. Additionally, authors have demonstrated that
these estimators have multigrid convergence properties. In this article, we also
propose an efficient GPU implementation of such estimators to visualize such
curvature fields in real-time and to interactively change the value of the kernel
radius.

In this paper, we first present the previous works on curvature tensor esti-
mation. Then, we propose an efficient GPU approach to extract a triangulated
isosurface from a digital object. Finally, we propose a fully-parallel GPU pipeline
to compute curvature tensor in real-time and present our results.

×x

BR (x)

∂X
X

h · z ∈ X ∩BR (x)

BR (x)

×x

h
∂X ∂[Z]h

Fig. 1. Integral invariant computation (left) and notations (right) in dimension 2 [2].

2 Curvature Tensor Estimation

In our context, we consider digital shapes (any subset Z of Zd) and boundaries
of digital shapes Bd(Z). We denote by Gh (X) the Gauss digitization of a shape
X ⊂ Rd in a d−dimensional grid with grid step h, i.e. Gh (X) :={z ∈ Zd, h · z ∈
X}. For such digitized set Z :=Gh (X), [Z]h is a subset of Rd corresponding to
the union of hypercubes centered at h · z for z ∈ Z with edge length h. By doing
so, both ∂X and ∂[Z]h are topological boundaries of objects lying in the same
space (see Fig. 1-b). Note that the combinatorial digital boundary Bd(Z) of Z
made of cells in a cellular Cartesian complex (pointels, linels, surfels, . . .), can
be trivially embedded into Rd such that it coincides with ∂[Z]h.

In [1], authors define a 2D digital curvature estimator κ̂R and a 3D digital

mean curvature estimator ĤR based on the digital volume estimator V̂ol(Y, h) :=

hdCard(Y) (area estimator Ârea(Y, h) in dimension 2):

Definition 1 Given the Gauss digitization Z := Gh (X) of a shape X ⊂ R2

(or R3 for the 3D mean curvature estimator), digital curvature estimators are
defined for any point x ∈ R2 (or R3) as:

∀0 < h < R, κ̂R(Z,x, h) :=
3π

2R
−

3Ârea(BR/h (x/h) ∩ Z, h)

R3
, (1)

ĤR(Z,x, h) :=
8

3R
−

4V̂ol(BR/h (x/h) ∩ Z, h)

πR4
. (2)

where BR/h (x/h) is the ball of digital radius R/h centered on digital point
(x/h) ∈ Z.

Such curvature estimators have multigrid convergence properties [1]: when the
digital object becomes finer and finer, i.e. when the digitization step h tends to
zero, the estimated quantities on ∂[Gh (X)]h converges (theoretically and exper-

imentally) to the associated one on ∂X in O
(
h

1
3

)
for convex shapes with at

least C3-boundary and bounded curvature (setting R :=kh
1
3 for some k ∈ R).

In [2], authors have also defined 3D digital principal curvature estimators κ̂R
1

and κ̂R
2 on Z ⊂ Z3 based on digital moments:

Definition 2 Given the Gauss digitization Z :=Gh (X) of a shape X ⊂ R3, 3D
digital principal curvature estimators are defined for any point x ∈ R3 as:

∀0 < h < R, κ̂R
1 (Z,x, h) :=

6

πR6
(λ̂2 − 3λ̂1) +

8

5R
, (3)

κ̂R
2 (Z,x, h) :=

6

πR6
(λ̂1 − 3λ̂2) +

8

5R
, (4)

where λ̂1 and λ̂2 are the two greatest eigenvalues of the covariance matrix of
BR/h (x/h) ∩ Z.

The covariance matrix needs to compute digital moments of order 0, 1 and 2 (see
Equation 20 of [2] for more details). These estimators are proven convergent

in O
(
h

1
3

)
when setting the ball radius h in R = kh

1
3 , where k is a constant

related to the maximal curvature of the shape, on convex shapes with at least
C3-boundary and bounded curvature [2]. Additionally, eigenvectors associated to

λ̂1 and λ̂2 of the covariance matrix are principal curvature direction estimators
ŵR

1 and ŵR
2 . The smallest eigenvector corresponds to the normal direction n̂R

at x. Convergence results can be found in [5].
It has been shown that the radius of the ball depends on the geometry of the

underlying shape. In [7], a proposal was made for a parameter-free estimation of
the radius of the ball by analyzing the shape w.r.t. the local shape geometry using
maximal digital straight segments of the digital boundary. In [8], these estimators
have been analyzed in scale-space (for a range of radii) for a given digital shape.
This allows to detect features of the shape thanks to the behavior of estimators on
singularities. As a consequence, for all these integral invariant based approaches,
we need to consider different ball radius which could be time consuming when
implemented on CPU. We propose here a fully parallel implementation on GPU
allowing us to change the radius and thus update the estimated quantities in
real-time.

3 Isosurface Extraction on GPU

In this section, we detail the adaptive isosurface extraction algorithm. The pro-
posed approach uses an octree representation of the input object on which an
adaptive Marching Cube builds the isosurface efficiently. Such hierarchical rep-
resentation of the object allows us to handle large datasets and to locally adapt
the level of details w.r.t. the geometry or camera position. We first present the
octree representation and then the isosurface extraction.

3.1 Linear Octree Representation

Representing a hierarchical structure on GPU is usually challenging since such
a data parallel component is unable to handle recursivity. Efficient spatial tree
encoding can be achieved using pointerless structures such as linear quadtrees
or octrees Gargantini [4]. This structure indexes each cell by a Morton code:

xy0

xy2

xy1

xy3

0 1

32

x0 x1

x2 x3

220

20

0 1

3
21

23
223222

221

Fig. 2. Morton codes associated to cells of a linear quatree. Each morton code of a
child cell is obtained by adding a suffix to its parent code (left). The adaptive rep-
resentation consists of quadtree cells whose depth is view point dependent (middle).
Finally, adaptive Marching Cubes is used to generate the triangulation (right).

the code of children cells are defined by the code of the parent suffixed by two
bits (in dimension 2, three bits in dimension 3) (see Figure 2-left). A cell’s code
encodes its position w.r.t. its parent cell and its complete path to the tree root.
Hence, the tree is fully represented as a linear vector of its leaves. Furthermore,
cell operations such as subdivision, merging can be efficiently implemented using
bitwise operations on the Morton code. In the following, we use the GPU friendly
implementation proposed by Dupuy et al. [3].

3.2 Data parallel and adaptive mesh generation

Using this spatial data structure, a triangulated mesh can be constructed using
Marching Cubes [11] (MC for short): the triangulation is generated from local
triangle patches computed on local cell configurations. Such approach is fully
parallel and easy to implement on the GPU. However, since adjacent cells may
not have the same depth in the octree, original Lorensen and Cline’s rules need
to be updated (see Figure 2-right). Many authors have addressed this problem
both for primal and dual meshes [15, 14, 6, 9, 10].

In the following, we use the algorithm proposed by Lengyel et al. [6]. First,
this approach forces the octree structure to make sure that the depth difference
between any two adjacent cells is at most one. Then, Lengyel et al. introduce
the concept of transition cells. Those cells are defined to be inserted between
two neighboring octree cells of different depth. With specific MC configurations
for their triangulation, a crack free mesh can be extracted.

Similarly to original MC algorithm, this approach is well suited to a GPU
implementation: given a set of cells (a vector of morton codes), each triangle
patch can be extracted in parallel for both regular cells and transition cells.

3.3 Level of Details Criteria and Temporal Updates

As illustrated in Figure 2-middle, we propose a viewpoint dependent criterion to
decide if a cell needs to be refined: the closer we are to the camera, the finer the
cells are. Such a criterion is also well suited to GPU since it can be evaluated
independently on every cell. Figure 3 illustrates our level of details (LoD for
short) criterion. In dimension 2, if α denotes the viewing angle, an object at a

distance d from the camera has a projected size on screen of 2 · d · tan(α). (see
Figure 3-left). Our distance criterion is based on the ratio (visibility ratio in the
following) between the cell diameter l(c) (power of 2 depending on the depth),
and its projected size. For a given cell c, split and merge decision are based on
this visibility ratio:

– c is split if its children cells have a visibility ratio greater than constant k ;
– c and its sibling cells are merged if their parent cell c′ has a visibility ratio

lower than k ;
– otherwise, the cell c stays for the next frame.

α
dc

l(c)

Fig. 3. Notations (left) and adaptive meshing in dimension 2 using the LoD distance
and angular criterion (right).

Using such a criterion, split and merge decisions are computed in parallel from
the morton codes of all cells.

Once decisions have been made, a new set of cells is sent to the mesh gener-
ation step described above. Finally, before constructing the triangulation from
remaining cells and transition cells, geometrical culling is performed in order
to skip the triangle patch construction for cells that are not visible. Figure 4
illustrates the overall fully data parallel pipeline.

Octree t+1

Regular Cells

Transition Cells

Update

Culling
TriangulationOctree t Curvature Tensor

Fig. 4. GPU pipeline summary. Data buffers are represented in green and computations
in red. Each computation retrieves data from a buffer and fills a new one.

4 Interactive Curvature Computation on GPU

We first present design principles for the GPU implementation and then present
our approaches. The general idea is to perform an Integral Invariant computation
on GPU at each vertex of the generated triangulated mesh. Since GPU have
massively parallel architectures, we can do all those computations in parallel to
obtain a very efficient implementation. Please note that when the LoD criterion
is removed, each MC vertex is exactly centered at a surfel center. At different
depth of the octree, MC vertices still correspond to surfel centers of subsampled
versions of the input object. Hence, Integral Invariant framework defined in
Section 2 is consistent with the triangulated surface obtained on GPU: triangles
are used for visualization purposes but all computations are performed on the
digital object Gh (X) for estimators (1), (2), (3) and (4).

To implement the integration on BR (x)∩X (Fig. 1), several strategies have
been evaluated.

4.1 Per Vertex Real-time Computation on GPU

Naive Approach. A first simple solution consists in scanning all digital points,
at a given resolution, lying inside the integration domain (Fig. 5-left) and then
estimating the geometrical moment as the sum of the geometrical moments of
each elementary cubes lying in the intersection (see Eq. (1) to (4)). This is
exactly similar to what is done on the CPU. On the GPU, we can exploit mipmap
textures to obtain multi-resolution information. If the input binary object is
stored in a 3D texture, GPU hardware constructs a multi-resolution pyramid
(mipmap) such that 8 neighboring voxel intensities at level l are averaged to
define the voxel value at level l + 1. If the level 0 corresponds to the binary
input object, at a given level l, a texture probe at a point (x, y, z) returns the
fraction of Gh (X) belonging to the cube of center (x, y, z) and edge length 2l.
As a consequence, we can approximate the volume of BR (x)∩X by considering
mipmap values at a given resolution l (Fig. 5-right). In this case, errors only
occurs for cells lying inside X (with density 1) not entirely covered by BR (x).
Furthermore, the mipmap texture can be used to design, using a single texture
probe, a fast inclusion test of a given cell c at level l into the shapes: we say that
c is in X if its density (retrieved from the texture probe at level l) is greater than
1/2. The idea here is to mimic a kind of adaptive Gauss digitization process.

Hierarchical Decomposition. Using the hierarchical nature of the mipmap tex-
ture, we could also consider hierarchical decompositions of BR (x). The idea
is to decompose the ball into mipmap cells of different resolution in order to
limit the number of texture access (important bottleneck on GPU hardwares)
and to get better approximated quantities. On the GPU, computing a hierar-
chical decomposition of BR(x) at each point x is highly inefficient since the
hardware optimizes the parallelism only when the micro-program described in
the shader has a predictive execution flow. Hence, implementing the recursive
algorithm (or its de-recursified version) requires a lot of branches (conditional

Fig. 5. Here are the three approaches we used to evaluate the integrand. (left) is
the naive approach, where we sum all the digital points that are inside the integrand
domain (middle) shows the hierarchical decomposition of the ball, thus limiting the
number of texture probes to do. (right) illustrates the dynamic approach, we probe the
textures at a higher resolution and we refine it at each frame until we reach the finer
level.

if tests) in the flow. We have thus considered a fast multi-resolution approxi-
mation as illustrated in Fig. 5-middle: for a given radius R, we precompute a
hierarchical decomposition of BR. Such decomposition is made of octree cells
at different resolutions. At a given MC vertex x, the algorithm becomes simple
since we just scan the ball cells and estimate the area (or other moments) from
the mipmap values associated to this cell. Note that these precomputed cells in
the BR decomposition may not be aligned with mipmap cells. However, we can
use GPU which interpolates mipmap values if we probe at non-discrete posi-
tions. For a given radius R, the expected number of cells in BR is in O(logR).
Implementation details on the hierarchical octree representation can be found
in the supplementary material (see Section 6).

Dynamic Refinement. In this last approach, we want to optimize the interac-
tivity and the execution flow or parallelism on GPU. The integration is simply
computed using a regular grid at different resolution l (Fig. 5-right). The shader
code becomes trivial (simple triple loop) and a lot of texture fetches are involved,
but interactivity can be easily obtained. Indeed, we consider the following multi-
pass approach:

1. When the surface geometry has been computed, we set the current level l at
an high level l := lmax of the mipmap pyramid.

2. We compute the integrals (and the curvature tensor) at the mipmap level l
and send the estimated quantities to the visualization stage.

3. If the user changes the camera position or the computation parameters, we
return to step 1.

4. If the current framerate is above a given threshold, we decrease l and return
to step 2 if the final l0 level has not been reached yet.

A consequence of the multi-pass approach is that when there is no interaction
(camera settings, parameters), the GPU automatically refines the estimation.

Even if step 2 is quite expensive, in O
((

R
2l

)3)
, the interactive control in step 3

considerably improves the interactive exploration of the tensor with fast prelim-
inary approximations which are quickly refined.

Compared to the hierarchical approach, no precomputation is required for a
given radius R. As a consequence, we could even locally adapt the ball radius to
the geometry (for instance following the octree depth of the current MC vertex).
In the next section, we evaluate the performances of both approaches.

5 Experiments

5.1 Full resolution experiment

Fig. 6. First row : Mean and Gaussian curvature estimation, (zoom of) first and second
principal directions estimation on “OctaFlower” with a digital domain of 1303. Second
row: Mean curvature computed in real-time (around 20 FPS) on a dynamic object.

We first evaluate curvature estimations on a full-resolution geometry obtained
by disabling the LoD criterion at the mesh generation step. Figure 6-top shows
results of curvature tensor estimation (mean, Gaussian, first and second principal
directions) on “OctaFlower” at level l0 (considered as our ground truth in the
following). Figure 6-bottom shows mean curvature estimation in real-time on a
dynamic object. For this case, we simply evaluate the implicit expression at each
vertex of a cell to decide if such cell is included or not into BR (x)∩X instead of
updating the mipmap texture of densities at each time step. For all illustrations,
we use directly normal vectors computed by algorithm discussed in Section 2.

Then, we compare the approximations made by computing curvature from
level l ≥ l0 in Figure 7. We can see that results using approximation seems
to quickly converge to ground truth results. Table 1 shows numerical results
of L∞ error (maximal absolute difference for all vertices) and L2 error (mean

squared errors of all vertices), as well the number of mipmap texture fetches. We
can also see that the number of texel fetch, required to compute the curvature,
reduces drastically when computing approximations. However, at higher levels,
approximation errors become more important. Those levels are thus never used in
practice, they are presented here to illustrate how the refining process converges
to the l0 level.

We also compare them with the hierarchical algorithm (as discussed in Sec-
tion 4.1). This method introduces a higher error when compared with l0. This
is due to the precomputation of the subdivision that no longer ensures to fetch
data at the center of a mipmap cell. The GPU interpolation reduces the bias,
but it does not remove it.

5.2 Fully adaptive evaluation

When dealing with large datasets, we cannot expect real-time curvature tensor
estimation if we consider the full resolution geometry, due to the huge amount
of data to process. By computing a dynamically refined approximate curvature
tensor estimation joined with an adaptive triangulation (as discussed in Sec-
tion 4.1), we manage to maintain a real-time framerate by giving control over
the amount of data to process at each frame. In Figure 8, we compare timings
(in logarithmic scale) for a triangulation that is dynamically refined according to
its distance to the camera. We measured those timings using the multiresolution
regular and the hierarchical algorithm.

First we can note that the required time to compute the ground truth curva-
ture for an object is usually as high as the time required to extract its geometry
and to compute all of the above levels. Using approximations is thus mandatory.
Another advantage with approximations is that it allows us to get a visualiza-
tion of our object as soon as we run the application. This allows for real-time
interactions with the object, required in order to change the visualized quantity,
curvature radius, etc.

It is also visible in Figure 8 that a hierarchical decomposition greatly re-
duces the curvature computation time, especially with big radii. However, due
to the precomputation and the current hierarchical structure, this algorithm is
biased and creates an error (presented in Table 1) that needs to be considered.

Figure 9 shows curvature computation and exploration in real-time on large

Fig. 7. Illustration of mean curvature computation on “OctaFlower” (digital domain
of 1303) using mipmap approximation with different levels: l3, l2, l1 and l0 (i.e. no
approximation).

H l4 l3 l2 l1 l0

Number of
texture fetches

R = 8 1468 2 28 260 2104
R = 16 5706 2 28 90 2120 17080

L∞ error
(w.r.t. l0)

R = 8 0.051 0.306 0.085 0.047 0
R = 16 0.053 0.146 0.041 0.017 0.005 0

L2 error
(w.r.t. l0)

R = 8 3.51e-05 2.67e-04 7.57e-05 2.02e-05 0
R = 16 4.43e-05 1.39e-04 4.16e-05 1.57e-05 2.07e-06 0

Table 1. Comparison of number of texture fetches, L2 and L∞ error obtained on
“OctaFlower” with a digital domain of 1303 when computing mean curvature with two
radii: 8 and 16, with hierarchical algorithm (H) and l ≥ l0 approximation algorithms.
The object is triangulated at full resolution with a regular grid and contains 282,396
vertices.

O
ct

a-
R
8

O
ct

a-
R
16

Sn
ow

-R
10

Sn
ow

-R
20

D
ra

go
n-

R
8

D
ra

go
n-

R
20

101

102

103

104

37.27

244.35 236.19

1,655.68

322.67

3,763.42

11

38.69 39.63

217.95
59.84

506.55

3.78

9.01
13.78

37.7

29.97

92.44

2.53
4.16 10.63

11.54

20.4
26.71

1
2.51

6.09
9.45

3.39
20.23

17.28 18.46

9.83 9.65

136.3 145.45

#
T

im
e

(i
n

m
s)

O
ct

a-
R
8

O
ct

a-
R
16

Sn
ow

-R
10

Sn
ow

-R
20

D
ra

go
n-

R
8

D
ra

go
n-

R
20

101

102

103

104

18.1

64.19
96.75

364.55
147.66

787.46

17.28 17.18

9.38 9.77

127.35 127.17

Fig. 8. Timings in milliseconds (in logscale) obtained while visualizing an adaptive
triangulation on three objects – “OctaFlower” (digital domain of 1303), “Snow mi-
crostructures” (2333) and “XYZ-Dragon” (5103) – by computing the curvature with a
regular grid (left) and with hierarchical algorithm (right), with two different radii for
each object. In orange color : time required to extract the triangulation. In blue color :
time required to compute the curvature tensor at different levels: from l4 (light blue)
to l0 (dark blue). Timings are given using a NVIDIA GeForce GTX 850M GPU.

datasets: “XYZ-Dragon” (with digital domain of 5123) and “Snow microstruc-
tures” (2333).

6 Conclusion and Discussion

In this article, we have proposed a fully data parallel framework on GPU hard-
ware which combines an adaptive isosurface construction from digital data with
a curvature tensor estimation at each vertex. Using this approach, we can ex-
plore in real-time different curvature measurements (mean, Gaussian, principal

Fig. 9. Left column: Mean curvature, first and second principal directions and normal
vector field estimation on “Snow microstructures” (2333 and R = 8). Right column:
Mean curvature, first and second principal directions and normal vector field estimation
on “XYZ-Dragon” (5103 and R = 8). Normal vectors are colored with a mapping of
their component to RGB color space.

directions) with different ball radii on potentially large dynamic dataset. Our
proposal relies on both a linear octree representation with Morton codes and
an efficient integral computation on GPU. The source code and additional ma-

terial (video, . . .) are available on the project website (https://github.com/
dcoeurjo/ICTV).

References

1. Coeurjolly, D., Lachaud, J.O., Levallois, J.: Integral based curvature estimators
in digital geometry. In: Discrete Geometry for Computer Imagery. pp. 215–227.
Springer (2013)

2. Coeurjolly, D., Lachaud, J.O., Levallois, J.: Multigrid convergent principal curva-
ture estimators in digital geometry. Computer Vision and Image Understanding
129, 27–41 (2014)

3. Dupuy, J., Iehl, J.C., Poulin, P.: GPU Pro 5, chap. Quadtrees on the GPU. A K
Peters/CRC Press (Mar 2014), http://liris.cnrs.fr/publis/?id=6299

4. Gargantini, I.: An effective way to represent quadtrees. Communications of the
ACM 25(12), 905–910 (1982)

5. Lachaud, J.O., Coeurjolly, D., Levallois, J.: Robust and convergent curvature and
normal estimators with digital integral invariants. In: Discrete Curvature. Lecture
Notes in Mathematics, Springer International Publishing (2016, forthcoming)

6. Lengyel, E.S., Owens, J.D.: Voxel-based terrain for real-time virtual simulations.
University of California at Davis (2010)

7. Levallois, J., Coeurjolly, D., Lachaud, J.O.: Parameter-free and multigrid conver-
gent digital curvature estimators. In: Discrete Geometry for Computer Imagery.
pp. 162–175. Springer (2014)

8. Levallois, J., Coeurjolly, D., Lachaud, J.O.: Scale-space feature extraction on digital
surfaces. Computers and Graphics p. 12 (2015)

9. Lewiner, T., Mello, V., Peixoto, A., Pesco, S., Lopes, H.: Fast generation of
pointerless octree duals. Comput. Graph. Forum 29(5), 1661–1669 (2010), http:
//dx.doi.org/10.1111/j.1467-8659.2010.01775.x

10. Lobello, R.U., Dupont, F., Denis, F.: Out-of-core adaptive iso-surface extraction
from binary volume data. Graphical Models 76(6), 593–608 (2014), http://dx.

doi.org/10.1016/j.gmod.2014.06.001

11. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. ACM Computer Graphics 21(4) (1987)

12. Pottmann, H., Wallner, J., Huang, Q., Yang, Y.: Integral invariants for robust
geometry processing. Computer Aided Geometric Design 26(1), 37–60 (2009)

13. Pottmann, H., Wallner, J., Yang, Y., Lai, Y., Hu, S.: Principal curvatures from the
integral invariant viewpoint. Computer Aided Geometric Design 24(8-9), 428–442
(2007)

14. Schaefer, S., Warren, J.: Dual marching cubes: Primal contouring of dual grids. In:
Computer Graphics and Applications, 2004. PG 2004. Proceedings. 12th Pacific
Conference on. pp. 70–76. IEEE (2004)

15. Shu, R., Zhou, C., Kankanhalli, M.S.: Adaptive marching cubes. The Visual Com-
puter 11(4), 202–217 (1995)

16. Tatarchuk, N., Shopf, J., DeCoro, C.: Real-time isosurface extraction using the gpu
programmable geometry pipeline. In: ACM SIGGRAPH 2007 courses. pp. 122–137.
ACM (2007)

