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Symmetry and asymmetry of minimizers of a class of noncoercive functionals

Introduction

Consider the functional

v ∈ H 1 0 (Ω) → 1 2 Ω |∇v| 2
subjected to the constraint

Ω v 2 = 1,
where Ω is the unit ball in the plane. Its critical values are the eigenvalues of the classical fixed membrane problem (1.1) -∆u = λu, in Ω , u = 0, on ∂Ω .

It is known that the first eigenfunctions are positive and Schwarz symmetric, that is, radial and decreasing in the radial variable. On the contrary, the second eigenfunctions are sign-changing; they are not radial, but they are symmetric with respect to the reflection at some line Re, and they are decreasing in the angle arccos[ x |x| • e] ∈ (0, π). These properties can be seen as a spherical version of the Schwarz symmetry along the foliation of the underlying ball Ω by circles. For this reason, this property has been called foliated Schwarz symmetry in the literature.

In the last years much interest has been devoted to the shape of sign changing minimizers of integral functionals, see for example [START_REF] Girao | The shape of extremal functions for Poincaré-Sobolev-type inequalities in a ball[END_REF], [START_REF] Weth | Symmetry of solutions to variational problems for nonlinear elliptic equations via reflection methods Jahresber[END_REF], [START_REF] Brandolini | Symmetry breaking in constrained Cheeger type isoperimetric inequality, to appear on[END_REF] and [START_REF] Parini | Existence, unique continuation and symmetry of least energy nodal solutions to sublinear Neumann problems[END_REF]. In [START_REF] Girao | The shape of extremal functions for Poincaré-Sobolev-type inequalities in a ball[END_REF], Girao and Weth studied the symmetry properties of the minimizers of the problem

(1.2) v → ∇v 2 v p , v ∈ H 1 (Ω) , Ω v = 0
for 2 ≤ p < 2 * . In view of the zero average constraint, (1.2) is similar to the problem of finding the second eigenfunctions of problem (1.1). They proved that the minimizers are foliated Schwarz symmetric.

In [START_REF] Girao | The shape of extremal functions for Poincaré-Sobolev-type inequalities in a ball[END_REF] Girao and Weth pointed out another interesting phenomenon related to the shape of the minimizers of (1.2). If p is close to 2, then any minimizer of the above functional is antisymmetric with respect to the reflection at the hyperplane {x • e = 0}. In contrast to this, the minimizers are not antisymmetric when N = 2 and p is sufficiently large. A similar break of symmetry was already observed in [START_REF] Dacorogna | Sur une généralisation de l'inégalité de Wirtinger[END_REF], [START_REF] Croce | On a generalized Wirtinger inequality[END_REF], [START_REF] Kawohl | Symmetry results for functions yielding best constants in Sobolev-type inequalities[END_REF], [START_REF] Belloni | A symmetry problem related to Wirtinger's and Poincaré's inequality[END_REF], [START_REF] Buslaev | On a family of extremum problems and related properties of an integral (Russian) Mat[END_REF], [START_REF] Nazarov | On exact constant in the generalized Poincaré inequality[END_REF] for the minimizers of the functional

v → v ′ L p (0,1)
v L q (0,1) , v ∈ W 1,p ((0, 1)), v(0) = v(1),

1 0 v = 0 .
Indeed, it has been shown that any minimizer is an antisymmetric function, if and only if q ≤ 3p.

In this paper, we will prove similar symmetry results for the minimizers of a generalized version of the functional studied by Girao and Weth in [START_REF] Girao | The shape of extremal functions for Poincaré-Sobolev-type inequalities in a ball[END_REF]. We consider

(1.3) λ θ,p (Ω) = inf Ω |∇v| 2 (1 + |v|) 2θ dx, v ∈ W 1,q (Ω), v = 0, Ω v dx = 0, v L p (Ω) = 1
where Ω is either a ball or an annulus centered in the origin in R N , N ≥ 2, θ and q satisfy 0 < 2θ < 1 , (1.4)

q = 2N (1 -θ) N -2θ , if N ≥ 3 , (1.5) 2(1 -θ) ≤ q < 2 , if N = 2 , (1.6) 1 < p < q * if N ≥ 3 , (1.7) 1 < p < +∞ if N = 2 . (1.8)
Observe that, if one defines

Ψ(ξ) := ξ 0 (1 + |t|) -θ dt = sgn ξ 1 -θ [(1 + |ξ|) 1-θ -1], ξ ∈ R then our functional is the integral of |∇Ψ(u)| 2 , that is, (1.3) is equivalent to (1.9) λ θ,p (Ω) = inf Ω |∇Ψ(v)| 2 dx, v ∈ W 1,q (Ω), v = 0, Ω v dx = 0, v L p (Ω) = 1
The main feature of this functional is that it is not coercive on H 1 0 (Ω), even if it is well defined on this Sobolev space. The lack of coercivity has unpleasant consequences for the minimizers of

v → Ω |∇v| 2 (1 + |v|) 2θ -G(x, v) dx
for functions G having various growth assumptions. Indeed, it was shown in [START_REF] Boccardo | Existence and regularity of minima for integral functionals noncoercive in the energy space[END_REF], [START_REF] Arcoya | Existence of critical points for some noncoercive functionals[END_REF], [START_REF] Mercaldo | Existence and boundedness of minimizers of a class of integral Boll[END_REF], [START_REF] Faraci | A bifurcation theorem for noncoercive integral functionals[END_REF], [START_REF] Porretta | Remarks on existence or loss of minima of infinite energy[END_REF], [START_REF] Boccardo | W 1,1 0 minima of noncoercive functionals[END_REF], that the minimizers are less regular than the minimizers of coercive functionals on H 1 (Ω).

After recalling the definition of foliated Schwarz symmetry and proving some new sufficient conditions for this symmetry in Section 3, we will prove the foliated Schwarz symmetry of the minimizers for N ≥ 2. As already pointed out, the same result has been obtained by Girao and Weth in [15] in the "coercive" case, that is, for θ = 0. We observe that in their proof, Girao and Weth make use of a well-known regularity result of the solutions of the Euler equation. In our case, we have to prove the analogous regularity result for our non coercive functional (see Section 4). Actually we are able to prove the foliated Schwarz symmetry of the minimizers of a more general functional, that is we consider

(1.10) λ θ,p (Ω) = inf Ω |∇v| 2 -F (|x|, v) (1 + |v|) 2θ dx, v ∈ W 1,q (Ω), v = 0, Ω v dx = 0, v L p (Ω) = 1
where we assume that

F : R + × R → R is a measurable function in r = |x| ∈ [0, +∞) and continuously differentiable in t ∈ R, which satisfies (1.11) F (r, 0) = 0 ,
and the growth conditions

|F (r, t)| ≤ c(1 + |t|) p , c > 0 , (1.12) |F t (r, t)| ≤ C 1 (1 + |t|) p-1 , C 1 > 0 , (1.13) for any r ∈ [0, +∞), t ∈ R. If p ∈ (1, 2), we add the requirement (1.14) t(1 + |t|)F t (r, t) -2θ|t|F (r, t) ≤ 0 , for any r ∈ [0, +∞), t ∈ R.
In the last two sections we will focus on the two-dimensional setting, in the case where Ω is a ball. We will prove that there exists a unique minimizer, which is anti-symmetric, for p = 2 and sufficiently small θ. On the contrary, the minimizers are not anti-symmetric for p sufficiently large. This shows a symmetry breaking phenomenon, which generalizes the results proved by Girao and Weth in the case θ = 0. Note that because of the difficulty given by the lack of coercivity of our functional, our technique is quite different from that one of [START_REF] Girao | The shape of extremal functions for Poincaré-Sobolev-type inequalities in a ball[END_REF].

Existence of a minimizer

In this section we prove the existence of a minimizer for problem (1.10) by adapting the technique of [START_REF] Dacorogna | Sur une généralisation de l'inégalité de Wirtinger[END_REF]. We will also make use of an estimate proved in [START_REF] Boccardo | Existence and regularity of minima for integral functionals noncoercive in the energy space[END_REF] (see also [START_REF] Alvino | Existence results for nonlinear elliptic equations with degenerate coercivity[END_REF] and [START_REF] Boccardo | Existence and regularity results for some elliptic equations with degenerate coercivity, dedicated to[END_REF]). Proof. We first observe that the growth assumption (1.12) on F and the condition u L p (Ω) = 1 in the functional imply that λ θ,p ∈ R. For any fixed n ∈ N, let us define

H n (v) = Ω |∇v| 2 -F (|x|, v) (1 + |v|) 2θ dx -λ θ,p (Ω) + 1 n , H ∞ (v) = Ω |∇v| 2 -F (|x|, v) (1 + |v|) 2θ dx -λ θ,p (Ω)
for any v ∈ W 1,q (Ω) such that v = 0, v L p (Ω) = 1 and Ω v = 0. By the definition of infimum, for any fixed n ∈ N there exists u n ∈ W 1,q (Ω), u n = 0, such that (2.1)

u n L p (Ω) = 1, Ω u n dx = 0 , H n (u n ) < 0 .
Now, by the growth assumption (1.12) on F , since the functions u n have L p -norm equal to 1, we have

(2.2) Ω |F (|x|, u n )| (1 + |u n |) 2θ dx ≤ C ,
where C is a positive constant which does not depend on n.

From now on we will denote by C a positive constant which depends on the data and which can vary from line to line. Since H n (u n ) < 0, estimates (2.1) and (2.2) imply that

(2.3) Ω |∇u n | 2 (1 + |u n |) 2θ dx ≤ C .
Now we prove that |∇u n | is bounded in L q (Ω), that is, for any n ∈ N, (2.4) ∇u n L q (Ω) ≤ C.

We adapt the estimate used in Theorem 2.1 of [START_REF] Boccardo | Existence and regularity of minima for integral functionals noncoercive in the energy space[END_REF] and we distinguish the case where N ≥ 3 and the case N = 2. Let N ≥ 3 with q = 2N (1-θ) N -2θ . We begin by applying the Hölder inequality since q < 2; then we use estimate (2.3) and, since the mean value of u n is null, by the Sobolev inequality, we get

Ω |∇u n | q dx ≤ Ω |∇u n | 2 (1 + |u n |) 2θ dx q 2 Ω (1 + |u n |) 2θq 2-q dx 1-q 2 ≤ C Ω |∇u n | 2 (1 + |u n |) 2θ dx q 2 1 + Ω |u n | q * dx 1-q 2 ≤ C 1 + Ω |∇u n | q dx q * q (1-q 2 )
where we have used the equality 2θq 2-q = q * . Since N ≥ 3, we deduce that q * q (1 -q 2 ) < 1 and (2.4) is proved.

Let N = 2. Similarly to above, by using the Hölder inequality, estimate (2.3), the inclusion L 2q 2-q (Ω) ⊂ L 2qθ 2-q (Ω) and the Sobolev inequality, we get

Ω |∇u n | q dx ≤ Ω |∇u n | 2 (1 + |u n |) 2θ dx q 2 Ω (1 + |u n |) 2θq 2-q dx 1-q 2 ≤ C Ω |∇u n | 2 (1 + |u n |) 2θ dx q 2 1 + Ω |u n | 2q 2-q dx (1-q 2 )θ ≤ C 1 + Ω |∇u n | q dx θ .
Since θ < 1, (2.4) follows again. By the Poincaré-Wirtinger inequality, since the mean value of u n is zero, we deduce by (2.4) that

(2.5) u n is bounded in W 1,q (Ω)
and therefore there exists a function u ∈ W 1,q (Ω) such that, as n goes to ∞, up to a subsequence,

(2.6) u n -→ u in W 1,q (Ω) weakly, (2.7) 
u n -→ u in L r (Ω), 1 ≤ r < q * , (2.8) 
u n -→ u a.e. in Ω.

Let N ≥ 3 with q = 2N (1-θ) N -2θ . Note that (2.7), since p < q * , implies that

Ω udx = 0 , u L p (Ω) = 1.
We claim that (2.9)

H ∞ (u) ≤ 0. Let (2.10) Ψ(ξ) := ξ 0 (1 + |t|) -θ dt = sgn ξ 1 -θ [(1 + |ξ|) 1-θ -1], ξ ∈ R
and observe that, by (2.3),

Ω |∇Ψ(u n )| 2 dx = Ω |∇u n | 2 (1 + |u n |) 2θ dx ≤ C.
Moreover, Ψ(u n ) is bounded in L 2 (Ω), since 2(1 -θ) ≤ q and u n is bounded in L q (Ω) by (2.5). We infer that Ψ(u n ) is bounded in W 1,2 (Ω) and, up to a subsequence, Ψ(u n ) converges weakly in W 1,2 (Ω) to a limit which is necessarily Ψ(u), by (2.8). Therefore, by the weak semi-continuity of the norm and inequality in (2.1), as n goes to ∞, up to a subsequence,

Ψ(u) 2 W 1,2 ≤ lim inf n→+∞ Ψ(u n ) 2 W 1,2 ≤ lim n→+∞ Ω F (|x|, u n ) (1 + |u n |) 2θ dx + lim n→+∞ λ θ,p (Ω) + 1 n .
To pass to the limit in the first term of the right hand side, one can use the Lebesgue theorem. Indeed, the pointwise convergence is given by (2.8). The growth assumptions (1.12) on F and (2.7), since p < q * , imply the existence of a function h ∈ L p (Ω) such that

|F (|x|, u n )| (1 + |u n |) 2θ ≤ h(x)
a.e. in Ω .

Finally we get

Ω |∇u| 2 (1 + |u|) 2θ dx ≤ Ω F (|x|, u) (1 + |u|) 2θ dx + λ θ,p (Ω) ,
that is, (2.9) holds. By the definition of λ θ,p (Ω), necessarily we have H ∞ (u) = 0. We observe that Ψ(u) = 0, since u L p (Ω) = 1.

It remains to conclude the proof in the case N = 2. Indeed when N = 2 we have 1 < p < +∞ (see (1.8)) and 2(1 -θ) ≤ q < 2 (see (1.6)), so that the convergences (2.6), (2.7) and (2.8) do not imply, in general, that u L p (Ω) = 1. However in view of (2.3) and since 2(1 -θ) ≤ q we obtain that Ψ(u n ) is bounded in W 1,2 (Ω). From the Sobolev embedding theorem it follows that Ψ(u n ) is bounded in L r (Ω) for any 1 ≤ r < +∞. Since Ψ(ξ) growths like |ξ| 1-θ with 1 -θ > 0, we conclude that u n is bounded in L r (Ω) for any 1 ≤ r < +∞. We obtain that u L p (Ω) = 1 and the arguments developed in the case N = 3 allow us to conclude that H ∞ (u) = 0.

Identification of symmetry

In this section we generalize some known symmetry criteria (cf. [START_REF] Brock | An approach to symmetrization via polarization[END_REF]). We first introduce some notation and definitions. Let Ω be a domain that is radially symmetric w.r.t. the origin. In other words, Ω is either an annulus, a ball, or the exterior of a ball in R N . If u : Ω → R is a measurable function, we will for convenience always extend u onto R N by setting u(x) = 0 for x ∈ R N \ Ω. Definition 3.1. Let H 0 be the family of open half-spaces H in R N such that 0 ∈ ∂H. For any H ∈ H 0 , let σ H denote the reflection in ∂H. We write

σ H u(x) := u(σ H x), x ∈ R N .
The two-point rearrangement w.r.t. H is given by

u H (x) := max{u(x); u(σ H x)} if x ∈ H, min{u(x); u(σ H x)} if x ∈ H.
The notion of two-point rearrangement was introduced more than fifty years ago as a set transformation in [START_REF] Wolontis | Properties of conformal invariants[END_REF], and was applied to variational problems for the first time by Brock and Solynin in [START_REF] Brock | An approach to symmetrization via polarization[END_REF].

Note that one has

u = u H iff u(x) ≥ u(σ H x) for all x ∈ H. Similarly, σ H u = u H iff u(x) ≤ u(σ H x) for all x ∈ H.
We will make use of the following properties of the two-point rearrangement (see [START_REF] Brock | An approach to symmetrization via polarization[END_REF]).

Lemma 3.1. Let H ∈ H 0 . (1) If A ∈ C([0, +∞), R), u : Ω → R is measurable and A(|x|, u) ∈ L 1 (Ω), then A(|x|, u H ) ∈ L 1 (Ω) and (3.1) Ω A(|x|, u) dx = Ω A(|x|, u H ) dx .
(

) If B ∈ L ∞ (R), u ∈ W 1,p (Ω) for some p ∈ [1, +∞), then 2 
)

Ω B(u)|∇u| p dx = Ω B(u H )|∇u H | p dx Proof. Since |σ H x| = |x|, we have for a.e. x ∈ H ∩ Ω, A(|x|, u(x)) + A(|σ H x|, u(σ H x)) = A(|x|, u H (x)) + A(|σ H x|, u H (σ H x)), and 
B(u(x))|∇u(x)| p + B(u(σ H x))|∇u(σ H x)| p =B(u H (x))|∇u H (x)| p + B(u H (σ H x))|∇u H (σ H x)| p .
Now (3.1) and (3.2) follow from this by integration over H ∩ Ω.

In order to study the symmetry of minimizers of (1.10) we introduce the notion of foliated Schwarz symmetrization of a function, a function which is axially symmetric with respect to an axis passing through the origin and nonincreasing in the polar angle from this axis. Definition 3.2. If u : Ω → R is measurable, the foliated Schwarz symmetrization u * of u is defined as the (unique) function satisfying the following properties:

(1) there is a function w : [0, +∞) × [0, π) → R, w = w(r, θ), which is nonincreasing in θ, and u * (x) = w (|x|, arccos(x 1 /|x|)) , (x ∈ Ω);

(2) L N -1 {x : a < u(x) ≤ b, |x| = r} = L N -1 {x : a < u * (x) ≤ b, |x| = r} for all a, b ∈ R with a < b, and r ≥ 0.

Definition 3.3. Let P N denote the point (1, 0, . . . , 0), the 'north pole' of the unit sphere S N -1 . We say that u is foliated Schwarz symmetric w.r.t. P N if u = u * -that is, u depends solely on r and on θ -the 'geographical width' -, and is nonincreasing in θ.

We also say that u is foliated Schwarz symmetric w.r.t. a point P ∈ S N -1 if there is a rotation about the origin ρ such that ρ(P N ) = P , and u(ρ

(•)) = u * (•).
In other words, a function u : Ω → R is foliated Schwarz symmetric with respect to P if, for every r > 0 and c ∈ R, the restricted superlevel set {x : |x| = r, u(x) ≥ c} is equal to {x : |x| = r} or a geodesic ball in the sphere {x : |x| = r} centered at rP . In particular u is axially symmetric with respect to the axis RP . Moreover a measurable function u : Ω → R is foliated Schwarz symmetric w.r.t. P ∈ S N -1 iff u = u H for all H ∈ H 0 with P ∈ H.

The main result of this section is the following result which gives a tool to establish if a measurable function is foliated Schwarz symmetric with respect to some point P . Theorem 3.1. Let u ∈ L p (Ω) for some p ∈ [1, +∞), and assume that for every H ∈ H 0 one has either u = u H , or σ H u = u H . Then u is foliated Schwarz symmetric w.r.t. some point P ∈ S N -1 .

Note that the above result has been shown for continuous functions by Weth in [START_REF] Weth | Symmetry of solutions to variational problems for nonlinear elliptic equations via reflection methods Jahresber[END_REF]. Theorem 3.2. Let u ∈ C(R N ) and assume that for every H ∈ H 0 one has either u = u H , or σ H u = u H . Then u is foliated Schwarz symmetric w.r.t. some point P ∈ S N -1 .

The idea in our proof is to use an approximation argument. Let ϕ ∈ C ∞ 0 (R N ), ϕ ≥ 0, with

R N ϕ(x) dx = 1.
Moreover, assume that ϕ is radial and radially non increasing, that is, there is

a nonincreasing function h : [0, +∞) → [0, +∞) such that ϕ(x) = h(|x|) for all x ∈ R N . For any function ε > 0, define ϕ ε by ϕ ε (x) := ε -N ϕ(ε -1 x), (x ∈ R N ).
For any u ∈ L 1 loc (R N ) let u ε be the standard mollifier of u, given by

u ε (x) := (u * ϕ ε )(x) ≡ R N u(y)ϕ ε (x -y) dy, (x ∈ R N ).
The following property is crucial. It allows a reduction to C ∞ -functions.

Lemma 3.2. Let u ∈ L p (R N ) for some p ∈ [1, +∞), and let H ∈ H 0 such that u = u H . Then u ε = (u ε ) H for every ε > 0. Proof. It is easy to see that |x -y| = |σ H x -σ H y| ≤ |σ H x -y| = |x -σ H y|,
whenever x, y ∈ H. Since u(y) ≥ u(σ H y) and since ϕ ε is radial and radially nonincreasing, we have for every x ∈ H,

u ε (x) -u ε (σ H x) = R N u(y)[ϕ ε (x -y) -ϕ ε (σ H x -y)] dx = H {u(y)[ϕ ε (x -y) -ϕ ε (σ H x -y)] + u(σ H y)[ϕ ε (x -σ H y) -ϕ ε (σ H x -σ H y)]} dx = H (u(y) -u(σ H y))[ϕ ε (x -y) -ϕ ε (σ H x -y)] dx ≥ 0.
The Lemma is proved.

Corollary 3.1. Let u ∈ L p (R N ) for some p ∈ [1, +∞), and let H ∈ H 0 such that σ H u = u H . Then σ H (u ε ) = (u ε ) H for every ε > 0.
We are now able to prove Theorem 3.1.

Proof of Theorem 3.1. Since for every H ∈ H 0 one has either u = u H , or σ H u = u H , Lemma 3.2 and Corollary 3.1 apply. Then either

u ε = (u ε ) H , or σ H u ε = (u ε ) H for every ε > 0. Since u ε ∈ C ∞ (R N
), Theorem 3.2 tells us that u ε is foliated Schwarz symmetric w.r.t. some point P ε ∈ S N -1 , for every ε > 0. Since S N -1 is compact, there is a sequence of positive numbers {ε n } and a point P ∈ S N -1 such that u εn is foliated Schwarz symmetric w.r.t. a point P n ∈ S N -1 and ε n → 0, P n → P as n → +∞. Let ρ n and ρ be rotations such that ρ n (N ) = P n , (n ∈ N), and ρ(N ) = P . Writing u n := u εn we have that

(3.3) u n (ρ n (•)) = (u n ) * (•), (n ∈ N).
Since u n → u, it follows that (u n ) * → u * in L p (R N ), and since P n → P we also have that

u n (ρ n (•)) → u(ρ(•)) in L p (R N ), as n → ∞. This, together with (3.3) implies that u(ρ(•)) = u * (•).
The Theorem is proved.

Symmetry of minimizers

In this section we study the properties of symmetry of minimizers of (1.10). The main result is the following 

4.1) t ∂ ∂t F (r, t) (1 + |t|) 2θ ≤ 0 ∀(r, t) ∈ [0, +∞) × R. It is satisfied, for instance, if F (r, t) = F (r, -t) and if (4.2) (1 + t)F t (r, t) -2θF (r, t) ≤ 0 for t ≥ 0. An example is F (r, t) = -c 0 |t| α , α ≥ 2θ, c 0 ≥ 0.
Observe that F satisfies the growth condition (1.12) with suitable c 0 and α such that 2θ ≤ α ≤ p.

Proof. We divide the proof into four steps.

Step 1 Let H ∈ H 0 , and let u be a minimizer of (1.10). The Euler equation satisfied by u is

-∇ ∇u (1 + |u|) 2θ -θ |∇u| 2 sgn u (1 + |u|) 2θ+1 + c + d|u| p-2 u = g(|x|, u) in Ω , (4.3) ∂u ∂ν = 0 on ∂Ω, (4.4) where c, d ∈ R, (4.5) g(r, t) := ∂ ∂t F (r, t) 2(1 + |t|) 2θ , ∀(r, t) ∈ [0, +∞) × R
and ν denotes the exterior unit normal to Ω. Setting

I(v) := Ω |∇v| 2 -F (|x|, v) (1 + |v|) 2θ dx,
we have, by Lemma 3.1,

u H = 0, u H ∈ W 1,q (Ω), Ω u H dx = 0, u H L p = 1, I(u) = I(u H ).
Hence, u H is a minimizer, too, so that it satisfies

-∇ ∇u H (1 + |u H |) 2θ -θ |∇u H | 2 sgn u H (1 + |u H |) 2θ+1 + c ′ + d ′ |u H | p-2 u H = g(|x|, u H ) in Ω , (4.6) ∂u H ∂ν = 0 on ∂Ω, (4.7) where c ′ , d ′ ∈ R. Step 2 We claim that u, u H ∈ W 1,q (Ω) ∩ W 2,2 (Ω) ∩ C 1 (Ω). Set Φ(η) := Ψ -1 (η)
where Ψ has been defined in (2.10). Let U := Ψ(u). Note that u = Φ(U ), u H = Φ(U H ),

Φ(η) = [1 + (1 -θ)|η|] 1/(1-θ) -1 sgn η,
and Φ is locally Lipschitz continuous. Rewriting (4.3) and (4.6) in terms of U and U H we find

-∆U + dM (U ) = N (|x|, U ), (4.8) -∆U H + dM (U H ) = N (|x|, U H ) (4.9)
in Ω, where

M (t) := |Φ(t)| p-2 Φ(t)(1 + |Φ(t)|) θ , N (r, t) := (g(r, t) -c)(1 + |Φ(t)|) θ , for any r ∈ [0, +∞), t ∈ R.
Observe that, by the growth conditions (1.12), (1.13) and definition of Φ(t), we have

|g(r, t)| ≤ c θ (1 + |t|) p-1-2θ , |M (t)| ≤ c ′ θ (1 + |t|) p-1+θ 1-θ , |N (r, t)| ≤ c ′′ θ (1 + |t|) p-1-2θ+ θ 1-θ
. Now, the growths of M and N allow us to to apply classical techniques for Neumann problems (see p. 272 of [START_REF] Mawhin | Variational methods and semi-linear elliptic equations[END_REF] and p. 271 of [START_REF] Struwe | Variational methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems[END_REF]) to state that U ∈ H 1 (Ω) is in fact C 1,β (Ω), with β ∈ (0, 1). Therefore u has the same regularity.

Step 3 Integrating (4.3) and (4.6) give

-θ Ω |∇u| 2 sgn u (1 + |u|) 2θ dx + c Ω dx + d Ω |u| p-2 u dx = Ω g(|x|, u) dx, (4.10) -θ Ω |∇u H | 2 sgn u H (1 + |u H |) 2θ dx + c ′ Ω dx + d ′ Ω |u H | p-2 u H dx = Ω g(|x|, u H ) dx. (4.11)
Further, multiplying (4.3) and (4.6) with u and u H respectively, then integrating and using the constraints, yield Moreover, if p ∈ (1, 2), then (4.1) holds, so that (4.12) yields d ≤ 0.

Ω |∇u| 2 [1 + (1 -θ)|u|] (1 + |u|) 2θ+1 dx + d = Ω ug(|x|, u) dx, (4.12) Ω |∇u H | 2 [1 + (1 -θ)|u H |] (1 + |u H |) 2θ+1 dx + d ′ = Ω u H g(|x|, u H ) dx.
Step 4

Note that t → M (t) is nondecreasing. Set h := U H -U , and note that h ≥ 0 in Ω ∩ H. Subtracting (4.9) from (4.8), we split into two cases.

(1) Let p ≥ 2. Then we find that

-∆h = L(x)h in Ω ∩ H,
where

L(x) := N (|x|,U H (x))-N (|x|,U (x))-d[M (U H (x))-M (U (x))] h(x) if h(x) > 0, 0 if h(x) = 0 is a bounded function. (2) Let p ∈ (1, 2). Then d ≤ 0, so that -∆h ≥ P (x)h in Ω ∩ H, where P (x) := N (|x|,U H (x))-N (|x|,U (x)) h(x) if h(x) > 0, 0 if h(x) = 0 is a bounded function.
Thus, in both cases the Strong Maximum Principle tells us that either h(x) ≡ 0, or h(x) > 0 throughout Ω ∩ H. This implies that we have either u = u H , or σ H u = u H in Ω. By Theorem 3.1 we deduce that u is foliated Schwarz symmetric.

Anti-symmetry for p = 2 in dimension 2

In this section we study symmetry properties of the solutions to (1.10) in the case p = 2, Ω = B, where B is a ball in R 2 , and F ≡ 0. We will show that for small parameter values θ, there exists a unique minimizer of

v → B |∇v| 2 (1 + |v|) 2θ dx, v ∈ W 1,q (B), v = 0, B v dx = 0, v L 2 (B) = 1 ,
which is anti-symmetric. Recall that θ satisfies (1.4) and q satisfies (1.6). With abuse of notations, we will denote the infimum of the above functional by λ θ,2 (B).

In the following we will use the notations of the proof of Theorem 4.1. More in details, let u θ be a minimizer for λ θ,2 (B), with corresponding constants c = c θ and d = d θ , see equation (4.10). By (4.12) we have, (5.1)

d θ = - B |∇u θ | 2 [1 + (1 -θ)|u θ |)] (1 + |u θ |) 2θ+1 dx .
We will also frequently work with the functions

U θ := Ψ θ (u θ )
where

Ψ θ (ξ) = sgn(ξ) 1 -θ [(1 + |ξ|) 1-θ -1]
(see (2.10)), and

Φ θ (η) = Ψ -1 θ (η) = [1 + (1 -θ)|η|] 1/(1-θ) -1 sgn(η) .
Our calculations will often contain a generic constant C that may vary from line to line, but will be independent of θ. Furthermore, as a consequence of Theorem 4.1, we will assume that u θ is foliated Schwarz symmetric w.r.t. the positive x 1 -half axis, that is,

(5.2) u θ (x 1 , x 2 ) = u θ (x 1 , -x 2 ) .
The anti-symmetry of u θ then reads as

u θ (x 1 , x 2 ) := -u θ (-x 1 , x 2 ), if θ is small. Lemma 5.1. Under assumptions (1.4), (1.6), the function θ → λ θ,2 (B) is decreasing. Moreover λ θ,2 (B) ≤ λ 2 (B)
, where

λ 2 (B) = inf B |∇u| 2 dx, u ∈ H 1 (B), B u dx = 0, u L 2 (B) = 1 .
Proof. Let θ 1 < θ 2 , let u θ 1 be a minimizer for λ θ 1 ,2 (B), and let 2(1 -θ 1 ) ≤ q < 2. We obtain

λ θ 1 ,2 (B) = B |∇u 1 | 2 (1 + |u 1 |) 2θ 1 dx ≥ B |∇u 1 | 2 (1 + |u 1 |) 2θ 2 dx ≥ λ θ 2 ,2 (B).
Next, let u be a minimizer for λ 2 (B). Then

λ 2 (B) ≥ B |∇u| 2 dx ≥ B |∇u| 2 (1 + |u|) 2θ dx ≥ λ θ,2 (B) .
Lemma 5.2. Under assumptions (1.4), (1.6), let u θ be a minimizer for λ θ,2 (B). Let d θ be defined by (5.1). There holds lim θ→0 d θ = -λ 2 (B).

Proof. First we observe that

(5.3) -d θ = B |∇u θ | 2 (1 + (1 -θ)|u θ |)) (1 + |u θ |) 2θ+1 dx ≤ B |∇u θ | 2 (1 + |u θ |) 2θ dx ≤ λ θ,2 (B) ≤ λ 2 (B)
by Lemma 5.1. On the other hand, (5.4)

-d θ ≥ B |∇u θ | 2 (1 -θ) (1 + |u θ |) 2θ dx = (1 -θ) B |∇U θ | 2 dx .
Moreover, it is easy to see that U θ L 2 (B) is uniformly bounded, since u θ L 2 (B) = 1 and θ ≤ 1 2 . Therefore also U θ H 1 (B) is uniformly bounded. By compactness, as θ → 0, U θ converges weakly to some function V ∈ H 1 (B) and strongly in L 2 (B). By the lower semi-continuity of the norm we get from (5.4)

(5.5) lim inf θ→0 (-d θ ) ≥ ∇V 2 L 2 (B) .
Further, the a.e. limit of U θ is the limit of u θ , say u. By the uniqueness of the limit, u = V a.e. in B. We recall that u θ L 2 (B) = 1 and

B u θ dx = 0. Since Ψ θ (u θ ) H 1 (B)
, by the growth of Ψ θ , we deduce that u θ → u in L 2 (B) and that V L 2 (B) = 1 and B V dx = 0. Together with (5.5), this implies that

(5.6) lim inf θ→0 (-d θ ) ≥ λ 2 (B) .
Now the Lemma follows from inequalities (5.3) and (5.6).

Proposition 5.1. Let u θ be a minimizer for λ θ,2 (B). Under assumptions (1.4), (1.6), we have (1) u θ W 1,∞ (B) ≤ C, where C does not depend on θ.

(2) Let u be the limit of u θ , as θ → 0, in W 1,r (Ω), for every r ∈ (1, +∞). ≤ C. This allows us to use the bootstrap argument described at p. 271 of [START_REF] Struwe | Variational methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems[END_REF].

Let v θ (x 1 , x 2 ) := -u θ (-x 1 , x 2
). Then we obtain from ( 

c θ = θ |B| B |∇u θ | 2 sgn(u θ ) (1 + |u θ |) 2θ+1 dx = - θ |B| B |∇v θ | 2 sgn(v θ ) (1 + |v θ |) 2θ+1 dx . 4.10), (5.7) 
+ |u θ |) -θ ∇u θ ) + c θ (1 + |u θ |) θ + d θ u θ (1 + |u θ |) θ = 0.
Integrating this gives

c θ B (1 + |u θ |) θ dx + d θ B u θ (1 + |u θ |) θ dx = 0,
since ∂u θ ∂ν = 0 on ∂B. The first integral in this identity is bounded from below, and

|d θ | is bounded by Lemma 5.2. If J denotes B u θ (1 + |u θ |) θ dx, we deduce that (5.9) |c θ | ≤ C|J|
for a constant C independent on θ. A change of variables gives

J = 1 2 B [u θ (1 + |u θ |) θ -v θ (1 + |v θ |) θ ] dx . Since B u θ dx = B v θ dx = 0, we get J = 1 2 B (u θ -v θ )[(1 + |v θ |) θ -1] dx + 1 2 B u θ [(1 + |u θ |) θ -(1 + |v θ |) θ ] dx .
Let J 1 denote the first term and J 2 the second one in this identity. A short computation shows that

|J 1 | ≤ θ 2 B |u θ -v θ ||v θ | dx , |J 2 | ≤ θ 2 B |u θ -v θ ||u θ | dx .
Since u θ and v θ are uniformly bounded by Proposition 5.1, this gives

|J| ≤ Cθ u θ -v θ L 2 (B) .
The conclusion follows from estimate (5.9). Now we can prove the main result of the section Theorem 5.1. There is a number θ 0 > 0, such that every minimizer u θ of λ θ,2 (B) satisfying (5.2) is unique and anti-symmetric w.r.t. x 1 , that is,

(5.10) u θ (x 1 , x 2 ) := -u θ (-x 1 , x 2 ),
for any 0 < θ < θ 0 .

Proof. We first prove that any minimizer is anti-symmetric. Let U θ := Ψ θ (u θ ) and V θ := Ψ θ (v θ ), where v θ (x 1 , x 2 ) = -u θ (-x 1 , x 2 ). Writing equation (5.8) in terms of U θ we have

-∆U θ + c θ (1 + |u θ |) θ + d θ u θ (1 + |u θ |) θ = 0 . Similarly -∆V θ -c θ (1 + |v θ |) θ + d θ v θ (1 + |v θ |) θ = 0.
Subtract both equations from each other. Assuming that U θ -V θ = 0 along a sequence θ → 0, we multiply by

U θ -V θ U θ -V θ 2 L 2 (B)
and integrate. Then we obtain

∇(U θ -V θ ) 2 L 2 (B) U θ -V θ 2 L 2 (B) + c θ U θ -V θ L 2 (B) B [(1 + |u θ |) θ + (1 + |v θ |) θ ] U θ -V θ U θ -V θ L 2 (B) dx = = -d θ B [u θ )(1 + |u θ |) θ -v θ (1 + |v θ )|) θ ] U θ -V θ U θ -V θ 2 L 2 (B) dx .
The second term of the left-hand side tends to zero, by Lemma 5.3, and since (1+|u θ |) θ +(1+|v θ |) θ is uniformly bounded by Proposition 5.1. To estimate the right-hand side, we first observe that -d θ → λ 2 (B), by Lemma 5.2. Moreover, it is not difficult to prove the following estimate:

|u θ (1 + |u θ |) θ -v θ (1 + |v θ |) θ | ≤ (1 + θ)[1 + (1 -θ)|ξ θ |] 2θ 1-θ |U θ -V θ |, where ξ θ is between U θ = Ψ θ (u θ ) and V θ = Ψ θ (v θ ). By Proposition 5.1, we deduce that (1 + θ)[1 + (1 -θ)|ξ θ |] 2θ 1-θ → 1, as θ → 0, uniformly in B. Now, set W θ := U θ -V θ U θ -V θ L 2 (B)
. By the above identity, the norms ∇W θ L 2 (B) are uniformly bounded. Hence there is a function W ∈ H 1 (B), such that along a subsequence, ∇W θ → ∇ W weakly in L 2 (B) and W θ → W in L 2 (B), so that W L 2 (B) = 1. This also implies

∇ W 2 L 2 (B) ≤ λ 2 (B).
Next we claim that

B W θ dx ≤ Cθ. Indeed, since B u θ dx = B v θ dx = 0, we have B (U θ -V θ ) dx = B (Ψ θ (u θ ) -u θ -Ψ θ (v θ ) + v θ ) dx ≤ B u θ v θ (Ψ ′ θ (t) -1)(u θ -v θ )dt dx ≤ θ B |u θ -v θ | dx .
Now, Φ θ is locally Lipschitz continuous, uniformly in θ. By Proposition 5.1, we obtain

B (U θ -V θ ) dx ≤ θ B |u θ -v θ | dx ≤ Cθ B |U θ -V θ | dx ≤ Cθ U θ -V θ L 2 (B)
and the claim follows. This and the fact that W θ → W in L 2 (B) prove that B W dx = 0. Then, by definition of λ 2 (B), we have that

∇ W 2 L 2 (B) ≥ λ 2 (B) .
Hence W is a (nonzero) eigenfunction for the Neumann Laplacian in B. By the properties of U θ and V θ and by (5.2), one has

W θ (x 1 , x 2 ) = W θ (-x 1 , x 2 ) = W θ (x 1 , -x 2 )
. Thus the same symmetry properties hold for W . But this is in contradiction with the shape of the eigenfunction in a ball, which is given by

J n (α nk |(x 1 , x 2 )|/R) • cos(nϕ) , l = 1 sin(nϕ) , l = 2(n = 0) ,
where we have used the polar coordinates, R is the radius of the ball, and α nk are the positive roots of the derivative of the Bessel function J n , (see for example [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]). We thus have proved that any minimizer is anti-symmetric. Note that the anti-symmetry also implies that c θ = 0, which can be seen by integrating (4.3). It remains to prove that the minimizer is unique for small θ. Assume this is not the case. Therefore along a sequence θ → 0 along which there exist two distinct minimizers u θ and u ′ θ . Let the corresponding constants d of (4.3) be denoted by d θ and d ′ θ . Multiplying (4.3) for u θ with u θ , and integrating by parts gives

d θ = - B |∇u θ | 2 (1 + |u θ |) 2θ dx + θ B |∇u θ | 2 |u θ | (1 + |u θ |) 2θ+1 dx (5.11) = -λ 2,θ (B) + θ B |∇u θ | 2 |u θ | (1 + |u θ |) 2θ+1 dx. Similarly d ′ θ = -λ 2,θ (B) + θ B |∇u ′ θ | 2 |u ′ θ | (1 + |u ′ θ |) 2θ+1 dx.
(5.12)

We define

g θ (ξ) := |ξ| (1 + |ξ|) 2θ+1 .
Since the functions g θ are locally Lipschitz continuous, uniformly in θ, we can estimate, using Proposition 1, Since W θ L 2 (B) = 1, and in view of the estimates (5.14) and (5.22), we see that the last two terms in (5.26) tend to zero as θ → 0. Hence the functions W θ are uniformly bounded in H 1 (B). By passing to another subsequence if necessary, we find a function W ∈ H 1 (B) such that W θ → W weakly in H 1 (B) and W θ → W in L 2 (B). Then, passing to the limit in (5.26) we obtain, since lim inf

θ→0 ∇W θ L 2 (B) ≥ ∇W L 2 (B) , (5.27) ∇W 2 L 2 (B) ≤ λ 2 (B) W 2 L 2 (B) .
Since also B W dx = 0 and B W 2 dx = 1, we must have equality in (5.27), and W is an anti-→ 0, as θ → 0, which gives a contradiction. The proof is complete.

Symmetry breaking in dimension 2

In this section we continue studying the two dimensional case, assuming again that F ≡ 0. We show that for p sufficiently large the minimizers of λ θ,p do not verify the properties of anti-symmetry described in the previous section; therefore a phenomenon of symmetry breaking occurs.

Let us denote by W 1,q as (B) the subset of the Sobolev space W 1,q (B) of the functions which are anti-symmetric with respect to the plane P ≡ {x ∈ R N +1 : x N = 0}, that is,

W 1,q as (B) := v ∈ W 1,q (B) : u(x ′ , -x N ) = -u(x ′ , x N ) . Let F(v) = B |∇v| 2 (1 + |v|) 2θ dx, v ∈ W 1,q (B), v = 0, B v dx = 0, v L 2 (B) = 1 .
Recall that θ satisfies (1.4) and q satisfies (1.6). Let

λ θ,p (B) := inf F(v), v ∈ W 1,q (B), v = 0, B v dx = 0, v L p (B) = 1 and λ θ,p as (B) := inf F(v), v ∈ W 1,q as (B), v = 0, B v dx = 0, v L p (B) = 1 .
Observe that the existence of a function realizing λ θ,p as (B) can be proved analogously as in Theorem 2.1. Let us also recall a well-known result. For any bounded smooth domain Ω ⊂ R 2 , let

Λ p as (Ω) = inf ∇v 2 L 2 (Ω) , v ∈ W 1,2 as (Ω), v = 0, Ω v dx = 0, v L p (Ω) = 1 .
In [START_REF] Girao | The shape of extremal functions for Poincaré-Sobolev-type inequalities in a ball[END_REF] the behaviour of Λ p as (Ω) is studied and it is proved that (6.1) Λ p as (Ω) → 0, as p → ∞.

It is easy to prove the same result for λ θ,p as (B): Proposition 6.1. We have λ θ,p as (B) → 0, as p → ∞.

Proof. Since Let ε > 0 be sufficiently small. For a suitable p(ε) > 0 and for any p > p(ε), one has, by (6.2) (6.4) λ θ,p (B) ≤ 1

(

)

1 p -ε 2 B |∇u p | 2 1 + |up-1 |B| B up dx| ( 1 2 ) 
1 p +ε 2θ dx.

Let us set M ε = 1 + ε 1 -ε .

We claim that First of all, it is easy to verifies that, for any p > p(ε),

(6.6) 1 + u p - 1 |B| B u p dx ≥ 1 + |u p | - 1 |B| B u p dx ≥ 1 + ||u p | -ε| ≥ (1 -ε)(1 + |u p |) .
Now we distinguish two cases.

(1) If ( 12 ) (2) If ( 12 )

1 p + ε ≤ 1, then G(u p ) ≤
1 p + ε > 1, then by (6.6),

1 + |u p -1 |B| B u p dx| ( 1 
2 )

1 p + ε ≥ 1 + |u p -1 |B| B u p dx| ( 1 
2 ) 

1 p + ε ≥ 1 -ε ( 1 
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 21 Under the assumptions (1.4)-(1.8), (1.11)-(1.14), there exists a minimizer u which realizes λ θ,p (Ω), as defined in (1.10).
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 41 Assume (1.12), (1.13), and (1.14) if p ∈ (1, 2). Then every minimizer of (1.10) is foliated Schwarz symmetric w.r.t. some point P ∈ S N -1 . Remark 4.1. Condition (1.14) is equivalent to

(

  

  10)-(4.13) together with Lemma 3.1 show that necessarily c = c ′ , d = d ′ .

  Then u L 2 (B) = 1 and B u dx = 0. Proof. The H 1 (B)-norm of U θ is uniformly bounded by Lemma 5.1. By multiplying equation (4.8) by U θ and integrating on B, one has that the right hand side of the equality is uniformly bounded, due to Lemma 5.1. The growth of M and Lemma 5.2 imply that U θ L p-1+θ 1-θ (B)

Lemma 5 . 3 .

 53 Under assumptions (1.4),(1.6), let u θ be a minimizer for λ θ,2 (B). Let c θ be defined by (5.7). There holds |c θ | ≤ Cθ u θ -v θ L 2 (B) for a positive constant C independent on θ. Proof. By multiplying equation (4.3), (with p = 2 and g = 0), by (1 + |u θ |) θ , we have (5.8) -∇((1

B |∇v| 2 1 ≥ 1 =Theorem 6 . 1 .|∇u p | 2 ( 1 +u 1 u p - 1 |B| B u p dx 2 L

 2116121112 dx ≥ F(v), one hasΛ p as (B) ≥ inf F(v), v ∈ W 1,2 as (B), v = 0 B v dx = 0, v L p (B) = inf F(v), v ∈ W 1,q as (B), v = 0 B v dx = 0, v L p (B) = λ θ,p(B) By (6.1) the conclusion follows. Now we can prove the main result of the section. For p sufficiently large, λ θ,p (B) < λ θ,p as (B). Therefore the minimizers of F are not anti-symmetric for p sufficiently large.Proof. Let v p be an eigenfunction for λ θ,p as (B). Hence v p L p (B) = 1. Let B + = {(x 1 , x 2 ) ∈ B : x 2 > 0}, and let u p be defined byu p (x) = v p (x), x ∈ B + , 0, x ∈ B \ B + . |u p |) 2θ dx = λ p dx → 0, as p → ∞.By Proposition 6.1, we deduce thatλ θ,p as (Ω) = 2 ∇Ψ(u p ) L 2 (B) → 0,as p → ∞ , where Ψ has been defined in (2.10). Since u p = 0 in B \ B + , we can use Poincaré-Wirtinger inequality which implies Ψ(u p ) L 2 (B) → 0, as p → ∞ . Therefore, up to subsequence, Ψ(u p ) → 0 and u p → 0 a.e. in B. On the other hand, there exists a function h ∈ L 2 (B) such that |Ψ(u p )| ≤ h a.e. in B. By definition of Ψ(t), we deduce the existence of a function k ∈ L 2(1-θ) (B) such that |u p | ≤ k a.e. in B. Hence Lebesgue's theorem applies and we get B |u p | dx → 0. This proves (6p (B) ≤ B |∇ũ p | 2 (1 + |ũ p |) 2θ dx = p (B) B |∇u p | 2 1 + |up-1 |B| B up dx| up-1 |B| B up dx L p (B) 2θ dx .

1+|up| 1+|up- 1 |B|

 1 B updx| . By (6.6) one has G(u p ) ≤ 1 1-ε .
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Combining estimates (6.4) and (6.7) we get

)

. Therefore, for p sufficiently large, one has

as (B) by (6.2).