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In contemporary convex geometry, the rapidly developing Lp-Brunn-Minkowski theory is a modern analogue of the classical Brunn-Minkowski theory. A central notion of this theory is the Lp-affine surface area of convex bodies. Here, we introduce a functional analogue of this concept, for log-concave and s-concave functions. We show that the new analytic notion is a generalization of the original Lp-affine surface area. We prove duality relations and affine isoperimetric inequalities for logconcave and s-concave functions. This leads to a new inverse log-Sobolev inequality for s-concave densities.

1 Introduction.

In recent years, functional versions of several isoperimetric type inequalities from convex geometry have been established [START_REF] Cianchi | Affine Moser-Trudinger and Morrey-Sobolev inequalities[END_REF][START_REF] Haberl | An asymmetric affine Pólya-Szegö principle[END_REF][START_REF] Ludwig | Sharp convex Lorentz-Sobolev inequalities[END_REF][START_REF] Lutwak | Sharp affine L p Sobolev inequalities[END_REF][START_REF] Lutwak | Optimal Sobolev norms and the L p Minkowski problem[END_REF][START_REF] Schuster | Volume inequalities for asymmetric Wulff shapes[END_REF]. A natural extension of convexity theory is the study of log-concave functions. One of the most important discoveries in these recent investigations in this direction is the functional version of the famous Blaschke-Santaló inequality [START_REF] Artstein-Avidan | The Santaló point of a function, and a functional form of Santaló inequality[END_REF][START_REF] Ball | Isometric problems in p and sections of convex sets[END_REF][START_REF] Fradelizi | Some functional forms of Blaschke-Santaló inequality[END_REF][START_REF] Lehec | A simple proof of the functional Santaló inequality[END_REF]. Another important inequality from convex geometry is the affine isoperimetric inequality [START_REF] Blaschke | Vorlesung über Differentialgeometrie II, Affine Differentialgeometrie[END_REF][START_REF] Petty | Discrete geometry and convexity[END_REF][START_REF] Santaló | An affine invariant for convex bodies of n-dimensional space[END_REF]. In [START_REF] Artstein-Avidan | Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality[END_REF], Artstein-Avidan, Klartag, Schütt and Werner obtained the functional form of this inequality for log-concave functions which turned out to be a reverse log-Sobolev inequality.

In this paper, we define analytic versions of several important geometric invariants and obtain new inequalities. For example, we introduce a functional analogue of L paffine surface area and establish an analytic inequality corresponding to the L p affine isoperimetric inequality. The L p -affine surface area, a notion of the L p -Brunn-Minkwoski theory, is an extension of affine surface area, the case p = 1, to all other p ∈ R. It was first introduced for p > 1 by Lutwak in the groundbreaking paper [START_REF] Lutwak | The Brunn-Minkowski-Firey theory II : Affine and geominimal surface areas[END_REF] and extended later in [START_REF] Meyer | On the p-affine surface area[END_REF] and [START_REF] Schütt | Surface bodies and p-affine surface area[END_REF] to all other p. For a convex body K in R n with the origin in its interior and real p = -n, it is, if the integral exists, defined as

as p (K) = ∂K κ K (x) p n+p x, N K (x) n(p-1) n+p dµ K (x), ( 1 
)
where ∂K is the boundary of K, N K (x) is the outer unit normal vector at x ∈ ∂K and κ K (x) is the (generalized) Gauss curvature in x ∈ ∂K. The L p -affine surface area and its related inequalities play a major role in convex and differential geometry [START_REF] Andrews | Gauss curvature flow: The fate of the rolling stones[END_REF][START_REF] Gardner | Affine inequalities and radial mean bodies[END_REF][START_REF] Haberl | General L p affine isoperimetric inequalities[END_REF][START_REF] Ludwig | A characterization of affine surface area[END_REF][START_REF] Ludwig | A classification of SL(n) invariant valuations[END_REF][START_REF] Lutwak | L p affine isoperimetric inequalities[END_REF][START_REF] Sapiro | On affine plane curve evolution[END_REF][START_REF] Schuster | GL(n) contravariant Minkowski valuations[END_REF][START_REF] Schütt | Surface bodies and p-affine surface area[END_REF][START_REF] Schütt | Polytopes with vertices chosen randomly from the boundary of a convex body[END_REF][START_REF] Stancu | The Discrete Planar L 0 -Minkowski Problem[END_REF][START_REF] Trudinger | The affine Plateau problem[END_REF][START_REF] Wang | Affine maximal hypersurfaces[END_REF]. Therefore, it is desirable to have functional versions of this notion available. We provide exactly that and introduce a functional version of L p -affine surface area for s-concave and log-concave functions.

In Theorem 2, we establish a duality relation for the analytic L p -affine surface area of log-concave functions and deduce in Corollary 3 corresponding L p -affine isoperimetric inequalities. Those are the counterparts to the ones that hold for convex bodies. In fact, we show that the L p -affine isoperimetric inequalities for convex bodies can be obtained from the ones for log-concave functions. This is explained in Section 3.3.

Finally, we generalize the notion of L p -affine surface area to s-concave functions for s > 0. We establish in Theorem 4 a duality relation which enables us to prove the corresponding L p -affine inequalities and a reverse log-Sobolev inequality for s-concave functions.

The characterization of equality in the reverse log-Sobolev inequality of [START_REF] Artstein-Avidan | Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality[END_REF] had remained open in [START_REF] Artstein-Avidan | Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality[END_REF]. We start our paper by providing this equality characterization, along with a simple and short proof of the reverse log-Sobolev inequality of [START_REF] Artstein-Avidan | Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality[END_REF].

2 Equality characterization in the reverse log-Sobolev inequality.

We start by giving a short proof of the reverse log-Sobolev inequality for log concave functions due to Artstein, Klartag, Schütt and Werner [START_REF] Artstein-Avidan | Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality[END_REF]. We first recall the usual log-Sobolev inequality. Let γ n be the standard Gaussian measure on R n . The log-Sobolev inequality, due to Gross [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF] (see also [START_REF] Federbush | Partially alternate derivation of a result of Nelson[END_REF][START_REF] Stam | Some inequalities satisfied by the quantities of information of Fisher and Shannon[END_REF]), asserts that for every probability measure µ on R n that is absolutely continuous with respect to Lebesgue measure,

H (µ | γ n ) ≤ 1 2 I (µ | γ n ) ,
where H and I denote the relative entropy and Fisher information, respectively,

H(µ | γ n ) = R n log dµ dγ n dµ, I(µ | γ n ) = R n ∇ log dµ dγ n 2 dµ
and | • | is the Euclidean norm. It is well known (see for instance [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF]) that this inequality can be slightly improved to

H(µ | γ n ) ≤ C(µ) 2 + n 2 log 1 + I(µ | γ n ) -C(µ) n , (2) 
where

C(µ) = R n |x| 2 dµ -n
is the gap between the second moment of µ and that of the Gaussian. The usual log-Sobolev inequality is recovered from (2), using the inequality log(1 + x) ≤ x. Inequality (2) can be written in a more concise way. Put ψ = -log(dµ/dx) and let

S(µ) = R n ψ dµ = -H(µ | dx) = -H(µ | γ n ) + C(µ) 2 + n 2 log(2πe)
be the Shannon entropy of µ. Then S(γ n ) = n 2 log(2πe) so that

H(µ | γ n ) - C(µ) 2 = S(γ n ) -S(µ).
Moreover one has

I(µ | γ n ) = R n |x -∇ψ(x)| 2 dµ = C(µ) + n + R n |∇ψ(x)| 2 -2 x, ∇ψ(x) dµ. Hence inequality (2) is equivalent to 2 S(γ n ) -S(µ) ≤ n log 2n -2 R n x, ∇ψ(x) dµ + R n |∇ψ(x)| 2 dµ n .
If e -ψ is C 2 on R n and if lim xi→±∞ x i e -ψ = 0 and lim xi→±∞ ∂ψ ∂xi e -ψ = 0 for all 1

≤ i ≤ n, then R n x, ∇ψ(x) dµ = n and R n |∇ψ(x)| 2 dµ = R n ∆ψ dµ so that inequality (2) is equivalent to 2 S(γ n ) -S(µ) ≤ n log R n ∆ψ dµ n , (3) 
where ∆ is the Laplacian.

Recall that a measure µ with density e -ψ with respect to the Lebesgue measure is called log-concave if ψ : R n → R∪{+∞} is a convex function. For such a convex function ψ we define Ω ψ to be the interior of the convex domain of ψ, that is

Ω ψ = int ({x ∈ R n , ψ(x) < +∞}).
In this paper, we always consider convex functions ψ such that Ω ψ = ∅. We will use the classical Legendre transform of ψ,

ψ * (y) = sup x x, y -ψ(x) . (4) 
In the general case, when ψ is neither smooth nor strictly convex, the gradient of ψ, denoted by ∇ψ, exists almost everywhere by Rademacher's theorem (see, e.g., [START_REF] Borwein | Convex Functions: Constructions, Characterizations and Counterexamples[END_REF]), and a theorem of Alexandrov [START_REF] Alexandroff | Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it[END_REF] and Busemann and Feller [START_REF] Busemann | Kruemmungseigenschaften konvexer Flächen[END_REF] guarantees the existence of the Hessian, denoted by ∇ 2 ψ, almost everywhere in Ω ψ . Recall also that

ψ(x) + ψ * (y) ≥ x, y
for every x, y ∈ R n , with equality if and only if x is in the domain of ψ and y ∈ ∂ψ(x), the sub differential of ψ at x. In particular

ψ * (∇ψ(x)) = x, ∇ψ(x) -ψ(x), a.e. in Ω ψ . (5) 
More information about duality transforms of convex functions can be found in [START_REF] Mccann | A Convexity principle for interacting gases[END_REF][START_REF] Rockafellar | Convex analysis. Reprint of the 1970 original[END_REF][START_REF] Schneider | Convex Bodies: The Brunn-Minkowski theory[END_REF].

For log-concave measures the following reverse form of inequality (3) holds.

Theorem 1. Let µ be a log-concave probability measure on R n with density e -ψ with respect to the Lebesgue measure. Then

R n log det(∇ 2 ψ) dµ ≤ 2 S(γ n ) -S(µ) . (6) 
Equality holds if and only if µ is Gaussian (with arbitrary mean and positive definite covariance matrix).

Inequality ( 6) is due to Artstein-Avidan, Klartag, Schütt and Werner [START_REF] Artstein-Avidan | Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality[END_REF] under additional smoothness assumptions. The equality conditions were also left open.

In the following we give a new simple and short proof of inequality [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF] which allows for a complete characterization of the equality cases. Our proof is based on the functional form of the Blaschke-Santaló inequality [START_REF] Artstein-Avidan | The Santaló point of a function, and a functional form of Santaló inequality[END_REF][START_REF] Ball | Isometric problems in p and sections of convex sets[END_REF][START_REF] Fradelizi | Some functional forms of Blaschke-Santaló inequality[END_REF][START_REF] Lehec | A simple proof of the functional Santaló inequality[END_REF]. Let f, g be non-negative integrable functions on R n satisfying

f (x)g(y) ≤ e -x,y , ∀x, y ∈ R n . If f has its barycenter at 0, that is R n xf (x)dx = 0, then R n f dx × R n g dx ≤ (2π) n . (7) 
There is equality if and only if there exists a positive definite matrix A and C > 0 such that, a.e. in R n ,

f (x) = C e -Ax,x /2 , g(y) = e -A -1 y,y /2 C .
Proof of Theorem 1. Without loss of generality, we may assume that the function ψ is lower semi-continuous. Both terms of the inequality are invariant under translations of the measure µ, so we can assume that µ has its barycenter at 0. Then by the functional Santaló inequality above

R n e -ψ * dx ≤ (2π) n . (8) 
Let Ω ψ , Ω ψ * be the interiors of the domains of ψ and ψ * , respectively. If ψ is C 2 -smooth and strictly convex, then the map ∇ψ : Ω ψ → Ω ψ * is smooth and bijective. So by the change of variable formula,

R n e -ψ * (y) dy = Ω ψ * e -ψ * (y) dy = Ω ψ e -ψ * (∇ψ(x)) det(∇ 2 ψ(x)) dx. (9) 
As noted above, in the general case, the gradient ∇ψ and the Hessian ∇ 2 ψ of ψ exist almost everywhere in Ω ψ so that the right hand side of ( 

Ω ψ e -ψ * (∇ψ(x)) det(∇ 2 ψ(x)) dx = X ψ * e -ψ * (y) dy, (10) 
where X ψ * is the set of vectors of Ω ψ * at which ∇ 2 ψ * exists and is invertible. Together with (8) we get

Ω ψ e -ψ * (∇ψ(x)) det(∇ 2 ψ(x)) dx ≤ (2π) n .
By [START_REF] Artstein-Avidan | Milman The concept of duality in convex analysis, and the characterization of the Legendre transform[END_REF], the previous inequality thus becomes

Ω ψ e -x,∇ψ(x) +ψ(x) det(∇ 2 ψ(x)) dx ≤ (2π) n ,
which can be rewritten as

R n e -x,∇ψ(x) +2ψ(x) det(∇ 2 ψ(x)) dµ ≤ (2π) n . (11) 
Taking the logarithm and using Jensen's inequality (recall that µ is assumed to be a probability measure) we obtain

- R n x, ∇ψ(x) dµ + 2S(µ) + R n log det(∇ 2 ψ) dµ ≤ n log(2π).
We will need some version of the Gauss-Green (or Stokes) formula and refer to [START_REF] Chen | Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws[END_REF] as a general reference and for recent results on this subject. Let v be the vector flow v(x) = e -ψ(x) x. By the convexity and lower semi-continuity of ψ, v is continuous and locally Lispchitz on Ω ψ , the closure of Ω ψ . Assume first that Ω ψ is bounded. Then by the Gauss-Green formula [START_REF] Giorgi | Nuovi teoremi relativi alle misure (r-1)-dimensionali in uno spazio ad r dimensioni[END_REF][START_REF] Federer | A note on the Gauss-Green theorem[END_REF], we have

Ω ψ div(v(x))dx = ∂Ω ψ v(x), N Ω ψ (x) dσ Ω ψ ,
where N Ω ψ (x) is an exterior normal to the convex set Ω ψ at the point x and σ Ω ψ is the Hausdorff measure restricted to ∂Ω ψ . Hence

R n x, ∇ψ(x) dµ = Ω ψ x, ∇ψ(x) e -ψ(x) dx = Ω ψ div(x)e -ψ(x) dx - ∂Ω ψ x, N Ω ψ (x) e -ψ(x) dσ Ω ψ .
This formula also holds true for an unbounded domain Ω ψ by a simple truncation argument and by the fast decay of log-concave integrable functions. Since Ω ψ is convex, the barycenter 0 of µ is in Ω ψ . Thus x, N Ω ψ (x) ≥ 0 for every x ∈ ∂Ω ψ and div(x) = n hence

R n x, ∇ψ(x) dµ ≤ n.
This finishes the proof of the inequality. Let us move on to the equality case. It is easily checked that there is equality in Theorem 1 for Gaussian measures. On the other hand, the above proof shows that if there is equality in [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF], then there must be equality in [START_REF] Blaschke | Vorlesung über Differentialgeometrie II, Affine Differentialgeometrie[END_REF]. Thus, by the equality case of the functional Santaló inequality, µ is Gaussian.

3 A functional L p -affine surface area.

General theorems.

We first give a definition that generalizes the notion of L p -affine surface area of convex bodies to a functional setting. Generalizations of a different nature were given in [START_REF] Caglar | Divergence for s-concave and log-concave functions[END_REF] and [START_REF] Caglar | Mixed f -divergence and inequalities for logconcave functions[END_REF].

Definition 1. For measurable F 1 , F 2 : R → (0, +∞), λ ∈ R and a convex function ψ : R n → R ∪ {+∞}, let X ψ be the set of points of Ω ψ at which its Hessian ∇ 2 ψ in the sense of Alexandrov is defined and invertible. We define

as λ (F 1 , F 2 , ψ) = X ψ F 1 (ψ(x)) 1-λ F 2 ( x, ∇ψ(x) -ψ(x)) λ det ∇ 2 ψ(x) λ dx. ( 12 
)
Since det(∇ 2 ψ(x)) = 0 outside X ψ , the integral may be taken on Ω ψ for λ > 0. Definition 1 is motivated by two important facts. First, we prove that for a particular choice of F 1 , F 2 and ψ it coincides with the usual L p -affine surface area of a convex body. This is the content of Theorem 3. Second, in the case of log-concave functions, for F 1 (t) = F 2 (t) = e -t the functional affine surface area as 1 (F 1 , F 2 , ψ) becomes

as 1 (F 1 , F 2 , ψ) = X ψ e -ψ * (∇ψ(x)) det ∇ 2 ψ(x)dx = Ω ψ e -ψ * (∇ψ(x)) det ∇ 2 ψ(x)dx
and is of particular interest. This is discussed in Subsection 3.2.

Our main result is the duality formula of Theorem 2. A special case is the identity [START_REF] Borwein | Convex Functions: Constructions, Characterizations and Counterexamples[END_REF] which was the starting point of the short proof of the reverse log-Sobolev inequality presented in Section 2.

Notice also that for any linear invertible map A on R n , one has

as λ (F 1 , F 2 , ψ • A) = |detA| 2λ-1 as λ (F 1 , F 2 , ψ), (13) 
which corresponds to an SL(n) invariance with a degree of homogeneity of (2λ-1). This is easily checked using

∇ x (ψ • A) = A t ∇ Ax ψ and ∇ 2 x (ψ • A) = A t ∇ 2
Ax ψA. We shall use Corollary 4.3 and Proposition A.1 of [START_REF] Mccann | A Convexity principle for interacting gases[END_REF], where McCann showed a general change of variable formula, namely for every Borel function f :

R n → R + , X ψ f (∇ψ(x))det∇ 2 ψ(x)dx = X ψ * f (y)dy. ( 14 
)
The same holds true for every integrable function f : R n → R. Identity ( 14) is obvious when ψ satisfies some regularity assumptions, like C 2 . It suffices to make the change of variable y = ∇ψ(x). However, the proofs are more delicate in a general setting.

Theorem 2. Let λ ∈ R, let F 1 , F 2 : R → R + and let ψ : R n → R ∪ {+∞} be convex. If λ < 0 or λ > 1, assume moreover that F 1 • ψ > 0 on X ψ and F 2 • ψ * > 0 on X ψ * . Then as λ (F 1 , F 2 , ψ) = as 1-λ (F 2 , F 1 , ψ * ).
Proof. Without loss of generality, we can assume that ψ is lower semi-continuous so that ψ = (ψ * ) * . By [START_REF] Artstein-Avidan | Milman The concept of duality in convex analysis, and the characterization of the Legendre transform[END_REF],

as λ (F 1 , F 2 , ψ) = X ψ (F 1 • ψ(x)) 1-λ (F 2 • ψ * (∇ψ(x))) λ (det ∇ 2 ψ(x)) λ dx.
By Proposition A.1 in [START_REF] Mccann | A Convexity principle for interacting gases[END_REF],

x = ∇ψ * • ∇ψ(x) and ∇ 2 ψ * (∇ψ(x)) = (∇ 2 ψ(x)) -1 , ∀x ∈ X ψ , so that as λ (F 1 , F 2 , ψ) is equal to X ψ (F 1 • ψ • ∇ψ * (∇ψ(x))) 1-λ (F 2 • ψ * (∇ψ(x))) λ (det ∇ 2 ψ * (∇ψ(x))) 1-λ det ∇ 2 ψ(x)dx.
Using [START_REF] Chen | Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws[END_REF], we obtain

as λ (F 1 , F 2 , ψ) = X ψ * (F 1 • ψ • ∇ψ * (y)) 1-λ (F 2 • ψ * (y)) λ (det ∇ 2 ψ * (y)) 1-λ dy.
Since (ψ * ) * = ψ, we conclude the proof using ( 5) with ψ * instead of ψ.

Corollary 1. The function λ → log(as λ (F 1 , F 2 , ψ)) is convex on R. Moreover, ∀λ ∈ [0, 1], as λ (F 1 , F 2 , ψ) ≤ X ψ F 1 • ψ 1-λ X ψ * F 2 • ψ * λ .
Equality holds trivially if λ = 0 and λ = 1.

If F 1 • ψ > 0 on X ψ and F 2 • ψ * > 0 on X ψ * , then ∀λ / ∈ [0, 1], as λ (F 1 , F 2 , ψ) ≥ X ψ F 1 • ψ 1-λ X ψ * F 2 • ψ * λ .
Proof. The convexity of λ → log(as λ (F 1 , F 2 , ψ)) is a consequence of Hölder's inequality.

For the inequalities we use Hölder's inequality and also the duality relation of Theorem

2 with λ = 1, as 1 (F 1 , F 2 , ψ) = as 0 (F 2 , F 1 , ψ * ) = X ψ * F 2 • ψ * .
We define the non-increasing function F : R → R + by

F (t) = sup t 1 +t 2 2 ≥t F 1 (t 1 )F 2 (t 2 ). (15) 
Notice that if

F 1 = F 2 is a log-concave, non-increasing function then F = F 1 = F 2 . Corollary 2. Let F 1 , F 2 : R → R + and let ψ : R n → R ∪ {+∞} be a convex function. For z ∈ R n , let ψ z (x) = ψ(x + z). Then there exists z ∈ R n such that ∀λ ∈ [0, 1], as λ (F 1 , F 2 , ψ z ) ≤ R n F |x| 2 2 dx 2λ X ψ F 1 • ψ 1-2λ
.

Equality holds trivially if λ = 0. If F 1 • ψ > 0 on X ψ and F 2 • ψ * > 0 on X ψ * then ∀λ < 0, as λ (F 1 , F 2 , ψ z ) ≥ R n F |x| 2 2 dx 2λ X ψ F 1 • ψ 1-2λ
.

If F is decreasing, λ = 0 and X ψ F 1 • ψ = 0, then there is equality in each of these inequalities if and only if there exists c ∈ R + , a ∈ R and a positive definite matrix A such that, for every x ∈ R n and t ≥ 0,

ψ z (x) = Ax, x + a, F 1 (t + a) = c F (t) and F 2 (t -a) = F (t) c .
Remark. Notice that if ψ is even then one may choose z = 0. Moreover, the inequality of Corollary 2, together with the duality relation of Theorem 2, yields another inequality which is stronger as the one of Corollary 2, when λ ∈ [ 1 2 , 1]. Indeed, by Theorem 2 and Corollary 2, we have for all λ ∈ [0, 1] that

as λ (F 1 , F 2 , ψ) = as 1-λ (F 2 , F 1 , ψ * ) ≤ R n F |x| 2 2 dx 2(1-λ) X * ψ F 2 • ψ * dx 2λ-1 . (16) If λ ∈ [ 1 2
, 1], we can now apply the functional Blaschke-Santaló inequality [START_REF] Fradelizi | Some functional forms of Blaschke-Santaló inequality[END_REF] and get that

as λ (F 1 , F 2 , ψ) ≤ R n F |x| 2 2 dx 2λ X ψ F 1 • ψdx 1-2λ
, which is the inequality of Corollary 2. Thus, for λ ∈ [ 1 2 , 1], ( 16) is as strong as the inequality of Corollary 2.

Proof. We recall a general form of the functional Blaschke-Santaló inequality [START_REF] Fradelizi | Some functional forms of Blaschke-Santaló inequality[END_REF][START_REF] Lehec | Partitions and functional Santaló inequalities[END_REF]. Let f be a non-negative integrable function on R n . There exists z 0 ∈ R n such that for every measurable ρ : R + → R + and every g :

R n → R + satisfying f (z 0 + x)g(y) ≤ ρ 2 ( x, y ) , (17) 
for every x, y ∈ R n with x, y > 0, we have

R n f dx R n g dx ≤ R n ρ(|x| 2 )dx 2 . ( 18 
)
If f is even, a result of Ball [START_REF] Ball | Isometric problems in p and sections of convex sets[END_REF] asserts that one may choose z 0 = 0. Moreover, if there exists g satisfying ( 17) and equality holds in [START_REF] Federer | A note on the Gauss-Green theorem[END_REF], then there exists c > 0 and a positive definite matrix T , such that for every x ∈ R n ,

f (z 0 + x) = cρ |T x| 2 and g(y) = 1 c ρ |T -1 x| 2 . ( 19 
)
For z ∈ R n , let us denote ψ * z = (ψ z ) * . Since F is non-increasing, we have by (4), for every x, y, z ∈ R n such that x, y > 0,

F 1 (ψ z (x))F 2 (ψ * z (y)) ≤ F 2 ψ z (x) + ψ * z (y) 2 ≤ F 2 x, y 2 .
By the functional Blaschke-Santaló inequality there exists z 0 ∈ R n such that

F 1 • ψ F 2 • ψ * z0 ≤ R n F |x| 2 2 dx 2 . ( 20 
)
Applying Corollary 1 to ψ z0 , we deduce that for λ ∈ [0, 1],

as λ (F 1 , F 2 , ψ z0 ) ≤ X ψ F 1 • ψ 1-λ X ψ * z 0 F 2 • ψ * z0 λ ≤ R n F |x| 2 2 dx 2λ X ψ F 1 • ψ 1-2λ
.

For λ < 0 we deduce from (20) that

X ψ F 1 • ψ λ X ψ * z 0 F 2 • ψ * z0 λ ≥ R n F |x| 2 2 dx 2λ
and we conclude by using the second part of Corollary 1.

In order to characterize the equality case, we suppose that X ψ F 1 • ψ = 0 which means that the expressions in the inequality are not identically zero. For λ = 0, if there is equality in one of the inequalities of Corollary 2, it follows from the proof that we have equality in the functional Blaschke-Santaló inequality. Thus by [START_REF] Federer | Geometric measure theory[END_REF], there exists c > 0 and an invertible linear map T , such that for every x ∈ R n ,

F 1 • ψ z0 (x) = c F |T x| 2 2 and F 2 • ψ * z0 (x) = 1 c F |T -1 x| 2 2 .
Let us define ϕ(x) = ψ(T -1 x + z 0 ). Then we have

F 1 • ϕ(x) = c F |x| 2 2 and F 2 • ϕ * (x) = 1 c F |x| 2 2 . ( 21 
)
Hence

F |x| 2 2 = F 1 • ϕ(x)F 2 • ϕ * (x) ≤ F ϕ(x) + ϕ * (x) 2 ≤ F |x| 2 2 .
Since F is decreasing, we deduce that ϕ(x) + ϕ * (x) = |x| 2 . It is a classical fact that this implies that ϕ(x) = |x| 2 /2 + a. See for example the argument given in the proof of Theorem 8 in [START_REF] Fradelizi | Some functional forms of Blaschke-Santaló inequality[END_REF]. Defining A = T * T /2, we get that ψ z0 (x) = Ax, x + a, for every x ∈ R n . From [START_REF] Fradelizi | Increasing functions and inverse Santaló inequality for unconditional functions[END_REF] we deduce that for every t ≥ 0,

F 1 (t + a) = c F (t) and F 2 (t -a) = 1 c F (t).
Thus all stated conditions are proved. Reciprocally, if these conditions are fulfilled, a simple computation shows that there is equality.

Application for log-concave functions.

We define F 1 and F 2 on R by F 1 (t) = F 2 (t) = e -t . Then F (t) = e -t as well and we use the simplified notation

as λ (ψ) = as λ (e -t , e -t , ψ) = X ψ e (2λ-1)ψ(x)-λ x,∇ψ(x) det ∇ 2 ψ(x) λ dx. (22) 
As before, we can replace X ψ by Ω ψ for λ > 0. Observe that for the Euclidean norm | • |,

as λ | • | 2 2 = (2π) n 2 . ( 23 
)
We call a real valued map Φ on the set of convex functions ψ a valuation (see e.g., [START_REF] Artstein-Avidan | Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality[END_REF])

, if Φ(ψ 1 ) + Φ(ψ 2 ) = Φ(max(ψ 1 , ψ 2 )) + Φ(min(ψ 1 , ψ 2 )),
provided min(ψ 1 , ψ 2 ) is convex. Then it is not difficult to see (see e.g., [START_REF] Caglar | Divergence for s-concave and log-concave functions[END_REF]) that as λ is a valuation and that it is homogeneous of degree (2λ -1)n, since, by [START_REF] Caglar | Mixed f -divergence and inequalities for logconcave functions[END_REF], for any linear invertible map A on R n and all convex ψ as λ (ψ • A) = |detA| 2λ-1 as λ (ψ).

For convex bodies with the origin in their interiors, such upper semi-continuous valuations were characterized as L p -affine surface areas in [START_REF] Ludwig | A characterization of affine surface area[END_REF] and [START_REF] Ludwig | A classification of SL(n) invariant valuations[END_REF] which motivated us to call as λ (ψ) the L λ -affine surface area of ψ. This is further justified by Theorem 3 of the next section (where we also recall the definition of L p -affine surface area for convex bodies), and by the identity (31) of Section 4.

From Theorem 2 and Corollary 1 we get that λ → log (as λ (ψ)) is convex and that

∀λ ∈ R, as λ (ψ) = as 1-λ (ψ * ). ( 24 
)
The following isoperimetric inequalities are a direct consequence of Corollary 2 and a result of [START_REF] Lehec | A simple proof of the functional Santaló inequality[END_REF] which states that the Santaló point z 0 in the functional Blaschke-Santaló inequality ( 7) can be taken equal to 0 when

R n xe -ψ(x) dx = 0 or R n xe -ψ * (x) dx = 0. Corollary 3. Let ψ : R n → R ∪ {+∞} be a convex function such that R n xe -ψ(x) dx = 0 or R n xe -ψ * (x) dx = 0. Then ∀λ ∈ [0, 1], as λ (ψ) ≤ (2π) nλ X ψ e -ψ 1-2λ , ∀λ ∈ (-∞, 0], as λ (ψ) ≥ (2π) nλ X ψ e -ψ 1-2λ
.

Equality holds in both inequalities for λ = 0, if and only if there exists a ∈ R and a positive definite matrix A such that ψ(x) = Ax, x + a, for every x ∈ R n .

Remark. (i) To emphasize the isoperimetric character of these inequalities, note that with [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF], the inequalities are equivalent to ∀λ ∈ [0, 1], as λ (ψ)

as λ |•| 2 2 ≤ X ψ e -ψ R n e -|•| 2 2 1-2λ
and ∀λ < 0, as λ (ψ)

as λ |•| 2 2 ≥ X ψ e -ψ R n e -|•| 2 2 1-2λ
.

(ii) It follows from Corollary 3 and the functional Blaschke Santaló inequality that

∀λ ∈ [0, 1/2], as λ (ψ)as λ (ψ * ) ≤ (2π) n .
There are several other direct consequences of Corollary 3 that should be noticed. As observed already, we have for every λ > 0,

as λ (ψ) = Ω ψ e (2λ-1)ψ(x)-λ x,∇ψ(x) det ∇ 2 ψ(x) λ dx.
Since X ψ e -ψ ≤ R n e -ψ we deduce from Corollary 3 that for any λ ∈ (0, 1/2],

Ω ψ e (2λ-1)ψ(x)-λ x,∇ψ(x) det ∇ 2 ψ(x)

λ dx ≤ (2π) nλ R n e -ψ 1-2λ . ( 25 
)
This inequality also holds trivially for λ = 0. Moreover, by Theorem 2, we know that as λ (ψ) = as 1-λ (ψ * ). Since the inequalities of Corollary 3 are also valid when

R n xe -ψ * (x) dx = 0, we deduce from (25) that if λ ∈ [1/2, 1],
Ω ψ e (2λ-1)ψ(x)-λ x,∇ψ(x) det ∇ 2 ψ(x)

λ dx = as λ (ψ) = as 1-λ (ψ * ) ≤ (2π) n(1-λ)
R n e -ψ * 2λ-1 .

By the functional Blaschke-Santaló inequality (see ( 20)), we know that R n e -ψ R n e -ψ * ≤ (2π) n and we conclude that for all λ ∈ [1/2, 1],

Ω ψ e (2λ-1)ψ(x)-λ x,∇ψ(x) det ∇ 2 ψ(x) λ dx ≤ (2π) nλ R n e -ψ 1-2λ
.

For λ < 0 or λ > 1, an important case concerns C 2 strictly convex functions ψ. In such a situation X ψ = Ω ψ and X ψ * = Ω ψ * and we deduce from Corollary 2 that for all λ < 0,

Ω ψ e (2λ-1)ψ(x)-λ x,∇ψ(x) det ∇ 2 ψ(x) λ dx ≥ (2π) nλ R n e -ψ 1-2λ
.

For all λ > 1, we go back to Corollary 1 and deduce that

Ω ψ e (2λ-1)ψ(x)-λ x,∇ψ(x) det ∇ 2 ψ(x) λ dx = as λ (ψ) ≥ R n e -ψ 1-λ R n e -ψ * λ .
By the asymptotic functional reverse Santaló inequality [START_REF] Fradelizi | Increasing functions and inverse Santaló inequality for unconditional functions[END_REF] (see also [START_REF] Klartag | Geometry of log-concave functions and measures[END_REF] in the even case), there exists a constant c > 0 such that R n e -ψ R n e -ψ * ≥ c n . Therefore, for all λ > 1,

Ω ψ e (2λ-1)ψ(x)-λ x,∇ψ(x) det ∇ 2 ψ(x) λ dx ≥ c nλ R n e -ψ 1-2λ
.

Thus, we have proved the following:

Corollary 4. Let ψ : R n → R ∪ {+∞} be a convex function such that R n xe -ψ(x) dx = 0 or R n xe -ψ * (x) dx = 0. Then ∀λ ∈ [0, 1], Ω ψ e (2λ-1)ψ(x)-λ x,∇ψ(x) det ∇ 2 ψ(x) λ dx ≤ (2π) nλ R n e -ψ 1-2λ . Moreover, if ψ ∈ C 2 (Ω ψ ) is strictly convex, then ∀λ < 0, Ω ψ e (2λ-1)ψ(x)-λ x,∇ψ(x) det ∇ 2 ψ(x) λ dx ≥ (2π) nλ R n e -ψ 1-2λ
and there exists an absolute constant c > 0 such that ∀λ > 1,

Ω ψ e (2λ-1)ψ(x)-λ x,∇ψ(x) det ∇ 2 ψ(x) λ dx ≥ c nλ R n e -ψ 1-2λ
.

These are the complete analogues of the L p -affine surface area inequalities from [START_REF] Lutwak | The Brunn-Minkowski-Firey theory II : Affine and geominimal surface areas[END_REF][START_REF] Hug | Curvature Relations and Affine Surface Area for a General Convex Body and its Polar[END_REF][START_REF] Schütt | Surface bodies and p-affine surface area[END_REF] which will be discussed in more detail in the next subsection.

The case of convex bodies.

We continue to study the case F 1 (t) = F 2 (t) = e -t . Additionally, we consider the case of 2-homogeneous proper convex functions ψ, that is ψ(λx) = λ 2 ψ(x) for any λ ∈ R + and x ∈ R n . Such functions ψ are necessarily (and this is obviously sufficient) of the form ψ(x) = x 2 K /2 for a certain convex body K with 0 in its interior. Here, • K is the gauge function of the convex body K,

x K = min{α ≥ 0 : x ∈ αK} = max y∈K • x, y = h K • (x).
Differentiating with respect to λ at λ = 1, we get

x, ∇ψ(x) = 2ψ(x).

Thus, for 2-homogeneous functions ψ, formula ( 22) further simplifies to

as λ (ψ) = X ψ det ∇ 2 ψ(x) λ e -ψ(x) dx. (26) 
The following theorem indicates why we call as λ (ψ) the L λ -affine surface area of ψ. First we recall that for p ∈ R, p = -n, the L p -affine surface area of a convex body K in R n with the origin in its interior is defined [START_REF] Hug | Curvature Relations and Affine Surface Area for a General Convex Body and its Polar[END_REF][START_REF] Lutwak | The Brunn-Minkowski-Firey theory II : Affine and geominimal surface areas[END_REF][START_REF] Schütt | Surface bodies and p-affine surface area[END_REF] by

as p (K) = ∂K κ K (x) p n+p x, N K (x) n(p-1) n+p dµ K (x). (27) 
Here, N K (x) is the outer unit normal at x ∈ ∂K, µ K is the usual surface area measure on ∂K and κ K (x) is the Gauss curvature at x. We denote by (∂K) + the points of ∂K where the Gauss curvature is strictly positive.

Theorem 3. Let K be a convex body in R n containing the origin in its interior. For any p ≥ 0, let λ = p n+p . Then

as λ • 2 K 2 = (2π) n 2 n|B n 2 | as p (K).
Moreover, if (∂K) + has full measure in ∂K, then the same relation holds true for every p = -n.

Remark. For all p, as p (B n 2 ) = n|B n 2 |. Therefore, together with [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF], Theorem 3 can be rewritten as as λ

• 2 K 2 as λ |•| 2 2 = as p (K) as p (B n 2 )
.

Proof. We will use formula [START_REF] Hug | Curvature Relations and Affine Surface Area for a General Convex Body and its Polar[END_REF] for ψ =

• 2 K 2
. By a result of Hug [26, Theorem 2.2], the function ψ is twice differentiable at almost every point of ∂K and we have that

det (∇ 2 ψ(x)) = κ K (x) N K (x), x n+1 .
Note in particular that X ψ coincides with the the radial extension of the points of ∂K where the Gauss curvature is strictly positive, namely (∂K) + . Now we integrate in polar coordinates with respect to the normalized cone measure σ K of K. Thus, if we write x = rθ, with θ ∈ ∂K, then dx = n|K|r n-1 drdσ K (θ). We also use that the map x → det ∇ 2 ψ(x) is 0-homogeneous. Therefore we obtain from [START_REF] Hug | Curvature Relations and Affine Surface Area for a General Convex Body and its Polar[END_REF],

as λ • 2 K 2 = n|K| +∞ 0 r n-1 e -r 2 2 dr (∂K)+ det ∇ 2 ψ(θ) λ dσ K (θ) = (2π) n 2 |K| |B n 2 | (∂K)+ κ K (x) N K (x), x n+1 λ dσ K (θ).
The relation between the normalized cone measure σ K and the Hausdorff measure µ K on ∂K is given by

dσ K (x) = x, N K (x) dµ K (x) n|K| .
Thus, with λ = p n+p ,

as λ • 2 K 2 = (2π) n 2 n|B n 2 | (∂K)+ κ(x) x, N K (x) n+1 λ x, N K (x) dµ K (x) = (2π) n 2 n|B n 2 | as p (K),
when λ ∈ [0, 1) or when (∂K) + is of full measure in ∂K.

Let us conclude this section with several observations. First, observe that

R n e -x 2 K 2 dx = 2 n 2 Γ 1 + n 2 |K|.
Combining this with Theorem 3 and Corollary 3, we recover the L p -affine isoperimetric inequalities for convex bodies. Namely, for a convex body K with the origin in its interior, we have for λ ∈ [0, 1), which corresponds to p ∈ [0, ∞) (λ and p are related by λ = p n+p ),

as p (K) as p (B n 2 ) ≤ |K| |B n 2 | n-p n+p ,
with equality if and only if K is an ellipsoid. For λ ∈ (-∞, 0], which corresponds to p ∈ (-n, 0], we use Corollary 4 and get that for any C + 2 convex body K, i.e., ∂K is C 2 with strictly positive Gauss curvature everywhere,

as p (K) as p (B n 2 ) ≥ |K| |B n 2 | n-p n+p , with equality if and only if K is an ellipsoid. If λ ≥ 1, which corresponds to p ∈ [-∞, -n), then c np n+p |K| |B n 2 | n-p n+p ≤ as p (K) as p (B n 2 )
, where c is a universal constant. For p ≥ 1 these inequalities were proved by Lutwak [START_REF] Lutwak | The Brunn-Minkowski-Firey theory II : Affine and geominimal surface areas[END_REF] and for all other p by Werner and Ye [START_REF] Werner | New L p affine isoperimetric inequalities[END_REF].

Second, the functional definition as λ

• 2 K 2
and as p (K) may differ for p < 0. Indeed, if ∂K \ (∂K) + has positive measure then as p (K) = +∞ while it can happen that the corresponding functional definition is finite. A simple example is the convex hull of the point (-e 1 ) with the half unit sphere {

x 2 i = 1, x 1 ≥ 0}.
Note that

• 2 K 2 * = • 2 K • 2
, where K • = {y ∈ R n : x, y ≤ 1 ∀x ∈ K} is the polar body of K. Thus the functional duality relation [START_REF] Haberl | General L p affine isoperimetric inequalities[END_REF] implies the identity

∀λ ∈ R, as λ • 2 K 2 = as 1-λ • 2 K • 2 .
Together with Theorem 3 and for λ = p/(n + p), we recover the classical duality relation

as p (K) = as n 2 p (K • )
for any p > 0. Moreover, this is also valid for any p = -n when (∂K) + has full measure in ∂K. This duality relation was proved in [START_REF] Hug | Curvature Relations and Affine Surface Area for a General Convex Body and its Polar[END_REF] for p > 0 and for all p = -n in [START_REF] Werner | New L p affine isoperimetric inequalities[END_REF], under additional regularity assumption when p < 0.

4 The L p -affine surface area for s-concave functions.

The purpose of this section is to generalize Definition 1, the functional version of L paffine surface area, to the context of s-concave functions for s > 0. One possibility is to consider

F 1 (t) = F 2 (t) = F (s) (t) = (1 -st) 1/s
+ , where a + = max{a, 0}. Since F (s) is log-concave and non-increasing, one has according to [START_REF] Cianchi | Affine Moser-Trudinger and Morrey-Sobolev inequalities[END_REF], F = F (s) and when s → 0, it recovers the previous case of F (t) = e -t . However, when ψ is convex, F • ψ and F • ψ * do not satisfy a nice duality relation. Therefore, instead of the Legendre duality, we use a different duality transform coming from the natural duality for s-concave functions studied in [START_REF] Artstein-Avidan | The Santaló point of a function, and a functional form of Santaló inequality[END_REF][START_REF] Meyer | Convex bodies with minimal volume product in R 2[END_REF].

The s-concave duality.

We need some additional notation to explain the definition. Let s ∈ (0, +∞) and f : R n → R + . Following Borell [START_REF] Borell | Convex set functions in d-space[END_REF], we say that f is s-concave if for every λ ∈ [0, 1] and all x and y such that f (x) > 0 and f (y) > 0,

f ((1 -λ)x + λy) ≥ ((1 -λ)f (x) s + λf (y) s ) 1/s .
Since s > 0, one may equivalently assume that f s is concave on its support. For the construction of the duality, we assume that f is upper semi-continuous, f (0) > 0 and that f is bounded. We denote this class of functions by C onv + s (R n ). Let S f be the convex set {x : f (x) > 0}. We define the (s)-Legendre dual of f (see [START_REF] Artstein-Avidan | The Santaló point of a function, and a functional form of Santaló inequality[END_REF][START_REF] Meyer | Convex bodies with minimal volume product in R 2[END_REF]) as

f • (s) (y) = inf x∈S f (1 -s x, y ) 1/s + f (x) .
Equivalently one may define a function ψ on S f by

ψ(x) = 1 -f s (x) s , x ∈ S f , (28) 
extend it by continuity to the closure of S f and by +∞ outside the closure of S f . We associate with it a new dual function ψ (s) defined by

ψ (s) (y) = sup x∈S f x, y -ψ(x) 1 -sψ(x) (29) 
where

y ∈ S f • (s) = 1 s S • f = { z s : ∀x ∈ S f , x, z < 1}. Since f is s-concave, upper semi- continuous, ψ is convex, lower semi-continuous. And f > 0 on S f , hence ψ (s) is well defined. The (s)-Legendre dual of f is now given by f • (s) (y) = 1 -sψ (s) (y) 1/s , ∀y ∈ S f • (s) ,
where S f • (s) = {y : 1 -sψ (s) (y) > 0}. We extend it by continuity at the boundary and by 0 outside the closure of

S f • (s) . It is done in such a way that f • (s) is upper semi-continuous. Since f ∈ C onv + s (R n ) then f • (s) ∈ C onv + s (R n ). It is not difficult to see that as for the Legendre transform, (f • (s) ) • (s) = f or equivalently that (ψ (s) ) (s) = ψ.
There is an implicit equation between the classical Legendre function ψ * and the (s)-Legendre function ψ (s) given by

∀y ∈ S f • (s) , 1 -sψ (s) (y) 1 + sψ * y 1 -sψ (s) (y) = 1. ( 30 
)
Our definition of the L λ affine surface area of an s-concave function is the following.

Definition 2. For any s > 0, let f be an s-concave function and ψ be the convex function associated with it by [START_REF] Lehec | A simple proof of the functional Santaló inequality[END_REF]. For any λ ∈ R, let as (s)

λ (ψ) = 1 1 + ns X ψ (1 -sψ(x)) ( 1 s -1)(1-λ) det∇ 2 ψ(x) λ (1 + s( x, ∇ψ(x) -ψ(x))) λ(n+ 1 s +1)-1
dx.

Note that as (s)

λ does not correspond to Definition 1 for particular functions F 1 and F 2 . As in the log-concave case, we call as (s) λ the L λ -affine surface area of an s-concave function f . This is motivated by two reasons. As in Theorem 2 , we prove in Theorem 4 a satisfactory duality relation, from which we deduce a reverse log-Sobolev inequality for s-concave measures. Moreover, in the case s = 1/k > 0 where k is an integer, this functional affine surface area corresponds to an L p -affine surface area of a convex body associated with f in dimension n + k. Indeed, as in [START_REF] Artstein-Avidan | The Santaló point of a function, and a functional form of Santaló inequality[END_REF], this convex body

K s (f ) in R n+ 1 s is given by K s (f ) = (x, y) ∈ R n × R 1 s : x √ s ∈ S f , |y| ≤ f s x √ s .
The L λ -affine surface area of f is a multiple of the L p -affine surface area of K s (f ) with

p = n + 1 s λ 1-λ , (1 + ns) as (s) λ (ψ) = as p (K s (f )) s n 2 vol 1 s -1 S 1 s -1 . (31) 
Identity [START_REF] Ludwig | A classification of SL(n) invariant valuations[END_REF] follows from Proposition 5 in [START_REF] Caglar | Divergence for s-concave and log-concave functions[END_REF]. Finally, we note that, as it is the case for log-concave functions, the L λ -affine surface area for s-concave functions is also invariant under the action of SL(n) and is homogeneous.

Theorem 4. Let f ∈ C onv + s (R n ) with associated convex function ψ. Let λ ∈ R then as (s) 1-λ (ψ (s) ) = as (s) λ (ψ).
Proof. Let us start with the case when f is sufficiently smooth, say ψ is twice continuously differentiable with strictly positive definite Hessian on Ω ψ . Then X ψ = Ω ψ and as (s)

λ (ψ) = 1 1 + ns Ω ψ (1 -sψ(x)) ( 1 s -1)(1-λ) det∇ 2 ψ(x) λ (1 + s( x, ∇ψ(x) -ψ(x))) λ(n+ 1 s +1)-1 dx. (32) 
A simple computation shows that the supremum in ( 29) is attained at the point x ∈ S f such that

y = 1 -s x, y 1 -sψ(x) ∇ψ(x) = (1 -sψ (s) (y))∇ψ(x).
From [START_REF] Ludwig | A characterization of affine surface area[END_REF], we have

1 1 -sψ (s) (y) = 1 + sψ * ( y 1 -sψ (s) (y) ) = 1 + sψ * (∇ψ(x)). (33) 
Therefore, we have that the supremum in ( 29) is attained at the point x ∈ S f , that is,

ψ (s) (y) = x, y -ψ(x) 1 -sψ(x) ,
if and only if

y = ∇ψ(x) 1 + sψ * (∇ψ(x)) = ∇ψ(x) 1 + s( ∇ψ(x), x -ψ(x))
.

We define the change of variable

∇ψ(x) 1 + s( ∇ψ(x), x -ψ(x)) = T ψ (x). (34) 
A straightforward computation shows that

d x T ψ = 1 1 + sψ * (∇ψ(x)) Id - s 1 + sψ * (∇ψ(x))
x ⊗ ∇ψ(x) ∇ 2 ψ(x).

Since det Id -s 1 + sψ * (∇ψ(x))

x ⊗ ∇ψ(x) = 1 -s 1 + sψ * (∇ψ(x))

x, ∇ψ(x)

we see that the Jacobian of T ψ at x is given by

dy = |det d x T ψ | dx = 1 -sψ(x) (1 + s( ∇ψ(x), x -ψ(x))) n+1 det∇ 2 ψ(x) dx. (35) 
As the duality (ψ (s) ) (s) = ψ holds, we see that T ψ • T ψ (s) = Id and T ψ (s) • T ψ = Id from which it is easy to deduce that for y = T ψ (x),

det (d x T ψ ) det d y T ψ (s) = 1. ( 36 
)
We now make the change of variable y = T ψ (x) in formula [START_REF] Ludwig | Sharp convex Lorentz-Sobolev inequalities[END_REF]. From [START_REF] Lutwak | The Brunn-Minkowski-Firey theory II : Affine and geominimal surface areas[END_REF] and the fact that (ψ (s) ) (s) = ψ, we have

1 1 -sψ (s) (y) = 1 + s( ∇ψ(x), x -ψ(x)) and 1 1 -sψ(x) = 1 + s( ∇ψ (s) (y), y -ψ (s) (y)).
Combining this with ( 35) and ( 36), we obtain

det∇ 2 ψ(x) 1 -sψ (s) (y) 1 + s( ∇ψ (s) (y), y -ψ (s) (y) n+2 det∇ 2 ψ (s) (y) = 1. (37) 
Consequently, with y = T ψ (x),

(1 + ns) as

(s) λ (ψ) = Ω ψ (1 -sψ(x)) ( 1 s -1)(1-λ)-1 det∇ 2 ψ(x) λ-1 (1 + s( x, ∇ψ(x) -ψ(x))) (λ-1)(n+1)+ λ s -1 |det d x T ψ | dx = Ω ψ (s)
1 -sψ (s) (y)

(n+2)(1-λ)+(λ-1)(n+1)+ λ s -1 det∇ 2 ψ (s) (y) 1-λ 1 + s( y, ∇ψ (s) (y) -ψ (s) (y)) (n+2)(1-λ)+( 1 s -1)(1-λ)-1 dy = Ω ψ (s) 1 -sψ (s) (y) λ( 1 s -1)
det∇ 2 ψ (s) (y)

1-λ 1 + s( y, ∇ψ (s) (y) -ψ (s) (y)) (n+1+ 1 s )(1-λ)-1 dy = (1 + ns) as (s) 1-λ (ψ (s) ).
This concludes the proof in the smooth case.

For the general case, we need several observations. By (5), we have a.e. in Ω ψ ,

(1 + s( x, ∇ψ(x) -ψ(x))) = 1 + sψ * (∇ψ(x)).
Therefore, we can use a result of Mc Cann [START_REF] Mccann | A Convexity principle for interacting gases[END_REF], see [START_REF] Chen | Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws[END_REF], to get

(1 + ns) as

(s) λ (ψ) = X ψ (1 -sψ(x)) ( 1 s -1)(1-λ) det∇ 2 ψ(x) λ (1 + sψ * (∇ψ(x))) λ(n+ 1 s +1)-1 dx = X ψ * (1 -sψ(∇ψ * (z))) ( 1 s -1)(1-λ) det∇ 2 ψ * (z) 1-λ (1 + sψ * (z)) λ(n+ 1 s +1)-1 dz. (38) 
We want to make the change of variable z = T (y) = y 1-sψ (s) (y) . Observe that T is an injective map on Ω ψ (s) . Indeed, let y 1 and y 2 so that T (y 1 ) = T (y 2 ), that is

y 1 1 -sψ (s) (y 1 ) = y 2 1 -sψ (s) (y 2 )
.

From [START_REF] Ludwig | A characterization of affine surface area[END_REF], we deduce that 1 -sψ (s) (y 1 ) = 1 -sψ (s) (y 2 ) hence we have y 1 = y 2 . From [START_REF] Ludwig | A characterization of affine surface area[END_REF], our change of variable z = T (y) is equivalent to y = z 1+sψ * (z) . Therefore, a similar computation to [START_REF] Lutwak | Sharp affine L p Sobolev inequalities[END_REF] gives a.e. in Ω ψ (s) ,

|det d y T | = 1 + s(ψ (s) ) * (∇ψ (s) (y)) (1 -sψ (s) (y)) n+1 . ( 39 
)
Similarly to proposition A.1 in [START_REF] Mccann | A Convexity principle for interacting gases[END_REF], T maps X ψ (s) to X ψ * and the Alexandrov derivatives satisfy 1 -sψ (s) (y)

1 + s(ψ (s) ) * (∇ψ (s) (y)) n+2 det∇ 2 ψ (s) (y) = det∇ 2 ψ * (z). (40) 
Since (ψ (s) ) (s) = ψ, we deduce from [START_REF] Ludwig | A characterization of affine surface area[END_REF] that

∀x ∈ S f , (1 -sψ(x)) 1 + s(ψ (s) ) * x 1 -sψ(x) = 1.
Using [START_REF] Ludwig | A characterization of affine surface area[END_REF] and the definition of T , we get that a.e. in Ω ψ * , ∇ψ * (z) 1 -sψ(∇ψ * (z)) = ∇ψ (s) (y), for z = T y which shows that for z = T y,

1 -sψ(∇ψ * (z)) = 1 1 + s(ψ (s) ) * (∇ψ (s) (y)) . (41) 
We have almost all the tools in hand to make the change of variable z = T (y) in [START_REF] Meyer | Convex bodies with minimal volume product in R 2[END_REF]. We compute

X ψ * (1 -sψ(∇ψ * (z))) ( 1 s -1)(1-λ) det∇ 2 ψ * (z) 1-λ (1 + sψ * (z)) λ(n+ 1 s +1)-1
dz by an approximation argument. This will be to ensure that T is a Lipschitz map so that we can use the area formula, see Theorem 3.2.3 in [START_REF] Federer | Geometric measure theory[END_REF]. We have for any

y 1 , y 2 ∈ X ψ (s) , |T y 1 -T y 2 | ≤ |y 1 -y 2 | 1 -sψ (s) (y 1 ) + s|y 2 | (1 -sψ (s) (y 1 ))(1 -sψ (s) (y 2 )) |ψ (s) (y 2 ) -ψ (s) (y 1 )|. ( 42 
) Since ψ (s) is convex on S f • (s)
we deduce that for any ε ∈ (0, 1), it is Lipschitz (with a Lipschitz constant depending on ε) on the set of points in S f • (s) which are at distance at least ε from the boundary of S f • (s) . Let us denote by Y ε the intersection of this set with X ψ (s) . Hence we integrate on z ∈ T (Y ε ) ∩ B(0, R) =: X ε,R ψ * where B(0, R) is a Euclidean ball of radius R. And we will let ε go to zero and R go to infinity. Let X ε,R ψ (s)

:= T -1 (X ε,R ψ * ), the set of y ∈ X ψ (s) such that z = T y for z ∈ X ε,R ψ * .
We have 1 -sψ (s) (0) > 0 hence it is strictly positive on a neighborhood of the origin in S f • (s) . And we deduce from the relation z = T y = y 1-sψ (s) (y) that for any y ∈ X ε,R

ψ (s) , 1 -sψ (s) (y) is uniformly bounded from below by a positive constant. Since f ∈ C onv + s (R n ) hence f o (s) ∈ C onv + s (R n
) and 1 -sψ (s) is bounded from above. Since z ∈ B(0, R) and y = z(1-sψ (s) (y)), we conclude that there exists R > 0 such that for any y ∈ X ε,R

ψ (s) , |y| ≤ R . Moreover ψ (s) is Lipschitz on X ε,R ψ (s)
. Hence we conclude from (42) that T is a Lipschitz map on X ε,R ψ (s) .

We can apply the area formula, see Theorem 3.2.3 in [START_REF] Federer | Geometric measure theory[END_REF] and make the change of variable z = T (y) in the following integral:

X ε,R ψ * (1 -sψ(∇ψ * (z))) ( 1 s -1)(1-λ) det∇ 2 ψ * (z) 1-λ (1 + sψ * (z)) λ(n+ 1 s +1)-1
dz.

We deduce from ( 39), ( 40), ( 41) that it is equal to

X ε,R ψ (s) 1 -sψ (s) (y) λ( 1 s -1) det∇ 2 ψ (s) (y) 1-λ 1 + s( y, ∇ψ (s) (y) -ψ (s) (y)) (n+1+ 1 s )(1-λ)-1 dy.
Letting ε going to zero and R going to infinity, we conclude from ( 38) that

(1 + ns) as

(s) λ (ψ) = X ψ (s) 1 -sψ (s) (y) λ( 1 s -1)
det∇ 2 ψ (s) (y)

1-λ 1 + s( y, ∇ψ (s) (y) -ψ (s) (y)) (n+1+ 1 s )(1-λ)-1 dy.
This finishes the proof of the duality relation in the general case.

Consequences of the duality relation.

In this section, we assume that f satisfies more regularity assumptions: f is twice continuously differentiable on S f , its Hessian is non zero on S f , lim x→∂S f f s (x) = 0 and the origin belongs to the interior of S f . With these assumptions, X ψ = S f and X ψ

(s) = S f • (s)
and we remark that the definition of as

(s) λ (ψ) implies that as (s) 0 (ψ) = S f f (x)dx and as (s) 1 (ψ) = S f • (s) f • (s) (y)dy. (43) 
Indeed,

as (s) 0 (ψ) = 1 1 + ns S f (1 -sψ(x)) 1 s -1 (1 + s( ∇ψ(x), x -ψ(x))) dx = 1 1 + ns S f f (x) 1 -s ∇f (x), x f (x) dx = S f f (x)dx, (44) 
where the last equality follows from Stokes formula and the fact that lim x→∂S f f s (x) = 0. The second relation follows from the duality relation proved in Theorem 4.

In a way similar to the proof of Corollary 1 and Theorem 1, it is possible to deduce from Theorem 4 some isoperimetric inequalities and a general reverse log-Sobolev inequality in the s-concave setting.

Proposition 1. Let f be an s-concave function which satisfies the regularity assumptions stated at the beginning of Section 4.2 and let ψ be its associated convex function. Then ∀λ ∈ [0, 1], as

(s) λ (ψ) ≤ R n f dx 1-λ R n f • (s) dx λ ; ∀λ / ∈ [0, 1], as (s) 
λ (ψ) ≥ R n f dx 1-λ R n f • (s) dx λ .
Proof. We use Hölder's inequality and [START_REF] Sapiro | On affine plane curve evolution[END_REF] to prove the first inequality:

as (s) λ (ψ) ≤ 1 1 + ns R n 1 -sψ(x) 1 s -1 1 -sψ(x) + s x, ∇ψ(x) dx 1-λ   R n det∇ 2 ψ(x)
1 -sψ(x) + s x, ∇ψ(x)

n+ 1 s dx   λ = R n f dx 1-λ R n f • (s) dx λ .
Similarly, one can prove the second inequality.

The next theorem establishes the reverse log-Sobolev inequality for s-concave functions. There, we put dµ = (1 -sψ(x)) ( 1 s -1) (1 + s( ∇ψ(x), x -ψ(x))) dx 1 + ns .

If

R n f (x)dx = 1, then by [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski theory[END_REF], µ is a probability measure on R n . We let S(µ) = -log dµ dx dµ be the Shannon entropy of µ.

Theorem 5. Let f be an s-concave function which satisfies the regularity assumptions stated at the beginning of Section 4.2 and let ψ be its associated convex function. Assume moreover that f is even and that R n f (x)dx = 1. Then 

. (45)

There is equality if and only if there is a positive definite matrix A such that f (x) = c 0 1 -s |Ax| We let ρ(t) = (1 -st)

1 2s
+ . As f ≡ 0 outside S f and f • (s) ≡ 0 outside 1 s S • f , the functions f and f • (s) satisfy the assumption [START_REF] Federbush | Partially alternate derivation of a result of Nelson[END_REF] with z 0 = 0 because f is even. It follows from ( 18) that

R n f dx R n f • (s) dx ≤ R n
(1 -s|x| 2 )

1 2s + dx 2 = π s n Γ(1 + 1 2s ) 2 Γ(1 + n 2 + 1 2s ) 2 . ( 46 
)
By Theorem 4, we have R n f • (s) dx = as If equality holds in [START_REF] Schuster | GL(n) contravariant Minkowski valuations[END_REF], then, in particular, equality holds in the Blaschke-Santaló inequality [START_REF] Schuster | Volume inequalities for asymmetric Wulff shapes[END_REF]. It was proved in [START_REF] Fradelizi | Some functional forms of Blaschke-Santaló inequality[END_REF] that this happens if and only if, in our situation,

f (x) = c 0 1 -s |Ax| 2 1 2s
, for a positive definite matrix A and where c 0 is chosen such that R n f dx = 1. On the other hand, it is easy to see that equality holds in [START_REF] Schuster | GL(n) contravariant Minkowski valuations[END_REF], when f (x) = c 1 -s |Ax| 

R n log det ∇ 2 1 s

 21 ψ(x) dµ ≤ R n log (1 + s( x, ∇ψ(x) -ψ(x))) +n dµ -S(µ)

2 12s , where c 0 = π s -n 2 Γ 1 . 2 , 1 s ( 1 - 1 s ≤ ( 1 -

 22121111 Remark. Since S(γ n ) = log (2πe) n the right hand side of inequality (45) tends to 2 [S(γ n ) -S(µ)] for s → 0 and we recover the inequality of Theorem 1.Proof. The proof follows the line of the proof of Theorem 1 presented in Section 2. By definition (29) of ψ (s) , we have for all x ∈ S f and for all y∈ 1 s S • f that f (x)f • (s) (y) = (1 -sψ(x)) sψ (s) (y)) s x, y ) 1 s .

1 + 1 1 + 1 s 1 s

 11111 ns X ψ det∇ 2 ψ(x)(1 + s( x, ∇ψ(x) -ψ(x))) (n+ 1 s ) dx = ns X ψ det∇ 2 ψ(x) (1 + s( x, ∇ψ(x) -ψ(x))) (n+ 1 s ) dx dµ(x) dµ(x).Since R n f dx = 1, µ is a probability measure and we get from Jensen's inequality logR n f • (s) dx ≥ S(µ) -log(1 + ns) + R n log det∇ 2 ψ dµ -R n log (1 + s( x, ∇ψ(x) -ψ)) +n dµ.Therefore, with[START_REF] Schuster | Volume inequalities for asymmetric Wulff shapes[END_REF] and asR n f dx = 1, R n log det ∇ 2 ψ dµ ≤ R nlog (1 + s( x, ∇ψ(x) -ψ)) +n dµ -S(µ)+ log(1 + ns)

2 12s

 2 , for a positive definite matrix A and a positive constant c.
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