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On a coupling of solutions to the interface SDE on a star

graph

Marc Arnaudon ∗ Hatem Hajri †

January 27, 2016

Abstract

We prove some results on a particular coupling of solutions to the interface SDE

on a star graph, recently introduced in [6]. This coupling consists in two solutions

which are independent given the driving Brownian motion. As a consequence, we

deduce that if the star graph contains 3 or more rays, the argument of the solution at

a fixed time is independent of the driving Brownian motion.

1 Introduction and main results

Our purpose in this paper is to prove some results on the interface SDE defined on a metric

star graph G consisting of N half lines (Ei)1≤i≤N sharing the same origin [6]. This SDE is

driven by an N dimensional Brownian motion W = (W 1, · · · ,WN ) and its solution X is

a Walsh Brownian motion on G [1]. While it moves inside Ei, X follows W i so that the

origin can be thought of as an interface at the intersection of the half lines. The case N = 2

is a version of the perturbed Tanaka’s equation which has a unique strong solution [11, 8].

The interface SDE exhibits an interesting “phase transition” when passing from two to

three or more rays. In fact, for N ≥ 3, solutions are only weak [12]. The main result proved

in [6] was the construction of a stochastic flow of mappings, unique in law and a Wiener

stochastic flow, unique up to a modification, which solve the interface SDE. The problem

of finding the flows of kernels which “interpolate” between these two particular flows was

left open in [6]. This question can not be answered without a complete understanding of
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the extra randomness that should be added to W to construct X. The present paper aims

to bring some light on this problem. Our main result states that for fixed t, the argument

of Xt is independent of W in the case N ≥ 3.

1.1 Notations

This paragraph contains the main notations and definitions which will be used through-

out the paper.

Let (G, d) be a metric star graph with N (1 ≤ N < ∞) rays (Ei)1≤i≤N and origin

denoted by 0. This means that (G, d) is a metric space, Ei ∩ Ej = {0} for all i 6= j and for

each i, there is an isometry ei : [0,∞[→ Ei. We assume that d is the geodesic distance on

G in the sense that d(x, y) = d(x, 0) + d(0, y) if x and y do not belong to the same Ei.

For any subset A of G, we will use the notation A∗ for A \ {0}. Also, we define the

function ε : G∗ → {1, · · · , N} by ε(x) = i if x ∈ E∗
i .

Let C2
b (G

∗) denote the set of all continuous functions f : G → R such that for all

i ∈ [1, N ], f ◦ ei is C2 on ]0,∞[ with bounded first and second derivatives both with finite

limits at 0+. For x = ei(r) ∈ G∗, set f ′(x) = (f ◦ ei)
′(r) and f ′′(x) = (f ◦ ei)

′′(r).

Let p1, · · · , pN ∈ (0, 1) such that
∑N

i=1 pi = 1 and define

D =

{
f ∈ C2

b (G
∗) :

N∑

i=1

pi(f ◦ ei)
′(0+) = 0

}
.

For f ∈ C2
b (G

∗), we will take the convention f ′(0) =
∑N

i=1 pi(f ◦ ei)
′(0+) and f ′′(0) =

∑N
i=1 pi(f ◦ ei)

′′(0+) so that D can be written as D =
{
f ∈ C2

b (G
∗) : f ′(0) = 0

}
. We are

now in position to recall the following

Definition 1.1. A solution of the interface SDE (I) on G is a pair (X,W ) of processes defined on

a filtered probability space (Ω,A, (Ft)t,P) such that

(i) W = (W 1, . . . ,WN ) is a standard (Ft)-Brownian motion in R
N ;

(ii) X is an (Ft)-adapted continuous process on G;

(iii) For all f ∈ D,

f(Xt) = f(X0) +

N∑

i=1

∫ t

0
f ′(Xs)1{Xs∈Ei}dW

i
s +

1

2

∫ t

0
f ′′(Xs)ds (1)
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It has been proved in [6] (Theorem 2.3) that for all x ∈ G, (I) admits a solution (X,W )

with X0 = x and moreover the law of (X,W ) is unique. Theorem 2.3 in [6] also states

that X is a Walsh Brownian motion on G (which enters Ei with probability pi) and X is

σ(W )-measurable if and only if N ≤ 2.

To explain the meaning of the previous equation, note that comparing (1) with Freidlin-

Sheu formula [4] (see also [7]), shows that if X0 = 0, the martingale part BX of |X| should

be given by

BX
t =

N∑

i=1

∫ t

0
1{Xs∈Ei}dW

i
s (2)

Thus, while it evolves Ei, X follows the Brownian motion W i.

Let us now introduce the following

Definition 1.2. We say that (X,Y,W ) is a coupling of solutions to (I) if (X,W ) and (Y,W )

satisfy Definition 1.1 on the same filtered probability space (Ω,A, (Ft)t,P).

A trivial coupling of solutions to (I) is given by (X,X,W ) where (X,W ) solves (I).

This is also the law unique coupling of solutions to (I) if N ≤ 2 as σ(X) ⊂ σ(W ) in this

case. Let us now introduce another interesting coupling.

Definition 1.3. A coupling (X,Y,W ) of solutions to (I) is called the Wiener coupling if X and

Y are independent given W .

It is easy to see that there exists a Wiener coupling (since the condition X and Y are

independent given W uniquely determine the law of (X,Y,W )). Moreover the law of this

coupling is unique. The reason for designating this coupling by the Wiener coupling will

be justified in Section 2.2 in connection with stochastic flows of kernels.

1.2 Main results

Given a Walsh Brownian motion X on G, we define the process X by

Xt = 1{Xt 6=0}

N∑

i=1

1{ε(Xt)=i} × ei

(
e−1
i (Xt)

Npi

)

Following the terminology used in [2], the process X is a spidermartingale (“martingale-

araignée”). In fact, for all 1 ≤ i ≤ N , define

X
i
t = |Xt| if Xt ∈ Ei and X

i
t = 0 if not
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Note that X
i
t = f i(Xt), where f i(x) = |x|

Npi
1{x∈Ei}. Applying Freidlin-Sheu formula for X

and the function f i, it comes that

X
i
t =

1

Npi

∫ t

0
1{Xs∈Ei}dB

X
s +

1

N
Lt(|X|) (3)

where Lt(|X|) is the local at zero of the reflected Brownian motion |X|. In particular,

X
i
t −X

j
t is a martingale for all i, j ∈ [1, N ]. Proposition 5 in [2] shows that X is a spider-

martingale.

Our main result in this paper is the following

Theorem 1.4. Suppose N ≥ 3. Let (X,Y,W ) be the Wiener coupling of solutions to (I) with

X0 = Y0 = 0. Then

(i) d(X t, Y t)−
N−2
N (|X t|+ |Y t|) is a martingale. In particular,

E[d(X t, Y t)] = 2
N − 2

N

√
2t

π

(ii) Call gXt and gYt the last zeroes before t of X and Y , then for all t > 0, P(gXt = gYt ) = 0 and

P(Xt = Yt) = 0.

(iii) ε(Xt) and ε(Yt) are independent for all t > 0.

This theorem yields the following important

Corollary 1.5. Suppose N ≥ 3. Let (X,W ) be a solution of (I) with X0 = 0. Then for each

t > 0, ε(Xt) is independent of W .

This corollary seems to us quite remarkable. In fact, it is known since the work of

Tsirelson [12], that X can not be σ(W )-measurable. As a consequence of this result and

(2), it can be deduced that ε(Xt) is not σ(W )-measurable (actually neither |X| nor ε(Xt)

are σ(W )-measurable). However, Corollary (1.5) gives a much stronger result than the

non-measurability of ε(Xt) with respect to σ(W ). Comparing this with the case N = 2

in which ǫ(Xt) is σ(W )-measurable, shows that stochastic differential equations on star

graphs with N ≥ 3 rays involve interesting phenomena.

Corollary 1.5 is easy to deduce from Theorem 1.4. For this, define Ct = P(ǫ(Xt) =

i|W ). Since X and Y are independent given W and (X,W ), (Y,W ) have the same law,

P (ε(Xt) = i)2 = P(ε(Xt) = i, ε(Yt) = i) = E[C2
t ]
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Thus E[Ct] = E[C2
t ]

1

2 and so there exists a constant ct such that Ct = ct a.s. Taking the

expectation, we see that ct = pi.

Let us now explain our arguments to prove Theorem 1.4. In Section 2.1, we prove that

for any coupling (X,Y,W ) of solutions to (I), Lt(D) = 0 where Dt = d(X t, Y t). Next,

we consider the Wiener stochastic flow of kernels K constructed in [6] which is a strong

solution to the flows of kernels version of (1). Inspired by Tsirelson arguments [12], we

then consider a perturbation Kr of K, r → 1. The semigroup

Qr
t (f ⊗ g)(x, y) = E[K0,tf(x)K

r
0,tg(y)]

on G2 is Feller. Interesting results about the Markov process (Xr, Y r) associated to Qr are

known [2, 3, 12]. The process (Xr, Y r) converges in law as r → 1 to the Wiener coupling

(X,Y ) described above. Letting r go to 1 and using the previous results, we deduce

Theorem 1.4.

2 Proofs

2.1 The local time of the distance

The subject of this paragraph is to prove the following

Proposition 2.1. Let (X,Y,W ) be a coupling of two solutions to (I) with X0 = Y0 = 0 and let

Dt = d(X t, Y t). Then Lt(D) = 0.

Proof. We follow the proof of Proposition 4.5 in [6] and first prove that a.s.

∫

]0,+∞]
La
t (D)

da

a
=

∫ t

0
1{Ds>0}

d〈D〉s
Ds

< ∞. (4)

By (3), |X t| =
∑N

i=1 X
i
t = M1

t + Lt(|X|), |Y t| =
∑N

i=1 Y
i
t = M2

t + Lt(|Y |), with

M1
t =

N∑

i=1

1

Npi

∫ t

0
1{Xs∈Ei}dB

X
s , M2

t =

N∑

i=1

1

Npi

∫ t

0
1{Ys∈Ei}dB

Y
s

In particular,

d〈M1〉s =

N∑

i=1

1

(Npi)2

∫ t

0
1{Xs∈Ei}ds, d〈M

2〉s =

N∑

i=1

1

(Npi)2

∫ t

0
1{Ys∈Ei}ds
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and

d〈M1,M2〉s =
N∑

i=1

1

(Npi)2

∫ t

0
1{Xs∈Ei, Ys∈Ei}ds.

Proposition 7 [2] tells us that

Dt −

∫ t

0
1{ε(Xs)6=ε(Ys)}(dM

1
s + dM2

s )−

∫ t

0
1{ε(Xs)=ε(Ys)}sgn(M1

s −M2
s )(dM

1
s − dM2

s )

is a continuous increasing process. Consequently,

d〈D〉s =

N∑

i=1

1

(Npi)2
1{ε(Xs)6=ε(Ys)}(1{Xs∈Ei} + 1{Ys∈Ei})ds ≤ C1{ε(Xs)6=ε(Ys)}ds

where C is a positive constant. Notice also that there exists C ′ > 0 such that Ds ≥

C ′(|Xs| + |Ys|) for all s such that ε(Xs) 6= ε(Ys). Thus, to get (4), it is sufficient to prove

that ∫ t

0
1{Xs 6=0,Ys 6=0}1{ǫ(Xs)6=ǫ(Ys)}

ds

|X|s + |Ys|
< ∞

Let us prove for example that

(1) =

∫ t

0

1

|Xs|+ |Ys|
1{Xs∈E∗

1
,Ys /∈E1}ds < ∞.

Let f(z) = |z| if z ∈ E1 and f(z) = −|z| if not and set xt = f(Xt), yt = f(Yt). Clearly

1

|Xs|+ |Ys|
1{Xs∈E∗

1
,Ys /∈E1} =

1

2

|sgn(xs)− sgn(ys)|

|xs − ys|
1{ys<0<xs}.

Now as in [6], let (fn)n ⊂ C1(R) such that fn → sgn pointwise and (fn)n is uniformly

bounded in total variation. Then defining zus = (1− u)xs + uys, we have

(1) ≤ lim inf
n

∫ t

0
1{ys<0<ys}

|fn(xs)− fn(ys)|

|xs − ys|

ds

2

≤ lim inf
n

∫ t

0
1{ys<0<ys}

∫ 1

0

∣∣f ′
n(z

u
s )
∣∣duds

2

Writing Freidlin-Sheu formula for the function f applied to X and Y shows that on {ys <

0 < xs},
d

ds
〈zu〉s = u2 + (1− u)2 ≥

1

2
.
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Thus

(1) ≤ lim inf
n

∫ 1

0

∫ t

0
1{ys<0<xs}

∣∣f ′
n(z

u
s )
∣∣d〈zu〉sdu

≤ lim inf
n

∫ 1

0

∫

R

∣∣f ′
n(a)

∣∣La
t (z

u)dadu.

So a sufficient condition for (1) to be finite is

sup
a∈R,u∈[0,1]

E
[
La
t (z

u)
]
< ∞.

By Tanaka’s formula

E
[
La
t (z

u)
]

= E
[∣∣zut − a

∣∣]− E
[∣∣zu0 − a

∣∣]− E

[ ∫ t

0
sgn(zus − a)dzus

]

≤ E[
∣∣zut − zu0

∣∣]− E

[ ∫ t

0
sgn(zus − a)dzus

]
.

Since x and y are two skew Brownian motions, it is easily seen that supu∈[0,1]E[
∣∣zut −zu0

∣∣] <
∞. The same argument shows that

E

[ ∫ t

0
sgn(zus − a)dzus

]

is uniformly bounded with respect to (u, a) and this shows that (1) is finite. Finally∫
]0,+∞]L

a
t (D)daa is finite a.s. Since lima↓0 L

a(D) = L0(D), we deduce L0
t (D) = 0.

2.2 The Wiener flow

In this paragraph, we are interested in stochastic flows of kernels [9] which play a crucial

role in our proofs. We start this paragraph by recalling the following definition.

Definition 2.2. Let K be a stochastic flow of kernels on G and W = (W i, 1 ≤ i ≤ N) be a family

of independent real white noises. We say that (K,W) solves (I) if for all s ≤ t, f ∈ D and x ∈ G,

a.s.

Ks,tf(x) = f(x) +

N∑

i=1

∫ t

s
Ks,u(1Ei

f ′)(x)dW i
u +

1

2

∫ t

s
Ks,uf

′′(x)du.

We will say it is a Wiener solution if for all s ≤ t, FK
s,t ⊂ FW

s,t .
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It has been proved in [6], that given W a real white noise, there exists a Wiener stochas-

tic flow of kernels K , unique up to modification, such that (K,W) solves (I). Let Q be the

Feller semigroup on G2 × R
N defined by

Qt(f ⊗ g ⊗ h)(x, y, w) = E[K0,tf(x)K0,tg(y)h(w +W0,t)].

Denote by (X,Y,W ) the Markov process associated to (Qt)t and started from (x, y, 0).

Proposition 2.3. (X,Y,W ) is the Wiener coupling solution of (I) with X0 = x and Y0 = y.

Proof. We follow the proof of Lemma 6.2 in [6]. Let Ft = σ(Xs, Ys,Ws; s ≤ t). Clearly X

and Y are two (Ft)-Walsh Brownian motions. We first prove that (X,W ) (and similarly

(Y,W )) solves (I). By Freidlin-Sheu’s formula, for all f ∈ D,

f(Xt) = f(x) +

∫ t

0
f ′(Xs)dB

X
s +

1

2

∫ t

0
f ′′(Xs)ds. (5)

Thus for (X,W ) to solve (I), it will suffice to show BX
t =

∑N
i=1

∫ t
0 1{Xs∈Ei}dW

i
s . Set

D1 = {f ∈ D : f, f ′, f ′′ ∈ C0(G)}. (6)

By the condition f ′, f ′′ ∈ C0(G), it is meant here that for all i ∈ [1, N ], the limits limx∈Ei,x 6=0 f
′(x)

are equal and the same holds for f ′′ (not to be confused with the conventions taken for

f ′(0), f ′′(0)). As f ∈ D, it is clear that this yields limx∈Ei,x 6=0 f
′(x) = 0. Denote by A the

generator of Q̃t(f ⊗ g) = Qt(f ⊗ I ⊗ g) and D(A) its domain, then D1 ⊗ C2
0 (R

N ) ⊂ D(A)

and for all f ∈ D1 and g ∈ C2
0 (R

N ),

A(f ⊗ g)(x,w) =
1

2
f(x)∆g(w) +

1

2
f ′′(x)g(w) +

N∑

i=1

(f ′1Ei
)(x)

∂g

∂wi
(w).

In particular, for all f ∈ D1 and g ∈ C2
0 (R

N ),

f(Xt)g(Wt)−

∫ t

0
A(f ⊗ g)(Xs,Ws)ds is a martingale. (7)

On another hand, using (5), it is possible to write Itô’s formula for f(Xt)g(Wt). Combining

this Itô’s formula with (7), it comes that

N∑

i=1

∫ t

0
(f ′1Ei

)(Xs)
∂g

∂wi
(Ws)ds =

N∑

i=1

∫ t

0
(f ′1Ei

)(Xs)
∂g

∂wi
(Ws)d〈B

X ,W i〉s.
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Since this holds for all f ∈ D1 and g ∈ C2
0 (R

N ), by an approximation argument, we

deduce 〈BX ,W i〉t =
∫ t
0 1{Xs∈Ei}ds for all i.

Now it remains to prove that X and Y are independent given W . We will check that

E[

n∏

i=1

fi(Xti)gi(Yti)hi(Wti)] = E[

n∏

i=1

E[fi(Xti)|W ]E[gi(Yti)|W ]hi(Wti)]

for all measurable and bounded test functions (fi, gi, hi)i. Since K is a measurable func-

tion of W , we may assume K (and so W) is defined on the same space as X and Y and

that Wt = W0,t. By an easy induction (see the proof of Proposition 4.1 in [5]),

E[
n∏

i=1

fi(Xti)gi(Yti)hi(Wti)] = E[
n∏

i=1

K0,tifi(x)K0,tigi(y)hi(Wti)] (8)

From (8), we also have K0,tifi(x) = E[fi(Xti)|F
W
0,ti

] and K0,tigi(y) = E[gi(Yti)|F
W
0,ti

]. This

completes the proof.

Since (Qt)t is Feller, the proposition shows in particular that (X,Y ) is a Feller process

on G2.

2.3 Perturbation of the Wiener flow

We now fix a measurable function F such that if V is a real white noise on R
N , then

K = F (V) solves (I). Let W and W ′ be two independent real white noises on R
N and for

r > 0, define the real white noise on R
N :

Wr = rW +
√

1− r2W ′.

Let K = F (W) and Kr = F (Wr) and note that (K,Kr) and (Kr,K) have the same

law since this is also true for (W,Wr) and (Wr,W). Set now

Qr
t (f ⊗ g ⊗ h)(x, y, w) = E[K0,tf(x)K

r
0,tg(y)h(w +W0,t)].

Then Qr is a Feller semigroup on G2 × R
N . Call (Xr, Y r,W r) the associated Markov

process started from (0, 0, 0), then again (Xr, Y r) and (Y r,Xr) have the same law.

Proposition 2.4. The following assertions hold

(i) d〈BXr

, BY r

〉t = r1{ε(Xr
t )=ε(Y r

t )}dt.

9



(ii)
∫ t
0 1{Y r

s 6=0}dLs(|X
r|) = Lt(|X

r|) and
∫ t
0 1{Xr

s 6=0}dLs(|Y
r|) = Lt(|Y

r|).

Proof. The proof of (i) follows similar arguments as in the proof of Proposition 2.3. Denote

by Ar, the generator of Qr
t (f ⊗ g ⊗ Id), then D1 ⊗ D1 ⊂ D(Ar) where D1 is given by (6).

Moreover for all f, g ∈ D1,

Ar(f ⊗ g)(x, y) =
1

2
f(x)g′′(y) +

1

2
f ′′(x)g(y) + rf ′(x)g′(y)1{ε(x)=ε(y)}

Writing Itô’s formula for f(Xr) and g(Y r) and using martingales as in the proof of Propo-

sition 2.3, we easily deduce (i). (ii) is Lemma 4.12 in [12] (see also [2, 3]).

2.4 Proof of Theorem 1.4

Let (X,Y,W ) be a Wiener coupling solutions of (I) with X0 = Y0 = 0.

Lemma 2.5. As r → 1, (Xr, Y r,W r) converges in law to (X,Y,W ).

Proof. Let rn be a sequence in [0, 1] such that limn→∞ rn = 1. Slutsky lemma (see Theorem

1 in [2]) shows that for all g : G → R measurable bounded, y ∈ G and t > 0, Krn
0,tg(y)

converges in probability to K0,tg(y) and for any measurable function L, L(Wrn) converges

in probability to L(W). Now for any p ≥ 1, (fi, gi, hi)1≤i≤p bounded, (ti)1≤i≤p

E[

p∏

i=1

fi(X
rn
ti
)gi(Y

rn
ti

)hi(W
rn
ti

)] = E[

p∏

i=1

Krn
0,tfi(0)K

rn
0,tgi(0)hi(W

rn
0,ti

)]

which converges as n goes to ∞ to

E[

p∏

i=1

K0,tfi(0)K0,tgi(0)hi(W0,ti)]

This gives the desired result.

Let us now recall Proposition 7 in [2].

Proposition 2.6. Let Z1 and Z2 be two Walsh Brownian motion with respect to the same filtra-

tion. Denote by Λ the local time of Dt = d(Z1
t , Z

2
t ). Then

Dt = Mt +
1

2
Λt + (N − 2)

(∫ t

0
1
{Z1

s 6=0}
dL2

s +

∫ t

0
1
{Z2

s 6=0}
dL1

s

)

with M a martingale and L1, L2 are (see Proposition 5 in [2]) the bounded variation parts of X
i
t

and Y
i
t.
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Note that L1
t =

1
NLt(|Z

1|) and L2
t =

1
NLt(|Z

2|) by (3).

Applying the previous proposition to (Xr, Y r) and using Proposition 2.4 (ii), we get

d(Xr
t , Y

r
t ) = M r

t +
1

2
Λr
t +

(N − 2)

N
(Lt(|X

r|) + Lt(|Y
r|))

with M r a martingale and Λr the local time of d(Xr
t , Y

r
t ). In particular,

E[d(Xr
t , Y

r
t )] ≥ 2

(N − 2)

N
E[Rt] (9)

with R a reflected Brownian motion started from 0.

The previous proposition applied to the Wiener coupling (X,Y ) and the result of Sec-

tion 2.1 show that

d(Xt, Yt) = Mt +
(N − 2)

N
(

∫ t

0
1{Xs 6=0}dLs(|Y |) +

∫ t

0
1{Ys 6=0}dLs(|X|)) (10)

with M a martingale. By the Balayage formula (see [10] on page 111 or the proof of

Proposition 8 in [2]) and the fact that Lt(D) = 0,

d(Xt, Yt) = Martingale +
N − 2

N

(
1{X

g2
6=0}|Yt|+ 1{Y

g1
6=0}|Xt|

)
(11)

Here g1 := gXt and g2 := gYt . Admit for a moment that E[d(Xr
t , Y

r
t )] converges to

E[d(Xt, Yt)]. It comes from (9), (11), (X,Y ) has the same law as (Y,X), that

2
N − 2

N
E
[
1{X

g2
6=0}|Yt|

]
≥ 2

(N − 2)

N
E[Rt]

So

E
[
|Yt|

]
≥ E

[
1{X

g2
6=0}|Yt|

]
≥ E[Rt]

But E
[
|Yt|

]
= E[Rt] and so Xg2 6= 0 a.s. By symmetry Y g2 6= 0. Returning back to (11),

we deduce that d(X t, Y t)−
N−2
N (|X t|+ |Y t|) is a martingale which proves Theorem 1.4 (i).

Note that g1 = gXt , g2 = gYt and Z has the same set of zeros as Z for Z a Walsh

Brownian motion. This shows that XgYt
6= 0 and YgXt

6= 0 a.s. In particular gXt 6= gYt a.s

and since {Xt = Yt} ⊂ {gXt = gYt } (as X, Y follow the same Brownian motion on the same

ray), Theorem 1.4 (ii) is also proved.

Remark 2.7. Using the convergence of E[d(Xr
t , Y

r
t )] to E[d(Xt, Yt)], (9) and (10), we easily

deduce that
∫ t

0
1{Xs 6=0}dLs(|Y |) = Lt(|Y |);

∫ t

0
1{Ys 6=0}dLs(|X|) = Lt(|X|)

which is similar to Proposition 2.4 (ii).
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Now it remains to prove the following

Lemma 2.8. We have

lim
r→1

E[d(Xr
t , Y

r
t )] = E[d(Xt, Yt)].

Proof. From the convergence in law given in Lemma 2.5, it is easily seen that (Xr, Y r)

converges in law to (X,Y ). This is because Z is a continuous of Z . Let rn be a sequence

converging to 1. Skorokhod representation theorem says that it is possible to construct

on some probability space (Ω′,A′,P′), random variables (Xn, Y n)n≥1 and (X∞, Y ∞) such

that for each n, (Xn, Y n) has the same law as (Xrn , Y rn) and (X∞, Y ∞) has the same law

as (X,Y ) and moreover (Xn, Y n) converges a.s. to (X∞, Y ∞). The lemma holds as soon

as we prove that

lim
n→∞

E[d(Xn
t , Y

n
t )] = E[d(X∞

t , Y ∞
t )].

For each ǫ > 0,

E[d(Xn
t ,X

∞
t )] ≤ ǫ+ E[d(Xn

t ,X
∞
t )1{d(Xn

t ,X∞
t )>ǫ}]

≤ ǫ+ E[d(Xn
t ,X

∞
t )2]1/2P [d(Xn

t ,X
∞
t ) > ǫ]1/2

≤ ǫ+ CP [d(Xn
t ,X

∞
t ) > ǫ]1/2

for some finite constant C . Thus, lim supn E[d(Xn
t ,X

∞
t )] = 0 and similarly

lim supnE[d(Y n
t , Y ∞

t )] = 0. Using the triangle inequality, the lemma easily follows.

Let us now prove Theorem 1.4 (iii). Denote by G the natural filtration of the Wiener

coupling (X,Y ). For a random time R, let us recall the following σ-fields (see [2] on page

286)

GR = σ(XR : X is G − optional process)

GR+ = σ(XR : X is G − progressive process)

It is known (see for example Proposition 19 in [2]), that ε(Xt) is independent of GgXt
and

that ε(Xt) is GgXt + measurable (the same holds for Y ). Let g1 = gXt , g2 = gYt . The event

{g1 < g2} ∈ Gg2 (see Proposition 13 in [2]). On this event, we have

ε(Xt) = lim sup
ǫ→0+

ε(X(g1+ǫ)∧g2)

Since (g1+ǫ)∧g2 ≤ g2, by Proposition 13 in [2] again, G(g1+ǫ)∧g2 ⊂ Gg2 . So lim supǫ→0+ ε(X(g1+ǫ)∧g2)

is Gg2-measurable. Conditionning on Gg2 , we deduce that

E[f(ε(Xt))f(ε(Yt))1{g1<g2}] = E[f(ε(Yt)]E[f(ε(Xt))1{g1<g2}]
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Similarly

E[f(ε(Xt))f(ε(Yt))1{g2<g1}] = E[f(ε(Xt)]E[f(ε(Yt))1{g2<g1}]

Summing, we get

E[f(ε(Xt))f(ε(Yt))] = E[f(ε(Xt)]
(
E[f(ε(Xt))1{g1<g2}] +E[f(ε(Yt))1{g2<g1}]

)

But {g1 < g2} = {g2 < g1}c also belongs to Gg1 which is independent of ε(Xt) so that

E[f(ε(Xt))1{g1<g2}] =
1

2
E[f(ε(Xt))]

By symmetry, we conclude that E[f(ε(Xt))f(ε(Yt))] = E[f(ε(Xt))]E[f(ε(Yt))].
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