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Functional versions of Lp-affine surface area and

entropy inequalities. ∗

U. Caglar, M. Fradelizi†, O. Guédon†, J. Lehec,
C. Schütt and E. M. Werner ‡

Abstract

In contemporary convex geometry, the rapidly developing Lp-Brunn-Minkowski
theory is a modern analogue of the classical Brunn-Minkowski theory. A central
notion of this theory is the Lp-affine surface area of convex bodies. Here, we intro-
duce a functional analogue of this concept, for log-concave and s-concave functions.
We show that the new analytic notion is a generalization of the original Lp-affine
surface area. We prove duality relations and affine isoperimetric inequalities for log-
concave and s-concave functions. This leads to a new inverse log-Sobolev inequality
for s-concave densities.

1 Introduction.

In recent years, functional versions of several isoperimetric type inequalities from convex
geometry have been established [15, 25, 32, 35, 36, 46]. A natural extension of convex-
ity theory is the study of log-concave functions. One of the most important discoveries
in these recent investigations in this direction is the functional version of the famous
Blaschke-Santaló inequality [3, 7, 20, 28]. Another important inequality from convex ge-
ometry is the affine isoperimetric inequality [8, 40, 42]. In [4], Artstein-Avidan, Klartag,
Schütt and Werner obtained the functional form of this inequality for log-concave func-
tions which turned out to be a reverse log-Sobolev inequality.

In this paper, we define analytic versions of several important geometric invariants
and obtain new inequalities. For example, we introduce a functional analogue of Lp-
affine surface area and establish an analytic inequality corresponding to the Lp affine
isoperimetric inequality. The Lp-affine surface area, a notion of the Lp-Brunn-Minkwoski
theory, is an extension of affine surface area, the case p = 1, to all other p ∈ R. It was
first introduced for p > 1 by Lutwak in the groundbreaking paper [33] and extended
later in [39] and [47] to all other p. For a convex body K in Rn with the origin in its
interior and real p 6= −n, it is, if the integral exists, defined as

asp(K) =

∫
∂K

κK(x)
p

n+p

〈x,NK(x)〉
n(p−1)
n+p

dµK(x), (1)
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where ∂K is the boundary of K, NK(x) is the outer unit normal vector at x ∈ ∂K and
κK(x) is the (generalized) Gauss curvature in x ∈ ∂K. The Lp-affine surface area and
its related inequalities play a major role in convex and differential geometry [2, 22, 24,
30, 31, 34, 43, 45, 47, 48, 50, 51, 52]. Therefore, it is desirable to have functional versions
of this notion available. We provide exactly that and introduce a functional version of
Lp-affine surface area for s-concave and log-concave functions.

In Theorem 2, we establish a duality relation for the analytic Lp-affine surface area
of log-concave functions and deduce in Corollary 3 corresponding Lp-affine isoperimetric
inequalities. Those are the counterparts to the ones that hold for convex bodies. In fact,
we show that the Lp-affine isoperimetric inequalities for convex bodies can be obtained
from the ones for log-concave functions. This is explained in Section 3.3.

Finally, we generalize the notion of Lp-affine surface area to s-concave functions for
s > 0. We establish in Theorem 4 a duality relation which enables us to prove the
corresponding Lp-affine inequalities and a reverse log-Sobolev inequality for s-concave
functions.

The characterization of equality in the reverse log-Sobolev inequality of [4] had re-
mained open in [4]. We start our paper by providing this equality characterization, along
with a simple and short proof of the reverse log-Sobolev inequality of [4].

2 Equality characterization in the reverse log-Sobolev
inequality.

We start by giving a short proof of the reverse log-Sobolev inequality for log concave
functions due to Artstein, Klartag, Schütt and Werner [4]. We first recall the usual log-
Sobolev inequality. Let γn be the standard Gaussian measure on Rn. The log-Sobolev
inequality, due to Gross [23] (see also [17, 49]), asserts that for every probability measure
µ on Rn that is absolutely continuous with respect to Lebesgue measure,

H (µ | γn) ≤ 1

2
I (µ | γn) ,

where H and I denote the relative entropy and Fisher information, respectively,

H(µ | γn) =

∫
Rn

log

(
dµ

dγn

)
dµ, I(µ | γn) =

∫
Rn

∣∣∣∣∇ log

(
dµ

dγn

)∣∣∣∣2 dµ
and | · | is the Euclidean norm. It is well known (see for instance [6]) that this inequality
can be slightly improved to

H(µ | γn) ≤ C(µ)

2
+
n

2
log
(

1 +
I(µ | γn)− C(µ)

n

)
, (2)

where

C(µ) =

∫
Rn
|x|2 dµ− n

is the gap between the second moment of µ and that of the Gaussian. The usual log-
Sobolev inequality is recovered from (2), using the inequality log(1 + x) ≤ x. Inequal-
ity (2) can be written in a more concise way. Put ψ = − log(dµ/dx) and let

S(µ) =

∫
Rn
ψ dµ = −H(µ | dx) = −H(µ | γn) +

C(µ)

2
+
n

2
log(2πe)
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be the Shannon entropy of µ. Then S(γn) = n
2 log(2πe) so that

H(µ | γn)− C(µ)

2
= S(γn)− S(µ).

Moreover one has

I(µ | γn) =

∫
Rn
|x−∇ψ(x)|2dµ = C(µ) + n+

∫
Rn

(
|∇ψ(x)|2 − 2〈x,∇ψ(x)〉

)
dµ.

Hence inequality (2) is equivalent to

2
(
S(γn)− S(µ)

)
≤ n log

(
2n− 2

∫
Rn〈x,∇ψ(x)〉dµ+

∫
Rn |∇ψ(x)|2dµ

n

)
.

If e−ψ is C2 on Rn and if limxi→±∞ xie
−ψ = 0 and limxi→±∞

∂ψ
∂xi

e−ψ = 0 for all 1 ≤ i ≤
n, then

∫
Rn〈x,∇ψ(x)〉dµ = n and

∫
Rn |∇ψ(x)|2dµ =

∫
Rn ∆ψ dµ so that inequality (2) is

equivalent to

2
(
S(γn)− S(µ)

)
≤ n log

(∫
Rn ∆ψ dµ

n

)
, (3)

where ∆ is the Laplacian.

Recall that a measure µ with density e−ψ with respect to the Lebesgue measure is
called log-concave if ψ : Rn → R∪{+∞} is a convex function. For such a convex function
ψ we define Ωψ to be the interior of the convex domain of ψ, that is

Ωψ = int ({x ∈ Rn, ψ(x) < +∞}).

In this paper, we always consider convex functions ψ such that Ωψ 6= ∅. We will use the
classical Legendre transform of ψ,

ψ∗(y) = sup
x

(
〈x, y〉 − ψ(x)

)
. (4)

In the general case, when ψ is neither smooth nor strictly convex, the gradient of ψ,
denoted by ∇ψ, exists almost everywhere by Rademacher’s theorem (see, e.g., [10]), and
a theorem of Alexandrov [1] and Busemann and Feller [11] guarantees the existence of
the Hessian, denoted by ∇2ψ, almost everywhere in Ωψ. Recall also that

ψ(x) + ψ∗(y) ≥ 〈x, y〉

for every x, y ∈ Rn, with equality if and only if x is in the domain of ψ and y ∈ ∂ψ(x),
the sub differential of ψ at x. In particular

ψ∗(∇ψ(x)) = 〈x,∇ψ(x)〉 − ψ(x), a.e. in Ωψ. (5)

More information about duality transforms of convex functions can be found in [37, 41,
44].

For log-concave measures the following reverse form of inequality (3) holds.

Theorem 1. Let µ be a log-concave probability measure on Rn with density e−ψ with
respect to the Lebesgue measure. Then∫

Rn
log
(
det(∇2ψ)

)
dµ ≤ 2

(
S(γn)− S(µ)

)
. (6)

Equality holds if and only if µ is Gaussian (with arbitrary mean and positive definite
covariance matrix).
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Inequality (6) is due to Artstein-Avidan, Klartag, Schütt and Werner [4] under ad-
ditional smoothness assumptions. The equality conditions were also left open.

In the following we give a new simple and short proof of inequality (6) which allows
for a complete characterization of the equality cases. Our proof is based on the functional
form of the Blaschke-Santaló inequality [3, 7, 20, 28]. Let f, g be non-negative integrable
functions on Rn satisfying

f(x)g(y) ≤ e−〈x,y〉, ∀x, y ∈ Rn.

If f has its barycenter at 0, that is
∫
Rn xf(x)dx = 0, then(∫

Rn
f dx

)
×
(∫

Rn
g dx

)
≤ (2π)n. (7)

There is equality if and only if there exists a positive definite matrix A and C > 0 such
that, a.e. in Rn,

f(x) = C e−〈Ax,x〉/2, g(y) =
e−〈A

−1y,y〉/2

C
.

Proof of Theorem 1. Without loss of generality, we may assume that the function ψ is
lower semi-continuous. Both terms of the inequality are invariant under translations of
the measure µ, so we can assume that µ has its barycenter at 0. Then by the functional
Santaló inequality above ∫

Rn
e−ψ

∗
dx ≤ (2π)n. (8)

Let Ωψ,Ωψ∗ be the interiors of the domains of ψ and ψ∗, respectively. If ψ is C2-smooth
and strictly convex, then the map ∇ψ : Ωψ → Ωψ∗ is smooth and bijective. So by the
change of variable formula,∫

Rn
e−ψ

∗(y) dy =

∫
Ωψ∗

e−ψ
∗(y) dy =

∫
Ωψ

e−ψ
∗(∇ψ(x))det(∇2ψ(x)) dx. (9)

As noted above, in the general case, the gradient ∇ψ and the Hessian ∇2ψ of ψ exist
almost everywhere in Ωψ so that the right hand side of (9) is still well defined. Although
it is clear (take ψ(x) = |x| in R) that this equality may fail in general, a result of
McCann [37, Corollary 4.3 and Proposition A.1] shows that∫

Ωψ

e−ψ
∗(∇ψ(x))det(∇2ψ(x)) dx =

∫
Xψ∗

e−ψ
∗(y) dy, (10)

where Xψ∗ is the set of vectors of Ωψ∗ at which ∇2ψ∗ exists and is invertible. Together
with (8) we get ∫

Ωψ

e−ψ
∗(∇ψ(x))det(∇2ψ(x)) dx ≤ (2π)n.

By (5), the previous inequality thus becomes∫
Ωψ

e−〈x,∇ψ(x)〉+ψ(x)det(∇2ψ(x)) dx ≤ (2π)n,
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which can be rewritten as∫
Rn

e−〈x,∇ψ(x)〉+2ψ(x)det(∇2ψ(x)) dµ ≤ (2π)n. (11)

Taking the logarithm and using Jensen’s inequality (recall that µ is assumed to be a
probability measure) we obtain

−
∫
Rn
〈x,∇ψ(x)〉 dµ+ 2S(µ) +

∫
Rn

log
(
det(∇2ψ)

)
dµ ≤ n log(2π).

We will need some version of the Gauss-Green (or Stokes) formula and refer to [14]
as a general reference and for recent results on this subject. Let v be the vector flow
v(x) = e−ψ(x)x. By the convexity and lower semi-continuity of ψ, v is continuous and
locally Lispchitz on Ωψ, the closure of Ωψ. Assume first that Ωψ is bounded. Then by
the Gauss-Green formula [16, 18], we have∫

Ωψ

div(v(x))dx =

∫
∂Ωψ

〈v(x), NΩψ (x)〉dσΩψ ,

where NΩψ (x) is an exterior normal to the convex set Ωψ at the point x and σΩψ is the
Hausdorff measure restricted to ∂Ωψ. Hence∫

Rn
〈x,∇ψ(x)〉 dµ =

∫
Ωψ

〈x,∇ψ(x)〉e−ψ(x)dx

=

∫
Ωψ

div(x)e−ψ(x)dx−
∫
∂Ωψ

〈x,NΩψ (x)〉e−ψ(x)dσΩψ .

This formula also holds true for an unbounded domain Ωψ by a simple truncation argu-
ment and by the fast decay of log-concave integrable functions. Since Ωψ is convex, the
barycenter 0 of µ is in Ωψ. Thus 〈x,NΩψ (x)〉 ≥ 0 for every x ∈ ∂Ωψ and div(x) = n
hence ∫

Rn
〈x,∇ψ(x)〉 dµ ≤ n.

This finishes the proof of the inequality. Let us move on to the equality case. It is easily
checked that there is equality in Theorem 1 for Gaussian measures. On the other hand,
the above proof shows that if there is equality in (6), then there must be equality in (8).
Thus, by the equality case of the functional Santaló inequality, µ is Gaussian.

3 A functional Lp-affine surface area.

3.1 General theorems.

We first give a definition that generalizes the notion of Lp-affine surface area of convex
bodies to a functional setting. Generalizations of a different nature were given in [12]
and [13].

Definition 1. For measurable F1, F2 : R → (0,+∞), λ ∈ R and a convex function
ψ : Rn → R ∪ {+∞}, let Xψ be the set of points of Ωψ at which its Hessian ∇2ψ in the
sense of Alexandrov is defined and invertible. We define

asλ(F1, F2, ψ) =

∫
Xψ

(
F1(ψ(x))

)1−λ(
F2(〈x,∇ψ(x)〉 − ψ(x))

)λ(
det∇2ψ(x)

)λ
dx. (12)
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Since det(∇2ψ(x)) = 0 outside Xψ, the integral may be taken on Ωψ for λ > 0.
Definition 1 is motivated by two important facts. First, we prove that for a particular
choice of F1, F2 and ψ it coincides with the usual Lp-affine surface area of a convex
body. This is the content of Theorem 3. Second, in the case of log-concave functions,
for F1(t) = F2(t) = e−t the functional affine surface area as1(F1, F2, ψ) becomes

as1(F1, F2, ψ) =

∫
Xψ

e−ψ
∗(∇ψ(x))det∇2ψ(x)dx =

∫
Ωψ

e−ψ
∗(∇ψ(x))det∇2ψ(x)dx

and is of particular interest. This is discussed in Subsection 3.2.

Our main result is the duality formula of Theorem 2. A special case is the identity
(10) which was the starting point of the short proof of the reverse log-Sobolev inequality
presented in Section 2.

Notice also that for any linear invertible map A on Rn, one has

asλ(F1, F2, ψ ◦A) = |detA|2λ−1asλ(F1, F2, ψ), (13)

which corresponds to an SL(n) invariance with a degree of homogeneity of (2λ−1). This
is easily checked using ∇x(ψ ◦A) = At∇Axψ and ∇2

x(ψ ◦A) = At∇2
AxψA.

We shall use Corollary 4.3 and Proposition A.1 of [37], where McCann showed a
general change of variable formula, namely for every Borel function f : Rn → R+,∫

Xψ

f(∇ψ(x))det∇2ψ(x)dx =

∫
Xψ∗

f(y)dy. (14)

The same holds true for every integrable function f : Rn → R. Identity (14) is obvious
when ψ satisfies some regularity assumptions, like C2. It suffices to make the change of
variable y = ∇ψ(x). However, the proofs are more delicate in a general setting.

Theorem 2. Let λ ∈ R, let F1, F2 : R→ R+ and let ψ : Rn → R ∪ {+∞} be convex. If
λ < 0 or λ > 1, assume moreover that F1 ◦ψ > 0 on Xψ and F2 ◦ψ∗ > 0 on Xψ∗ . Then

asλ(F1, F2, ψ) = as1−λ(F2, F1, ψ
∗).

Proof. Without loss of generality, we can assume that ψ is lower semi-continuous so that
ψ = (ψ∗)∗. By (5),

asλ(F1, F2, ψ) =

∫
Xψ

(F1 ◦ ψ(x))1−λ(F2 ◦ ψ∗(∇ψ(x)))λ(det∇2ψ(x))λdx.

By Proposition A.1 in [37],

x = ∇ψ∗ ◦ ∇ψ(x) and ∇2ψ∗(∇ψ(x)) = (∇2ψ(x))−1, ∀x ∈ Xψ,

so that asλ(F1, F2, ψ) is equal to∫
Xψ

(F1 ◦ ψ ◦ ∇ψ∗(∇ψ(x)))1−λ(F2 ◦ ψ∗(∇ψ(x)))λ(det∇2ψ∗(∇ψ(x)))1−λdet∇2ψ(x)dx.

Using (14), we obtain

asλ(F1, F2, ψ) =

∫
Xψ∗

(F1 ◦ ψ ◦ ∇ψ∗(y))1−λ(F2 ◦ ψ∗(y))λ(det∇2ψ∗(y))1−λdy.

Since (ψ∗)∗ = ψ, we conclude the proof using (5) with ψ∗ instead of ψ.
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Corollary 1. The function λ 7→ log(asλ(F1, F2, ψ)) is convex on R. Moreover,

∀λ ∈ [0, 1], asλ(F1, F2, ψ) ≤

(∫
Xψ

F1 ◦ ψ

)1−λ(∫
Xψ∗

F2 ◦ ψ∗
)λ

.

Equality holds trivially if λ = 0 and λ = 1. If F1 ◦ ψ > 0 on Xψ and F2 ◦ ψ∗ > 0 on
Xψ∗ , then

∀λ /∈ [0, 1], asλ(F1, F2, ψ) ≥

(∫
Xψ

F1 ◦ ψ

)1−λ(∫
Xψ∗

F2 ◦ ψ∗
)λ

.

Proof. The convexity of λ 7→ log(asλ(F1, F2, ψ)) is a consequence of Hölder’s inequality.
For the inequalities we use Hölder’s inequality and also the duality relation of Theorem
2 with λ = 1, as1(F1, F2, ψ) = as0(F2, F1, ψ

∗) =
∫
Xψ∗

F2 ◦ ψ∗.

We define the non-increasing function F : R→ R+ by

F (t) = sup
t1+t2

2 ≥t

√
F1(t1)F2(t2). (15)

Notice that if F1 = F2 is a log-concave, non-increasing function then F = F1 = F2.

Corollary 2. Let F1, F2 : R → R+ and let ψ : Rn → R ∪ {+∞} be a convex function.
For z ∈ Rn, let ψz(x) = ψ(x+ z). Then there exists z ∈ Rn such that

∀λ ∈ [0, 1], asλ(F1, F2, ψz) ≤
(∫

Rn
F

(
|x|2

2

)
dx

)2λ
(∫

Xψ

F1 ◦ ψ

)1−2λ

.

Equality holds trivially if λ = 0. If F1 ◦ ψ > 0 on Xψ and F2 ◦ ψ∗ > 0 on Xψ∗ then

∀λ < 0, asλ(F1, F2, ψz) ≥
(∫

Rn
F

(
|x|2

2

)
dx

)2λ
(∫

Xψ

F1 ◦ ψ

)1−2λ

.

If F is decreasing, λ 6= 0 and
∫
Xψ

F1 ◦ ψ 6= 0, then there is equality in each of these

inequalities if and only if there exists c ∈ R+, a ∈ R and a positive definite matrix A
such that, for every x ∈ Rn and t ≥ 0,

ψz(x) = 〈Ax, x〉+ a, F1(t+ a) = c F (t) and F2(t− a) =
F (t)

c
.

Remark. Notice that if ψ is even then one may choose z = 0. Moreover, the inequality
of Corollary 2, together with the duality relation of Theorem 2, yields another inequality
which is stronger as the one of Corollary 2, when λ ∈ [ 1

2 , 1]. Indeed, by Theorem 2 and
Corollary 2, we have for all λ ∈ [0, 1] that

asλ(F1, F2, ψ) = as1−λ(F2, F1, ψ
∗) ≤

(∫
Rn
F

(
|x|2

2

)
dx

)2(1−λ)
(∫

X∗ψ

F2 ◦ ψ∗dx

)2λ−1

. (16)
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If λ ∈ [ 1
2 , 1], we can now apply the functional Blaschke-Santaló inequality (20) and get

that

asλ(F1, F2, ψ) ≤
(∫

Rn
F

(
|x|2

2

)
dx

)2λ
(∫

Xψ

F1 ◦ ψdx

)1−2λ

,

which is the inequality of Corollary 2. Thus, for λ ∈ [ 1
2 , 1], (16) is as strong as the

inequality of Corollary 2.

Proof. We recall a general form of the functional Blaschke-Santaló inequality [20, 29].
Let f be a non-negative integrable function on Rn. There exists z0 ∈ Rn such that for
every measurable ρ : R+ → R+ and every g : Rn → R+ satisfying

f(z0 + x)g(y) ≤
(
ρ2(〈x, y〉)

)
, (17)

for every x, y ∈ Rn with 〈x, y〉 > 0, we have∫
Rn
f dx

∫
Rn
g dx ≤

(∫
Rn
ρ(|x|2)dx

)2

. (18)

If f is even, a result of Ball [7] asserts that one may choose z0 = 0. Moreover, if there
exists g satisfying (17) and equality holds in (18), then there exists c > 0 and a positive
definite matrix T , such that for every x ∈ Rn,

f(z0 + x) = cρ
(
|Tx|2

)
and g(y) =

1

c
ρ
(
|T−1x|2

)
. (19)

For z ∈ Rn, let us denote ψ∗z = (ψz)
∗. Since F is non-increasing, we have by (4), for

every x, y, z ∈ Rn such that 〈x, y〉 > 0,

F1(ψz(x))F2(ψ∗z(y)) ≤ F 2

(
ψz(x) + ψ∗z(y)

2

)
≤ F 2

(
〈x, y〉

2

)
.

By the functional Blaschke-Santaló inequality there exists z0 ∈ Rn such that(∫
F1 ◦ ψ

)(∫
F2 ◦ ψ∗z0

)
≤
(∫

Rn
F

(
|x|2

2

)
dx

)2

. (20)

Applying Corollary 1 to ψz0 , we deduce that for λ ∈ [0, 1],

asλ(F1, F2, ψz0) ≤

(∫
Xψ

F1 ◦ ψ

)1−λ(∫
Xψ∗z0

F2 ◦ ψ∗z0

)λ

≤
(∫

Rn
F

(
|x|2

2

)
dx

)2λ
(∫

Xψ

F1 ◦ ψ

)1−2λ

.

For λ < 0 we deduce from (20) that(∫
Xψ

F1 ◦ ψ

)λ(∫
Xψ∗z0

F2 ◦ ψ∗z0

)λ
≥
(∫

Rn
F

(
|x|2

2

)
dx

)2λ

8



and we conclude by using the second part of Corollary 1.

In order to characterize the equality case, we suppose that
∫
Xψ

F1 ◦ ψ 6= 0 which

means that the expressions in the inequality are not identically zero. For λ 6= 0, if there
is equality in one of the inequalities of Corollary 2, it follows from the proof that we have
equality in the functional Blaschke-Santaló inequality. Thus by (19), there exists c > 0
and an invertible linear map T , such that for every x ∈ Rn,

F1 ◦ ψz0(x) = c F

(
|Tx|2

2

)
and F2 ◦ ψ∗z0(x) =

1

c
F

(
|T−1x|2

2

)
.

Let us define ϕ(x) = ψ(T−1x+ z0). Then we have

F1 ◦ ϕ(x) = c F

(
|x|2

2

)
and F2 ◦ ϕ∗(x) =

1

c
F

(
|x|2

2

)
. (21)

Hence

F

(
|x|2

2

)
=
√
F1 ◦ ϕ(x)F2 ◦ ϕ∗(x) ≤ F

(
ϕ(x) + ϕ∗(x)

2

)
≤ F

(
|x|2

2

)
.

Since F is decreasing, we deduce that ϕ(x) + ϕ∗(x) = |x|2. It is a classical fact that
this implies that ϕ(x) = |x|2/2 + a. See for example the argument given in the proof
of Theorem 8 in [20]. Defining A = T ∗T/2, we get that ψz0(x) = 〈Ax, x〉+ a, for every
x ∈ Rn. From (21) we deduce that for every t ≥ 0,

F1(t+ a) = c F (t) and F2(t− a) =
1

c
F (t).

Thus all stated conditions are proved. Reciprocally, if these conditions are fulfilled, a
simple computation shows that there is equality.

3.2 Application for log-concave functions.

We define F1 and F2 on R by F1(t) = F2(t) = e−t . Then F (t) = e−t as well and we use
the simplified notation

asλ(ψ) = asλ(e−t, e−t, ψ) =

∫
Xψ

e(2λ−1)ψ(x)−λ〈x,∇ψ(x)〉 (det∇2ψ(x)
)λ
dx. (22)

As before, we can replace Xψ by Ωψ for λ > 0. Observe that for the Euclidean norm | · |,

asλ

(
| · |2

2

)
= (2π)

n
2 . (23)

We call a real valued map Φ on the set of convex functions ψ a valuation (see e.g., [4]),
if

Φ(ψ1) + Φ(ψ2) = Φ(max(ψ1, ψ2)) + Φ(min(ψ1, ψ2)),

provided min(ψ1, ψ2) is convex. Then it is not difficult to see (see e.g., [12]) that asλ is
a valuation and that it is homogeneous of degree (2λ− 1)n, since, by (13), for any linear
invertible map A on Rn and all convex ψ

asλ(ψ ◦A) = |detA|2λ−1asλ(ψ).
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For convex bodies with the origin in their interiors, such upper semi-continuous valua-
tions were characterized as Lp-affine surface areas in [30] and [31] which motivated us
to call asλ(ψ) the Lλ-affine surface area of ψ. This is further justified by Theorem 3 of
the next section (where we also recall the definition of Lp-affine surface area for convex
bodies), and by the identity (31) of Section 4.

From Theorem 2 and Corollary 1 we get that λ 7→ log (asλ(ψ)) is convex and that

∀λ ∈ R, asλ(ψ) = as1−λ(ψ∗). (24)

The following isoperimetric inequalities are a direct consequence of Corollary 2 and a
result of [28] which states that the Santaló point z0 in the functional Blaschke-Santaló
inequality (7) can be taken equal to 0 when

∫
Rn xe

−ψ(x)dx = 0 or
∫
Rn xe

−ψ∗(x)dx = 0.

Corollary 3. Let ψ : Rn → R∪{+∞} be a convex function such that
∫
Rn xe

−ψ(x)dx = 0

or
∫
Rn xe

−ψ∗(x)dx = 0. Then

∀λ ∈ [0, 1], asλ(ψ) ≤ (2π)nλ

(∫
Xψ

e−ψ

)1−2λ

,

∀λ ∈ (−∞, 0], asλ(ψ) ≥ (2π)nλ

(∫
Xψ

e−ψ

)1−2λ

.

Equality holds in both inequalities for λ 6= 0, if and only if there exists a ∈ R and a
positive definite matrix A such that ψ(x) = 〈Ax, x〉+ a, for every x ∈ Rn.

Remark. (i) To emphasize the isoperimetric character of these inequalities, note that
with (23), the inequalities are equivalent to

∀λ ∈ [0, 1],
asλ(ψ)

asλ

(
|·|2
2

) ≤ ( ∫
Xψ

e−ψ∫
Rn e

− |·|
2

2

)1−2λ

and

∀λ < 0,
asλ(ψ)

asλ

(
|·|2
2

) ≥ ( ∫
Xψ

e−ψ∫
Rn e

− |·|
2

2

)1−2λ

.

(ii) It follows from Corollary 3 and the functional Blaschke Santaló inequality that

∀λ ∈ [0, 1/2], asλ(ψ)asλ(ψ∗) ≤ (2π)
n
.

There are several other direct consequences of Corollary 3 that should be noticed.
As observed already, we have for every λ > 0,

asλ(ψ) =

∫
Ωψ

e(2λ−1)ψ(x)−λ〈x,∇ψ(x)〉 (det∇2ψ(x)
)λ
dx.

Since
∫
Xψ

e−ψ ≤
∫
Rn e

−ψ we deduce from Corollary 3 that for any λ ∈ (0, 1/2],∫
Ωψ

e(2λ−1)ψ(x)−λ〈x,∇ψ(x)〉 (det∇2ψ(x)
)λ
dx ≤ (2π)nλ

(∫
Rn
e−ψ

)1−2λ

. (25)
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This inequality also holds trivially for λ = 0. Moreover, by Theorem 2, we know
that asλ(ψ) = as1−λ(ψ∗). Since the inequalities of Corollary 3 are also valid when∫
Rn xe

−ψ∗(x)dx = 0, we deduce from (25) that if λ ∈ [1/2, 1],∫
Ωψ

e(2λ−1)ψ(x)−λ〈x,∇ψ(x)〉 (det∇2ψ(x)
)λ
dx = asλ(ψ)

= as1−λ(ψ∗) ≤ (2π)n(1−λ)

(∫
Rn
e−ψ

∗
)2λ−1

.

By the functional Blaschke-Santaló inequality (see (20)), we know that
∫
Rn e

−ψ ∫
Rn e

−ψ∗ ≤
(2π)n and we conclude that for all λ ∈ [1/2, 1],∫

Ωψ

e(2λ−1)ψ(x)−λ〈x,∇ψ(x)〉 (det∇2ψ(x)
)λ
dx ≤ (2π)nλ

(∫
Rn
e−ψ

)1−2λ

.

For λ < 0 or λ > 1, an important case concerns C2 strictly convex functions ψ. In such
a situation Xψ = Ωψ and Xψ∗ = Ωψ∗ and we deduce from Corollary 2 that for all λ < 0,∫

Ωψ

e(2λ−1)ψ(x)−λ〈x,∇ψ(x)〉 (det∇2ψ(x)
)λ
dx ≥ (2π)nλ

(∫
Rn
e−ψ

)1−2λ

.

For all λ > 1, we go back to Corollary 1 and deduce that∫
Ωψ

e(2λ−1)ψ(x)−λ〈x,∇ψ(x)〉 (det∇2ψ(x)
)λ
dx = asλ(ψ) ≥

(∫
Rn
e−ψ

)1−λ(∫
Rn
e−ψ

∗
)λ

.

By the asymptotic functional reverse Santaló inequality [21] (see also [27] in the even
case), there exists a constant c > 0 such that

∫
Rn e

−ψ ∫
Rn e

−ψ∗ ≥ cn. Therefore, for all
λ > 1, ∫

Ωψ

e(2λ−1)ψ(x)−λ〈x,∇ψ(x)〉 (det∇2ψ(x)
)λ
dx ≥ cnλ

(∫
Rn
e−ψ

)1−2λ

.

Thus, we have proved the following:

Corollary 4. Let ψ : Rn → R∪{+∞} be a convex function such that
∫
Rn xe

−ψ(x)dx = 0

or
∫
Rn xe

−ψ∗(x)dx = 0. Then

∀λ ∈ [0, 1],

∫
Ωψ

e(2λ−1)ψ(x)−λ〈x,∇ψ(x)〉 (det∇2ψ(x)
)λ
dx ≤ (2π)nλ

(∫
Rn
e−ψ

)1−2λ

.

Moreover, if ψ ∈ C2(Ωψ) is strictly convex, then

∀λ < 0,

∫
Ωψ

e(2λ−1)ψ(x)−λ〈x,∇ψ(x)〉 (det∇2ψ(x)
)λ
dx ≥ (2π)nλ

(∫
Rn
e−ψ

)1−2λ

and there exists an absolute constant c > 0 such that

∀λ > 1,

∫
Ωψ

e(2λ−1)ψ(x)−λ〈x,∇ψ(x)〉 (det∇2ψ(x)
)λ
dx ≥ cnλ

(∫
Rn
e−ψ

)1−2λ

.

These are the complete analogues of the Lp-affine surface area inequalities from [33,
26, 47] which will be discussed in more detail in the next subsection.
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3.3 The case of convex bodies.

We continue to study the case F1(t) = F2(t) = e−t. Additionally, we consider the case of
2-homogeneous proper convex functions ψ, that is ψ(λx) = λ2ψ(x) for any λ ∈ R+ and
x ∈ Rn. Such functions ψ are necessarily (and this is obviously sufficient) of the form
ψ(x) = ‖x‖2K/2 for a certain convex body K with 0 in its interior. Here, ‖ · ‖K is the
gauge function of the convex body K,

‖x‖K = min{α ≥ 0 : x ∈ αK} = max
y∈K◦

〈x, y〉 = hK◦(x).

Differentiating with respect to λ at λ = 1, we get

〈x,∇ψ(x)〉 = 2ψ(x).

Thus, for 2-homogeneous functions ψ, formula (22) further simplifies to

asλ(ψ) =

∫
Xψ

(
det∇2ψ(x)

)λ
e−ψ(x)dx. (26)

The following theorem indicates why we call asλ(ψ) the Lλ-affine surface area of ψ. First
we recall that for p ∈ R, p 6= −n, the Lp-affine surface area of a convex body K in Rn
with the origin in its interior is defined [26, 33, 47] by

asp(K) =

∫
∂K

κK(x)
p

n+p

〈x,NK(x)〉
n(p−1)
n+p

dµK(x). (27)

Here, NK(x) is the outer unit normal at x ∈ ∂K, µK is the usual surface area measure
on ∂K and κK(x) is the Gauss curvature at x. We denote by (∂K)+ the points of ∂K
where the Gauss curvature is strictly positive.

Theorem 3. Let K be a convex body in Rn containing the origin in its interior. For
any p ≥ 0, let λ = p

n+p . Then

asλ

(
‖ · ‖2K

2

)
=

(2π)
n
2

n|Bn2 |
asp(K).

Moreover, if (∂K)+ has full measure in ∂K, then the same relation holds true for every
p 6= −n.

Remark. For all p, asp(B
n
2 ) = n|Bn2 |. Therefore, together with (23), Theorem 3 can

be rewritten as

asλ

(
‖·‖2K

2

)
asλ

(
|·|2
2

) =
asp(K)

asp(Bn2 )
.

Proof. We will use formula (26) for ψ =
‖·‖2K

2 . By a result of Hug [26, Theorem 2.2], the
function ψ is twice differentiable at almost every point of ∂K and we have that

det (∇2ψ(x)) =
κK(x)

〈NK(x), x〉n+1
.
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Note in particular that Xψ coincides with the the radial extension of the points of ∂K
where the Gauss curvature is strictly positive, namely (∂K)+. Now we integrate in
polar coordinates with respect to the normalized cone measure σK of K. Thus, if we
write x = rθ, with θ ∈ ∂K, then dx = n|K|rn−1drdσK(θ). We also use that the map
x 7→ det∇2ψ(x) is 0-homogeneous. Therefore we obtain from (26),

asλ

(
‖ · ‖2K

2

)
= n|K|

∫ +∞

0

rn−1e
−r2
2 dr

∫
(∂K)+

(
det∇2ψ(θ)

)λ
dσK(θ)

= (2π)
n
2
|K|
|Bn2 |

∫
(∂K)+

(
κK(x)

〈NK(x), x〉n+1

)λ
dσK(θ).

The relation between the normalized cone measure σK and the Hausdorff measure µK
on ∂K is given by

dσK(x) =
〈x,NK(x)〉dµK(x)

n|K|
.

Thus, with λ = p
n+p ,

asλ

(
‖ · ‖2K

2

)
=

(2π)
n
2

n|Bn2 |

∫
(∂K)+

(
κ(x)

〈x,NK(x)〉n+1

)λ
〈x,NK(x)〉dµK(x)

=
(2π)

n
2

n|Bn2 |
asp(K),

when λ ∈ [0, 1) or when (∂K)+ is of full measure in ∂K.

Let us conclude this section with several observations. First, observe that∫
Rn
e−
‖x‖2K

2 dx = 2
n
2 Γ
(

1 +
n

2

)
|K|.

Combining this with Theorem 3 and Corollary 3, we recover the Lp-affine isoperimetric
inequalities for convex bodies. Namely, for a convex body K with the origin in its
interior, we have for λ ∈ [0, 1), which corresponds to p ∈ [0,∞) (λ and p are related by
λ = p

n+p ),

asp(K)

asp(Bn2 )
≤
(
|K|
|Bn2 |

)n−p
n+p

,

with equality if and only if K is an ellipsoid. For λ ∈ (−∞, 0], which corresponds to
p ∈ (−n, 0], we use Corollary 4 and get that for any C+

2 convex body K, i.e., ∂K is C2

with strictly positive Gauss curvature everywhere,

asp(K)

asp(Bn2 )
≥
(
|K|
|Bn2 |

)n−p
n+p

,

with equality if and only ifK is an ellipsoid. If λ ≥ 1, which corresponds to p ∈ [−∞,−n),
then

c
np
n+p

(
|K|
|Bn2 |

)n−p
n+p

≤ asp(K)

asp(Bn2 )
,
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where c is a universal constant. For p ≥ 1 these inequalities were proved by Lutwak [33]
and for all other p by Werner and Ye [53].

Second, the functional definition asλ

(
‖·‖2K

2

)
and asp(K) may differ for p < 0. Indeed,

if ∂K \ (∂K)+ has positive measure then asp(K) = +∞ while it can happen that the
corresponding functional definition is finite. A simple example is the convex hull of the
point (−e1) with the half unit sphere {

∑
x2
i = 1, x1 ≥ 0}.

Note that
(
‖·‖2K

2

)∗
=
‖·‖2K◦

2 , where K◦ = {y ∈ Rn : 〈x, y〉 ≤ 1 ∀x ∈ K} is the polar

body of K. Thus the functional duality relation (24) implies the identity

∀λ ∈ R, asλ
(
‖ · ‖2K

2

)
= as1−λ

(
‖ · ‖2K◦

2

)
.

Together with Theorem 3 and for λ = p/(n+ p), we recover the classical duality relation

asp(K) = asn2

p

(K◦)

for any p > 0. Moreover, this is also valid for any p 6= −n when (∂K)+ has full measure
in ∂K. This duality relation was proved in [26] for p > 0 and for all p 6= −n in [53],
under additional regularity assumption when p < 0.

4 The Lp-affine surface area for s-concave functions.

The purpose of this section is to generalize Definition 1, the functional version of Lp-
affine surface area, to the context of s-concave functions for s > 0. One possibility is

to consider F1(t) = F2(t) = F (s)(t) = (1 − st)1/s
+ , where a+ = max{a, 0}. Since F (s) is

log-concave and non-increasing, one has according to (15), F = F (s) and when s→ 0, it
recovers the previous case of F (t) = e−t. However, when ψ is convex, F ◦ ψ and F ◦ ψ∗
do not satisfy a nice duality relation. Therefore, instead of the Legendre duality, we use
a different duality transform coming from the natural duality for s-concave functions
studied in [3, 38].

4.1 The s-concave duality.

We need some additional notation to explain the definition. Let s ∈ (0,+∞) and f :
Rn → R+. Following Borell [9], we say that f is s-concave if for every λ ∈ [0, 1] and all
x and y such that f(x) > 0 and f(y) > 0,

f((1− λ)x+ λy) ≥ ((1− λ)f(x)s + λf(y)s)
1/s

.

Since s > 0, one may equivalently assume that fs is concave on its support. For the
construction of the duality, we assume that f is upper semi-continuous, f(0) > 0 and
that f is bounded. We denote this class of functions by Conv+

s (Rn). Let Sf be the
convex set {x : f(x) > 0}. We define the (s)-Legendre dual of f (see [3, 38]) as

f◦(s)(y) = inf
x∈Sf

(1− s〈x, y〉)1/s
+

f(x)
.
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Equivalently one may define a function ψ on Sf by

ψ(x) =
1− fs(x)

s
, x ∈ Sf , (28)

extend it by continuity to the closure of Sf and by +∞ outside the closure of Sf . We
associate with it a new dual function ψ?(s) defined by

ψ?(s)(y) = sup
x∈Sf

〈x, y〉 − ψ(x)

1− sψ(x)
(29)

where y ∈ Sf◦
(s)

= 1
sS
◦
f = { zs : ∀x ∈ Sf , 〈x, z〉 < 1}. Since f is s-concave, upper semi-

continuous, ψ is convex, lower semi-continuous. And f > 0 on Sf , hence ψ?(s) is well

defined. The (s)-Legendre dual of f is now given by

f◦(s)(y) =
(

1− sψ?(s)(y)
)1/s

, ∀y ∈ Sf◦
(s)
,

where Sf◦
(s)

= {y : 1− sψ?(s)(y) > 0}. We extend it by continuity at the boundary and by

0 outside the closure of Sf◦
(s)

. It is done in such a way that f◦(s) is upper semi-continuous.

Since f ∈ Conv+
s (Rn) then f◦(s) ∈ Conv+

s (Rn). It is not difficult to see that as for the

Legendre transform, (f◦(s))
◦
(s) = f or equivalently that (ψ?(s))

?
(s) = ψ.

There is an implicit equation between the classical Legendre function ψ∗ and the
(s)-Legendre function ψ?(s) given by

∀y ∈ Sf◦
(s)
,
(

1− sψ?(s)(y)
)(

1 + sψ∗

(
y

1− sψ?(s)(y)

))
= 1. (30)

Our definition of the Lλ affine surface area of an s-concave function is the following.

Definition 2. For any s > 0, let f be an s-concave function and ψ be the convex function
associated with it by (28). For any λ ∈ R, let

as
(s)
λ (ψ) =

1

1 + ns

∫
Xψ

(1− sψ(x))(
1
s−1)(1−λ) (

det∇2ψ(x)
)λ

(1 + s(〈x,∇ψ(x)〉 − ψ(x)))
λ(n+ 1

s+1)−1
dx.

Note that as
(s)
λ does not correspond to Definition 1 for particular functions F1 and

F2. As in the log-concave case, we call as
(s)
λ the Lλ-affine surface area of an s-concave

function f . This is motivated by two reasons. As in Theorem 2 , we prove in Theorem
4 a satisfactory duality relation, from which we deduce a reverse log-Sobolev inequality
for s-concave measures. Moreover, in the case s = 1/k > 0 where k is an integer, this
functional affine surface area corresponds to an Lp-affine surface area of a convex body

associated with f in dimension n+k. Indeed, as in [3], this convex body Ks(f) in Rn+ 1
s

is given by

Ks(f) =

{
(x, y) ∈ Rn × R

1
s :

x√
s
∈ Sf , |y| ≤ fs

(
x√
s

)}
.
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The Lλ-affine surface area of f is a multiple of the Lp-affine surface area of Ks(f) with
p =

(
n+ 1

s

)
λ

1−λ ,

(1 + ns) as
(s)
λ (ψ) =

asp (Ks(f))

s
n
2 vol 1

s−1

(
S

1
s−1
) . (31)

Identity (31) follows from Proposition 5 in [12].
Finally, we note that, as it is the case for log-concave functions, the Lλ-affine surface area
for s-concave functions is also invariant under the action of SL(n) and is homogeneous.

Theorem 4. Let f ∈ Conv+
s (Rn) with associated convex function ψ. Let λ ∈ R then

as
(s)
1−λ(ψ?(s)) = as

(s)
λ (ψ).

Proof. Let us start with the case when f is sufficiently smooth, say ψ is twice continuously
differentiable with strictly positive definite Hessian on Ωψ. Then Xψ = Ωψ and

as
(s)
λ (ψ) =

1

1 + ns

∫
Ωψ

(1− sψ(x))(
1
s−1)(1−λ) (

det∇2ψ(x)
)λ

(1 + s(〈x,∇ψ(x)〉 − ψ(x)))
λ(n+ 1

s+1)−1
dx. (32)

A simple computation shows that the supremum in (29) is attained at the point x ∈ Sf
such that

y =
1− s〈x, y〉
1− sψ(x)

∇ψ(x) = (1− sψ?(s)(y))∇ψ(x).

From (30), we have

1

1− sψ?(s)(y)
= 1 + sψ∗(

y

1− sψ?(s)(y)
) = 1 + sψ∗(∇ψ(x)). (33)

Therefore, we have that the supremum in (29) is attained at the point x ∈ Sf , that is,

ψ?(s)(y) =
〈x, y〉 − ψ(x)

1− sψ(x)
,

if and only if

y =
∇ψ(x)

1 + sψ∗(∇ψ(x))
=

∇ψ(x)

1 + s(〈∇ψ(x), x〉 − ψ(x))
.

We define the change of variable

∇ψ(x)

1 + s(〈∇ψ(x), x〉 − ψ(x))
= Tψ(x). (34)

A straightforward computation shows that

dxTψ =
1

1 + sψ∗(∇ψ(x))

(
Id− s

1 + sψ∗(∇ψ(x))
x⊗∇ψ(x)

)
∇2ψ(x).

Since

det

(
Id− s

1 + sψ∗(∇ψ(x))
x⊗∇ψ(x)

)
= 1− s

1 + sψ∗(∇ψ(x))
〈x,∇ψ(x)〉
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we see that the Jacobian of Tψ at x is given by

dy = |det dxTψ| dx =
1− sψ(x)

(1 + s(〈∇ψ(x), x〉 − ψ(x)))
n+1 det∇2ψ(x) dx. (35)

As the duality (ψ?(s))
?
(s) = ψ holds, we see that Tψ ◦ Tψ?

(s)
= Id and Tψ?

(s)
◦ Tψ = Id from

which it is easy to deduce that for y = Tψ(x),

det (dxTψ) det
(
dyTψ?

(s)

)
= 1. (36)

We now make the change of variable y = Tψ(x) in formula (32). From (33) and the fact
that (ψ?(s))

?
(s) = ψ, we have

1

1− sψ?(s)(y)
= 1 + s(〈∇ψ(x), x〉−ψ(x)) and

1

1− sψ(x)
= 1 + s(〈∇ψ?(s)(y), y〉−ψ?(s)(y)).

Combining this with (35) and (36), we obtain

det∇2ψ(x)

(
1− sψ?(s)(y)

1 + s(〈∇ψ?(s)(y), y〉 − ψ?(s)(y)

)n+2

det∇2ψ?(s)(y) = 1. (37)

Consequently, with y = Tψ(x),

(1 + ns) as
(s)
λ (ψ) =

∫
Ωψ

(1− sψ(x))(
1
s−1)(1−λ)−1 (

det∇2ψ(x)
)λ−1

(1 + s(〈x,∇ψ(x)〉 − ψ(x)))
(λ−1)(n+1)+λ

s−1
|det dxTψ| dx

=

∫
Ωψ?

(s)

(
1− sψ?(s)(y)

)(n+2)(1−λ)+(λ−1)(n+1)+λ
s−1 (

det∇2ψ?(s)(y)
)1−λ

(
1 + s(〈y,∇ψ?(s)(y)〉 − ψ?(s)(y))

)(n+2)(1−λ)+( 1
s−1)(1−λ)−1

dy

=

∫
Ωψ?

(s)

(
1− sψ?(s)(y)

)λ( 1
s−1) (

det∇2ψ?(s)(y)
)1−λ

(
1 + s(〈y,∇ψ?(s)(y)〉 − ψ?(s)(y))

)(n+1+ 1
s )(1−λ)−1

dy

= (1 + ns) as
(s)
1−λ(ψ?(s)).

This concludes the proof in the smooth case.

For the general case, we need several observations. By (5), we have a.e. in Ωψ,

(1 + s(〈x,∇ψ(x)〉 − ψ(x))) = 1 + sψ∗(∇ψ(x)).

Therefore, we can use a result of Mc Cann [37], see (14), to get

(1 + ns) as
(s)
λ (ψ) =

∫
Xψ

(1− sψ(x))(
1
s−1)(1−λ) (

det∇2ψ(x)
)λ

(1 + sψ∗(∇ψ(x)))
λ(n+ 1

s+1)−1
dx

=

∫
Xψ∗

(1− sψ(∇ψ∗(z)))(
1
s−1)(1−λ) (

det∇2ψ∗(z)
)1−λ

(1 + sψ∗(z))
λ(n+ 1

s+1)−1
dz. (38)
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We want to make the change of variable z = T (y) = y
1−sψ?

(s)
(y) . Observe that T is an

injective map on Ωψ?
(s)

. Indeed, let y1 and y2 so that T (y1) = T (y2), that is

y1

1− sψ?(s)(y1)
=

y2

1− sψ?(s)(y2)
.

From (30), we deduce that 1 − sψ?(s)(y1) = 1 − sψ?(s)(y2) hence we have y1 = y2. From

(30), our change of variable z = T (y) is equivalent to y = z
1+sψ∗(z) . Therefore, a similar

computation to (35) gives a.e. in Ωψ?
(s)

,

|det dyT | =
1 + s(ψ?(s))

∗(∇ψ?(s)(y))

(1− sψ?(s)(y))n+1
. (39)

Similarly to proposition A.1 in [37], T maps Xψ?
(s)

to Xψ∗ and the Alexandrov derivatives

satisfy (
1− sψ?(s)(y)

1 + s(ψ?(s))
∗(∇ψ?(s)(y))

)n+2

det∇2ψ?(s)(y) = det∇2ψ∗(z). (40)

Since (ψ?(s))
?
(s) = ψ, we deduce from (30) that

∀x ∈ Sf , (1− sψ(x))

(
1 + s(ψ?(s))

∗
(

x

1− sψ(x)

))
= 1.

Using (30) and the definition of T , we get that a.e. in Ωψ∗ ,

∇ψ∗(z)
1− sψ(∇ψ∗(z))

= ∇ψ?(s)(y), for z = Ty

which shows that for z = Ty,

1− sψ(∇ψ∗(z)) =
1

1 + s(ψ?(s))
∗(∇ψ?(s)(y))

. (41)

We have almost all the tools in hand to make the change of variable z = T (y) in (38).
We compute ∫

Xψ∗

(1− sψ(∇ψ∗(z)))(
1
s−1)(1−λ) (

det∇2ψ∗(z)
)1−λ

(1 + sψ∗(z))
λ(n+ 1

s+1)−1
dz

by an approximation argument. This will be to ensure that T is a Lipschitz map so that
we can use the area formula, see Theorem 3.2.3 in [19]. We have for any y1, y2 ∈ Xψ?

(s)
,

|Ty1 − Ty2| ≤
|y1 − y2|

1− sψ?(s)(y1)
+

s|y2|
(1− sψ?(s)(y1))(1− sψ?(s)(y2))

|ψ?(s)(y2)− ψ?(s)(y1)|. (42)

Since ψ?(s) is convex on Sf◦
(s)

we deduce that for any ε ∈ (0, 1), it is Lipschitz (with a

Lipschitz constant depending on ε) on the set of points in Sf◦
(s)

which are at distance

at least ε from the boundary of Sf◦
(s)

. Let us denote by Yε the intersection of this set

with Xψ?
(s)

. Hence we integrate on z ∈ T (Yε) ∩ B(0, R) =: Xε,R
ψ∗ where B(0, R) is a

18



Euclidean ball of radius R. And we will let ε go to zero and R go to infinity. Let
Xε,R
ψ?

(s)
:= T−1(Xε,R

ψ∗ ), the set of y ∈ Xψ?
(s)

such that z = Ty for z ∈ Xε,R
ψ∗ . We have

1−sψ?(s)(0) > 0 hence it is strictly positive on a neighborhood of the origin in Sf◦
(s)

. And

we deduce from the relation z = Ty = y
1−sψ?

(s)
(y) that for any y ∈ Xε,R

ψ?
(s)

, 1 − sψ?(s)(y)

is uniformly bounded from below by a positive constant. Since f ∈ Conv+
s (Rn) hence

fo(s) ∈ Conv+
s (Rn) and 1 − sψ?(s) is bounded from above. Since z ∈ B(0, R) and y =

z(1−sψ?(s)(y)), we conclude that there exists R′ > 0 such that for any y ∈ Xε,R
ψ?

(s)
, |y| ≤ R′.

Moreover ψ?(s) is Lipschitz on Xε,R
ψ?

(s)
. Hence we conclude from (42) that T is a Lipschitz

map on Xε,R
ψ?

(s)
.

We can apply the area formula, see Theorem 3.2.3 in [19] and make the change of
variable z = T (y) in the following integral:∫

Xε,R
ψ∗

(1− sψ(∇ψ∗(z)))(
1
s−1)(1−λ) (

det∇2ψ∗(z)
)1−λ

(1 + sψ∗(z))
λ(n+ 1

s+1)−1
dz.

We deduce from (39), (40), (41) that it is equal to

∫
Xε,R
ψ?
(s)

(
1− sψ?(s)(y)

)λ( 1
s−1) (

det∇2ψ?(s)(y)
)1−λ

(
1 + s(〈y,∇ψ?(s)(y)〉 − ψ?(s)(y))

)(n+1+ 1
s )(1−λ)−1

dy.

Letting ε going to zero and R going to infinity, we conclude from (38) that

(1 + ns) as
(s)
λ (ψ) =

∫
Xψ?

(s)

(
1− sψ?(s)(y)

)λ( 1
s−1) (

det∇2ψ?(s)(y)
)1−λ

(
1 + s(〈y,∇ψ?(s)(y)〉 − ψ?(s)(y))

)(n+1+ 1
s )(1−λ)−1

dy.

This finishes the proof of the duality relation in the general case.

4.2 Consequences of the duality relation.

In this section, we assume that f satisfies more regularity assumptions: f is twice con-
tinuously differentiable on Sf , its Hessian is non zero on Sf , limx→∂Sf f

s(x) = 0 and the
origin belongs to the interior of Sf . With these assumptions, Xψ = Sf and Xψ?

(s)
= Sf◦

(s)

and we remark that the definition of as
(s)
λ (ψ) implies that

as
(s)
0 (ψ) =

∫
Sf

f(x)dx and as
(s)
1 (ψ) =

∫
Sf◦

(s)

f◦(s)(y)dy. (43)

Indeed,

as
(s)
0 (ψ) =

1

1 + ns

∫
Sf

(1− sψ(x))
1
s−1

(1 + s(〈∇ψ(x), x〉 − ψ(x))) dx

=
1

1 + ns

∫
Sf

f(x)

(
1− s 〈∇f(x), x〉

f(x)

)
dx =

∫
Sf

f(x)dx, (44)
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where the last equality follows from Stokes formula and the fact that limx→∂Sf f
s(x) = 0.

The second relation follows from the duality relation proved in Theorem 4.

In a way similar to the proof of Corollary 1 and Theorem 1, it is possible to de-
duce from Theorem 4 some isoperimetric inequalities and a general reverse log-Sobolev
inequality in the s-concave setting.

Proposition 1. Let f be an s-concave function which satisfies the regularity assumptions
stated at the beginning of Section 4.2 and let ψ be its associated convex function. Then

∀λ ∈ [0, 1], as
(s)
λ (ψ) ≤

(∫
Rn
f dx

)1−λ(∫
Rn
f◦(s) dx

)λ
;

∀λ /∈ [0, 1], as
(s)
λ (ψ) ≥

(∫
Rn
f dx

)1−λ(∫
Rn
f◦(s) dx

)λ
.

Proof. We use Hölder’s inequality and (43) to prove the first inequality:

as
(s)
λ (ψ) ≤ 1

1 + ns

[(∫
Rn

(
1− sψ(x)

) 1
s−1 (

1− sψ(x) + s〈x,∇ψ(x)〉
)
dx

)1−λ

∫
Rn

det∇2ψ(x)(
1− sψ(x) + s〈x,∇ψ(x)〉

)n+ 1
s

dx

λ ]

=

(∫
Rn
f dx

)1−λ(∫
Rn
f◦(s) dx

)λ
.

Similarly, one can prove the second inequality.

The next theorem establishes the reverse log-Sobolev inequality for s-concave func-
tions. There, we put

dµ = (1− sψ(x))(
1
s−1) (1 + s(〈∇ψ(x), x〉 − ψ(x)))

dx

1 + ns
.

If
∫
Rn f(x)dx = 1, then by (44), µ is a probability measure on Rn. We let S(µ) =∫
− log

(
dµ
dx

)
dµ be the Shannon entropy of µ.

Theorem 5. Let f be an s-concave function which satisfies the regularity assumptions
stated at the beginning of Section 4.2 and let ψ be its associated convex function. Assume
moreover that f is even and that

∫
Rn f(x)dx = 1. Then∫

Rn
log
(
det
(
∇2ψ(x)

))
dµ ≤

∫
Rn

log
(

(1 + s(〈x,∇ψ(x)〉 − ψ(x)))
1
s+n

)
dµ− S(µ)

+ log

((π
s

)n (1 + ns)
(
Γ(1 + 1

2s )
)2(

Γ(1 + n
2 + 1

2s )
)2

)
. (45)

There is equality if and only if there is a positive definite matrix A such that f(x) =

c0

(
1− s |Ax|2

) 1
2s

, where c0 =
(
π
s

)−n2 ( Γ(1+ 1
2s )

Γ(1+n
2 + 1

2s )

)−1

.
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Remark. Since S(γn) = log (2πe)
n
2 , the right hand side of inequality (45) tends to

2 [S(γn)− S(µ)] for s→ 0 and we recover the inequality of Theorem 1.

Proof. The proof follows the line of the proof of Theorem 1 presented in Section 2. By
definition (29) of ψ?(s), we have for all x ∈ Sf and for all y ∈ 1

sS
◦
f that

f(x)f◦(s)(y) = (1− sψ(x))
1
s (1− sψ?(s)(y))

1
s ≤ (1− s〈x, y〉)

1
s .

We let ρ(t) = (1− st)
1
2s
+ . As f ≡ 0 outside Sf and f◦(s) ≡ 0 outside 1

sS
◦
f , the functions f

and f◦(s) satisfy the assumption (17) with z0 = 0 because f is even. It follows from (18)
that(∫

Rn
fdx

)(∫
Rn
f◦(s)dx

)
≤
(∫

Rn
(1− s|x|2)

1
2s
+ dx

)2

=
(π
s

)n (
Γ(1 + 1

2s )
)2(

Γ(1 + n
2 + 1

2s )
)2 . (46)

By Theorem 4, we have
∫
Rn f

◦
(s)dx = as

(s)
0 (ψ?(s)) = as

(s)
1 (ψ) which means that∫

Rn
f◦(s)dx =

1

1 + ns

∫
Xψ

det∇2ψ(x)

(1 + s(〈x,∇ψ(x)〉 − ψ(x)))(
n+ 1

s )
dx

=
1

1 + ns

∫
Xψ

det∇2ψ(x)

(1 + s(〈x,∇ψ(x)〉 − ψ(x)))(
n+ 1

s )

dx

dµ(x)
dµ(x).

Since
∫
Rn fdx = 1, µ is a probability measure and we get from Jensen’s inequality

log

(∫
Rn
f◦(s)dx

)
≥ S(µ)− log(1 + ns) +

∫
Rn

log
(
det∇2ψ

)
dµ

−
∫
Rn

log
(

(1 + s(〈x,∇ψ(x)〉 − ψ))
1
s+n

)
dµ.

Therefore, with (46) and as
∫
Rn fdx = 1,∫

Rn
log
(
det
(
∇2ψ

))
dµ ≤

∫
Rn

log
(

(1 + s(〈x,∇ψ(x)〉 − ψ))
1
s+n

)
dµ− S(µ)

+ log(1 + ns) + log

((π
s

)n (
Γ(1 + 1

2s )
)2(

Γ(1 + n
2 + 1

2s )
)2
)
.

If equality holds in (45), then, in particular, equality holds in the Blaschke-Santaló
inequality (46). It was proved in [20] that this happens if and only if, in our situation,

f(x) = c0

(
1− s |Ax|2

) 1
2s

, for a positive definite matrix A and where c0 is chosen such

that
∫
Rn fdx = 1. On the other hand, it is easy to see that equality holds in (45), when

f(x) = c
(

1− s |Ax|2
) 1

2s

, for a positive definite matrix A and a positive constant c.
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[42] L. Santaló, An affine invariant for convex bodies of n-dimensional space, Portu-
galiae Math. 8, (1949), 155–161.

[43] G. Sapiro and A. Tannenbaum, On affine plane curve evolution, J. Funct. Anal.,
119, (1994), 79–120.

[44] R. Schneider, Convex Bodies: The Brunn-Minkowski theory, Cambridge Univ.
Press, 1993.

[45] F. Schuster and T. Wannerer, GL(n) contravariant Minkowski valuations,
Trans. Amer. Math. Soc. 364, (2012), 2, 815–826.

[46] F.E. Schuster and M. Weberndorfer, Volume inequalities for asymmetric
Wulff shapes, J. Differential Geom. 92 (2012), 263-283.
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Place du Maréchal de Lattre de Tassigny, 75016 Paris, France

lehec@ceremade.dauphine.fr

Carsten Schütt
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