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A Robust Statistics Approach
to Minimum Variance Portfolio Optimization

Liusha Yang∗, Romain Couillet†, Matthew R. McKay∗

Abstract—We study the design of portfolios under a minimum
risk criterion. The performance of the optimized portfolio relies
on the accuracy of the estimated covariance matrix of the
portfolio asset returns. For large portfolios, the number of
available market returns is often of similar order to the number
of assets, so that the sample covariance matrix performs poorly as
a covariance estimator. Additionally, financial market data often
contain outliers which, if not correctly handled, may further
corrupt the covariance estimation. We address these shortcom-
ings by studying the performance of a hybrid covariance matrix
estimator based on Tyler’s robust M-estimator and on Ledoit-
Wolf’s shrinkage estimator while assuming samples with heavy-
tailed distribution. Employing recent results from random matrix
theory, we develop a consistent estimator of (a scaled version
of) the realized portfolio risk, which is minimized by optimizing
online the shrinkage intensity. Our portfolio optimization method
is shown via simulations to outperform existing methods both for
synthetic and real market data.

I. INTRODUCTION

The theory of portfolio optimization is generally associated
with the classical mean-variance optimization framework of
Markowitz [1]. The pitfalls of the mean-variance analysis are
mainly related to its sensitivity to the estimation error of
the means and covariance matrix of the asset returns. It is
nonetheless argued that estimates of the covariance matrix
are more accurate than those of the expected returns [2, 3].
Thus, many studies concentrate on improving the performance
of the global minimum variance portfolio (GMVP), which
provides the lowest possible portfolio risk and involves only
the covariance matrix estimate.

The frequently used covariance estimator is the well-known
sample covariance matrix (SCM). However, covariance esti-
mates for portfolio optimization commonly involve few his-
torical observations of sometimes up to a thousand assets.
In such a case, the number of independent samples n may
be small compared to the covariance matrix dimension N ,
which suggests a poor performance of the SCM. The impact
of the estimation error on the out-of-sample performance of
the GMVP based on the SCM has already been analyzed in
[4–7].
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In the finance literature, several approaches have been
proposed to get around the problem of the scarcity of samples.
One approach is to impose some factor structure on the
estimator of the covariance matrix [8, 9], which reduces the
number of parameters to be estimated. A second approach is
to use as a covariance matrix estimator a weighted average of
the sample covariance matrix and another estimator, such as
the 1-factor covariance matrix or the identity matrix [10, 11].
A third approach is a nonlinear shrinkage estimation approach
[12], which modifies each eigenvalue of the SCM under the
framework of Markowitz’s portfolio selection. A fourth ap-
proach comprises eigenvalue clipping methods [13–15] whose
underlying idea is to ‘clean’ the SCM by filtering noisy
eigenvalues claimed to convey little valuable information. This
approach has also been employed recently in proposing novel
vaccine design strategies for infectious diseases [16, 17], and
its theoretical foundations have been examined in [18]. A
fifth method employs a bootstrap-corrected estimator for the
optimal return and its asset allocation, which reduces the error
of over-prediction of the in-sample return by bootstrapping
[6]. In contrast to all of these methods (which aim to improve
the covariance matrix estimate), alternative methods have also
been proposed which directly impose various constraints on
the portfolio weights, such as a no-shortsale constraint [3], a
L1 norm constraint and a L2 norm constraint [19, 20]. By
bounding directly the portfolio-weight vector, it is demon-
strated that the estimation error can be reduced, particularly
when the portfolio size is large [19].

In addition to the problem of sample deficiency, it is often
the case that the return observations exhibit impulsiveness and
local loss of stationarity [21], which is not addressed by the
methods mentioned above and leads to performance degrada-
tion. The field of robust estimation [22–25] intends to deal with
this problem. However, classical robust covariance estimators
generally require n � N and do not perform well (or are
not even defined) when n ' N , making them unsuitable
for many modern applications. Recent works [26–32] based
on random matrix theory have therefore considered robust
estimation in the n ' N regime. Two hybrid robust shrinkage
covariance matrix estimates have been proposed in parallel in
[29, 30] and in [31], respectively, both of which estimators
are built upon Tyler’s robust M-estimatior [23] and Ledoit-
Wolf’s shrinkage approach [11]. In [32], the authors show, by
means of random matrix theory, that in the large n,N regime
and under the assumption of elliptical vector observations, the
estimators in [29, 30] and [31] perform essentially the same
and can be analyzed thanks to their asymptotic closeness to
well-known random matrix models. Therefore, in this paper,
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we concentrate on the estimator studied in [29, 30], which we
denote by ĈST (ST standing for shrinkage Tyler). Namely, for
independent samples x1, ...,xn ∈ RN with zero mean, ĈST

is the unique solution to the fixed-point equation

ĈST(ρ) = (1− ρ)
1

n

n∑
t=1

xtx
T
t

1
N xTt Ĉ−1ST(ρ)xt

+ ρIN

for any ρ ∈ (max{1 − N
n , 0}, 1]. It should be noted that the

shrinkage structure even allows n < N .
This paper designs a novel minimum variance portfolio op-

timization strategy based on ĈST with a risk-minimizing (in-
stead of Frobenius norm minimizing [32]) shrinkage parameter
ρ. We first characterize the out-of-sample risk of the minimum
variance portfolio with plug-in ST for all ρ within a specified
range. This is done by analyzing the uniform convergence of
the achieved realized risk on ρ in the double limit regime,
where N,n → ∞, with cN = N/n → c ∈ (0,∞). We
subsequently provide a consistent estimator of the realized
portfolio risk (or, more precisely, a scaled version of it) that
is defined only in terms of the observed returns. Based on
this, we obtain a risk-optimized ST covariance estimator by
optimizing online over ρ, and thus our optimized portfolio.

The proposed portfolio selection is shown to achieve supe-
rior performance over the competing methods in [11, 31–33]
in minimizing the realized portfolio risk under the GMVP
framework for impulsive data. The outperformance of our
portfolio optimization strategy compared to other methods is
demonstrated through Monte Carlo simulations with ellipti-
cally distributed samples, as well as with real data of historical
(daily) stock returns from Hong Kong’s Hang Seng Index
(HSI).

Notations: Boldface upper case letters denote matrices,
boldface lower case letters denote column vectors, and stan-
dard lower case letters denote scalars. (·)T denotes transpose.
IN denotes the N ×N identity matrix and 1N denotes an N -
dimensional vector with all entries equal to one. tr[·] denotes
the matrix trace operator. R and C denote the real and complex
fields of dimension specified by a superscript. ‖·‖ denotes the
Euclidean norm for vectors and the spectral norm for matrices.
The Dirac measure at point x is denoted by δδδx. The ordered
eigenvalues of a symmetric matrix X of size N × N are
denoted by λ1(X) ≤ ... ≤ λN (X), and the cardinality of a set
C ⊂ R is denoted by |C|. Letting U,V be symmetric N ×N
matrices, we write U < V if U−V is positive semidefinite.

II. DATA MODEL AND PROBLEM FORMULATION

We consider a time series comprising x1, ...,xn ∈ RN
logarithmic returns of N financial assets. We assume the xt
to be independent and identically distributed (i.i.d.) with

xt = µµµ+
√
τtC

1/2
N yt, t = 1, 2, ..., n, (1)

where µµµ ∈ RN is the mean vector of the asset returns, τt
is a real, positive random variable, CN ∈ RN×N is positive
definite and yt ∈ RN is a zero mean unitarily invariant random
vector with norm ‖yt‖2 = N , independent of the τi’s. It is
assumed that µµµ and CN are time-invariant over the observation
period. Denote zt = C

1/2
N yt. The model (1) for xt embraces

in particular the class of elliptical distributions, including the
multivariate normal distribution, exponential distribution and
the multivariate Student-T distribution as special cases. This
model for xt leads to tractable and adoptable design solutions
and is a commonly used approximation of the impulsive nature
of financial data [10].

Let h ∈ RN denote the portfolio selection, i.e., the vector
of asset holdings in units of currency normalized by the total
outstanding wealth, satisfying hT1N = 1. In this paper, short-
selling is allowed, and thus the portfolio weights may be
negative. Then the portfolio variance (or risk) over the invest-
ment period of interest is defined as σ2(h) = E[|hTxt|2] =
hTCNh [1]. Accordingly, the GMVP selection problem can
be formulated as the following quadratic optimization problem
with a linear constraint:

min
h

σ2(h) s.t. hT1N = 1.

This has the well-known solution

hGMVP =
C−1N 1N

1TNC−1N 1N

and the corresponding portfolio risk is

σ2 (hGMVP) =
1

1TNC−1N 1N
. (2)

Here, (2) represents the theoretical minimum portfolio risk
bound, attained upon knowing the covariance matrix CN

exactly. In practice, CN is unknown, and instead we form an
estimate, denoted by ĈN . Thus, the GMVP selection based
on the plug-in estimator ĈN is given by

ĥGMVP =
Ĉ−1N 1N

1TN Ĉ−1N 1N
.

The quality of ĥGMVP, implemented based on the in-sample
covariance prediction ĈN , can be measured by its achieved
out-of-sample (or “realized”) portfolio risk:

σ2
(
ĥGMVP

)
=

1TN Ĉ−1N CN Ĉ−1N 1N

(1TN Ĉ−1N 1N )2
.

The goal is to construct a good estimator ĈN , and conse-
quently ĥGMVP, which minimizes this quantity.

Note that, for the naive uniform diversification rule, h =
1
N 1N . This is equivalent to setting ĈN = IN , and yields the
realized portfolio risk: 1T

NCN1N

N2 . Interestingly, this extremely
simple strategy has been shown in [34] to outperform numer-
ous optimized models and will serve as a benchmark in our
work.

III. NOVEL COVARIANCE ESTIMATOR AND PORTFOLIO
DESIGN FOR MINIMIZING RISK

A. Tyler’s robust M-estimator with linear shrinkage

Consider the ST covariance matrix estimate introduced in
[29, 30], built upon both Tyler’s M-estimate [23] and the
Ledoit-Wolf shrinkage estimator [11]. This estimator accounts
for the scarcity of samples, even allowing N > n, and exhibits
robustness to outliers or impulsive samples, e.g., elliptically
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distributed data. It is defined as the unique solution to the
following fixed-point equation for ρ ∈ (max{0, 1− n/N}, 1]:

ĈST(ρ) = (1− ρ)
1

n

n∑
t=1

x̃tx̃
T
t

1
N x̃Tt Ĉ−1ST(ρ)x̃t

+ ρIN (3)

where x̃t = xt − 1
n

∑n
i=1 xi.

Since with probability one the xt are linearly independent,
ĈST(ρ) is almost surely defined for each N and n [29,
Theorem III.1]. The corresponding GMVP selection is

ĥST(ρ) =
Ĉ−1ST(ρ)1N

1TN Ĉ−1ST(ρ)1N

with realized portfolio risk

σ2
(
ĥST(ρ)

)
=

1TN Ĉ−1ST(ρ)CN Ĉ−1ST(ρ)1N

(1TN Ĉ−1ST(ρ)1N )2
. (4)

Our goal is to optimize ρ online such that (4) is minimum.
However, since (4) involves CN which is unobservable, this
equation cannot be optimized directly. Also note that the naive
approach of simply replacing CN with ĈST(ρ) in (4) would
yield the so-called “in-sample risk”, which underestimates the
realized portfolio risk, leading to overly-optimistic investment
decisions [33]. We tackle this problem by obtaining a consis-
tent estimator for a scaled version of the realized risk (4) as
n and N go to infinity at the same rate. Contrary to classical
asymptotic theory for time series analysis and mathematical
statistics, which typically deal with the case of N fixed and
n→∞, a double-limiting condition is of more relevance for
large portfolio problems, where n is comparable to N . To this
end, following [33], we first derive a deterministic asymptotic
equivalent of (4) and then provide a consistent estimator based
on this.

B. Deterministic equivalent of the realized portfolio risk

For our asymptotic analysis, we assume the following:

Assumption 1.
a. As N,n→∞, N/n = cN → c ∈ (0,∞).
b. The τt, t = 1, ..., n are i.i.d. τ1, ..., τn ≥ ξ a.s. for some
ξ > 0 and E[τ1] <∞.1

c. Denoting 0 < λ1 ≤ ... ≤ λN the ordered eigenvalues
of CN , as N,n → ∞, νN , 1

N

∑N
i=1 δδδλi

satisfies
νN → ν weakly with ν 6= δδδ0 almost everywhere. In
addition, lim supN λN <∞.

We also introduce some further definitions, which will arise
in our asymptotic analysis. For ρ ∈ (max(0, 1−c−1), 1], define
γ the unique positive solution to

1 =

∫
t

γρ+ (1− ρ)t
ν(dt) (5)

and

β =

∫
cγ2t2

(γρ+ (1− ρ)t)2
ν(dt).

1For technical reasons, made explicit in the appendix, we require the
quantities z̃t = zt − 1

n

∑n
i=1 zi

√
τi
τt

to have controllable norms. This
imposes the constraint τt ≥ ξ > 0 which might be possible to relax at
the expense of increased mathematical complexity.

The following theorem presents our first key result: a deter-
ministic characterization of the asymptotic realized portfolio
risk achieved with ĈST(ρ).

Theorem 1. Let Assumption 1 hold. For ε ∈ (0,min{1, c−1}),
define Rε = [ε+ max{0, 1− c−1}, 1]. Then, as N,n→∞,

sup
ρ∈Rε

∣∣∣σ2
(
ĥST(ρ)

)
− σ̄2(ρ)

∣∣∣ a.s.−→ 0 (6)

where

σ̄2(ρ) =
γ2

γ2 − β(1− ρ)2
×

1TN

(
1−ρ
γ CN + ρIN

)−1
CN

(
1−ρ
γ CN + ρIN

)−1
1N(

1TN

(
1−ρ
γ CN + ρIN

)−1
1N

)2 .

Proof: See Appendix B.

Remark 1. In Theorem 1, the set Rε excludes the region
[0, ε+ max{0, 1− c−1}). As we handle the uniformity of the
convergence (6), the proof of Theorem 1 requires us to work on
sequences {ρn}∞n=1 of ρ. It is however difficult to handle the
limit

∣∣∣σ2(ĥST(ρn))− σ̄2(ρn)
∣∣∣ for a sequence {ρn}∞n=1 with

ρn → 0. This follows from the same reasoning as that in [32]
(see Equations (5) and (6) in Section 5.1 of [32] as well as
Equation (12) in Appendix A where ρn → ρ0 > 0 is necessary
to ensure e+ < 1). In the subsequent results, ρ ∈ Rε is also
required for the same reason.

Theorem 1 enables us to analyze the convergence of the
realized portfolio risk in the regime of Assumption 1-a for
ĥST(ρ). In order to calibrate the shrinkage parameter ρ for
optimum GMVP performance, only the available sample data
and certainly not the unknown CN can be used. This is the
objective of the subsequent section.

C. Consistent estimation of scaled realized portfolio risk

Based on the observable data only, we can obtain an
estimator of a scaled version of the realized portfolio risk,
σ2(ĥST(ρ))/κ, where we define κ ,

∫
tν(dt). We begin with

the following lemma that provides a consistent estimator of
γ, scaled by 1/κ, which is denoted as γ̂sc (“sc” standing for
“scaled”).

Lemma 1. Under the settings of Theorem 1, as N,n→∞,

sup
ρ∈Rε

|γ̂sc − γ/κ|
a.s.−→ 0 (7)

where

γ̂sc =
1

1− (1− ρ)cN

1

n

n∑
t=1

x̃Tt Ĉ−1ST(ρ)x̃t
‖x̃t‖2

.

Proof: See Appendix C.
The following theorem provides a consistent estimator of

σ2(ĥST(ρ)), scaled by 1/κ, which is denoted as σ̂2
sc(ρ). This

is our second main result.
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σ̂2
sc(ρ) =

γ̂sc
(1− ρ)− (1− ρ)2cN

1TN Ĉ−1ST(ρ)
(
ĈST(ρ)− ρIN

)
Ĉ−1ST(ρ)1N

(1TN Ĉ−1ST(ρ)1N )2
. (8)

Theorem 2. Under the settings of Theorem 1, as N,n→∞,

sup
ρ∈Rε

∣∣∣∣σ̂2
sc(ρ)− 1

κ
σ2(ĥST(ρ))

∣∣∣∣ a.s.−→ 0

where σ̂2
sc(ρ) is defined in (8) at the top of the page.

Proof: See Appendix D.
Note that, since κ is independent of ρ, the same ρ minimizes

both σ2(ĥST(ρ)) and σ2(ĥST(ρ))/κ.
The following corollary of Theorem 2 is of fundamental

importance, which demonstrates that choosing ρ to minimize
σ̂2
sc(ρ) is asymptotically equivalent to minimizing the unob-

servable σ2(ĥST(ρ)).

Corollary 1. Denote ρo and ρ∗ the minimizers of σ̂2
sc(ρ) and

σ2(ĥST(ρ)) over Rε, respectively. Then, under the settings of
Theorem 1 and Theorem 2, as N,n→∞,∣∣∣σ2

(
ĥST (ρo)

)
− σ2

(
ĥST (ρ∗)

)∣∣∣ a.s.−→ 0.

Proof: See Appendix E.
With this result, the GMVP optimization problem is now

reduced to the minimization of σ̂2
sc(ρ), which can be done

with a simple numerical search.
To summarise, given n past return observations of N assets,

our proposed algorithm to construct a portfolio with minimal
risk can be described as follows:

Algorithm 1 Proposed algorithm for GMVP optimization
1) Compute the optimized shrinkage parameter via a numer-

ical search

ρo = arg min
ρ∈[ε+max{0,1−c−1

N },1]

{
σ̂2
sc(ρ)

}
.

2) Form the risk-minimizing ST estimator Ĉo
ST, the unique

solution to

Ĉo
ST = (1− ρo) 1

n

n∑
t=1

x̃tx̃
T
t

1
N x̃Tt Ĉo−1

ST x̃t
+ ρoIN .

3) Construct the optimized portfolio

ĥoST =
Ĉo−1

ST 1N

1TN Ĉo−1
ST 1N

.

IV. SIMULATION RESULTS

We use both synthetic data and real market data to show
the performance of Ĉo

ST compared to the following competing
methods:

1) ĈP, referred to as the Abramovich-Pascal estimate from
[32];

2) ĈC, referred to as the Chen estimate from [32];

3) ĈC2, the oracle estimator in [31], which has the same
structure as ĈC, but resorts to solving an approximate
problem of minimizing the Frobenius distance to find the
optimal shrinkage;

4) ĈLW, the Ledoit-Wolf shrinkage estimator in [11];
5) ĈR, the Rubio estimator proposed in [33], which has the

same structure as ĈLW, but with ρ calibrated based on
the GMVP framework, as in the present article.

A. Synthetic data simulations

The synthetic data are generated i.i.d. from a multivariate
Student-T distribution, where

√
τt =

√
d/χ2

d, d = 3 and χ2
d is

a Chi-square random variable with d degree of freedom. We
set N = 200. The mean vector µµµ can be set arbitrarily since it
is discarded by the empirical mean, having no impact on the
covariance estimates. We assume the population covariance
matrix CN is based on a one-factor return structure [35]:
CN = bbTσ2 + Σ, where σ = 0.16. The factor loadings
b ∈ RN are evenly spread between 0.5 and 1.5. The residual
variance matrix Σ ∈ RN×N is set to be diagonal and
proportional to the identity matrix: Σ = σ2

rI, where σr = 0.2.
Fig. 1 illustrates the performance of different estimation

approaches in terms of the realized risk, averaged over 200
Monte Carlo simulations. The risk bound is computed by (2),
the theoretical minimum portfolio risk. Compared to other
methods, our proposed estimator Ĉo

ST achieves the smallest
realized risk for both n ≤ N and n > N . We omit the realized
risks achieved by ĈN = IN as they are uniformly more than
five times as large as those achieved by the other methods.

It is interesting to compare the optimized ρ of Ĉo
ST and

ĈP. They are both solutions of (3), but with ρ optimized
under different metrics: minimizing the risk and minimizing
the Frobenius distance, respectively. As shown in Fig. 2, the
optimal shrinkage parameter varies under different metrics.
Interestingly, optimizing ρ under the risk function as opposed
to the Frobenius distance leads to more aggressive shrinkage
(regularization) towards the identity matrix, thus producing a
portfolio allocation which is closer to the uniform allocation
policy.

B. Real market data simulations

We now investigate the out-of-sample portfolio performance
of the different estimators with the real market data. We
consider the stocks comprising the HSI. In particular, we
use the dividend-adjusted daily closing prices downloaded
from the Yahoo Finance database to obtain the continuously
compounded (logarithmic) returns for the 45 constituents of
the HSI over L = 736 working days, from Jan. 3, 2011 to
Dec. 31, 2013 (excluding weekends and public holidays).

As conventionally done in the financial literature, the out-
of-sample evaluation is defined in terms of a rolling window
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Fig. 1. The average realized portfolio risk of different covariance estimators
in the GMVP framework using synthetic data.
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Fig. 2. The optimal shrinkage parameters of ĈoST and ĈP in the synthetic
data simulation.

method. At a particular day t, we use the previous n days (i.e.,
from t−n to t−1) as the training window for covariance esti-
mation and construct the portfolio selection ĥGMVP. We then
use ĥGMVP to compute the portfolio returns in the following
10 days. Next the window is shifted 10 days forward and
the portfolio returns for another 10 days are computed. This
procedure is repeated until the end of the data. The realized
risk is computed conventionally as the annualized sample
standard deviation of the corresponding GMVP returns. In our
tests, different training window lengths are considered.

Fig. 3 shows that the proposed Ĉo
ST achieves the smallest

realized risk. It outperforms the other methods over the entire
span of considered estimation windows. The realized risk
achieved by ĈN = IN is also omitted here because it is
more than double as those achieved by the competing methods.
When the estimation window is too long (e.g., greater than 320
days), we observe that the performance starts to systematically
degrade. This is presumably due to a lack of stationarity in the
data over such long durations. This highlights an interesting
phenomenon worthy of further consideration, but a detailed
study falls beyond the scope of the current contribution.

When the estimation window length is 300, the lowest risk
is achieved by Ĉo

ST. Table I presents the risks obtained by

the different covariance estimators at the optimal estimation
window length of 300. We also test whether the pairwise
differences between the portfolio variance achieved by Ĉo

ST

and each benchmark strategy are statistically different from
zero. Since standard hypothesis tests are not valid when returns
have tails heavier than the normal distribution or are correlated
across time, we follow the method described in [36] and
[37] and employ a studentized version of the circular block
bootstrap [38] to do the test. The p-values are computed under
the null hypothesis that the portfolio variance achieved by
a particular benchmark covariance matrix estimator is equal
to that achieved by Ĉo

ST. We use a block length b = 5
and base our reported p-values on 2000 bootstrap iterations.
We also compute the p-values when the block lengths are
b = 1 and b = 10. The interpretation of the results does
not change for b = 1, b = 5, or b = 10. This implies that the
temporal correlations of the stock returns are weak and our
i.i.d. assumption on the data is acceptable. In the row reporting
the risks, statistically significant outperformance of Ĉo

ST over
other methods is denoted by asterisks: ** denotes significance
at the 0.01 level (p < 0.01) and * denotes significance at
the 0.05 level (p < 0.05). It can be seen from Table I that
the outperformance of our proposed method is statistically
significant, with p < 0.05 in all cases.

As a further comparison to investigate the performance with
finer temporal resolution than that in Fig. 3, we carry out
a rolling-window analysis on the realized risks. Under the
optimal estimation window length of 300, we obtain 436 out-
of-sample portfolio returns. From the start of the data, we use
the most recent 70 out-of-sample portfolio returns to compute
the (annualized) standard deviations of the GMVP. Shifting
one day forward, we repeat this procedure until the end of the
portfolio returns. For each covariance matrix estimator, this
results in 367 risk measurements, which are then displayed
in a time series plot, Fig. 4. We find that 69.2% of the time,
Ĉo

ST achieves the lowest risk among all alternative methods.
In addition, during the period of high volatility, that is, when
230 < t < 300, Ĉo

ST exhibits the greatest outperformance.
This justifies that our proposed GMVP optimization strategy
is robust to market fluctuations and even possibly to outliers.

V. CONCLUSIONS

We have proposed a novel minimum-variance portfolio
optimization strategy based on a robust shrinkage covariance
estimator with a shrinkage parameter calibrated to minimize
the realized portfolio risk. Our strategy has been shown to be
robust to finite-sampling effects as well as to the impulsive
characteristics of the data. It has been demonstrated that our
approach outperforms more standard techniques in terms of
the realized portfolio risk, both for synthetic data and for
real historical stock returns from Hong Kong’s HSI. Although
we base our analysis on the assumption of the absence of
the outliers, a recent study [39] has shown that the robust
covariance estimator ĈST is resilient to arbitrary outliers
by appropriately weighting good versus outlying data. This
is somewhat confirmed by our real data tests and is worth
investigating further.
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TABLE I
REALIZED PORTFOLIO RISKS (ANNUALIZED STANDARD DEVIATIONS) AND THE CORRESPONDING P-VALUES UNDER DIFFERENT COVARIANCE MATRIX

ESTIMATORS.

Dataset Statistic ĈoST ĈP ĈC ĈC2 ĈLW ĈR IN

HSI Risk (n=300) 0.0419 0.0433∗∗ 0.0428∗ 0.0430∗ 0.0438∗∗ 0.0439∗∗ 0.1112∗∗

p-value 1.000 0.009 0.028 0.041 0.001 0.001 0.000
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Fig. 3. Realized portfolio risks achieved out-of-sample over 736 days of
HSI real market data (from Jan. 3, 2011 to Dec. 31, 2013) by a GMVP
implemented using different covariance estimators.
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Fig. 4. Annualized rolling-window standard deviations of the most recent 70
out-of-sample log returns for the GMVP based on different covariance matrix
estimators.

Even though GMVP is not an optimal portfolio in terms of
the Sharpe ratio or return maximization at a given level of risk,
many empirical studies [40, 41] has shown that an investment
in the GMVP often yields better out-of-sample results than
other mean-variance portfolios, because of the poor estimates
of the means of the asset returns. Therefore, besides the robust
estimation of the covariance matrix, it would be of interest
to take into account the robust estimation of the means and
further develop robust approaches to the various portfolio
optimization strategies that involve both the estimates of the
means and the covariance matrix of the asset returns, such
as Sharpe ratio maximization or Markowitz’s mean-variance

portfolio optimization. These considerations are left to future
work.

APPENDIX A
PRELIMINARY RESULTS

In this appendix we provide some preparatory lemmas that
are essential for the proof of the main theorems. From now
on, for readability, we discard all unnecessary indices ρ when
no confusion is possible.

We start by rewriting ĈST in a more convenient form.
Denoting

z̃t = zt −
1

n
ZN

√
τττ

τt
, t = 1, 2, ..., n,

with
√
τττ = (

√
τ1, ...,

√
τn)T and ZN = [z1, ..., zn], after some

basic algebra, we obtain

ĈST = (1− ρ)
1

n

n∑
t=1

z̃tz̃
T
t

1
N z̃Tt Ĉ−1STz̃t

+ ρIN .

Denoting Ĉ(t) , ĈST − (1 − ρ) 1
n

z̃tz̃
T
t

1
N z̃T

t Ĉ−1
ST z̃t

and using

(A+rυυυυυυT )−1υυυ = A−1υυυ/(1+rυυυTA−1υυυ) for positive definite
matrix A, vector υυυ and scalar r > 0, we have

1

N
z̃Tt Ĉ−1STz̃t =

1
N z̃Tt Ĉ−1(t) z̃t

1 + (1− ρ)cN
1
N z̃T

t Ĉ−1
(t)

z̃t

1
N z̃T

t Ĉ−1
ST z̃t

so that
1

N
z̃Tt Ĉ−1STz̃t = (1− (1− ρ)cN )

1

N
z̃Tt Ĉ−1(t) z̃t (9)

and we can rewrite ĈST as

ĈST =
1− ρ

1− (1− ρ)cN

1

n

n∑
t=1

z̃tz̃
T
t

1
N z̃Tt Ĉ−1(t) z̃t

+ ρIN .

For t ∈ {1, ..., n}, denote d̂t(ρ) , 1
N z̃Tt Ĉ−1(t) z̃t. The

following lemma gives a deterministic approximation of d̂t(ρ),
which later helps to show that, up to scaling, ĈST is somewhat
similar to

∑n
t=1 ztz

T
t , which is not observable.

Lemma 2. Under the settings of Theorem 1, as N,n→∞,

sup
ρ∈Rε

max
1≤t≤n

∣∣∣d̂t(ρ)− γ(ρ)
∣∣∣ a.s.−→ 0.

Proof: This is proved via a contradiction argument, which
follows along lines similar to the proof in [32]. The main dif-
ference lies in that we re-center the sample data by subtracting
the sample mean, while the samples are assumed to be zero
mean in [32]. By subtracting the sample mean, the re-centered
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data are correlated and some
√
τt terms still remain in ĈST,

which introduces new technical difficulties.
Assuming (by relabelling) that d̂1(ρ) ≤ ... ≤ d̂n(ρ), we

first prove that for any fixed ` > 0, d̂n(ρ) is bounded above
by γ(ρ) + ` for all large n, uniformly on ρ ∈ Rε. Since
U < V⇒ V−1 < U−1, for positive definite matrices U and
V, we obtain

d̂n(ρ) =
1

N
z̃Tn

(
1− ρ

1− (1− ρ)cN

1

n

n−1∑
t=1

z̃tz̃
T
t

d̂t(ρ)
+ ρIN

)−1
z̃n

≤ 1

N
z̃Tn

(
1− ρ

1− (1− ρ)cN

1

n

n−1∑
t=1

z̃tz̃
T
t

d̂n(ρ)
+ ρIN

)−1
z̃n.

Since z̃n 6= 0 with probability one, this implies

1 ≤ 1

N
z̃Tn

(
1− ρ

1− (1− ρ)cN

1

n

n−1∑
t=1

z̃tz̃
T
t + d̂n(ρ)ρIN

)−1
z̃n.

(10)

Assume that there exists a sequence {ρn}∞n=1 over which
d̂n(ρn) > γ(ρn) + ` infinitely often, for some fixed ` > 0.
Since {ρn}∞n=1 is bounded, it has a limit point ρ0 ∈ Rε. Let
us restrict ourselves to such a subsequence on which ρn →
ρ0 > 0 and d̂n(ρn) > γ(ρn) + `. On this subsequence, from
(10), we have m̃N,n ≥ 1, where m̃N,n = 1

N z̃Tj M̃N,nz̃n and

M̃N,n =
(

1−ρn
1−(1−ρn)cN

1
n

∑n
t=1 z̃tz̃

T
t + (γ(ρn) + `)ρnIN

)−1
.

The quadratic form m̃N,j is amenable to large random
matrix analysis. The first step is to remove the effect of the
sample mean. Denote mN,j = 1

N zTj MN,jzj and MN,j =(
1−ρn

1−(1−ρn)cN
1
n

∑
t6=j ztz

T
t + (γ(ρn)+ `)ρnIN

)−1
. We have in

particular:

Proposition 1. As N,n→∞,

max
1≤j≤n

|m̃N,j −mN,j |
a.s.−→ 0. (11)

Proof: See Appendix F.

Remark 2. In Proposition 1, Assumption 1-b is necessary;
that is, i.i.d. τ1, ..., τn ≥ ξ a.s. for some ξ > 0 and E[τ1] <∞.
It guarantees that for t = 1, ..., n, the norm of z̃t does not go
off to infinity, recalling that z̃t = zt − 1

nZN
√

τττ
τt

.

By Proposition 1, we have |m̃N,n −mN,n|
a.s.−→ 0. This

allows us to follow the proof in [32], which deals with data
with mean zero.

To proceed, assume first ρ0 6= 1. From the proof of Theorem
1 in [32],

mN,n
a.s.−→

1− (1− ρ0)c

1− ρ0
δ

(
−(γ(ρ0) + `)ρ0

1− (1− ρ0)c

1− ρ0

)
, m+,

(12)

where, for x < 0, δ(x) is the unique positive solution to

δ(x) =

∫
t

−x+ t
1+cδ(x)

ν(dt).

Together with |m̃N,n −mN,n|
a.s.−→ 0, we have∣∣m̃N,n −m+
∣∣ a.s.−→ 0. (13)

It was demonstrated in [32] that m+ < 1. But this is in
contradiction with m̃N,n ≥ 1.

Now assume ρ0 = 1. According to [32],

mN,n
a.s.−→ 1

1 + `
< 1.

Then ∣∣∣∣m̃N,n −
1

1 + `

∣∣∣∣ a.s.−→ 0,

but 1
1+` < 1, again raising a contradiction with m̃N,n ≥ 1.

Hence, for all large n, there is no converging subsequence
of ρn (and thus no subsequence of ρn) for which d̂n(ρn) >
γ(ρn) + ` infinitely often. Therefore d̂n(ρ) ≤ γ(ρ) + ` for all
large n a.s., uniformly on ρ ∈ Rε.

The same reasoning holds for d̂1(ρ), which can be proved
greater than γ(ρ) − ` for all large n uniformly on ρ ∈ Rε.
Following the same arguments in [32], since ` > 0 is
arbitrary, from the ordering of the d̂t(ρ), we have proved that
supρ∈Rε

max1≤t≤n

∣∣∣d̂t(ρ)− γ(ρ)
∣∣∣ a.s.−→ 0. �

The following three lemmas, Lemma 3, 4 and 5 show
that functionals of Tyler’s estimator asymptotically perform
similar to functionals of 1

n

∑n
t=1 ztz

T
t or 1

n

∑n
t=1 yty

T
t . They

are used as an intermediate step for the development of the
asymptotic deterministic equivalent of the risk function. Using
existing results in [33], quoted as Lemma 6 in this paper, we
can then obtain our main theorems.

For notational convenience, we denote k = k(ρ) ,
1−ρ

1−(1−ρ)c . Also recall that γ is the unique positive solution
to 1 =

∫
t

γρ+(1−ρ)tν(dt). Assuming AN ∈ RN×N is a
deterministic symmetric nonnegative definite matrix, for some

η > 0, define D =

{
[0,∞) if lim infN λ1(AN ) > 0

[η,∞) otherwise
, and

further define that, for ρ ∈ Rε and w ∈ D,

R̃N =

(
AN + (1− ρ)

1

n

n∑
t=1

x̃tx̃
T
t

1
N x̃Tt Ĉ−1STx̃t

+ wIN

)−1

S̃N =

(
AN +

k

γ

1

n

n∑
t=1

z̃tz̃
T
t + wIN

)−1

SN =

(
AN +

k

γ

1

n

n∑
t=1

ztz
T
t + wIN

)−1
.

Then we introduce the following lemma.

Lemma 3. Assume aN ∈ RN is a deterministic vector with
lim supN ‖aN‖2 < ∞. Under the settings of Theorem 1, as
N,n→∞,

sup
ρ∈Rε,w∈D

∣∣∣aTNR̃NaN − aTNSNaN

∣∣∣ a.s.−→ 0. (14)

Proof: Define

B̂N (ρ) =
k

γ(ρ)

1

n

n∑
t=1

z̃tz̃
T
t ,
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D̂N (ρ) = (1− ρ)
1

n

n∑
t=1

x̃tx̃
T
t

1
N x̃Tt Ĉ−1STx̃t

(a)
=

1− ρ
1− (1− ρ)cN

1

n

n∑
t=1

z̃tz̃
T
t

d̂t(ρ)

where (a) uses the identity (9). Denote

∆ , aTNR̃NaN − aTN S̃NaN
(a)
= aTNR̃N

(
B̂N (ρ)− D̂N (ρ)

)
S̃NaN

where (a) uses the identity that U−1 − V−1 = U−1(V −
U)V−1 for invertible U,V matrices. We first prove that as
N,n→∞, supρ∈Rε,w∈D |∆|

a.s.−→ 0.
As N,n→∞, using the definition of k,

sup
ρ∈Rε

∥∥∥D̂N (ρ)− B̂N (ρ)
∥∥∥

≤

∥∥∥∥∥ 1

n

n∑
t=1

z̃tz̃
T
t

∥∥∥∥∥ sup
ρ∈Rε

max
1≤t≤n

1− ρ
1− (1− ρ)c

∣∣∣∣∣ d̂t(ρ)− γ(ρ)

γ(ρ)d̂t(ρ)

∣∣∣∣∣ .
(15)

We will show that the RHS of (15) goes to 0 a.s.
Recalling Lemma 2, this follows upon showing that
lim supn

∥∥ 1
n

∑n
t=1 z̃tz̃

T
t

∥∥ < ∞ a.s. To this end, recall that
z̃t = zt − 1

nZN
√

τττ
τt

. Then

1

n

n∑
t=1

z̃tz̃
T
t

=
1

n

n∑
t=1

ztz
T
t−

1

n

n∑
t=1

zt

(
1

n
ZN

√
τττ
√
τt

)T
− 1

n

n∑
t=1

(
1

n
ZN

√
τττ
√
τt

)
zTt

+
1

n

n∑
t=1

(
1

n
ZN

√
τττ
√
τt

)(
1

n
ZN

√
τττ
√
τt

)T
. (16)

We will show that the spectral norm of each term on the RHS
of (16) is bounded for all large n a.s.

First, from Assumption 1-c. and [42], we have
lim supn

∥∥ 1
n

∑n
t=1 ztz

T
t

∥∥ < ∞ a.s. Next, for the second and
the third terms on the RHS of (16),∥∥∥∥∥ 1

n

n∑
t=1

zt

(
1

n
ZN

√
τττ
√
τt

)T∥∥∥∥∥ =

∥∥∥∥∥ 1

n

n∑
t=1

(
1

n
ZN

√
τττ
√
τt

)
zTt

∥∥∥∥∥
=

(
1

n

n∑
t=1

yt√
τt

)T
CN

(
1

n

n∑
t=1

yt
√
τt

)

≤ ‖CN‖

(
1

n

n∑
t=1

yt√
τt

)T (
1

n

n∑
t=1

yt
√
τt

)
.

By the law of large numbers, as N,n→∞,∣∣∣∣∣∣
(

1

n

n∑
t=1

yt√
τt

)T (
1

n

n∑
t=1

yt
√
τt

)
− c

∣∣∣∣∣∣ a.s.−→ 0.

According to Assumption 1-a and Assumption 1-c, we

can see that lim supn

∥∥∥∥ 1
n

∑n
t=1 zt

(
1
nZN

√
τττ√
τt

)T∥∥∥∥ =

lim supn

∥∥∥ 1
n

∑n
t=1

(
1
nZN

√
τττ√
τt

)
zTt

∥∥∥ ≤ c ‖CN‖ <∞ a.s.

For the fourth term, with Assumption 1-b, we have

lim sup
n

∥∥∥∥∥ 1

n

n∑
t=1

(
1

n
ZN

√
τττ
√
τt

)(
1

n
ZN

√
τττ
√
τt

)T∥∥∥∥∥
≤ lim sup

n

{∥∥∥∥ 1

n
ZTNZN

∥∥∥∥
(

1

n

n∑
t=1

τt

)(
1

n

n∑
t=1

1

τt

)}
<∞ a.s.

Therefore, lim supn
∥∥ 1
n

∑n
t=1 z̃tz̃

T
t

∥∥ < ∞ a.s. Together with
Lemma 2, from (15), we have

sup
ρ∈Rε

∥∥∥B̂N (ρ)− D̂N (ρ)
∥∥∥ a.s.−→ 0. (17)

Note that w ∈ D ensures lim supN supρ∈Rε,w∈D

∥∥∥R̃N

∥∥∥ <
∞ and lim supN supρ∈Rε,w∈D

∥∥∥S̃N∥∥∥ <∞.

Together with (17) and ‖aN‖2 <∞, we have

sup
ρ∈Rε,w∈D

|∆| ≤ ‖aN‖2 sup
ρ∈Rε,w∈D

∥∥∥R̃N

∥∥∥ sup
ρ∈Rε,w∈D

∥∥∥S̃N∥∥∥
× sup
ρ∈Rε

∥∥∥∥∥kγ 1

n

n∑
t=1

z̃tz̃
T
t − (1− ρ)

1

n

n∑
t=1

x̃tx̃
T
t

1
N x̃Tt Ĉ−1STx̃t

∥∥∥∥∥ a.s.−→ 0.

Following the same reasoning as that of Proposition 1, we
have

sup
ρ∈Rε,w∈D

∣∣∣aTN S̃NaN − aTNSNaN

∣∣∣ a.s.−→ 0.

Together with supρ∈Rε,w∈D |∆|
a.s.−→ 0, we obtain (14). �

Define WN =
(
AN + k

γ
1
n

∑n
t=1 yty

T
t + wIN

)−1
and

W̃N =

(
AN + (1− ρ) 1

n

∑n
t=1

ỹtỹ
T
t

1
N ỹT

t C
1/2
N Ĉ−1

STC
1/2
N ỹt

+ wIN

)−1
,

where ỹt = yt − 1
n

∑n
i=1 yi. We introduce the following

lemma.

Lemma 4. Under the settings of Lemma 3, as N,n→∞,

sup
ρ∈Rε,w∈D

∣∣∣aTNW̃NaN − aTNWNaN

∣∣∣ a.s.−→ 0. (18)

Proof: The derivation is similar to that of (14).

Lemma 5. Under the settings of Lemma 3 and assuming
AN = 0, as N,n→∞,

sup
ρ∈Rε,w∈[η,∞)

∣∣∣∣∣aTN (1− ρ)
1

n

n∑
i=1

x̃ix̃
T
i

1
N x̃Ti Ĉ−1STx̃i

R̃2
NaN

−aTN
k

γ

1

n

n∑
i=1

ziz
T
i S2

NaN

∣∣∣∣∣ a.s.−→ 0. (19)

Proof: We first notice that

aTN (1− ρ)
1

n

n∑
i=1

x̃ix̃
T
i

1
N x̃Ti Ĉ−1STx̃i

R̃2
NaN

= − d

dw

[
aTN (1− ρ)

1

n

n∑
i=1

x̃ix̃
T
i

1
N x̃Ti Ĉ−1STx̃i

R̃NaN

]
= − d

dw

(
aTNaN− waTNR̃NaN

)
= aTNR̃NaN + w

d

dw

(
aTNR̃NaN

)
.
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Following similar steps, we also have

aTN
k

γ

1

n

n∑
i=1

ziz
T
i S2

NaN = aTNSNaN + w
d

dw

(
aTNSNaN

)
.

The almost sure convergence (14) in Lemma 3 when extended
to w ∈ C is uniform on any bounded region of (C− R)∪D,
and the functionals of w in (14) are analytic. Thus, by the
Weierstrass convergence theorem [43], the following holds:

sup
ρ∈Rε,w∈D

∣∣∣∣ d

dw

(
aTNR̃NaN

)
− d

dw

(
aTNSNaN

)∣∣∣∣ a.s.−→ 0.

Together with Lemma 3, we obtain (19). �

Lemma 6. [33, Appendix I-B] Under the settings of Lemma 3,
as N,n→∞,

sup
ρ∈Rε,w∈D

∣∣aTNSNaN − aTNTNaN
∣∣ a.s.−→ 0 (20)

where TN =
(
AN + k

(γ+eN (w)k)CN + wIN

)−1
and, for

each w ∈ D, eN (w) is the unique positive solution to the
following equation:

eN (w) =
1

n
tr

[
CN

(
AN +

k

(γ + eN (w)k)
CN + wIN

)−1]
.

Moreover, when AN = 0, we have

sup
ρ∈Rε,w∈[η,∞)

∣∣∣∣∣aTN kγ 1

n

n∑
t=1

ztz
T
t S

2
NaN

− kγ

(γ + eN (w)k)2
aTNCNT2

NaN

1− k2

(γ+eN (w)k)2
1

n
tr [C2

NT2
N ]

∣∣∣∣∣∣∣ a.s.−→ 0. �

APPENDIX B
PROOF OF THEOREM 1

First consider the (re-scaled) realized portfolio risk:

Nσ2(ĥST) =
1
N 1TN Ĉ−1STCN Ĉ−1ST1N

( 1
N 1TN Ĉ−1ST1N )2

. (21)

For the denominator, Lemma 3 and Lemma 6 imply

sup
ρ∈Rε

∣∣∣∣∣ 1N 1TNĈ−1
ST1N −

1

N
1TN

(
1− ρ
γ

CN + ρIN

)−1

1N

∣∣∣∣∣ a.s.−→ 0.

Note that in this case, AN = 0, aN = 1√
N

1N and w = ρ,

which leads to |eN (ρ)− cγ| a.s.−→ 0 when N,n → ∞. The
derivation is based on Assumption 1-c and the definition of γ
in (5).

For the numerator, we rewrite it as
1

N
1TN Ĉ−1STCN Ĉ−1ST1N

=
1

N
1TNC

−1/2
N (C

−1/2
N ĈSTC

−1/2
N )−2C

−1/2
N 1N ,

which, upon substituting the RHS of (3) for ĈST and setting
AN = ρC−1N in W̃N , yields

1

N
1TN Ĉ−1STCN Ĉ−1ST1N

=
1

N
1TNC

−1/2
N

(
(1−ρ)

1

n

n∑
t=1

C
−1/2
N x̃tx̃

T
t C
−1/2
N

1
N x̃Tt Ĉ−1STx̃t

+ρC−1N

)−2
×C

−1/2
N 1N

= − d

dw

[
1

N
1TNC

−1/2
N W̃NC

−1/2
N 1N

]∣∣∣∣
w=0

.

Setting AN = ρC−1N and aTN = 1√
N

C
−1/2
N 1N in (20), as

well as AN = ρC−1N in WN , yields

sup
ρ∈Rε,w∈[0,∞)

∣∣∣∣ 1

N
1TNC

−1/2
N WNC

−1/2
N 1N

− 1

N
1TNC

−1/2
N JNC

−1/2
N 1N

∣∣∣∣ a.s.−→ 0 (22)

where JN =
(
ρC−1N +

(
k

(γ+eN (w)k) + w
)

IN

)−1
and for

each w ∈ [0,∞), ẽN (w) is the unique positive solution to
the following equation:

ẽN (w) =
1

n
tr

[(
ρC−1N +

(
k

γ + ẽN (w)k
+ w

)
IN

)−1]
.

Lemma 4 and the convergence (22) imply

sup
ρ∈Rε,w∈[0,∞)

∣∣∣∣ 1

N
1TNC

−1/2
N W̃NC

−1/2
N 1N

− 1

N
1TNC

−1/2
N JNC

−1/2
N 1N

∣∣∣∣ a.s.−→ 0.

Following the same reasoning as for the proof of Lemma 5,
the convergence of the derivatives holds such that at w = 0
by the Weierstrass convergence theorem,

sup
ρ∈Rε

∣∣∣∣ d

dw

(
1

N
1TNC

−1/2
N W̃NC

−1/2
N 1N

)∣∣∣∣
w=0

− d

dw

(
1

N
1TNC

−1/2
N JNC

−1/2
N 1N

)∣∣∣∣
w=0

∣∣∣∣ a.s.−→ 0.

With Eq. (23) on the top of the next page and
|ẽN (0)− cγ| a.s.−→ 0 when N,n→∞, we have

sup
ρ∈Rε

∣∣∣∣ 1

N
1TN Ĉ−1STCN Ĉ−1ST1N−

γ2

γ2 − β(1− ρ)2
1

N
1TN

×
(

1− ρ
γ

CN + ρIN

)−1
CN

(
1− ρ
γ

CN + ρIN

)−1
1N

∣∣∣∣∣
a.s.−→ 0. (24)

Equipped with the asymptotic equivalences of the denominator
and numerator of (21), we prove Theorem 1.

APPENDIX C
PROOF OF LEMMA 1

First notice that

γ̂sc =
1

1− (1− ρ)cN

1

N

1

n

n∑
t=1

x̃Tt Ĉ−1ST(ρ)x̃t
1
N ‖x̃t‖2

=
1

1− (1− ρ)cN

1

N

1

n

n∑
t=1

z̃Tt Ĉ−1ST(ρ)z̃t
1
N ‖z̃t‖2

.
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d

dw

[
1

N
1TNC

−1/2
N JNC

−1/2
N 1N

]∣∣∣∣
w=0

=
− 1
N 1TNC

1/2
N

(
k

γ+ẽN (0)kCN + ρIN

)−2
C

1/2
N 1N

1− k2

(γ+ẽN (0)k)2
1

n
tr

[
C2
N

((
k

γ+ẽN (0)k

)
CN + ρIN

)−2] . (23)

It has been shown in Lemma 2 that
supρ∈Rε

max1≤t≤n

∣∣∣d̂t(ρ)− γ(ρ)
∣∣∣ a.s.−→ 0, where

d̂t(ρ) = 1
1−(1−ρ)cN

1
N z̃Tt Ĉ−1ST(ρ)z̃t. Therefore, to prove

the convergence (7), it is left to show that 1
N ‖z̃t‖

2 a.s.−→ κ.
We start by writing

1

N
‖z̃t‖2 =

1

N

(
zTt zt −

1

n
zTt ZN

√
τττ
√
τt
− 1

n

√
τττ
T

√
τt

ZTNzt

+
1

n2

√
τττ
T

√
τt

ZTNZN

√
τττ
√
τt

)
. (25)

Since the second and the third term on the RHS of (25) are
the same, we analyze the second term only. It can be rewritten
as

1

N

1

n
zTt ZN

√
τττ
√
τt

=
1

N

1

n
zTt zt +

1

N

1

n
zTt Z

(t)
N

√
τττ (t)
√
τt

where Z
(t)
N is the matrix with the tth column removed from

ZN and
√
τττ (t) is the vector with the tth entry removed

from
√
τττ . Since zt is independent of 1

nZ
(t)
N

√
τττ(t)
√
τt

, we have
1
nzTt Z

(t)
N

√
τττ(t)
√
τt

a.s.−→ 0. Together with 1
nzTt zt = O(1) a.s., we

have 1
N

1
nzTt ZN

√
τττ√
τt

a.s.−→ 0.
For the last term in (25),

lim sup
n

∣∣∣∣∣ 1

n2

√
τττ
T

√
τt

ZTNZN

√
τττ
√
τt

∣∣∣∣∣
≤ lim sup

n

∥∥∥∥ 1

n
ZTNZN

∥∥∥∥ 1

τt

1

n

n∑
i=1

τi <∞.

Thus, 1
N

1
n2

√
τττT

√
τt

ZTNZN
√
τττ√
τt

a.s.−→ 0.
Since the last three terms on the RHS of (25) vanish with

large n, we obtain 1
N

∣∣∥∥z̃2t∥∥− ∥∥z2t∥∥∣∣ a.s.−→ 0. Therefore, as
1
N ‖zt‖

2 a.s.−→ κ, we obtain 1
N ‖z̃t‖

2 a.s.−→ κ and the convergence
(7) unfolds.

APPENDIX D
PROOF OF THEOREM 2

According to Lemma 5 and Lemma 6, in which we set
AN = 0, w = ρ and aN = 1√

N
1N , the convergence (26) at

the top of the next page holds.
As |eN (ρ)− cγ| a.s.−→ 0 when N,n→∞, we substitute cγ

for eN (ρ) in (26), giving

sup
ρ∈Rε

∣∣∣∣ 1

N
1TN Ĉ−1ST

(
ĈST−ρIN

)
Ĉ−1ST1N −

(1−ρ)−(1−ρ)2c

γ

× γ2

γ2 − β(1− ρ)2
1

N
1TNCN

(
1− ρ
γ

CN + ρIN

)−2
1N

∣∣∣∣∣ a.s.−→ 0.

With respect to the asymptotic equivalence in (24) and upon
substituting γ̂sc for γ/κ, we obtain

sup
ρ∈Rε

∣∣∣∣ 1

κN
1TN Ĉ−1STCN Ĉ−1ST1N −

γ̂sc
(1− ρ)− (1− ρ)2cN

× 1

N
1TN Ĉ−1ST

(
ĈST − ρIN

)
Ĉ−1ST1N

∣∣∣∣ a.s.−→ 0.

Thus we obtain the consistent estimator of 1
κσ

2(ĥST(ρ)) in
Theorem 2.

APPENDIX E
PROOF OF COROLLARY 1

According to Theorem 2, we have

sup
ρ∈Rε

∣∣∣∣σ̂2
sc(ρ)− 1

κ
σ2(ĥST(ρ))

∣∣∣∣ a.s.−→ 0.

Then, the following holds true

σ̂2
sc(ρ

o) ≤ σ̂2
sc(ĥST(ρ∗))

1

κ
σ2(ĥST(ρ∗)) ≤ 1

κ
σ2(ĥST(ρo))

σ̂2
sc(ρ

o)− 1

κ
σ2(ĥST(ρo)) ≤ sup

ρ∈Rε

∣∣∣∣σ̂2
sc(ρ)− 1

κ
σ2(ĥST(ρ))

∣∣∣∣
a.s.−→ 0

σ̂2
sc(ρ

∗)− 1

κ
σ2(ĥST(ρ∗)) ≤ sup

ρ∈Rε

∣∣∣∣σ̂2
sc(ρ)− 1

κ
σ2(ĥST(ρ))

∣∣∣∣
a.s.−→ 0.

These four relations together ensure that

|σ2(ĥST(ρo))− σ2(ĥST(ρ∗))| a.s.−→ 0.

APPENDIX F
PROOF OF PROPOSITION 1

Denote

|m̃N,j −mN,j | = | −A−B + C −D|,
where 1 ≤ j ≤ n and

A ,
1

N

1

n

√
τττ
T

√
τj

ZTNMN,jzj

B ,
1

N
zTj MN,j

1

n
ZN

√
τττ
√
τj

C ,
1

N

1

n

√
τττ
T

√
τj

ZTNMN,j
1

n
ZN

√
τττ
√
τj

D ,
1

N
z̃Tj M̃N,j

1− ρn
1− (1− ρn)cN

1

n

 1

n2

∑
t6=j

ZN

√
τττ√
τt

√
τττ√
τt

T

ZTN

− 1

n

∑
t6=j

zt

√
τττ√
τt

T

ZTN −
1

n

∑
t6=j

ZN

√
τττ√
τt

zTt

MN,j z̃j .
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sup
ρ∈Rε

∣∣∣∣∣∣∣∣
1

N
1TNĈ−1

ST

(
ĈST − ρIN

)
Ĉ−1

ST1N −
kγ

(γ + eN (ρ)k)2

1
N
1TNCN

(
k

(γ+eN (ρ)k)
CN + ρIN

)−2

1N

1− k2

(γ+eN (ρ)k)2
1

n
tr

[
C2
N

(
k

(γ+eN (ρ)k)
CN + ρIN

)−2
]
∣∣∣∣∣∣∣∣

a.s.−→ 0. (26)

We wish to prove that

E[|m̃N,j −mN,j |p] ≤
Kp

Np
(27)

for some constants p ≥ 1, where Kp depends on p but not
on N . Then, taking p ≥ 2, along with the union bound, the
Markov inequality, and the Borel-Cantelli lemma, completes
the proof of Proposition 1.

Using the Minkowski inequality, we have

E [|m̃N,j −mN,j |p] ≤
(E1/p[|A|p] + E1/p[|B|p] + E1/p[|C|p] + E1/p[|D|p])p.

Thus, to prove (27), it is enough to show that E[|A|p] ≤ KpA

Np ,
E[|B|p] ≤ KpB

Np , E[|C|p] ≤ KpC

Np and E[|D|p] ≤ KpD

Np .

A. Moments of |A|, |B| and |C|
Start by noting that

E[|A|p]= 1

Np

1

np
E

∣∣∣∣∣zTj MN,jZN

√
τττ
√
τj

√
τττ
T

√
τj

ZTNMN,jzj

∣∣∣∣∣
p/2


=
1

Np

1

np
E

[∣∣∣∣∣zTj MN,j

(
zj + Z

(j)
N

√
τττ (j)
√
τj

)

×

(
zj + Z

(j)
N

√
τττ (j)
√
τj

)T
MN,jzj

∣∣∣∣∣∣
p/2


=
1

Np

1

np
E

[∣∣∣∣∣zTj MN,j

(
zjz

T
j + zj

√
τττ (j)

T

√
τj

Z
(j)T
N

+Z
(j)
N

√
τττ (j)
√
τj

zTj + Z
(j)
N

√
τττ (j)
√
τj

√
τττ (j)

T

√
τj

Z
(j)T
N

)
MN,jzj

∣∣∣∣∣
p/2


(a)

≤ A1 +A2 +A3 +A4,

where (a) follows from Jensen’s inequality and

A1 =
4p/2−1

Npnp
E
[∣∣zTj MN,jzjz

T
j MN,jzj

∣∣p/2]
A2 =

4p/2−1

Npnp
E

[∣∣∣∣∣zTj MN,jZ
(j)
N

√
τττ (j)
√
τj

×
√
τττ (j)

T

√
τj

Z
(j)T
N MN,jzj

∣∣∣∣∣
p/2


A3 =
4p/2−1

Npnp
E

∣∣∣∣∣zTj MN,jZ
(j)
N

√
τττ (j)
√
τj

zTj MN,jzj

∣∣∣∣∣
p/2


A4 =
4p/2−1

Npnp
E

∣∣∣∣∣zTj MN,jzj

√
τττ (j)

T

√
τj

Z
(j)T
N MN,jzj

∣∣∣∣∣
p/2
 .

For term A1,

A1 =
1

Np

1

np
· 4p/2−1E

[∣∣zTj MN,jzj
∣∣p]

≤ 1

Np

1

np
· 4p/2−1E

[
‖yj‖2p‖MN,j‖p‖‖CN‖p

]
.

Note also that

‖MN,j‖p ≤
1

(γ(ρn) + `)pρpn
,

and by Minkowsky’s inequality,

E[‖yj‖2p] = E(
N∑
i=1

y2i,j)
p ≤ NpE|y1,j |2p ≤ KpN

p.

Thus

A1 ≤
1

Np

Kp‖CN‖p4p/2−1cpN
(γ(ρn) + `)pρpn

≤ KpA1

Np
.

Now consider A2:

A2

(a)

≤ 23p/2−3

Npnp

(
E

[∣∣∣zTj QNzj − tr (QN )
∣∣∣p/2]+ E

[
|tr (QN )|p/2

])
(b)

≤ Kp

Npnp
E

[(
Ep/4|z1,j |4tr[QNQT

N ]
)p/4

+ E|z1,j |ptr
[
(QNQT

N )p/4
]
+ E |tr (QN )|p/2

]
=

Kp

Npnp

(
Ep/4|z1,j |4 + E|z1,j |p + 1

)
E‖MN,jZ

(j)
N

√
τττ (j)
√
τj
‖p

≤ Kp

Npnp

(
Ep/4|z1,j |4 + E|z1,j |p + 1

)
× E

(
‖MN,j‖p‖CN‖p/2

∥∥∥∥∥Y(j)
N

√
τττ (j)
√
τj

∥∥∥∥∥
p)

≤ 1

Np

KpK
p/2
CN

(
Ep/4|z1,j |4 + E|z1,j |p + 1

)
(γ(ρn) + `)pρpn

E

∥∥∥∥∥1nY(j)
N

√
τττ (j)
√
τj

∥∥∥∥∥
p

≤ KpA2/N
p,

where QN = MN,jZ
(j)
N

√
τττ(j)
√
τj

√
τττ(j)

T

√
τj

Z
(j)T
N MN,j , (a) follows

from Jensen’s inequality and (b) follows from the trace lemma
[44, Lemma B.26].

For A3,

A3≤
4p/2−1

Npnp
E1/2

[∣∣∣∣∣zTj MN,jZ
(j)
N

√
τττ (j)
√
τj

∣∣∣∣∣
p]
E1/2

[∣∣∣zTj MN,jzj

∣∣∣p].
As we have A1 ≤ KpA1/N

p and A2 ≤ KpA2/N
p, we

obtain A3 ≤ KpA3
/Np. Following the same reasoning as for

A3, we also get A4 ≤ KpA4
/Np.

Therefore, we obtain

E[|A|p] ≤ A1 +A2 +A3 +A4 ≤ KpA/N
p.



12

D1 =
1

N

(
zj −

1

n
ZN

√
τττ
√
τj

)T
M̃N,j

1− ρn
1− (1− ρn)cN

1

n

(
1

n2
1√
τττ

T 1√
τττ

ZN
√
τττ
√
τττ
T
ZTN

)
MN,j

(
zj −

1

n
ZN

√
τττ
√
τj

)
D2 =

1

N

(
zj −

1

n
ZN

√
τττ
√
τj

)T
M̃N,j

1− ρn
1− (1− ρn)cN

1

n

(
− 1

n
ZN

1√
τττ

√
τττ
T
ZTN

)
MN,j

(
zj −

1

n
ZN

√
τττ
√
τj

)
D3 =

1

N

(
zj −

1

n
ZN

√
τττ
√
τj

)T
M̃N,j

1− ρn
1− (1− ρn)cN

1

n

(
− 1

n
ZN
√
τττ

1√
τττ

T

ZTN

)
MN,j

(
zj −

1

n
ZN

√
τττ
√
τj

)
.

The same reasoning holds for E[|B|p], giving E[|B|p] ≤
KpB/N

p. As for the moments of |C|, it is similar to how we
dealt with A1:

E[|C|p] ≤ 1

Np
E

[∥∥∥∥ 1

n
YN

√
τττ
√
τj

∥∥∥∥2p ‖CN‖p‖Mp
N,j‖

]

≤ ‖CN‖p

Np(γ(ρn) + `)pρpn
E

[∥∥∥∥ 1

n
YN

√
τττ
√
τj

∥∥∥∥2p
]

≤ KpC

Np
.

B. Moments of |D|
We denote 1√

τττ
= ( 1√

τ1
, ..., 1√

τn
) and rewrite D as

D = D1 +D2 +D3

with D1, D2 and D3 at the top of the page. We aim to
prove E[|D|p] ≤ KpD/N

p, which is achieved by prov-
ing E[|D1|p] ≤ KpD1/N

p, E[|D2|p] ≤ KpD2/N
p and

E[|D3|p] ≤ KpD3
/Np.

Let’s first analyze D1 with the analysis of D2 and D3

following similarly. We obtain

E[|D1|p]
(a)

≤ 1

Np

(
1− ρn

1− (1− ρn)cN

)p
E1/2[|D1a|2p]E1/2[|D1b|2p]

(b)

≤ 1

Np

(
1− ρn

1− (1− ρn)cN

)p
× (E1/2p[|D1c|2p] + E1/2p[|D1d|2p])pE1/2[|D1b|2p] (28)

where (a) follows from the Cauchy-Schwarz inequality, (b)
follows from Minkowsky’s inequality, and

D1a =

(
zj −

1

n
ZN

√
τττ
√
τj

)T
M̃N,j

1

n2
1√
τττ

T 1√
τττ

ZN
√
τττ

D1b =
1

n

√
τττ
T
ZTNMN,j

(
zj −

1

n
ZN

√
τττ
√
τj

)

D1c = zTj M̃N,j
1

n2
1√
τττ

T 1√
τττ

ZN
√
τττ

D1d =

(
1

n
ZN

√
τττ
√
τj

)T
M̃N,j

1

n2
1√
τττ

T 1√
τττ

ZN
√
τττ .

Our aim is to prove that E[|D1b|2p] ≤ Kpb, E[|D1c|2p] ≤ Kpc

and E[|D1d|2p] ≤ Kpd. Following the analysis of E[|A|p] and
E[|C|p], we obtain E[|D1b|2p] ≤ Kpb. For E[|D1d|2p], we
have

E[|D1d|2p]

≤ 1

n2pτpj

∥∥∥∥ 1√
τττ

∥∥∥∥4pE
[∥∥∥M̃N,j

∥∥∥2p ‖CN‖2p
∥∥∥∥ 1

n
YN

√
τττ

∥∥∥∥4p
]

≤ ‖CN‖2p

n2pτpj (γ(ρn) + `)2pρ2pn

∥∥∥∥ 1√
τττ

∥∥∥∥4pE ∥∥∥∥ 1

n
YN

√
τττ

∥∥∥∥4p
≤ Kpd.

Let us now establish the inequality for D1c. We can see
that zj is not independent of M̃N,j , thus we cannot follow
the same procedure as for our analysis of A to determine the
order of E[|D1c|2p]. Instead, we divide M̃N,j into two parts,
one that is independent of zj and the other the remainder.

We first write
∑
t 6=j z̃tz̃

T
t = E + F, where E and F are

defined at the bottom of the page. Note that E is independent
of zj and F is not. Then D1c can be rewritten as (29) at the
top of the next page. Using Jensen’s inequality,

E[|D1c|2p] ≤ 22p−1
(
E[|G|2p] + E[|H|2p]

)
,

where G and H are the two terms on the RHS of (29). Next
we can use the same technique as used in Appendix F-A to
prove that E[|G|2p] ≤ KpG and E[|H|2p] ≤ KpH . Therefore,
we obtain E[|D1c|2p] ≤ Kpc.

Thus far, we have proven that E[|D1b|2p] ≤ Kpb,
E[|D1c|2p] ≤ Kpc, and E[|D1d|2p] ≤ Kpd. Coming back to
(28), we obtain E[|D1|p] ≤ KpD1

/Np.
Following similar arguments to our analysis of E[|D1|p],

we can also obtain E[|D2|p] ≤ KpD2/N
p and E[|D3|p] ≤

E=Z
(j)
N Z

(j)
N

T
− 1

n
Z

(j)
N

1√
τττ (j)

(
Z

(j)
N

√
τττ (j)
)T
− 1

n
Z

(j)
N

√
τττ (j)

(
Z

(j)
N

1√
τττ

)T
+

1

n2

(
1√
τττ (j)

)T
1√
τττ (j)

Z
(j)
N

√
τττ (j)

(
Z

(j)
N

√
τττ (j)

)T
F = − 1

n
Z

(j)
N

1√
τττ (j)
√
τjz

T
j −

1

n

√
τjzj

(
Z

(j)
N

1√
τττ (j)

)T
+
τj
n2

(
1√
τττ (j)

)T
1√
τττ (j)

zjz
T
j +

1

n2

(
1√
τττ (j)

)T
1√
τττ (j)

Z
(j)
N

√
τττ (j)
√
τjz

T
j

+
1

n2

(
1√
τττ (j)

)T
1√
τττ (j)
√
τjzj

(
Z

(j)
N

√
τττ (j)

)T
.
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D1c =zj

(
1− ρn

1− (1− ρn)cN
1

n
E+ (γ(ρn) + `)ρnIN

)−1
1

n2

1√
τττ

T 1√
τττ
ZN
√
τττ + zjM̃N,j

(
− 1− ρn
1− (1− ρn)cN

1

n
F

)
×
(

1− ρn
1−(1− ρn)cN

1

n
E+ (γ(ρn)+`)ρnIN

)−1
1

n2

1√
τττ

T 1√
τττ
ZN
√
τττ . (29)

KpD3
/Np. As D = D1+D2+D3, by Minkowsky’s inequality,

we obtain E[|D|p] ≤ KpD/N
p.
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