
HAL Id: hal-01262623
https://hal.science/hal-01262623

Submitted on 26 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Community detection in sparse networks via
Grothendieck’s inequality
Olivier Guédon, Roman Vershynin

To cite this version:
Olivier Guédon, Roman Vershynin. Community detection in sparse networks via Grothendieck’s
inequality. Probability Theory and Related Fields, 2016, 165 (3-4), pp.1025-1049. �hal-01262623�

https://hal.science/hal-01262623
https://hal.archives-ouvertes.fr


COMMUNITY DETECTION IN SPARSE NETWORKS VIA

GROTHENDIECK’S INEQUALITY

OLIVIER GUÉDON AND ROMAN VERSHYNIN

Abstract. We present a simple and flexible method to prove consis-
tency of semidefinite optimization problems on random graphs. The
method is based on Grothendieck’s inequality. Unlike the previous uses
of this inequality that lead to constant relative accuracy, we achieve
any given relative accuracy by leveraging randomness. We illustrate the
method with the problem of community detection in sparse networks,
those with bounded average degrees. We demonstrate that even in this
regime, various natural semidefinite programs can be used to recover
the community structure up to an arbitrarily small fraction of misclas-
sified vertices. The method is general; it can be applied to a variety of
stochastic models of networks and semidefinite programs.

1. Introduction

1.1. Semidefinite problems on random graphs. In this paper we present
a simple and general method to prove consistency of various semidefinite op-
timization problems on random graphs.

Suppose we observe one instance of an n×n symmetric random matrix A
with unknown expectation Ā := EA. We would like to estimate the solution
of the discrete optimization problem

maximize xTĀx subject to x ∈ {−1, 1}n. (1.1)

A motivating example of A is the adjacency matrix of a random graph;
the Boolean vector x can represent a partition of vertices of the graph into
two classes. Such Boolean problems can be encountered in the context of
community detection in networks which we will discuss shortly. For now, let
us keep working with the general class of problems (1.1).

Since Ā is unknown, one might hope to estimate the solution x̄ of (1.1)
by solving the random instance of this problem, that is

maximize xTAx subject to x ∈ {−1, 1}n. (1.2)

The integer quadratic problem (1.2) is NP-hard for general (non-random)
matrices A. Semidefinite relaxations of many problems of this type have
been proposed; see [34, 49, 58, 6] and the references therein. Such relaxations
are known to have constant relative accuracy. For example, a semidefinite

Date: January 26, 2016.
O. G. is supported by the ANR project GeMeCoD, ANR 2011 BS01 007 01. R. V. is

partially supported by NSF grants 1265782 and U.S. Air Force grant FA9550-14-1-0009.
1
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relaxation in [6] computes, for any given positive semidefinite matrix A, a
vector x0 ∈ {−1, 1}n such that xT0Ax0 ≥ 0.56 maxx∈{−1,1}n x

TAx.
In this paper we demonstrate how semidefinite relaxations of (1.2) can

recover a solution of (1.1) with any given relative accuracy. Like several pre-
viously known methods, our approach is based on Grothendieck’s inequality.
We refer the reader to the surveys [62, 41] for many reformulations and ap-
plications of this inequality in mathematics, computer science, optimization
and other fields. In contrast to the previous methods, we are going to ap-
ply Grothendieck’s inequality for the (random) error A− Ā rather that the
original matrix A, and this will be responsible for the arbitrary accuracy.

We will describe the general method in Section 2. It is simple and flexi-
ble, and it can be used for showing consistency of a variety of semidefinite
programs, which may or may not be related to Boolean problems like (1.1).
But before describing the method, we would like to pause and give some con-
crete examples of results it yields for community detection, a fundamental
problem in network analysis.

For simplicity, we will first focus on the classical stochastic block model,
which is a random network whose nodes are split into two equal-sized clus-
ters. In Section 1.3 we will extend our discussion for much broader models
of networks almost without extra effort.

1.2. Community detection: the classical stochastic block model. It
is now customary to model networks as inhomogeneous random graphs [13],
which generalize the classical Erdös-Rényi model G(n, p). A benchmark
example is the stochastic block model [40]. In this section we focus on the
basic model with two communities of equal sizes; in Section 1.3 we will
consider a much more general situation.

We define a random graph on vertices {1, . . . , n} as follows. Partition the
set of vertices into two communities C1 and C2 of size n/2 each. For each
pair of distinct vertices, we draw an edge independently with probability
p if both vertices belong to the same community, and q (with q ≤ p) if
they belong to different communities. For convenience we include the loops,
so each vertex has an edge connecting it to itself with probability 1. This
defines a distribution on random graphs which is denoted G(n, p, q) and
called the (classical) stochastic block model. When p = q, we recover the
classical Erdös-Rényi model of random graphs G(n, p).

The community detection problem asks to recover the communities C1 and
C2 by observing one instance of a random graph drawn from G(n, p, q). As
we will discuss in detail in Section 1.4, an array of algorithms is known to
succeed for this problem for relatively dense graphs, those whose expected
average degree (which is of order pn) is Ω(log n), while much less is known
for totally sparse graphs – those with bounded average degrees, i.e. with
pn = O(1). Our paper focuses on this challenging, sparse regime.
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Recovery of the communities C1 and C2 is equivalent to estimating the
community membership vector, which we can define as

x̄ ∈ {−1, 1}n, x̄i =

{
1, i ∈ C1

−1, i ∈ C2.
(1.3)

We will estimate x̄ using the following semidefinite optimization problem:

maximize 〈A,Z〉 − λ〈En, Z〉
subject to Z � 0, diag(Z) � In.

(1.4)

Here the inner product of matrices is defined in the usual way, that is
〈A,B〉 = tr(AB) =

∑
i,j AijBij , In denotes the identity matrix, the ma-

trix En has all entries equal 1, and A � B means that A − B is positive
semidefinite. Observe that En = 1n1

T
n where 1n ∈ R

n is the vector whose
all coordinates equal 1. The constraint diag(Z) � In in (1.4) simply means
that all diagonal entries of Z are bounded by 1.

For the value of λ we choose the average degree of the graph (with loops
removed), which is

λ =
2

n(n− 1)

∑

i<j

aij (1.5)

where aij ∈ {0, 1} denote the entries of the adjacency matrix A.

Theorem 1.1 (Community detection in classical stochastic block model).
Let ε ∈ (0, 1) and n ≥ 104ε−2. Let A be the adjacency matrix of the ran-

dom graph drawn from the stochastic block model G(n, p, q) with max{p(1−
p), q(1− q)} ≥ 20

n . Assume that p = a
n > q = b

n , and

(a− b)2 ≥ 104 ε−2(a+ b). (1.6)

Let Ẑ be a solution of the semidefinite program (1.4). Then, with probability

at least 1− e35−n, we have

‖Ẑ − x̄x̄T‖22 ≤ εn2 = ε‖x̄x̄T‖22. (1.7)

Here and in the rest of this paper, ‖ · ‖2 denotes the Frobenius norm of
matrices and the Euclidean norm of vectors.

Once we have estimated the rank-one matrix x̄x̄T using Theorem 1.1, we
can also estimate the community membership vector x̄ itself in a standard
way, namely by computing the leading eigenvector.

Corollary 1.2 (Community detection with o(n) misclassified vertices). In

the setting of Theorem 1.1, let x̂ denote an eigenvector of Ẑ corresponding

to the largest eigenvalue, and with ‖x̂‖2 =
√
n. Then

min
α=±1

‖αx̂− x̄‖22 ≤ εn = ε‖x̄‖22.

In particular, the signs of the coefficients of x̂ correctly estimate the partition

of the vertices into the two communities, up to at most εn misclassified

vertices.
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As we will discuss in Section 1.4.2 in more detail, there are previously
known algorithms for recovery of two communities under conditions similar
to (1.6). These include a spectral clustering algorithm based on truncating
the high degree vertices (whose analysis can be derived from [32, 31]), combi-
natorial algorithms of [51, 55] based on path counting, and an algorithm [53]
based on belief propagation, which minimizes the fraction of misclassified
vertices.

Prior to this work, it was not known whether semidefinite programming
could be successful for the analysis of sparse networks. Theorem 1.1 provides
a positive answer to this question. Moreover, the method of this paper is
flexible enough to analyze many semidefinite programs, and it can be applied
for much more general models of sparse networks than any previous results.
To illustrate this point, we will now choose a different semidefinite program
and show that it succeeds for a large class of stochastic models of networks.

1.3. Community detection: general stochastic block models. Let us
describe a model of networks where one can have multiple communities of
arbitrary sizes, arbitrarily many outliers, and unequal edge probabilities.

To define such general stochastic block model, we assume that the set of
vertices {1, . . . , n} is partitioned into communities C1, . . . , CK of arbitrary
sizes. We do not restrict the sizes of the communities, so in particular this
model can automatically handle outliers, the vertices that form communities
of size 1. For each pair of distinct vertices (i, j), we draw an edge between i
and j independently and with certain fixed probability pij . For convenience
we include the loops like in the classical stochastic block model, so pii = 1.
To promote more edges within than across the communities, we assume that
there exist numbers p > q (thresholds) such that

pij ≥ p if i and j belong to the same community;

pij ≤ q if i and j belong to different communities.
(1.8)

The community structure of such a network is captured by the cluster matrix
matrix Z̄ ∈ {0, 1}n×n defined as

Z̄ij =

{
1 if i and j belong to the same community;

0 if i and j belong to different communities.
(1.9)

We will estimate Z̄ using the following semidefinite optimization program:

maximize 〈A,Z〉
subject to Z � 0, Z ≥ 0, diag(Z) � In,

∑n
i,j=1 Zij = λ.

(1.10)

Here as usual Z � 0 means that Z is positive semidefinite, and Z ≥ 0 means
that all entries of Z are non-negative. We choose the value of λ to be the
number of elements in the cluster matrix, that is

λ =

n∑

i,j=1

Z̄ij =

K∑

k=1

|Ck|2. (1.11)
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If all communities have the same size s, then λ = Ks2 = ns.

Theorem 1.3 (Community detection in general stochastic block model).
Let ε ∈ (0, 1). Let A be the adjacency matrix of the random graph drawn

from the general stochastic block model described above. Denote by p̄ the

expected variance of the edges, that is p̄ = 2
n(n−1)

∑
i<j pij(1− pij). Assume

that p = a
n > q = b

n , p̄ = g
n , g ≥ 9 and

(a− b)2 ≥ 484 ε−2g. (1.12)

Let Ẑ be a solution of the semidefinite program (1.10). Then, with probability

at least 1− e35−n, we have

‖Ẑ − Z̄‖22 ≤ ‖Ẑ − Z̄‖1 ≤ εn2. (1.13)

Here as usual ‖ · ‖2 denotes the Frobenius norm of matrices, and ‖ · ‖1
denotes the ℓ1 norm of the matrices considered as vectors, that is ‖(aij)‖1 =∑

i,j |aij |.
Remark 1.4 (If the sizes of communities are not known). Our choice of the
parameter λ in (1.11) assumes that we know the sizes of the communities.
What if they are not known? From the proof of Theorem 1.3 it will be clear
what happens when λ > 0 is chosen arbitrarily. Assume that we choose
λ so that λ ≤ λ0 :=

∑
k |Ck|2. Then instead of estimating the full cluster

graph (described in Remark 1.5), the solution Ẑ will only estimate a certain
subgraph of the cluster graph, which may miss at most λ0−λ edges. On the

other hand, if we choose λ so that λ ≥ λ0, then the solution Ẑ will estimate
a certain supergraph of the cluster graph, which may have at most λ − λ0

extra edges. In either case, such solution could be meaningful in practice.

Remark 1.5 (Cluster graph). It may be convenient to view the cluster ma-
trix Z̄ as the adjacency matrix of the cluster graph, in which all vertices
within each community are connected and there are no connections across
the communities. This way, the semidefinite program (1.10) takes a sparse
graph as an input, and it returns an estimate of the cluster graph as an
output. The effect of the program is thus to “densify” the network inside
the communities and “sparsify” it across the communities.

Remark 1.6 (Other semidefinite programs). There is nothing special about
the semidefinite programs (1.4) and (1.10). For example, one can tighten
the constraints and instead of diag(Z) � In require that diag(Z) = In in
both programs. Similarly, instead of placing in (1.10) the constraint on
the sum of all entries of Z, one can place constraints on the sums of each
row. In a similar fashion, one should be able to analyze other semidefi-
nite relaxations, both new and those proposed in the previous literature on
community detection, see [9].

For one more illustration for the method of this paper, we refer the reader
to Section 8 of [36]. There we consider a minor modification of the semi-
definite program (1.4), and we show that it succeeds in presence of multiple
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communities of equal sizes (the so-called balanced planted partition model).
The sufficient condition for that is (a− b)2 ≥ 502ε−2(a+ b(K− 1)) where K
is the number of communities, s the size of the communities and p = a/s,
q = b/s.

1.4. Related work. Community detection in stochastic block models is a
fundamental problem that has been extensively studied in theoretical com-
puter science and statistics. A plethora or algorithmic approaches have been
proposed, in particular those based on combinatorial techniques [18, 30],
spectral clustering [14, 5, 4, 50, 59, 64, 22, 57, 43, 63, 38], likelihood max-
imization [65, 10, 8], variational methods [3, 20, 11], Markov chain Monte
Carlo [65, 60], belief propagation [29], and convex optimization including
semidefinite programming [37, 7, 61, 2, 23, 24, 25, 19, 9, 18].

1.4.1. Relatively dense networks: average degrees are Ω(log n). Most known
rigorous results on community detection are proved for relatively dense net-
works whose expected degrees go to infinity with n. If the degrees grow no
slower than log n, it may be possible to recover the community structure per-
fectly, without any misclassified vertices. A variety of community detection
methods are known to succeed in this regime, including those based on spec-
tral clustering, likelihood maximization and convex optimization mentioned
above; see e.g. [50, 18] and the references therein.

The semidefinite programs (1.4) and (1.10) are similar to those proposed
in the recent literature, most notably in [23, 25, 19, 9, 18]. The semidefinite
relaxations discussed in [25, 19] can perfectly recover the community struc-
ture if (a− b)2 ≥ C(a log n+ b) for a sufficiently large constant C; see [9] for
a review of these results.

1.4.2. Totally sparse networks: bounded average degrees. The problem be-
comes more difficult for sparser networks, whose expected average degrees
grow to infinity arbitrarily slowly or even remain bounded in n. Although
studying such networks is well motivated from the practical perspective
[45, 66], little has been known on the theoretical level.

If the degrees grow slower than log n, it is impossible to correctly classify
all vertices, since with high probability a positive fraction of the vertices will
be isolated. Still, the fraction of isolated vertices tends to zero with n, so
we can hope to correctly classify a majority of the vertices in this regime.

A powerful spectral method developed by J. Kahn and E. Szemeredi for
random regular graphs [32] can be adapted for Erdös-Rényi random graphs
[5, 31] and, more generally, for the stochastic block model G(n, a

n ,
b
n). If

one truncates the graph by removing all vertices with too large degrees (say,
larger than 10(a+ b)), then the argument of [32, 31] can be adapted to con-
clude that the truncated adjacency matrix concentrates near its expectation
in the spectral norm. The communities can then be approximately recovered
using the spectral clustering, which is based on the signs of the coefficients of
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the second eigenvector. Working out the details, one finds that a sufficient
condition for this method to succeed is similar to (1.6), that is

(a− b)2 ≥ Cε(a+ b) (1.14)

where Cε depends only on the desired accuracy ε or recovery. However, for
real networks it is usually undesirable and impractical to remove high degree
vertices, since these vertices are usually the most important ones.

A. Coja-Oghlan [27] proposed a different, complicated adaptive spectral
algorithm that can approximately recover communities under the condition
(a − b)2 ≥ Cε(a + b) log(a + b). Recently, L. Massoulié [51] and E. Mossel,
J. Neeman and A. Sly [55] came up with combinatorial algorithms based on
path counting, which can approximately recover communities under the con-
dition (1.14). These results are stated in the asymptotic regime for n → ∞
and without explicit dependence of Cε on the desired accuracy ε. Further-
more, E. Mossel, J. Neeman and A. Sly developed an algorithm based on
belief propagation [53], which minimizes the fraction of misclassified vertices.

Condition (1.14) has the optimal form. Indeed, it was shown in [56] that
the lower bound (1.14) is required for any algorithm to be able to recover
communities with at most εn misclassified vertices, where Cε → ∞ as ε → 0.
A conjecture of A. Decelle, F. Krzakala, C. Moore and L. Zdeborova proved
recently by E. Mossel, J. Neeman and A. Sly [54, 55] and Massouile [51]
states that one can find a partition correlated with the true community
partition (i.e. with the fraction of misclassified vertices bounded away from
50% as n → ∞) if (a− b)2 ≥ C(a+ b) with some constant C > 2. Moreover,
this result achieves information-theoretic limit: no algorithm can succeed if
C ≤ 2.

It remains an open question whether semidefinite programing can achieve
similar information-theoretic limits. Theorem 1.1 does not achieve them;
addressing this problem will require to tighten the absolute constant and
the dependence on ε in (1.6).

1.4.3. The new results in historical perspective. Prior to this work, it has
not been known whether community detection in totally sparse networks
is possible using semidefinite programming. We show that this is possible
under the condition (1.14) that is optimal up to an absolute constant. A
variety of simple and general semidefinite programs succeed for this purpose,
in particular (1.4) and (1.10).

Furthermore, the method of the present paper generalizes smoothly for
a broad classes of sparse networks. Stochastic block models with multiple
communities and outliers have been studied in the statistical literature be-
fore; the semidefinite relaxations proposed in [23, 25, 19, 9] were designed for
multiple communities and outliers. However, previous theoretical results for
multiple communities were only available for dense regime where the degrees
grow as Ω(log n), in which case perfect community detection is possible.
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1.4.4. Follow up work. After this paper had been submitted, several new re-
sults appeared on community detection in stochastic block models. We will
mention here only results that apply for totally sparse networks. The initial
discovery of [51, 55] mentioned in Section 1.4.2 was followed by the work
[16]. Semidefinite programs on random graphs were further analyzed in [52]
using higher-rank Grothendieck inequalities and insights from mathemati-
cal physics. Stochastic block models with labeled edges were addressed in
[44] using truncated spectral clustering (with high degree vertices removed,
based on [31]) and semidefinite programming (whose analysis is based on the
method of the present paper). A two-stage algorithm based on truncated
spectral clustering and swapping vertices (like e.g. in [56]) was analyzed in
[26]; the swapping stage leads to the sufficient condition (1.14) with with an
optimal dependence on the accuracy, Cε ∼ log(1/ε). A different combinato-
rial method was proposed and analyzed in [1]; regularized spectral clustering
was shown to succeed in [46, 47]; and a computationally feasible likelihood-
based algorithm that minimizes the risk for misclassification proportion was
found in [33]. Some of the mentioned work can be used for networks with
multiple communities, see [26, 1, 46, 47, 33].

1.5. Plan of the paper. We discuss the method in general terms in Sec-
tion 2. We explain how Grothendieck’s inequality can be used to show
tightness of various semidefinite programs on random graphs. Section 3 is
devoted to Grothendieck’s inequality and its implications for semidefinite
programming. In Section 4 we prove a simple concentration inequality for
random matrices in the cut norm. In Section 5 we specialize to the com-
munity detection problem for the classical stochastic block model, and we
prove Theorem 1.1 and Corollary 1.2 there. In Section 6 we consider the
general classical stochastic block model, and we prove Theorem 1.3 there.

Acknowledgement. This work was carried out while the first author was
a Gerhing Visiting Professor at the University of Michigan. He thanks this
institution for hospitality. The second author is grateful to Alexander Barvi-
nok for drawing his attention to Y. Nesterov’s work [58] on combinatorial
optimization and to Grothendieck’s inequality in this context. We also thank
Elchanan Mossel for useful discussions, and the anonymous referees whose
suggestions helped to improve the presentation.

2. Semidefinite optimization on random graphs: the method in a
nutshell

In this section we explain the general method of this paper, which can
be applied to a variety of optimization problems. To be specific, let us
return to the problem we described in Section 1.1, which is to estimate the
solution x̄ of the optimization problem (1.1) from a single observation of the
random matrix A. We suggested there to approximate x̄ by the solution of
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the (random) program (1.2), which we can rewrite as follows:

maximize 〈A, xxT〉 subject to x ∈ {−1, 1}n. (2.1)

Note that if we maximized 〈A, xxT〉 over the Euclidean ball B(0,
√
n), then

the problem would be simple – the solution x would be the eigenvector
corresponding to the eigenvalue of A of largest magnitude. This simpler
problem underlies the most basic algorithm for community detection called
spectral clustering, where the communities are recovered based on the signs
of an eigenvector of the adjacency matrix (going back to [39, 14, 50], see [64]).
The optimization problem (2.1) is harder and more subtle; the replacement
of the Euclidean ball by the cube introduces a strong restriction on the
coordinates of x. This restruction rules out localized solutions x where most
of the mass of x is concentrated on a small fraction of coordinates. Since
eigenvectors of sparse matrices tend to be localized (see [15]), basic spectral
clustering is often unsuccessful for sparse networks.

Let us choose a convex subset Mopt of the set of positive semidefinite
matrices whose all entries are bounded by 1 in absolute value. (For now, it
can be any subset.) Note that xxT appearing in (2.1) are examples of such
matrices. We consider the following semidefinite relaxation of (2.1):

maximize 〈A,Z〉 subject to Z ∈ Mopt. (2.2)

We might hope that the solution Ẑ of this program would enable us to
estimate the solution x̄ of (1.1).

To realize this hope, one needs to check a few things, which may or may
not be true depending on the application. First, one needs to design the fea-
sible set Mopt in such a way that the semidefinite relaxation of the expected

problem (1.1) is tight. This means that the solution Z̄ of the program

maximize 〈Ā, Z〉 subject to Z ∈ Mopt (2.3)

satisfies

Z̄ = x̄x̄T. (2.4)

This condition can be arranged for in various applications. In particular,
this is the case in the setting of Theorem 1.1; we show this in Lemma 5.1.

Second, one needs a uniform deviation inequality, which would guarantee
with high probability that

max
x,y∈{−1,1}n

|〈A− Ā, xyT〉| ≤ ε. (2.5)

This can often be proved by applying standard deviation inequalities for a
fixed pair (x, y), followed by a union bound over all such pairs. We prove
such a deviation inequality in Section 4.

Now we make the crucial step, which is an application of Grothendieck’s

inequality. A reformulation of this remarkable inequality, which we explain
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in Section 3, states that (2.5) automatically implies that

max
Z∈Mopt

|〈A− Ā, Z〉| ≤ Cε. (2.6)

This will allow us to conclude that the solution Ẑ of (2.2) approximates the
solution Z̄ of (2.3). To see this, let us compare the value of the expected
objective function 〈Ā, Z〉 at these two vectors. We have

〈Ā, Ẑ〉 ≥ 〈A, Ẑ〉 − Cε (replacing Ā by A using (2.6))

≥ 〈A, Z̄〉 − Cε (since Ẑ is the maximizer in (2.2))

≥ 〈Ā, Z̄〉 − 2Cε (replacing A by Ā back using (2.6)). (2.7)

This means that Ẑ almost maximizes the objective function 〈Ā, Z〉 in (2.3).

The final piece of information we require is that the expected objective
function 〈Ā, Z〉 distinguishes points near its maximizer Z̄. This would allow

one to automatically conclude from (2.7) that the almost maximizer Ẑ is
close to the true maximizer, i.e. that

‖Ẑ − Z̄‖ ≤ something small (2.8)

where ‖ · ‖ can be the Frobenius or operator norm. Intuitively, the re-
quirement that the objective function distinguishes points amounts to a
non-trivial curvature of the feasible set Mopt at the maximizer Z̄. In many
situations, this property is easy to verify. In the setting of Theorems 1.1
and 1.3, we check it in Lemma 5.2 and Lemmas 6.2–6.3 respectively.

Finally, we can recall from (2.4) that Z̄ = x̄x̄T. Together with (2.8), this

yields that Ẑ is approximately a rank-one matrix, and its leading eigenvector
x̂ satisfies

‖x̂− x̄‖2 ≤ something small.

Thus we estimated the solution x̄ of the problem (1.1) as desired.

Remark 2.1 (General semidefinite programs). For this method to work, it
is not crucial that the semidefinite program be a relaxation of any vector
optimization problem. Indeed, one can analyze semidefinite programs of
the type (2.2) without any vector optimization problem (2.1) in the back-
ground. In such cases, the requirement (2.4) of tightness of relaxation can
be dropped. The solution Z̄ may itself be informative. An example of such
situation is Theorem 1.3 where the community membership matrix Z̄ is im-
portant by itself. However, Z̄ can not be represented as x̄x̄T for any x̄, since
Z̄ is not a rank one matrix.

3. Grothendieck’s inequality and semidefinite programming

Grothendieck’s inequality is a remarkable result proved originally in the
functional analytic context [35] and reformulated in [48] in the form we are
going to describe below. This inequality had found applications in several
areas [62, 41]. It has already been used to analyze semidefinite relaxations
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of hard combinatorial optimization problems [58, 6], although previous re-
laxations lead to constant (rather than arbitrary) accuracy.

Theorem 3.1 (Grothendieck’s inequality). Consider an n × n matrix of

real numbers B = (bij). Assume that
∣∣∣
∑

i,j

bijsitj

∣∣∣ ≤ 1

for all numbers si, ti ∈ {−1, 1}. Then
∣∣∣
∑

i,j

bij〈Xi, Yj〉
∣∣∣ ≤ KG

for all vectors Xi, Yi ∈ Bn
2 .

Here Bn
2 = {x ∈ R

n : ‖x‖2 ≤ 1} is the unit ball for the Euclidean norm,
and KG is an absolute constant referred to as Grothendieck’s constant. The
best value of KG is still unknown, and the best known bound [17] is

KG <
π

2 ln(1 +
√
2)

≤ 1.783. (3.1)

3.1. Grothendieck’s inequality in matrix form. To restate Grothendieck’s
inequality in a matrix form, let us assume for simplicity that m = n and
observe that

∑
i,j bijsitj = 〈B, stT〉 where s and t are the vectors in R

n with

coordinates si and tj respectively. Similarly,
∑

i,j bij〈Xi, Yj〉 = 〈B,XY T〉
where X and Y are the n× n matrices with rows XT

i and Y T

j respectively.
This motivates us to consider the following two sets of matrices:

M1 :=
{
stT : s, t ∈ {−1, 1}n

}
, MG :=

{
XY T : all rows Xi, Yj ∈ Bn

2

}
.

Clearly, M1 ⊂ MG. Grothendieck’s inequality can be stated as follows:

∀B ∈ R
n×n, max

Z∈MG

|〈B,Z〉| ≤ KG max
Z∈M1

|〈B,Z〉| . (3.2)

We can view this inequality as a relation between two matrix norms. The
right side of (3.2) defines the ℓ∞ → ℓ1 norm of B = (bij), which is

‖B‖∞→1 = max
‖s‖∞≤1

‖Bs‖1 = max
s,t∈{−1,1}n

〈B, stT〉 = max
s,t∈{−1,1}n

n∑

i,j=1

bijsitj

= max
Z∈M1

|〈B,Z〉| . (3.3)

We note in passing that this norm is equivalent to the so-called cut norm,
whose importance in algorithmic problems is well understood in theoretical
computer science community, see e.g. [6, 41].

Let us restrict our attention to the part of Grothendieck’s set MG con-
sisting of positive semidefinite matrices. To do so, we consider the following
set of n× n matrices:

M+
G := {Z : Z � 0, diag(Z) � In} ⊂ MG ⊂ [−1, 1]n×n. (3.4)
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To check the first inclusion in (3.4), let Z ∈ M+
G. Since Z � 0, there exists a

matrix X such that Z = X2. The rows XT

i of X satisfy ‖Xi‖22 = 〈Xi,Xi〉 =
(XTX)ii = Zii ≤ 1, where the last inequality follows from the assumption
diag(Z) � In. Choosing Y = X in the definition of MG, we conclude that
Z ∈ MG. To check the second inclusion in (3.4), note that for every matrix
XY T ∈ MG, we have (XY T)ij = 〈Xi, Yj〉 ≤ ‖Xi‖2 ‖Yj‖2 ≤ 1.

Combining (3.2) with (3.4) and the identity (3.3), we obtain the following
form of Grothendieck inequality for positive semidefinite matrices.

Fact 3.2 (Grothendieck’s inequality, PSD). Every matrix B ∈ R
n×n satis-

fies

max
Z∈M+

G

|〈B,Z〉| ≤ KG ‖B‖∞→1.

3.2. Semidefinite programming. To keep the discussion sufficiently gen-
eral, let us consider the following class of optimization programs:

maximize 〈B,Z〉 subject to Z ∈ Mopt. (3.5)

Here Mopt can be any subset of the Grothendieck’s set M+
G defined in

(3.4). A good example is where B is the adjacency matrix of a random
graph, possibly dilated by a constant matrix. For example, the semidefinite
program (1.4) is of the form (3.5) with Mopt = M+

G and B = A− λEn.
Imagine that there is a similar but simpler problem where B is replaced

by a certain reference matrix R, that is

maximize 〈R,Z〉 subject to Z ∈ Mopt. (3.6)

A good example is where B is a random matrix and R = EB; this will be

the case in the proof of Theorem 1.3. Let Ẑ and ZR be the solutions of the
original problem (3.5) and the reference problem (3.6) respectively, thus

Ẑ := arg max
Z∈Mopt

〈B,Z〉, ZR := arg max
Z∈Mopt

〈R,Z〉.

The next lemma shows that Ẑ provides an almost optimal solution to the
reference problem if the original and reference matrices B and R are close.

Lemma 3.3 (Ẑ almost maximizes the reference objective function). We

have

〈R,ZR〉 − 2KG‖B −R‖∞→1 ≤ 〈R, Ẑ〉 ≤ 〈R,ZR〉. (3.7)

Proof. The upper bound is trivial by definition of ZR. The lower bound is
based on Fact 3.2, which implies that for every Z ∈ Mopt, one has

|〈B −R,Z〉| ≤ KG‖B −R‖∞→1 =: ε. (3.8)

Now, to prove the lower bound in (3.7), we will first replace R by B using

(3.8), then replace Ẑ by ZR using the fact that Ẑ is a maximizer for 〈B,Z〉,
and finally replace back B by R using (3.8) again. This way we obtain

〈R, Ẑ〉 ≥ 〈B, Ẑ〉 − ε ≥ 〈B,ZR〉 − ε ≥ 〈R,ZR〉 − 2ε.

This completes the proof of Lemma 3.3. �
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4. Deviation in the cut norm

To be able to effectively use Lemma 3.3, we will now show how to bound
the cut norm of random matrices.

Lemma 4.1 (Deviation in ℓ∞ → ℓ1 norm). Let A = (aij) ∈ R
n×n be a

symmetric matrix whose diagonal entries equal 1, whose entries above the

diagonal are independent random variables satisfying 0 ≤ aij ≤ 1. Assume

that

p̄ :=
2

n(n− 1)

∑

i<j

Var(aij) ≥
9

n
. (4.1)

Then, with probability at least 1− e35−n, we have

‖A− EA‖∞→1 ≤ 3 p̄1/2n3/2.

We will shortly deduce Lemma 4.1 from Bernstein’s inequality followed
by a union bound over x, y ∈ {−1, 1}n; arguments of this type are standard
in the analysis of random graphs (see e.g. [12, Section 2.3]). But before we
do this, let us pause to explain the conclusion of Lemma 4.1.

Remark 4.2 (Regularization effect of ℓ∞ → ℓ1 norm). Let us test Lemma 4.1
on the simple example where A is the adjacency matrix of a sparse Erdös-
Renyi random graph G(n, p) with p = a/n, a ≥ 1. Here we have p̄ =

p(1− p) ≤ p = a/n. Lemma 4.1 states that ‖A − EA‖∞→1 ≤ 3a1/2n. This
can be compared with ‖EA‖∞→1 = (1 + p(n− 1))n ≥ an. So we obtain

‖A− EA‖∞→1 ≤ 3a−1/2 ‖EA‖∞→1.

This deviation inequality is good when a exceeds a sufficiently large absolute
constant. Since that a = pn is the expected average degree of the graph, it
follows that we can handle graphs with bounded expected degrees.

This is a good place to note the importance of the ℓ∞ → ℓ1 norm. Indeed,
for the spectral norm a similar concentration inequality would fail. As is well
known and easy to check, for a = O(1) one would have ‖A−EA‖ ≫ ‖EA‖
due to contributions from high degree vertices. In fact, those are the only
obstructions to concentration. Indeed, according to a result of U. Feige
and E. Ofek [31], the removal of high-degree vertices forces a non-trivial
concentration inequality to hold in the spectral norm. In contrast to this,
the ℓ∞ → ℓ1 norm does not feel the vertices with high degrees. It has
an automatic regularization effect, which averages the contributions of all
vertices, and in particular the few high degree vertices.

The proof of Lemma 4.1 will be based on Bernstein’s inequality, which
we quote here (see, for example, Theorem 1.2.6 in [21]).

Theorem 4.3 (Bernstein’s inequality). Let Y1, . . . , YN be independent ran-

dom variables such that EYk = 0 and |Yk| ≤ M . Denote σ2 = 1
N

∑N
k=1Var(Yk).
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Then for any t ≥ 0, one has

P

{
1

N

N∑

k=1

Yk > t

}
≤ exp

(
− Nt2/2

σ2 +Mt/3

)
.

Proof of Lemma 4.1. Recalling the definition (3.3) of the ℓ∞ → ℓ1 norm, we
see that we need to bound

‖A− EA‖∞→1 = max
x,y∈{−1,1}n

n∑

i,j=1

(aij − E aij)xiyj. (4.2)

Let us fix x, y ∈ {−1, 1}n. Using the symmetry of A − EA, the fact that
diagonal entries of A−EA vanish and collecting the identical terms, we can
express the sum in (4.2) as a sum of independent random variables

∑

i<j

Xij , where Xij = 2(aij − E aij)xiyj.

To control the sum
∑

i<j Xij we can use Bernstein’s inequality, Theorem 4.3.

There are N = n(n−1)
2 terms in this sum. Since |xi| = |yi| = 1 for all i,

the average variance σ2 of all terms Xij is at most 22 times the average
variance of all aij , which is p̄. In other words, σ2 ≤ 4p̄. Furthermore,
|Xij | ≤ 2|aij −E aij | ≤ 2 since 0 ≤ aij ≤ 1 by assumption. Hence M ≤ 2. It
follows that

P





1

N

∑

i<j

Xij > t



 ≤ exp

(
− Nt2/2

4p̄+ 2t/3

)
. (4.3)

Let us substitute t = 6 (p̄/n)1/2 here. Rearranging the terms and using that

N = n(n−1)
2 and p̄ > 9/n (so that t < 2p̄), we conclude that the probability

in (4.3) is bounded by exp(−3(n− 1)).
Summarizing, we have proved that for every x, y ∈ {−1, 1}n

P





2

n(n− 1)

n∑

i,j=1

(aij − E aij)xiyj > 6
( p̄

n

)1/2



 ≤ e−3(n−1).

Taking a union bound over all 22n pairs (x, y), we conclude that

P



 max

x,y∈{−1,1}n

2

n(n− 1)

n∑

i,j=1

(aij − E aij)xiyj > 6
( p̄

n

)1/2



 ≤ 22n · e−3(n−1)

≤ e3 · 5−n.

Rearranging the terms and using the definition (4.2) of the ℓ∞ → ℓ1 norm,
we conclude the proof of Lemma 4.1. �

Remark 4.4 (The sum of entries). Note that by definition, the quantity∣∣∑n
i,j=1(aij − E aij)

∣∣ is bounded by ‖A − EA‖∞→1, and thus it can be
controlled by Lemma 4.1. Alternatively, a bound on this quantity follows



15

directly from the last line of the proof of Lemma 4.1. For a future reference,
we express it in the following way:

2

n(n− 1)

∣∣∣
∑

i<j

(aij − E aij)
∣∣∣ ≤ 3 p̄1/2n−1/2.

5. Stochastic block model: proof of Theorem 1.1

So far our discussion has been general, and the results could be applied
to a variety of semidefinite programs on random graphs. In this section, we
specialize to the community detection problem considered in Theorem 1.1.
Thus we are going to analyze the optimization problem (1.4), where A is the
adjacency matrix of a random graph distributed according to the classical
stochastic block model G(n, p, q).

As we already noticed, this is a particular case of the class of problems
(3.5) that we analyzed in Section 3.2. In our case,

B := A− λEn

with λ defined in (1.5), and the feasible set is

Mopt := M+
G = {Z : Z � 0, diag(Z) � In} .

5.1. The maximizer of the reference objective function. In order to
successfully apply Lemma 3.3, we will now choose a reference matrix R so
that it is close to (but also conveniently simpler than) the expectation of B.
To do so, we can assume without loss of generality that C1 = {1, . . . , n/2}
and C2 = {n/2 + 1, . . . , n}. Then we define R as a block matrix

R =
p− q

2

[
En/2 −En/2

−En/2 En/2

]
(5.1)

where as usual En/2 denotes the n/2×n/2 matrix whose all entries equal 1.
Let us compute the expected value EB = EA− (Eλ)En and compare it

to R. To do so, note that the expected value of A has the form

EA =

[
pEn/2 qEn/2

qEn/2 pEn/2

]
+ (1− p)In.

(The contribution of the identity matrix In is required here since the diagonal
entries of A and thus of EA equal 1 due to the self-loops.) Furthermore, the
definition of λ in (1.5) easily implies that

Eλ =
1

n(n− 1)

∑

i 6=j

E aij =
p+ q

2

n2

n(n− 1)
− p

n− 1
=

p+ q

2
− p− q

n− 1
. (5.2)

Thus

EB = EA− (Eλ)En = R+ (1− p)In − p− q

n− 1
En. (5.3)

In the near future we will think of R as the leading term and other two
terms as being negligible, so (5.3) intuitively states that R ≈ EB. We save
this fact for later.
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Using the simple form of R, we can easily determine the form of the
solution ZR of the reference problem (3.6).

Lemma 5.1 (The maximizer of the reference objective function). We have

ZR := arg max
Z∈Mopt

〈R,Z〉 =
[

En/2 −En/2

−En/2 En/2

]
.

Proof. Let us first evaluate the maximizer of 〈R,Z〉 on the larger set [−1, 1]n×n,
which contains the feasible set Mopt according to (3.4). Taking into account
the form of R in (5.1), one can quickly check that the maximizer of 〈R,Z〉
on [−1, 1]n×n is ZR. Since ZR belongs to the smaller set Mopt, it must be
the maximizer on that set as well. �

5.2. Bounding the error. We are going to conclude from Lemma 4.1 and
Lemma 3.3 that the maximizer of the actual objective function,

Ẑ = arg max
Z∈Mopt

〈B,Z〉,

must be close to ZR, the maximizer of the reference objective function.

Lemma 5.2 (Maximizers of random and reference functions are close).
Assume that p̄ satisfies (4.1). Then, with probability at least 1 − e35−n, we

have

‖Ẑ − ZR‖22 ≤
116 p̄1/2n3/2

p− q
.

Proof. We expand

‖Ẑ − ZR‖22 = ‖Ẑ‖22 + ‖ZR‖22 − 2〈Ẑ, ZR〉 (5.4)

and control the three terms separately.

Note that ‖Ẑ‖22 ≤ n2 since Ẑ ∈ Mopt ⊂ [−1, 1]n×n according to (3.4).
Next, we have ‖ZR‖22 = n2 by Lemma 5.1. Thus

‖Ẑ‖22 ≤ ‖ZR‖22. (5.5)

Finally, we use Lemma 3.3 to control the cross term in (5.4). To do this,
notice that (5.1) and Lemma 5.1 imply that R = p−q

2 ·ZR. Then, by homo-
geneity, the conclusion of Lemma 3.3 implies that

〈ZR, Ẑ〉 ≥ 〈ZR, ZR〉 −
4KG

p− q
‖R−B‖∞→1. (5.6)

To bound the norm of R−B, let us express this matrix as

B−R = (B−EB)+(EB−R) = (A−EA)−(λ−E λ)En+(EB−R) (5.7)

and bound each of the three terms separately. According to Lemma 4.1 and
Remark 4.4, we obtain that with probability larger than 1− e35−n,

‖A− EA‖∞→1 ≤ 3p̄1/2n3/2 and |λ− Eλ| ≤ 3p̄1/2n−1/2.
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Moreover, according to (5.3),

EB −R = (1− p)In − p− q

n− 1
En.

Substituting these bounds into (5.7) and using triangle inequality along with
the facts that ‖En‖∞→1 = n2, ‖In‖∞→1 = n, we obtain

‖B −R‖∞→1 ≤ 6p̄1/2n3/2 + (1− p)n+
(p− q)n2

n− 1
.

Since p̄ ≥ 9/n, one can check that each of the last two terms is bounded by
p̄1/2n3/2. Thus we obtain ‖B−R‖∞→1 ≤ 8p̄1/2n3/2. Substituting into (5.6),
we conclude that

〈ZR, Ẑ〉 ≥ 〈ZR, ZR〉 − 8p̄1/2n3/2 · 4KG

p− q
.

Recalling from (3.1) that Grothendieck’s constant KG is bounded by 1.783,
we can replace 8 · 4KG by 58 in this bound. Substituting it and (5.5) and
into (5.4), we conclude that

‖Ẑ − ZR‖22 ≤ 2‖ZR‖22 − 2〈Ẑ, ZR〉 ≤
116 p̄1/2n3/2

p− q
.

The proof of Lemma 5.2 is complete. �

Proof of Theorem 1.1. The conclusion of the theorem will quickly follow
from Lemma 5.2. Let us check the lemma’s assumption (4.1) on p̄. A
quick computation yields

p̄ =
2

n(n− 1)

∑

i<j

Var(aij) =
p(1− p)(n− 2)

2(n− 1)
+

q(1− q)n

2(n− 1)
. (5.8)

Since p(1− p) ≤ 1/4, we get

p̄ ≥ 1

2
max {p(1− p), q(1 − q)} − 1

8(n − 1)
>

9

n

where the last inequality follows from an assumption of Theorem 1.1. Thus
the assumption (4.1) holds, and we can apply Lemma 5.2. It states that

‖Ẑ − ZR‖22 ≤
116 p̄1/2n3/2

p− q
(5.9)

with probability at least 1− e35−n. From (5.8), it is not difficult to see that
p̄ ≤ p+q

2 . Substituting this into (5.9) and expressing p = a/n and q = b/n,
we conclude that

‖Ẑ − ZR‖22 ≤ 116
√

(a+ b)/2

a− b
· n2.

Rearranging the terms, we can see that this expression is bounded by εn2 if

(a− b)2 ≥ 7 · 103ε−2(a+ b).
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But this inequality follows from the assumption (1.6).
It remains to recall that according to Lemma 5.1, we have ZR = x̄x̄T

where x̄ = [1n/2 − 1n/2] ∈ R
n is the community membership vector defined

in (1.3). Theorem 1.1 is proved. �

Proof of Corollary 1.2. The result follows from Davis-Kahan Theorem [28]
about the stability of the eigenvectors under matrix perturbations. The
largest eigenvalue of x̄x̄T is n while all the others are 0, so the spectral gap

equals n. Expressing Ẑ = (Ẑ−x̄x̄T)+x̄x̄T and using that ‖Ẑ−x̄x̄T‖2 ≤
√
εn,

we obtain from Davis-Kahan’s theorem (see for example Corollary 3 in [67])
that

‖v̂ − v̄‖2 = 2| sin(θ/2)| ≤ C
√
ε.

Here v̂ and v̄ denote the unit-norm eigenvectors associated to the largest

eigenvalues of Ẑ and x̄x̄T respectively, and θ ∈ [0, π/2] is the angle between
these two vectors. By definition, x̂ =

√
nv̂ and x̄ =

√
nv̄. This concludes

the proof. �

6. General stochastic block model: proof of Theorem 1.3

In this section we focus on the community detection problem for the
general stochastic block-model considered in Theorem 1.3. The semidefinite
program (1.10) is a particular case of the class of problems (3.5) that we
analyzed in Section 3.2. In our case, we set B := A, choose the reference
matrix to be

R := Ā = EA,

and consider the feasible set

Mopt :=
{
Z � 0, Z ≥ 0, diag(Z) � In,

n∑

i,j=1

Zij = λ
}
.

Then Mopt is a subset of the Grothendieck’s set M+
G defined in (3.4). Using

(3.4), we see that

Mopt ⊂
{
Z : 0 ≤ Zij ≤ 1 for all i, j;

n∑

i,j=1

Zij = λ
}
. (6.1)

6.1. The maximizer of the expected objective function. Unlike be-
fore, the reference matrix R = Ā = EA = (pij)

n
i,j=1 is not necessarily a

block matrix like in (5.1) since the edge probabilities pij may be different
for all i < j. However, we will observe that the solution ZR of the reference
problem (3.6) is a block matrix, and it is in fact the community membership
matrix Z̄ defined in (1.9).

Lemma 6.1 (The maximizer of the expected objective function). We have

ZR := arg max
Z∈Mopt

〈Ā, Z〉 = Z̄. (6.2)
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Proof. Let us first compute the maximizer on the larger set M′
opt, which

contains the feasible set Mopt according to (6.1). The maximum of the
linear form 〈Ā, Z〉 on the convex set M′

opt is attained at an extreme point.
These extreme points are 0/1 matrices with λ ones. Thus the maximizer of
〈Ā, Z〉 has the ones at the locations of the λ largest entries of Ā.

From the definition of the general stochastic block model we can recall
that Ā = (pij) has two types of entries. The entries larger than p form the
community blocks Ck × Ck, k = 1, . . . ,K. The number of such large entries
is the same as the number of ones in the community membership matrix Z̄,
which in turn equals λ by the choice we made in Theorem 1.3. All other
entries of Ā are smaller than q. Thus the λ largest entries of Ā form the
community blocks Ck × Ck, k = 1, . . . ,K.

Summarizing, we have shown that the maximizer of 〈Ā, Z〉 on the set
M′

opt is a 0/1 matrix with ones forming the community blocks Ck × Ck,
k = 1, . . . ,K. Thus the maximizer is the community membership matrix
Z̄ from (1.9). Since Z̄ belongs to the smaller set Mopt, it must be the
maximizer on that set as well. �

6.2. Bounding the error. We are going to conclude from Lemma 4.1 and
Lemma 3.3 that the maximizer of the actual objective function,

Ẑ = arg max
Z∈Mopt

〈A,Z〉,

must be close to Z̄, the maximizer of the reference objective function.
We will first show that the reference objective function 〈Ā, Z〉 distinguishes

points near its maximizer Z̄.

Lemma 6.2 (Expected objective function distinguishes points). Every Z ∈
Mopt satisfies

〈Ā, Z̄ − Z〉 ≥ p− q

2
‖Z̄ − Z‖1. (6.3)

Proof. We will prove that the conclusion holds for every Z in the larger set
M′

opt, which contains the feasible set Mopt according to (6.1). Expanding
the inner product, we can represent it as

〈Ā, Z̄ − Z〉 =
n∑

i,j=1

pij(Z̄ − Z)ij =
∑

(i,j)∈In

pij(Z̄ − Z)ij −
∑

(i,j)∈Out

pij(Z − Z̄)ij

where In and Out denote the set of edges that run within and across
the communities, respectively. Formally, In = ∪K

k=1(Ck × Ck) and Out =
{1, . . . , n}2 \ In.

For the edges (i, j) ∈ In, we have pij ≥ p and (Z̄ −Z)ij ≥ 0 since Z̄ij = 1
and Zij ≤ 1. Similarly, for the edges (i, j) ∈ Out, we have pij ≤ q and
(Z − Z̄)ij ≥ 0 since Z̄ij = 0 and Zij ≥ 0. It follows that

〈Ā, Z̄ − Z〉 ≥ pSIn − qSOut (6.4)
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where

SIn =
∑

(i,j)∈In

(Z̄ − Z)ij and SOut =
∑

(i,j)∈Out

(Z − Z̄)ij .

Since both Z̄ and Z belong to Mopt, the sum of all entries of both these
matrices is the same (n2/2), so we have

SIn − SOut =

n∑

i,j=1

Z̄ij −
n∑

i,j=1

Zij = 0. (6.5)

On the other hand, as we already noticed, the terms in the sums that make
SIn and SOut are all non-negative. Therefore

SIn + SOut =
n∑

i,j=1

|(Z̄ − Z)ij| = ‖Z̄ − Z‖1. (6.6)

Substituting (6.5) and (6.6) into (6.4), we obtain the conclusion (6.3). �

Now we are ready to conclude that Ẑ ≈ Z̄.

Lemma 6.3 (Maximizers of random and expected functions are close).
Assume that p̄ satisfies (4.1). With probability at least 1− e35−n, we have

‖Ẑ − Z̄‖1 ≤
12KG p

1/2
0 n3/2

p− q
.

Proof. Using first Lemma 6.2, Lemma 3.3 (with R = Ā and ZR = Z̄ as
before) and then Lemma 4.1, we obtain

‖Ẑ − Z̄‖1 ≤
2

p− q
〈Ā, Z̄ − Ẑ〉 ≤ 4KG

p− q
‖A− Ā‖∞→1 ≤

12KG

p− q
p̄1/2n3/2

with probability at least 1− e35−n. Lemma 6.3 is proved. �

Proof of Theorem 1.3. The conclusion follows from Lemma 6.3. Indeed,
substituting p = a/n, q = b/n and p̄ = g/n and rearranging the terms,
we obtain

‖Ẑ − Z̄‖1 ≤
12KGg

1/2

a− b
· n2 ≤ 22g1/2

a− b
· n2

since we know form (3.1) that Grothendieck’s constant KG is bounded by
1.783. Rearranging the terms, we can see that this expression is bounded
by εn2 if (a − b)2 ≥ 484 ε−2g, which is our assumption (1.12). This proves
the required bound for the ‖ · ‖1 norm.

Since for any sequence
∑

|bi,j |2 ≤ max |bi,j|
∑

|bi,j|, we get

‖Ẑ − Z̄‖22 ≤ ‖Ẑ − Z̄‖∞ · ‖Ẑ − Z̄‖1.
As we noted in (6.1), all entries of Ẑ and Z̄ belong to [0, 1] hence ‖Ẑ−Z̄‖∞ ≤
1. The bound for the Frobenius norm follows and Theorem 1.3 is proved. �
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