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Abstract—Adaptive radar detection and estimation schemes
are often based on the independence of the secondary data used
for building estimators and detectors. This paper relaxes this
constraint and deals with the non-trivial problem of deriving
detection and estimation schemes for joint spatial and temporal
correlated radar measurements. Latest results from Random
Matrix theory, used for large dimensional regime, allows to build
a Toeplitz estimate of the spatial covariance matrix while the
temporal covariance matrix is then estimated in a conventional
way (Sample Covariance Matrix, M-estimates). These two joint
estimates of the spatial and temporal covariance matrices leads
to build Adaptive Radar Detectors, like Adaptive Normalized
Matched Filter (ANMF). We show that taking care of the
spatial covariance matrix may lead to significant performance
improvements compared to classical procedures.

I. INTRODUCTION

In many applications, data can be viewed as a joint spatial
and temporal process. In radar and imagery applications,
taking into account this constraint can be of high interest. For
high resolution radar, the sea clutter is clearly jointly spatially
and temporally correlated. In mutichannel (polarimetric,
interferometric or multi-temporal) SAR imaging, the
multivariate vector characterizing each spatial pixel of the
image is correlated over the channels but can also be strongly
correlated with those of neighborhood pixels. In the radar
community, one generally supposes that the vectors of
information collected over a spatial support are identically
and independently distributed. This strong assumption allows
to build easily Maximum Likelihood Estimators of parameters
like for example, covariance matrix required for adaptive
detection leading to overestimated performance of such
detectors. The aim of this proposal is to relax this hypothesis
through the use of recent Random Matrix Theory results. This
could help in many radar applications.

Covariance estimation is a fundamental problem in
multivariate statistics. Many techniques for hypothesis testing,
inference, denoising and prediction in speech, radar, wireless
communication and finance applications (just to quote a few)
rely on accurate estimation of the true covariance matrix or
the scatter matrix.

To estimate the scatter matrix (or a sub-set of its elements)
of any observed vector under test y (primary vector on
dimension N ), generally it is supposed to dispose of K > N
secondary vectors, independent and identically distributed
(IID), that share with the primary vector the same statistical
characteristics [1], [2]. In some applications, as in high spatial
resolution radars, the hypothesis of independence (or even
of uncorrelation) of the secondary vectors is seldom satisfied
due to the nature of the phenomenon at hand. Particularly,
for target detection purposes, due to the lack of knowledge of
the spectral characteristic of the clutter and the variability of
it on long period of time and large surfaces, the covariance
matrix of the clutter must be estimated and plugged into
adaptive detectors in both cases of Gaussian and non-Gaussian
distributed disturbance.

In this case the secondary vectors used for matrix
estimation contain the samples of the echoes backscattered by
the range cells surrounding the cell under test (CUT). If the
dimension of the range cells is of the order of meters or even
less, particularly in the case of sea clutter, some correlation
among echoes coming from adjacent range cells has been
observed, as shown in figure 2 [3] where the estimated space
correlation coefficient of sea clutter data, recorded by IPIX
radar [4], is illustrated for different range resolutions. The
periodicity, particularly evident for a resolution of 3 meters
is due to the periodicity of the sea surface and of the sea
wave behavior. Higher the radar range resolution, shorter
the waves that can be resolved by the radar itself (in the
figure each dot corresponds to a different range cell). The
correlation does not last for kilometers but it is enough to
affect the covariance matrix estimation and the performance
of the adaptive detectors.

To fill this gap, this paper presents an efficient way of
estimating first the correlation matrix from the samples in
order to whiten this space dependency. More precisely, based
on recent results from Random Matrix Theory (RMT), a
consistent estimate of the correlation matrix is introduced,
which allows to remove this correlation. Then, a classical
detection test, namely the Adaptive Normalized Matched Filter



Fig. 1. Sea clutter spatial correlation, IPIX radar [3]

(ANMF), is analyzed in order to underline th eimprovement
brought by the proposed approach.

The paper is organized as follows: Section III introduces
the problem formulation while the main contribution is
contained in Section IV. Then, Section V presents detection
performance obtained Monte-Carlo simulations, that enlighten
the interest of the proposed approach. Finally, Section ??
draws some conclusions and perspectives.

Notations : vectors and matrix are in boldface, matrix in
capitals and vectors in small letters, H the Hermitian operator
and T the transpose.

II. PROBLEM FORMULATION

Detecting a complex signal corrupted by an additive Gaus-
sian noise c ∼ CN (0,M) in a N -dimensional complex
observation vector y can be stated as the following binary
hypothesis test:{

H0 : y = c yi = ci i = 1, . . . ,K
H1 : y = αp + c yi = ci i = 1, . . . ,K

, (1)

where p is a perfectly known complex steering vector, α is
the unknown signal amplitude and where the ci ∼ CN (0,M)
are K signal-free non independent measurements, traditionally
called the secondary data, used to estimate the background co-
variance matrix M. To model the spatial dependency between
the secondary data, from the Gaussian assumption on ci, we
may write C = [c1, . . . , cK ] under the following form.

Assumption 1 (Time dependence) For C = [c1, . . . , cK ],

C = M1/2 XT1/2, (2)

where M ∈ CN×N and T ∈ CK×K are both nonnegative
definite, X is standard Gaussian, and T satisfies the normal-
ization 1

K tr T = 1.

We shall need the following technical assumptions.

Assumption 2 (Norm boundedness of M) We have

lim sup
N→∞

‖M‖ <∞

where the assumed norm is the spectral norm.

Assumption 3 (Toeplitz Structure for T) The matrix T is
Toeplitz, i.e., for all i, j, Ti,j = t|i−j| for t0 = 1 and tk ∈ C,
and positive definite. Besides,

∑∞
k=0 |tk| <∞.

Upon Assumption 3, it can be shown that
lim supK→∞ ‖T‖ <∞.

III. CONTRIBUTIONS

The following technical results unfold directly from a
careful check of the results of [5].

Proposition 1 (Consistent Estimation for T) As N,K →
∞ such that N/K → c ∈ (0,∞), and for every β < 1,

Nβ

∥∥∥∥T [ 1

N
CHC

]
−
(

1

N
tr M

)
T

∥∥∥∥→ 0

almost surely, where the norm is the matrix operator norm and
T [·] is the Toeplitzification operator defined by (T [X])ij =
1
K

∑K
k=1 Xk,k+|i−j|.

Proof: It suffices to update [5, Lemmas 3–6] by adding
the contribution of the matrix M. Notably, the upper bound
lim supK→∞ ‖M‖ on the norm of M will introduce a sup-
plementary term, which shall translate in [5, Theorem 2]
into multiplying the denominator of the exponential term by
lim supK→∞ ‖M‖.

Thus, despite the joint growth rate N,K → ∞ which
is usually detrimental to consistently estimating T in non-
parametric settings (as proved by random matrix theory),
Proposition 1 ensures that the Toeplitz structure of T is strong
enough constraint to recover consistency. The matrix M here
appears not to alter the result, mostly because X, being white
Gaussian, is left-unitarily invariant.

Denote now M̂ the following time-whitened sample co-
variance matrix of c1, . . . , cN :

M̂ ,
1

K
C

(
T
[

1

N
CHC

])−1

CH . (3)

For technical reasons, we shall demand the following
additional assumption.

Assumption 4 (Boundedness of T away from zero) For
λ1(T) ≤ . . . ≤ λK(T),

lim inf
K

λ1(T) > 0.

Then, as a corollary of Proposition 1, we find that, as
N,K →∞ with N/K → c ∈ (0,∞),

Nβ

∥∥∥∥M̂− M̌
1
N tr M

∥∥∥∥→ 0



almost surely for each β < 1, where M̌ , 1
NM

1
2XXHM

1
2 .

We thus asymptotically recover a normalized version of the
time-uncorrelated sample covariance matrix. Since any β < 1
is allowed, this implies that most functionals of M̂ having
fluctuations at a rate lower than N−β , β < 1, have the
same behavior as the traditional time-uncorrelated (inacces-
sible) sample covariance estimator 1

NM
1
2XXHM

1
2 , up to a

constant.

As an immediate application of the above, define the adap-

tive normalized matched filter (ANMF) [6] detector TN
H0

≶
H1

γ

to be based on the following statistics:

TN ,
|yHM̂−1p|√

yHM̂−1y

√
pHM̂−1p

. (4)

Since TN is clearly invariant by scalar multiplications of M̂,
exploiting standard results from random matrix theory, it then
comes that, as N,K →∞ with N/K → c ∈ (0, 1),

Nβ
(
TN − ŤN

)
→ 0

almost surely, where ŤN is the (inaccessible) test

ŤN ,
|yHM̌−1p|√

yHM̌−1y
√
pHM̌−1p

. (5)

In particular, for Γ ∈ R, it is known from [7], that, as
K,N grow large, the ANMF provides non trivial results when
setting thresholds γ = Γ√

N
, i.e., the false alarm rate

P

(
TN >

Γ√
N

)
converges, under the H0 hypothesis for y, towards a limit in
(0,∞). Similarly, assuming α = A√

N
for finite A in (??), the

probability of correct detection leads to non trivial results when
γ = Γ√

N
. From our previous reasoning, and the effective speed

of Nβ , β < 1, of our estimator, it then comes the following
result.

Corollary 1 (ANMF Performance) Both under H0 and H1,
as N,K →∞ with N/K → c ∈ (0, 1),

P

(
TN >

Γ√
N

)
− P

(
ŤN >

Γ√
N

)
→ 0.

Proof: This follows from the fact that
√
N(TN−ŤN )→ 0

almost surely.

Thus, we have shown that the proposed ANMF detector
TN is consistent with the ideal, but unobservable, time-
uncorrelated detector ŤN .

IV. NUMERICAL RESULTS

This section is devoted to the Monte-Carlo simulations
in order to compare the proposed approach, i.e. a space
correlation whitening, with the classical approach. For that
purpose, we consider the model given by equation (2). The
settings are the following: the covariance matrix M is a

full Toeplitz matrix given by its elements Mij = ρ
|i−j|
M

for i, j = 1, . . . , N and the (space) correlation matrix T
is also a Toeplitz matrix with 3 non-null elements (5 non-
null diagonals), i.e. Tij = ρ

|i−j|
T for i, j = 1, . . . ,K. The

parameters are given by N = 10, K = 20, ρM = 0.5
and ρT = 0.9, so that the covariance matrix is the identity
matrix. Then, we have plotted the Probability of False Alarm
(PFA) versus the detection threshold and also the detection
performance, namely the Probability of Detection (PD) versus
the Signal-to-Noise Ratio (SNR).
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Fig. 2. PFA-Threshold relationship under Gaussian noise, N = 10, K = 20.

To evaluate the gain of the method, we have compared
three scenarios:

• the case where T is assumed to be known and can
be removed. Thus, the covariance estimate is given
by M̌, and the corresponding test statistic is ŤN (eq.
(5)),

• the proposed estimate, given by equation (3), and the
corresponding test statistic TN (eq. (4))

• the classical approach that does not take into account
the space correlation, that is the covariance estimator
is given by

M̃ =
1

K
CCH



and its corresponding test statistic T̃N

In order to evaluate the robustness of the proposed ap-
proach and although the theoretical results are not given in this
work, on has also evaluated the detection performance when
using the Tyler’s estimate [8], [9] for estimating the covariance
matrix M, defined as the solution of the following fixed-point
equation:

M̂FP =
N

K

K∑
k=1

ck c
H
k

cHk M̂−1
FP ck

,

where ck represent the kth column vector of observation
matrix C.

Figures 2(a) and 2(b) display the PFA versus the detection
threshold respectively for a SCM-based approach and for a
Tyler-based approach. The first remark is that,even for small
N and K (here N = 10 and K = 20), the green curve that
represents the proposed approach is very close to the dark
one that is the optimal case. This validates the theoretical
result given in Corollary 1. Moreover, notice that there is
an improvement due to the space whitening effect. Indeed,
to guarantee the same level of false alarm, the detection
threshold increases in the classical case.

Then, figures 3(a) and 3(b) display the PD versus the
SNR of the target, for a PFA of 10−2. The corresponding
detection threshold is obtained thanks to figures 2(a) and 2(b).
Again, although no theoretical result is given in this paper
(we proved the consistency under H0), one can see the good
agreement between the limiting solution and the empirical
one. Then, one can evaluate the gain, that is similar under
both SCM and Tyler-based approches: for a PD of 0.9, there
is a gain in SNR of almost 3dB.

Finally, notice that under both hypotheses H0 and H1,
performance are sometimes better with the proposed approach
compared to the T-known case. This can be explained by the
fact that M is also unknown and has to be estimated.

V. CONCLUSION

This paper has focused on the joint estimation of joint
spatial and temporal covariance matrices arising for adaptive
radar detection schemes. This estimation was efficiently per-
formed using latest results coming from RMT with a Toeplitz
covariance structure assumption for the spatial covariance
matrix and M -estimators for the temporal covariance matrix.
First results show that the ANMF built with these estimates has
significant higher performances, in term of regulation of false
alarm and probability of detection versus SNR, than those of
the ANMF built with classical estimates supposing erroneously
i.i.d. spatially secondary data.
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Fig. 3. Detection performance under Gaussian noise, N = 10, K = 20.
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