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APPLICATION OF STOCHASTIC FLOWS TO THE INTERFACE

SDE ON A STAR GRAPH

Hatem Hajri
(1)

and Marc Arnaudon
(2)

Abstract. Using a perturbation method of stochastic flows of kernels, we prove
some results on a particular coupling of solutions to the interface SDE on a star
graph, recently introduced in [8]. This coupling consists in two solutions which
are independent given the driving Brownian motion. As a consequence, we deduce
that if the star graph contains 3 or more rays, the argument of the solution at a
fixed time is independent of the driving Brownian motion.

1. Introduction and main results

Walsh Brownian motion [1] has acquired a particular interest since it was proved
by Tsirelson that it can not be a strong solution to any SDE driven by a standard
Brownian motion, although it satisfies the martingale representation property with
respect to some Brownian motion [16]. Subsequently, Freidlin and Sheu [4] proved
that a Walsh Brownian motion X satisfy the following SDE

(1) df(Xt) = f ′(Xt)dWt +
1

2
f ′′(Xt)dt

where W is the Brownian motion given by the martingale part of |X| and f runs over
an appropriate domain of functions with an appropriate definition of its derivative.
Freidlin and Sheu formula has led to the study of some variants of (1) in [5, 9, 8]
based on stochastic flows as well as to the development of a general framework of
stochastic calculus on graphs [11, 17].

The purpose of the present paper is to show by the study of a simple example
some particularities of stochastic differential equations on graphs and some possibly
unexpected results about their solutions. The example studied here is the interface
SDE introduced in [8] and defined on a star graph G consisting of N half lines
(Ei)1≤i≤N sharing the same origin. This SDE is driven by an N dimensional Brownian
motion W = (W 1, · · · ,WN) and its solution X is a Walsh Brownian motion on G.
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bordeaux.fr

(2)Institut de Mathématiques de Bordeaux, Bordeaux. Email: marc.arnaudon@math.u-
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While it moves inside Ei, X follows W i so that the origin can be seen as an interface
at the intersection of the half lines. For N = 2, the interface SDE is identified with

dXt = 1{Xt>0}dW
1
t + 1{Xt≤0}dW

2
t

which has a unique strong solution [15, 12] while for N ≥ 3, solutions of the interface
SDE are only weak by the general result of [16].

The main result proved in [8] was the existence of a stochastic flow of mappings,
unique in law and a Wiener stochastic flow [13], unique up to a modification, which
solve the interface SDE. The problem of finding the flows of kernels which “inter-
polate” between these two particular flows was left open in [8]. The answer to this
question needs a complete understanding of weak solutions of this equation.

The main purpose of the present paper is to bring some light on the previous
problem by establishing some results on weak solutions of the interface SDE in the
case N ≥ 3. These results are very different from the case N = 2. Our proofs
strongly rely on Tsirelson perturbation method [16] and on the existence of the
Wiener stochastic flow constructed in [8]. The present paper provides, in particular,
a direct application of stochastic flows to the study of weak solutions (see [7] for
another recent application by the same authors).

1.1. Notations.

This paragraph contains the main notations and definitions which will be used
throughout the paper.

Let (G, d) be a metric star graph with a finite set of rays (Ei)1≤i≤N and origin
denoted by 0. This means that (G, d) is a metric space, Ei ∩ Ej = {0} for all i 6= j

and for each i, there is an isometry ei : [0,∞[→ Ei. We assume that d is the geodesic
distance on G in the sense that d(x, y) = d(x, 0) + d(0, y) if x and y do not belong
to the same Ei.

For any subset A of G, we will use the notation A∗ for A \ {0}. Also, we define
the function ε : G∗ → {1, · · · , N} by ε(x) = i if x ∈ E∗

i .
Let C2

b (G
∗) denote the set of all continuous functions f : G → R such that for all

i ∈ [1, N ], f ◦ ei is C2 on ]0,∞[ with bounded first and second derivatives both with
finite limits at 0+. For x = ei(r) ∈ G∗, set f ′(x) = (f ◦ei)′(r) and f ′′(x) = (f ◦ei)′′(r).

Let p1, · · · , pN ∈ (0, 1) such that
∑N

i=1 pi = 1 and define

D =

{
f ∈ C2

b (G
∗) :

N∑

i=1

pi(f ◦ ei)′(0+) = 0

}
.

For f ∈ C2
b (G

∗), we will take the convention f ′(0) =
∑N

i=1 pi(f ◦ ei)
′(0+) and

f ′′(0) =
∑N

i=1 pi(f◦ei)′′(0+) so that D can be written as D = {f ∈ C2
b (G

∗) : f ′(0) = 0}.
We are now in position to recall the following
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Definition 1.1. A solution of the interface SDE (I) on G with initial condition X0 =
x is a pair (X,W ) of processes defined on a filtered probability space (Ω,A, (Ft)t,P)
such that

(i) W = (W 1, . . . ,WN) is a standard (Ft)-Brownian motion in R
N ;

(ii) X is an (Ft)-adapted continuous process on G;
(iii) For all f ∈ D,

(2) f(Xt) = f(x) +

N∑

i=1

∫ t

0

f ′(Xs)1{Xs∈Ei}dW
i
s +

1

2

∫ t

0

f ′′(Xs)ds

It has been proved in [8] (Theorem 2.3) that for all x ∈ G, (I) admits a solution
(X,W ) with X0 = x and moreover the law of (X,W ) is unique. We will denote this
law by Qx. Theorem 2.3 in [8] also states that X is a Walsh Brownian motion on G

and X is σ(W )-measurable if and only if N ≤ 2.
Let us explain the meaning of the previous equation. Given a Walsh Brownian

motion X started from 0, we will denote from now on the martingale part of |X| by
BX . Comparing (2) with Freidlin-Sheu formula [4] (see also [10]), shows that

(3) BX
t =

N∑

i=1

∫ t

0

1{Xs∈Ei}dW
i
s

Thus, while it moves inside Ei, X follows the Brownian motion W i.
Let us now introduce the following

Definition 1.2. We say that (X, Y,W ) is a coupling of solutions to (I) if (X,W ) and
(Y,W ) satisfy Definition 1.1 on the same filtered probability space (Ω,A, (Ft)t,P).

A trivial coupling of solutions to (I) is given by (X,X,W ) where (X,W ) solves
(I). This is also the law unique coupling of solutions to (I) if N ≤ 2 as σ(X) ⊂ σ(W )
in this case. Let us now introduce another interesting coupling.

Definition 1.3. A coupling (X, Y,W ) of solutions to (I) is called the Wiener cou-
pling if X and Y are independent given W .

The existence of the Wiener coupling is easy to check. For this note there exists a
law unique triplet (X, Y,W ) such that (X,W ) and (Y,W ) are distributed respectively
as Qx and Qy and moreover X and Y are independent given W . It remains to check
that W is a standard (Ft)-Brownian motion in R

N where Ft = σ(Xu, Yu,Wu, u ≤ t).
This holds from the conditional independence between X and Y given W and the
fact that W is a Brownian motion with respect to the natural filtrations of (X,W )
and (Y,W ). The reason for choosing the name Wiener for this coupling will be
justified in Section 2.2 in connection with stochastic flows of kernels.
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1.2. Main results.

Given a Walsh Brownian motion X on G, we define the process X by

X t = 1{Xt 6=0}

N∑

i=1

1{ε(Xt)=i} × ei

(
e−1
i (Xt)

Npi

)

Note that X = X if pi = 1
N

for all 1 ≤ i ≤ N . Following the terminology used

in [2], the process X is a spidermartingale (“martingale-araignée”). In fact, for all
1 ≤ i ≤ N , define

(4) X
i

t = |X t| if X t ∈ Ei and X
i

t = 0 if not

Note that X
i

t = f i(Xt), where f i(x) = |x|
Npi

1{x∈Ei}. Applying Freidlin-Sheu formula

for X and the function f i shows that

(5) X
i

t =
1

Npi

∫ t

0

1{Xs∈Ei}dB
X
s +

1

N
Lt(|X|)

where Lt(|X|) is the local at zero of the reflected Brownian motion |X|. In particular,

X
i

t − X
j

t is a martingale for all i, j ∈ [1, N ]. Proposition 5 in [2] shows that X is a
spidermartingale.

Our main result in this paper is the following

Theorem 1.4. Suppose N ≥ 3. Let (X, Y,W ) be the Wiener coupling of solutions
to (I) with X0 = Y0 = 0. Then

(i) d(Xt, Y t)− N−2
N

(|Xt|+ |Y t|) is a martingale. In particular,

E[d(X t, Y t)] = 2
N − 2

N

√
2t

π

(ii) Call gXt and gYt the last zeroes before t of X and Y , then for all t > 0,
P(gXt = gYt ) = 0 and P(Xt = Yt) = 0.

(iii) ε(Xt) and ε(Yt) are independent for all t > 0.

The claim (ii) says that common zeros of X and Y are rare. It has been proved
in [8], that couplings (X, Y ) to (I) have the same law before coalescence and that
coalescence occurs in a finite time with probability one. The strong Markov property
shows then that the set of common zeros of X and Y is infinite.

This theorem yields the following important

Corollary 1.5. Suppose N ≥ 3. Let (X,W ) be a solution of (I) with X0 = 0. Then
for each t > 0, ε(Xt) is independent of W .
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This corollary seems to us quite remarkable. In fact, admitting Tsirelson theorem
[16] and using (3), it can be deduced that ε(Xt) is not σ(W )-measurable (actually
neither ε(Xt) nor |Xt| are σ(W )-measurable). However, Corollary (1.5) gives a much
stronger result than this non-measurability. Comparing this with the case N = 2 in
which ǫ(Xt) is σ(W )-measurable, shows that stochastic differential equations on star
graphs with N ≥ 3 rays involve interesting “phase transitions”.

Corollary 1.5 is easy to deduce from Theorem 1.4. For this, define Ct = P(ǫ(Xt) =
i|W ). Since X and Y are independent given W and (X,W ), (Y,W ) have the same
law,

P (ε(Xt) = i)2 = P(ε(Xt) = i, ε(Yt) = i) = E[C2
t ]

Thus E[Ct] = E[C2
t ]

1

2 and so there exists a constant ct such that Ct = ct a.s. Taking
the expectation shows that ct = pi.

Let us now explain our arguments to prove Theorem 1.4. In Section 2.1, we prove
that for any coupling (X, Y,W ) of solutions to (I), Lt(D) = 0 where Dt = d(X t, Y t).
Next, we consider the Wiener stochastic flow of kernels K constructed in [8] which is a
strong solution to the flows of kernels version of (2). Inspired by Tsirelson arguments
[16], we then consider a perturbation Kr of K, r → 1. The semigroup

Qr
t (f ⊗ g)(x, y) = E[K0,tf(x)K

r
0,tg(y)]

on G2 is Feller. Interesting results about the Markov process (Xr, Y r) associated to
Qr are known [2, 3, 16]. This process also converges in law as r → 1 to the Wiener
coupling (X, Y ) described above. The passage to the limit r → 1 allows to deduce
the properties of (X, Y ) mentioned in Theorem 1.4.

2. Proofs

2.1. The local time of the distance.

The subject of this paragraph is to prove the following

Proposition 2.1. Let (X, Y,W ) be a coupling of two solutions to (I) with X0 =
Y0 = 0 and let Dt = d(Xt, Y t). Then Lt(D) = 0.

Proof. We follow the proof of Proposition 4.5 in [8] and first prove that a.s.

(6)

∫

]0,+∞]

La
t (D)

da

a
=

∫ t

0

1{Ds>0}
d〈D〉s
Ds

< ∞
5



By (5),

|X t| =

N∑

i=1

X
i

t = M1
t + Lt(|X|)

|Y t| =
N∑

i=1

Y
i

t = M2
t + Lt(|Y |)

with

M1
t =

N∑

i=1

1

Npi

∫ t

0

1{Xs∈Ei}dB
X
s , M2

t =

N∑

i=1

1

Npi

∫ t

0

1{Ys∈Ei}dB
Y
s

In particular,

〈M1〉t =
N∑

i=1

1

(Npi)2

∫ t

0

1{Xs∈Ei}ds, 〈M2〉t =
N∑

i=1

1

(Npi)2

∫ t

0

1{Ys∈Ei}ds

and

〈M1,M2〉t =
N∑

i=1

1

(Npi)2

∫ t

0

1{Xs∈Ei, Ys∈Ei}ds.

Proposition 7 [2] tells us that

Dt −
∫ t

0

1{ε(Xs)6=ε(Ys)}(dM
1
s + dM2

s )

−
∫ t

0

1{ε(Xs)=ε(Ys)}sgn(M1
s −M2

s )(dM
1
s − dM2

s )

is a continuous increasing process. Consequently,

d〈D〉s =
N∑

i=1

1

(Npi)2
1{ε(Xs)6=ε(Ys)}(1{Xs∈Ei} + 1{Ys∈Ei})ds ≤ C1{ε(Xs)6=ε(Ys)}ds

where C is a positive constant. Note there exists C ′ > 0 such that Ds ≥ C ′(|Xs|+|Ys|)
for all s such that ε(Xs) 6= ε(Ys). Thus, to get (6), it is sufficient to prove

∫ t

0

1{Xs 6=0,Ys 6=0}1{ǫ(Xs)6=ǫ(Ys)}
ds

|X|s + |Ys|
< ∞

Let us prove for example that

(1) =

∫ t

0

1

|Xs|+ |Ys|
1{Xs∈E∗

1
,Ys /∈E1}ds < ∞
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Define f(z) = |z| if z ∈ E1 and f(z) = −|z| if not and set xt = f(Xt), yt = f(Yt).
Clearly

1

|Xs|+ |Ys|
1{Xs∈E∗

1
,Ys /∈E1} =

1

2

|sgn(xs)− sgn(ys)|
|xs − ys|

1{ys<0<xs}.

As in [8], let (fn)n ⊂ C1(R) such that fn → sgn pointwise and (fn)n is uniformly
bounded in total variation. Defining zus = (1− u)xs + uys, we have

(1) ≤ lim inf
n

∫ t

0

1{ys<0<ys}
|fn(xs)− fn(ys)|

|xs − ys|
ds

2

≤ lim inf
n

∫ t

0

1{ys<0<ys}

∫ 1

0

∣∣f ′
n(z

u
s )
∣∣duds

2

Writing Freidlin-Sheu formula for the function f applied to X and Y shows that on
{ys < 0 < xs},

d

ds
〈zu〉s = u2 + (1− u)2 ≥ 1

2
Thus

(1) ≤ lim inf
n

∫ 1

0

∫ t

0

1{ys<0<xs}

∣∣f ′
n(z

u
s )
∣∣d〈zu〉sdu

≤ lim inf
n

∫ 1

0

∫

R

∣∣f ′
n(a)

∣∣La
t (z

u)dadu

So a sufficient condition for (1) to be finite is

sup
a∈R,u∈[0,1]

E
[
La
t (z

u)
]
< ∞

By Tanaka’s formula

E
[
La
t (z

u)
]

= E
[∣∣zut − a

∣∣]− E
[∣∣zu0 − a

∣∣]− E

[ ∫ t

0

sgn(zus − a)dzus

]

≤ E[
∣∣zut − zu0

∣∣]− E

[ ∫ t

0

sgn(zus − a)dzus

]

Since x and y are two skew Brownian motions, it is easily seen that supu∈[0,1] E[
∣∣zut −

zu0
∣∣] < ∞. The same argument shows that

E

[ ∫ t

0

sgn(zus − a)dzus

]

is uniformly bounded with respect to (u, a) and this shows that (1) is finite. Finally∫
]0,+∞]

La
t (D)da

a
is finite a.s. Since lima↓0 L

a(D) = L0(D), we deduce L0
t (D) = 0. �
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2.2. The Wiener stochastic flow of kernels solution of the interface SDE.

Stochastic flows of kernels play a crucial role in our proofs. These objects were
introduced in [13] and offer a robust method for the study of weak solutions as will
be demonstrated in this paper (see also [7]). For K, a stochastic flow of kernels on
G,

(7) P n
t f(x1, · · · , xn) = E

[∫

G

f(y1, · · · , yn)K0,t(x1, dy1) · · ·K0,t(xn, dyn)

]

defines a Feller semigroup on Gn. Moreover (P n)n≥1 is a compatible family (in a sense
explained in [13]) of Feller semigroups acting respectively on C0(G

n) that uniquely
characterize the law of K. Conversely, it has been proved in [13] that to each family
of compatible Feller semigroups (P n)n≥1 is associated a (law unique) stochastic flow
of kernels such that (7) holds for every n ≥ 1.

Definition 2.2. (Real white noise) A family (Ws,t)s≤t is called a real white noise if
there exists a Brownian motion on the real line (Wt)t∈R, that is (Wt)t≥0 and (W−t)t≥0

are two independent standard Brownian motions such that for all s ≤ t, Ws,t =
Wt −Ws (in particular, when t ≥ 0, Wt = W0,t and W−t = −W−t,0).

For a family of random variables Z = (Zs,t)s≤t, define FZ
s,t = σ(Zu,v, s ≤ u ≤ v ≤ t)

for all s ≤ t. The extension to flows of kernels of the interface SDE is deduced from
Definition (1.1) as follows.

Definition 2.3. Let K be a stochastic flow of kernels on G and W = (W i, 1 ≤ i ≤ N)
be a family of independent real white noises. We say that (K,W) solves (I) if for all
s ≤ t, f ∈ D and x ∈ G, a.s.

Ks,tf(x) = f(x) +
N∑

i=1

∫ t

s

Ks,u(1Ei
f ′)(x)dW i

u +
1

2

∫ t

s

Ks,uf
′′(x)du.

When K = δϕ, we only say (ϕ,W ) solves (I). We say K is a Wiener solution if for
all s ≤ t, FK

s,t ⊂ FW
s,t .

Note that when K = δϕ, we find the interface SDE as previously defined.
Assume (K,W) solves (I), then for all s ≤ t ≤ τs(x) = inf{u ≥ s : |x|+W i

s,u = 0}
and x ∈ Ei, a.s Ks,t(x) = δx+Wi

s,t
[8]. Since this holds for all x, we deduce that

FW
s,t ⊂ FK

s,t for all s ≤ t. For this reason, we may only say K solves (I) as W is a
function of K.

It has been proved in [8], that given W a real white noise, there exists a stochastic
flow of mappings ϕ such that (ϕ,W) solves (I). Filtering this flow with respect to
W gives rise to a Wiener stochastic flow of kernels Ks,t(x) = E[δϕs,t(x)|FW

s,t ] (to be
more precise Ks,t(x) is defined along a dense set {(si, ti, xi)} as a regular conditional
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expectation of ϕsi,ti(xi) given FW
si,ti

and then extended to all values of (s, t, x) by a
density argument, see Lemma 3.2 in [13]). The Wiener stochastic flow of kernels K

is unique up to modification in the sense that if K ′ is another flow of kernels such
that (K ′,W) solves (I) and FK ′

s,t ⊂ FW
s,t for all s ≤ t, then for all x ∈ G and s ≤ t

a.s Ks,t(x) = K ′
s,t(x).

By considering the Feller semigroups Qn
t (f⊗g)(x, w) = E[K⊗n

0,t f(x)g(w+Wt)], one
can prove that stochastic flows of kernels satisfying Definition (2.3) are the projective
limits of compatible weak solutions to the sticky equation satisfying Definition (1.1)
(see Proposition 2.1 in [6] for more details in a similar context).

Note that in the case N = 2, the Wiener flow and the flow of mappings coincide:
K = δϕ while K 6= δϕ if N ≥ 3 and other flows solving (I) may exist in this case.

From now on, (K,W) will denote the Wiener stochastic flow which solves (I). Let
Q be the Feller semigroup on G2 × R

N defined by

Qt(f ⊗ g ⊗ h)(x, y, w) = E[K0,tf(x)K0,tg(y)h(w +W0,t)].

Denote by (X, Y,W ) the Markov process associated to (Qt)t and started from (x, y, 0).

Proposition 2.4. (X, Y,W ) is the Wiener coupling solution of (I) with X0 = x and
Y0 = y.

Proof. We follow the proof of Lemma 6.2 in [8]. Let Ft = σ(Xs, Ys,Ws; s ≤ t).
Clearly X and Y are two (Ft)-Walsh Brownian motions. We first prove that (X,W )
(and similarly (Y,W )) solves (I). By Freidlin-Sheu’s formula, for all f ∈ D,

(8) f(Xt) = f(x) +

∫ t

0

f ′(Xs)dB
X
s +

1

2

∫ t

0

f ′′(Xs)ds.

Thus for (X,W ) to solve (I), it will suffice to show BX
t =

∑N
i=1

∫ t

0
1{Xs∈Ei}dW

i
s .

Define

(9) D1 = {f ∈ D : f, f ′, f ′′ ∈ C0(G)}

By the condition f ′, f ′′ ∈ C0(G), it is meant here that for all i ∈ [1, N ], the limits
limx∈Ei,x 6=0 f

′(x) are equal and the same holds for f ′′ (not to confuse this with the
conventions taken for f ′(0), f ′′(0)). As f ∈ D, this yields limx∈Ei,x 6=0 f

′(x) = 0 for all

i. Denote by A the generator of Q̃t(f ⊗ g) = Qt(f ⊗ I ⊗ g) and D(A) its domain,
then D1 ⊗ C2

0 (R
N) ⊂ D(A) and for all f ∈ D1 and g ∈ C2

0(R
N),

A(f ⊗ g)(x, w) =
1

2
f(x)∆g(w) +

1

2
f ′′(x)g(w) +

N∑

i=1

(f ′1Ei
)(x)

∂g

∂wi
(w)

9



In particular, for all f ∈ D1 and g ∈ C2
0(R

N ),

(10) f(Xt)g(Wt)−
∫ t

0

A(f ⊗ g)(Xs,Ws)ds is a martingale.

On another hand, using (8), it is possible to write Itô’s formula for f(Xt)g(Wt).
Combining this Itô’s formula with (10), it comes that

N∑

i=1

∫ t

0

(f ′1Ei
)(Xs)

∂g

∂wi
(Ws)ds =

N∑

i=1

∫ t

0

(f ′1Ei
)(Xs)

∂g

∂wi
(Ws)d〈BX ,W i〉s

Since this holds for all f ∈ D1 and g ∈ C2
0 (R

N), by an approximation argument, we

deduce 〈BX ,W i〉t =
∫ t

0
1{Xs∈Ei}ds for all i.

Now it remains to prove that X and Y are independent given W . We will check
that

E

[
n∏

i=1

fi(Xti)gi(Yti)hi(Wti)

]
= E

[
n∏

i=1

E[fi(Xti)|W ]E[gi(Yti)|W ]hi(Wti)

]

for all measurable and bounded test functions (fi, gi, hi)i. Since K is a measurable
function of W, we may assume K (and so W) is defined on the same space as X

and Y and that Wt = W0,t. By an easy induction (see the proof of Proposition 4.1
in [6]),

(11) E

[
n∏

i=1

fi(Xti)gi(Yti)hi(Wti)

]
= E

[
n∏

i=1

K0,tifi(x)K0,tigi(y)hi(Wti)

]

From (11), we also deduce K0,tifi(x) = E[fi(Xti)|FW
0,ti

] and K0,tigi(y) = E[gi(Yti)|FW
0,ti

].
This completes the proof. �

Since (Qt)t is Feller, the proposition shows in particular that (X, Y ) is a Feller
process on G2.

2.3. Perturbation of the Wiener flow.

We now fix a measurable function F such that if V is a real white noise on R
N ,

then K = F (V) solves (I). Let W and W ′ be two independent real white noises on
R

N and for r > 0, define the real white noise on R
N

Wr = rW +
√
1− r2W ′

Let K = F (W) and Kr = F (Wr) and note that (K,Kr) and (Kr, K) have the
same law since this is also true for (W,Wr) and (Wr,W). Define now

Qr
t (f ⊗ g ⊗ h)(x, y, w) = E[K0,tf(x)K

r
0,tg(y)h(w +W0,t)]

10



Then Qr is a Feller semigroup on G2×R
N . Call (Xr, Y r,W r) the associated Markov

process started from (0, 0, 0), then again (Xr, Y r) and (Y r, Xr) have the same law.

Proposition 2.5. The following assertions hold

(i) d〈BXr

, BY r〉t = r1{ε(Xr
t )=ε(Y r

t )}dt.

(ii)
∫ t

0
1{Y r

s 6=0}dLs(|Xr|) = Lt(|Xr|) and
∫ t

0
1{Xr

s 6=0}dLs(|Y r|) = Lt(|Y r|).
Proof. The proof of (i) follows similar arguments as in the proof of Proposition 2.4.
Denote by Ar, the generator of Qr

t (f ⊗ g ⊗ Id), then D1 ⊗D1 ⊂ D(Ar) where D1 is
given by (9). Moreover for all f, g ∈ D1,

Ar(f ⊗ g)(x, y) =
1

2
f(x)g′′(y) +

1

2
f ′′(x)g(y) + rf ′(x)g′(y)1{ε(x)=ε(y)}

Writing Itô’s formula for f(Xr) and g(Y r) and using martingales as in the proof of
Proposition 2.4, we easily deduce (i). (ii) is Lemma 4.12 in [16] (see also [2, 3]).

�

2.4. Proof of Theorem 1.4.

Let (X, Y,W ) be a Wiener coupling solutions of (I) with X0 = Y0 = 0.

Lemma 2.6. As r → 1, (Xr, Y r,W r) converges in law to (X, Y,W ).

Proof. Let (rn)n be a sequence in [0, 1] such that limn→∞ rn = 1. Slutsky lemma (see
Theorem 1 in [2]) shows that for all g : G → R measurable bounded, y ∈ G and
t > 0, Krn

0,tg(y) converges in probability to K0,tg(y) and for any measurable function
L, L(Wrn) converges in probability to L(W). Now for any p ≥ 1, (fi, gi, hi)1≤i≤p

bounded, (ti)1≤i≤p

lim
n

E

[
p∏

i=1

fi(X
rn
ti
)gi(Y

rn
ti
)hi(W

rn
ti
)

]
= lim

n
E

[
p∏

i=1

Krn
0,tfi(0)K

rn
0,tgi(0)hi(Wrn

0,ti
)

]

= E

[
p∏

i=1

K0,tfi(0)K0,tgi(0)hi(W0,ti)

]

This gives the desired result. �

Let us now recall Proposition 7 in [2].

Proposition 2.7. Let Z1 and Z2 be two Walsh Brownian motion with respect to the

same filtration. Denote by Λ the local time of Dt = d(Z1
t , Z

2
t ). Then

Dt = Mt +
1

2
Λt + (N − 2)

(∫ t

0

1{Z1
s 6=0}dL

2
s +

∫ t

0

1{Z2
s 6=0}dL

1
s

)

11



with M a martingale and L1, L2 are (see Proposition 5 in [2]) the bounded variation

parts of X
i

t (defined by (4)) and Y
i

t.

Note that L1
t =

1
N
Lt(|Z1|) and L2

t =
1
N
Lt(|Z2|) by (5).

Applying the previous proposition to (Xr, Y r) and using Proposition 2.5 (ii), we
get

d(Xr
t , Y

r
t ) = M r

t +
1

2
Λr

t +
(N − 2)

N
(Lt(|Xr|) + Lt(|Y r|))

with M r a martingale and Λr the local time of d(Xr
t , Y

r
t ). In particular,

(12) E[d(Xr
t , Y

r
t )] ≥ 2

(N − 2)

N
E[Rt]

with R a reflected Brownian motion started from 0.
The previous proposition applied to the Wiener coupling (X, Y ) and the result of

Section 2.1 show that

(13) d(Xt, Yt) = Mt +
(N − 2)

N

(∫ t

0

1{Xs 6=0}dLs(|Y |) +
∫ t

0

1{Ys 6=0}dLs(|X|)
)

with M a martingale. By the Balayage formula (see [14] on page 111 or the proof of
Proposition 8 in [2]) and the fact that Lt(D) = 0,

(14) d(Xt, Yt) = Martingale +
N − 2

N

(
1{X

g2
6=0}|Yt|+ 1{Y

g1
6=0}|Xt|

)

where g1 := gXt and g2 := gYt . Admit for a moment that E[d(Xr
t , Y

r
t )] converges to

E[d(Xt, Yt)]. It comes from (12), (14), (X, Y ) has the same law as (Y,X), that

2
N − 2

N
E

[
1{X

g2
6=0}|Yt|

]
≥ 2

(N − 2)

N
E[Rt]

Consequently

E
[
|Yt|

]
≥ E

[
1{X

g2
6=0}|Yt|

]
≥ E[Rt]

But E
[
|Yt|

]
= E[Rt] and so Xg2 6= 0 a.s. By symmetry Y g2 6= 0. Returning back

to (14), we deduce that d(Xt, Y t) − N−2
N

(|X t| + |Y t|) is a martingale which proves
Theorem 1.4 (i).

Note that g1 = gXt , g2 = gYt and Z has the same set of zeros as Z for Z a Walsh
Brownian motion. This shows that XgYt

6= 0 and YgXt
6= 0 a.s. In particular gXt 6= gYt

a.s and since {Xt = Yt} ⊂ {gXt = gYt } (as X, Y follow the same Brownian motion
on the same ray), Theorem 1.4 (ii) is also proved.

12



Remark 2.8. Using the convergence of E[d(Xr
t , Y

r
t )] to E[d(Xt, Yt)], (12) and (13),

we easily deduce that
∫ t

0

1{Xs 6=0}dLs(|Y |) = Lt(|Y |);
∫ t

0

1{Ys 6=0}dLs(|X|) = Lt(|X|)

which is similar to Proposition 2.5 (ii).

Now it remains to prove the following

Lemma 2.9. We have

lim
r→1

E[d(Xr
t , Y

r
t )] = E[d(Xt, Yt)].

Proof. From the convergence in law given in Lemma 2.6, it is easily seen that (Xr, Y r)
converges in law to (X, Y ). This is because Z is a continuous of Z. Let rn be a
sequence converging to 1. Skorokhod representation theorem says that it is possible
to construct on some probability space (Ω′,A′,P′), random variables (Xn, Y n)n≥1

and (X∞, Y ∞) such that for each n, (Xn, Y n) has the same law as (Xrn, Y rn) and
(X∞, Y ∞) has the same law as (X, Y ) and moreover (Xn, Y n) converges a.s. to
(X∞, Y ∞). The lemma holds as soon as we prove

lim
n→∞

E[d(Xn
t , Y

n
t )] = E[d(X∞

t , Y ∞
t )].

For each ǫ > 0,

E[d(Xn
t , X

∞
t )] ≤ ǫ+ E[d(Xn

t , X
∞
t )1{d(Xn

t ,X∞

t )>ǫ}]

≤ ǫ+ E[d(Xn
t , X

∞
t )2]1/2P[d(Xn

t , X
∞
t ) > ǫ]1/2

≤ ǫ+ C × P[d(Xn
t , X

∞
t ) > ǫ]1/2

for some finite constant C. Thus, lim supn E[d(X
n
t , X

∞
t )] = 0 and similarly

lim supn E[d(Y
n
t , Y

∞
t )] = 0. The lemma follows now using the triangle inequality. �

Let us now prove Theorem 1.4 (iii).
Denote by G the natural filtration of the Wiener coupling (X, Y ). For a random

time R, let us recall the following σ-fields (see [2] on page 286)

GR = σ(XR : X is a G − optional process)

GR+ = σ(XR : X is a G − progressive process)

Let g1 = gXt , g2 = gYt . It is known (see for example Proposition 19 in [2]), that
ε(Xt) is independent of Gg1 and ε(Xt) is Gg1+ measurable (the same holds for Y ).
The event {g1 < g2} ∈ Gg2 (see Proposition 13 in [2]) and on this event, ε(Xt) =
lim supǫ→0+ ε(X(g1+ǫ)∧g2). Since (g1 + ǫ) ∧ g2 ≤ g2, by Proposition 13 in [2] again,

13



G(g1+ǫ)∧g2 ⊂ Gg2 and so lim supǫ→0+ ε(X(g1+ǫ)∧g2) is Gg2-measurable. Take f an indi-
cator function on a subset of {1, · · · , N}. By conditioning with respect to Gg2 , we
deduce

E[f(ε(Xt))f(ε(Yt))1{g1<g2}] = E[f(ε(Yt)]E[f(ε(Xt))1{g1<g2}]

and

E[f(ε(Xt))f(ε(Yt))1{g2<g1}] = E[f(ε(Xt)]E[f(ε(Yt))1{g2<g1}]

Summing, we get

E[f(ε(Xt))f(ε(Yt))] = E[f(ε(Xt)]
(
E[f(ε(Xt))1{g1<g2}] + E[f(ε(Yt))1{g2<g1}]

)

But {g1 < g2} = {g2 < g1}c belongs to Gg1 which is independent of ε(Xt) so that

E[f(ε(Xt))1{g1<g2}] =
1

2
E[f(ε(Xt))]

By symmetry, we get E[f(ε(Xt))f(ε(Yt))] = E[f(ε(Xt))]E[f(ε(Yt))].

Final remarks and open problems

There are several interesting open problems related to the interface SDE. Let us
mention some of them.

• What is the conditional law of |Xt| (and more generally of Xt) given W ?
• What are the couplings which “interpolate” between the coalescing coupling

and the Wiener one?
• What are the stochastic flows which “interpolate” between the coalescing flow

and the Wiener one?

Let us finish with the following remark regarding the first question. Let W be a
standard Brownian motion and let X1, X2, · · · be Walsh Brownian motions started
from 0 such that (X i,W ) is solution of (I) with X i

0 = 0 for all i and X1, X2, · · · are
independent given W . Then by the law of the large numbers for all f ∈ C0(G), a.s
E[f(X1

t )|W ] = limn
1
n

∑n
i=1 f(X

i
t). (see Section 2.6 in [13]).
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