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SMALL BALL ESTIMATES FOR QUASI-NORMS

OMER FRIEDLAND, OHAD GILADI, AND OLIVIER GUÉDON

Abstract. This note contains two types of small ball estimates for random vectors in

finite dimensional spaces equipped with a quasi-norm. In the first part, we obtain bounds

for the small ball probability of random vactors under some smoothness assumptions on

their density functions. In the second part, we obtain Littlewood-Offord type estimates for

quasi-norms. This generalizes a result which was previously obtained in [FS07, RV09].

1. Introduction

Let E =
(

R
n, ‖ · ‖

)

be an n-dimensional space equipped with a quasi-norm ‖ · ‖, and let X

be a random vector in E. The present note is concerned with small ball estimates of X , i.e.,

estimates of the form

P
(

‖X‖ ≤ t
)

≤ ϕ(t), (1.1)

where ϕ(t) → 0 as t → 0.

Estimates of the form (1.1) have been studied under different assumptions on E and X . One

direction is the case when E = ℓn2 , i.e., when ‖ · ‖ = | · |2 is the Euclidean norm, and X is

assumed to be log-concave or, more generally, κ-concave. Recall that a log-concave vector is

a vector that satisfies that for every A,B ⊆ R
n and every λ ∈ [0, 1],

P
(

X ∈ λA+ (1− λ)B
)

≥ P
(

X ∈ A
)λ · P

(

X ∈ B
)1−λ

.

For such vectors it was shown in [Pao12] that

P
(

|X|2 ≤
√
nt
)

≤
(

Ct
)C′√n

,

and this result was later generalized in [AGL+12] to κ-concave vectors.

Another direction which has been studied is the case when X is a gaussian vector, and ‖·‖ is

a general norm. For example, in [LO05] it was shown that if X is a centered gaussian vector

and ‖ · ‖ is a norm on R
n with unit ball K such that its n-dimensional gaussian measure,
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denoted γn(K), is less than 1/2, then

P
(

‖X‖ ≤ t
)

≤
(

2t
)

ω2

4 γn(K),

where ω is the inradius of K. See also [LS01] for an earlier survey of the subject.

Finally, let us mention that small ball estimates play a rôle in other problems, such as

invertibility of random matrices and convex geometry. See e.g. [RV09] and [PP13].

While the above results have a more geometric flavor, in the present note we will try to

present a more analytic approach. For a random vector X , let φX be its characteristic

function ,i.e.,

φX(ξ) = E exp
(

i〈ξ,X〉
)

.

Recall the following result:

Theorem 1.1. [FG11, Theorem 3.1] Assume that ‖ · ‖ is a quasi-norm on R
n with unit ball

K. Then

P
(

‖X‖ ≤ t
)

≤ |K|
(

t

2π

)n ∫

Rn

∣

∣φX(ξ)
∣

∣dξ. (1.2)

Theorem 1.1 says that one can obtain small estimates by estimating the L1 norm of the

characteristic function of the random vector. Moreover, one can consider a “smoothed”

version of Theorem 1.1: consider instead of X the random vector X + tG, where G is a

standard gaussian vector in R
n which is independent of X . Since ‖ · ‖ is a quasi-norm on

R
n, there exists a constant CK > 0 such that

‖x+ y‖ ≤ CK(‖x‖+ ‖y‖), x, y ∈ R
n. (1.3)

Therefore,

P
(

‖X + tG‖ ≤ 2CKt
)

≥ P
(

‖X‖ ≤ t ∧ ‖G‖ ≤ 1
)

= P
(

‖X‖ ≤ t
)

· P
(

‖G‖ ≤ 1
)

= P
(

‖X‖ ≤ t
)

· γn(K),

where γn(·) is the n-dimensional gaussian measure. Thus, Theorem 1.1 implies

P
(

‖X‖ ≤ t
)

≤ P
(

‖X + tG‖ ≤ 2CKt
)

γn(K)
≤ |K|

γn(K)

(

CKt

π

)n ∫

Rn

∣

∣φX+tG(ξ)
∣

∣dξ.
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Using the independence of X and G,

P
(

‖X‖ ≤ t
)

≤ |K|
γn(K)

(

CKt

π

)n ∫

Rn

∣

∣φX(ξ)
∣

∣φtG(ξ)dξ

=
|K|

γn(K)
(C ′

Kt)
n
∫

Rn

∣

∣φX(ξ)
∣

∣e−
t2|ξ|22

2 dξ. (1.4)

Inequality (1.4) enables one to obtain small ball estimates in cases where (1.2) cannot be

applied. We use it for two different sets of examples. In the first set of examples we consider

continuous random vector under certain assumptions on their characteristic functions (which

are nothing but the Fourier transform of their density functions). This is discussed in Section

2. In the second set of examples, we consider random vectors X of the form

X =
N
∑

i=1

αiai,

where the ai are fixed vectors in R
n and the αi’s are i.i.d. random vectors that satisfy a

certain anti-concentration condition. This problems and its applications have been studied

by many authors, first in the one dimensional case (i.e., when n = 1) and later in the

multidimensional case. See [FS07, RV08, RV09, TV09a, TV09b, TV12, Ngu12, NV13] and

the reference therein for more information on this subject. In the case E = ℓn2 , the problem

of finding a small ball estimate have been previously considered in [FS07, RV09] and is

called a Littlewood-Offord type estimate. Here such an estimate is obtained for a general

quasi-norm. This is discussed in Section 3.

Notation. In this note C, C ′, etc. always denote absolute constants. ‖ · ‖ denotes a

quasi-norm with unit ball K. | · |2 denotes the euclidean norm on R
n. B(x, r) denotes the

closed ball around x with radius r with respect to the euclidean norm. γn(·) denotes the

n-dimensional gaussian measure.

2. Small ball estimates for continuous random vectors

In this section we consider continuous random vectors, i.e., vectors with density function fX .

For such vectors we have

φX(ξ) = E exp
(

i〈ξ,X〉
)

=

∫

Rn

ei〈ξ,x〉fX(x)dx = f̂(ξ).

We can rewrite (1.4) in the following way:

P
(

‖X‖ ≤ t
)

≤ |K|
γn(K)

(C ′
Kt)

n
∫

Rn

∣

∣f̂X(ξ)
∣

∣e−
t2|ξ|22

2 dξ.

3



This suggest that small ball estimates are related to weighted norms of f̂X which are in

turn known to be related to smoothness properties of fX . First, we consider vectors with

independent coordinates and later we prove small ball estimates in terms of Sobolev norms.

2.1. Distributions with independent coordinates. Let f ∈ L1(R) and define

‖f‖BV (R)
def
= sup

{ ∞
∑

k=1

∣

∣f (xk+1)− f (xk)
∣

∣ : {xk}∞k=1 ⊆ R

}

.

We say that f ∈ BV (R) is ‖f‖BV (R) < ∞. It is known that |ξ| · |f̂ (ξ) | ≤ ‖f‖BV (R). Thus, if

f ∈ BV (R)
⋂

L1(R) then

|f̂ (ξ) | ≤ min

(‖f‖BV (R)

|ξ| , ‖f‖L1(R)

)

. (2.1)

Using (2.1) we can prove the following theorem.

Theorem 2.1. Assume that X = (X1, . . . , Xn) is a random vector with independent coordi-

nates, such that fXi
∈ BV (R). Let t ≤ min

1≤j≤n

{

1

‖fXj
‖BV (R)

}

. Then

P (‖X‖ ≤ t) ≤ |K|
γn (K)

(C ′
Kt)

n
n
∏

j=1

[

‖fXj
‖BV (R) log

(

e4

t‖fXj
‖BV (R)

)]

,

where C ′
K is the constant from (1.4).

Proof. Since fXj
is a density function, ‖fXj

‖L1(R) = 1. Also, since fXj
∈ BV (R), we get by

(2.1),

φXj
(ξ) ≤ min

(‖fXj
‖BV (R)

|ξ| , 1

)

.

Thus,
∫

R

φXj
(ξ) e−

t2ξ2

2 dξ ≤
∫

|ξ|≤‖fXj
‖BV (R)

dξ +

∫

|ξ|>‖fXj
‖BV (R)

‖fXj
‖BV (R)

|ξ| e−
t2ξ2

2 dξ

= 2‖fXj
‖BV (R) + ‖fXj

‖BV (R)

∫

|ξ|>t‖fXj
‖BV (R)

e−
ξ2

2
dξ

|ξ|

≤ 2‖fXj
‖BV (R) + ‖fXj

‖BV (R)

∫

|ξ|∈(t‖fXj
‖BV (R),1)

dξ

|ξ| + ‖fXj
‖BV (R)

∫

|ξ|>1

e−
ξ2

2 dξ

≤ 4‖fXj
‖BV (R) + ‖fXj

‖BV (R) log

(

1

t‖fXj
‖BV (R)

)

= ‖fXj
‖BV (R) log

(

e4

t‖fXj
‖BV (R)

)

. (2.2)
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Now, by the independence of the coordinates, we get

P (‖X‖ ≤ t)
(1.4)

≤ |K|
γn (K)

(C ′
Kt)

n
∫

Rn

φX (ξ) e−
t2|ξ|22

2 dξ

=
|K|

γn (K)
(C ′

Kt)
n

n
∏

j=1

(
∫

R

φXj
(ξ) e−

t2ξ2

2 dξ

)

(2.2)

≤ |K|
γn (K)

(C ′
Kt)

n
n
∏

j=1

(

‖fXj
‖BV (R) log

(

e4

t‖fXj
‖BV (R)

))

.

�

Note that when X is isotropic and log-concave, then by a result from [Fra97], we have that

‖fX‖∞ ≤ enfX(0). If we assume in addition that X has independent coordinates, then we

also have fX(0) =
∏n

j=1 fXj
(0) ≤ Cn, and so we get

P (‖X‖ ≤ t) ≤ |K|fX (0) (et)n ≤ |K| (Cet)n .

2.2. Small ball estimates and Sobolev norm. Recall the definition of Sobolev norm: if

F is the Fourier transform on R
n, then

‖f‖β,p = ‖f‖Hβ,p(Rn) =
∥

∥

∥
F−1

(

(

1 + |ξ|2
)β/2

f̂
)
∥

∥

∥

Lp(Rn)
. (2.3)

Theorem 2.2. Assume that X is a random vector in R
n. Assume that 1 < p ≤ 2. Then

for every quasi-norm ‖ · ‖ on R
n with unit ball K,

P (‖X‖ ≤ t) ≤ C ′n
K

|K|
γn(K)

‖fX‖β,p ·M(β, p, n, t) (2.4)

If pt2 ≤ 2, then

M(β, p, n, t) ≤



















2
n
2p

−β
2 |Sn−1|1/pΓ

(

n−βp
2

)1/p
p

β
2
− n

2p · tβ+
n
p′ 2 < n− βp,

2
n
2p

−β
2 |Sn−1|1/p

(

log
(

2e
pt2

))1/p

p
β
2
− n

2p · tβ+
n
p′ 0 < βp < n− β ≤ 2,

|Sn−1|1/p
(

log
(

2e
pt2

))1/p

tn n− βp ≤ 0,

where p′ = p/(p− 1). Otherwise, if pt2 ≥ 2, then

M(β, p, n, t) ≤



























|Sn−1|1/p
(

2e−
pt2

18 +
(

2
pt2

)
n−βp

2
Γ
(

n−βp
2

)

)1/p

tn 2 ≤ pt2 ≤ n− βp,

31/p|Sn−1|1/pe− t2

18p tn n− βp ≤ pt2 ≤ n,

|Sn−1|1/p
(

2n
pt2

log
(

ept2

n

))
n
2p
tn n ≤ pt2.

The main tool in the proof of Theorem 2.2 is the following lemma.
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Lemma 2.3. Let p ∈ [1, 2]. If pt2 ≤ 2 then

∥

∥ (1 + |ξ|2)−
β
2 e−

t2|ξ|2

2

∥

∥

p

Lp(Rn)

|Sn−1| ≤























Γ
(

n−βp
2

)

(

2
pt2

)
n−βp

2

βp < n− 2

log
(

2e
pt2

)(

2
pt2

)
n−βp

2
n− 2 ≤ βp < n

log
(

2e
pt2

)

βp ≥ n.

Otherwise, if pt2 ≥ 2 then

∥

∥ (1 + |ξ|2)−
β
2 e−

t2|ξ|2

2

∥

∥

p

Lp(Rn)

|Sn−1| ≤























2e−
pt2

18 +
(

2
pt2

)
n−βp

2
Γ
(

n−βp
2

)

2 ≤ pt2 ≤ n− βp,

3e−
pt2

18 n− βp ≤ pt2 ≤ n,
(

2n
pt2

log
(

ept2

n

))n/2

n ≤ pt2.

As part of the proof of Lemma 2.3, we need the following.

Proposition 2.4. Assume that x ≥ α ≥ 1. Then
∫ ∞

x

rα−1e−rdr ≤ 2α+1xαe−x

α
.

Proof. We have
∫ ∞

x

rα−1e−rdr = e−x

∫ ∞

0

(u+ x)α−1e−udu

= e−x

[
∫ x

0

(u+ x)α−1e−udu+

∫ ∞

x

(u+ x)α−1e−udu

]

. (2.5)

Now,
∫ x

0

(u+ x)α−1e−udu ≤
∫ x

0

(u+ x)α−1du =
xα (2α − 1)

α
≤ 2αxα

α
.

For the second integral, since x+ u ≤ 2u we have
∫ ∞

x

(u+ x)α−1e−udu ≤ 2α−1

∫ ∞

x

uα−1e−udu.

Altogether, we get in (2.5),
∫ ∞

x

rα−1e−rdr ≤ 2αxαe−x

α
+ 2α−1e−x

∫ ∞

x

rα−1e−rdr.

Since x ≥ α, we have, 2α−1e−x ≤ 1/2, which completes the proof. �

We can now proceed to the proof of Lemma 2.3
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Proof of Lemma 2.3. To estimate the norm, notice that (1 + |ξ|2)−β/2 ≤ min
(

1, |ξ|−β
)

, and

so using polar coordinates
∥

∥

∥

∥

(

1 + |ξ|2
)−β/2

e−
t2|ξ|22

2

∥

∥

∥

∥

p

Lp(Rn)

≤ |Sn−1|
∫ ∞

0

rn−1min
(

1, r−βp
)

e−
pt2r2

2 dr

Now,
∫ ∞

0

rn−1min
(

1, r−βp
)

e−
pt2r2

2 dr =

∫ 1

0

rn−1e−
pt2r2

2 dr +

∫ ∞

1

rn−1−βpe−
pt2r2

2 dr

=

∫ 1

0

rn−1e−
pt2r2

2 dr +
1

2

(

2

pt2

)
n−βp

2
∫ ∞

pt2

2

r
n−βp

2
−1e−rdr.

(2.6)

Case 1: Assume pt2 ≤ 2. To bound the first term in (2.6), use the assumption that pt2 ≤ 2

and the trivial bound
∫ 1

0

rn−1e−rdr ≤
∫ 1

0

rn−1 dr =
1

n
. (2.7)

To bound the second term, note first that
∫ ∞

pt2

2

r
n−βp

2
−1e−rdr =

∫ 1

pt2

2

r
n−βp

2
−1e−rdr +

∫ ∞

1

r
n−βp

2
−1e−rdr. (2.8)

Since pt2 ≤ 2,

∫ 1

pt2

2

r
n−βp

2
−1e−rdr ≤

∫ 1

pt2

2

r
n−βp

2
−1dr =











2
n−βp

(

1−
(

pt2

2

)
n−βp

2

)

βp 6= n,

log
(

2
pt2

)

βp = n,

(2.9)

and also

∫ ∞

1

r
n−βp

2
−1e−rdr ≤







1 n−βp
2

− 1 ≤ 0,

Γ
(

n−βp
2

)

n−βp
2

− 1 > 0.
(2.10)

Plugging (2.9) and (2.10) into (2.8), we get

(

2

pt2

)
n−βp

2
∫ ∞

pt2

2

r
n−βp

2
−1e−rdr ≤











































2
n−βp

(

(

2
pt2

)
n−βp

2 − 1

)

+
(

2
pt2

)
n−βp

2
Γ
(

n−βp
2

)

βp < n− 2,

2
n−βp

(

(

2
pt2

)
n−βp

2 − 1

)

+
(

2
pt2

)
n−βp

2

n− 2 ≤ βp < n,

log
(

2e
pt2

)

βp = n,

2
βp−n

(

1−
(

2
pt2

)
n−βp

2

)

+
(

2
pt2

)
n−βp

2
βp > n.

7



Now, if a ≥ 1 then we have

∣

∣

∣

∣

ax − 1

x

∣

∣

∣

∣

≤







ax log a 0 < x ≤ 1,

ax x ≥ 1.

Thus, when βp < n− 2 we have

2

n− βp

(

(

2

pt2

)
n−βp

2

− 1

)

+

(

2

pt2

)
n−βp

2

Γ

(

n− βp

2

)

≤
(

2

pt2

)
n−βp

2
(

1 + Γ

(

n− βp

2

))

≤ 2

(

2

pt2

)
n−βp

2

Γ

(

n− βp

2

)

.

When n− 2 ≤ βp < n we have

2

n− βp

(

(

2

pt2

)
n−βp

2

− 1

)

+

(

2

pt2

)
n−βp

2

≤
(

2

pt2

)
n−βp

2

log

(

2

pt2

)

+

(

2

pt2

)
n−βp

2

=

(

2

pt2

)
n−βp

2

log

(

2e

pt2

)

.

Also, when βp > n we use the fact that when 0 < a ≤ 1 and x > 0,

1− ax

x
≤ log

(

1

a

)

,

and get

2

βp− n

(

1−
(

2

pt2

)
n−βp

2

)

+

(

2

pt2

)
n−βp

2

≤ log

(

2

pt2

)

+

(

2

pt2

)
n−βp

2

≤ log

(

2

pt2

)

+ 1

= log

(

2e

pt2

)

.

Altogether,

(

2

pt2

)
n−βp

2
∫ ∞

pt2

2

r
n−βp

2
−1e−rdr ≤























(

2
pt2

)
n−βp

2
Γ
(

n−βp
2

)

βp < n− 2,
(

2
pt2

)
n−βp

2
log
(

2e
pt2

)

n− 2 ≤ βp < n,

log
(

2e
pt2

)

βp ≥ n.

Plugging this into (2.6) and using (2.7), we get

∫ ∞

0

rn−1min
(

1, r−pβ
)

e−
pt2r2

2 dr ≤























(

2
pt2

)
n−βp

2
Γ
(

n−βp
2

)

βp < n− 2
(

2
pt2

)
n−βp

2

log
(

2e
pt2

)

n− 2 ≤ βp < n

log
(

2e
pt2

)

βp ≥ n,
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which completes the proof in the case pt2 ≤ 2.

Case 2: Assume pt2 ≥ 2. Assume also in this case that n ≥ 2. To estimate the first term

in (2.6), we consider two different cases. If pt2 ≥ n, choose

r0 =

√

n

pt2
log

(

pt2

n

)

,

and then
∫ 1

0

rn−1e−
pt2r2

2 dr =

∫ r0

0

rn−1e−
pt2r2

2 dr +

∫ 1

r0

rn−1e−
pt2r2

2 dr ≤
∫ r0

0

rn−1 dr +

∫ 1

r0

re−
pt2r2

2 dr

≤ rn0
n

+
1

pt2
e−

pt2r20
2 =

1

n

(

n

pt2
log

(

pt2

n

))n/2

+
1

pt2

(

n

pt2

)n/2

≤
(

n

pt2
log

(

ept2

n

))n/2

.

Otherwise, if 2 ≤ pt2 ≤ n, choose

r0 = e−
pt2

n .

Note that we have, say, r0 ≥ 1/3. Then, since 1− e−x ≤ x,

∫ 1

0

rn−1e−
pt2r2

2 dr ≤ rn0
n

+
1

pt2

(

e−
pt2r20

2 − e−
pt2

2

)

≤ 1

n
e−pt2 +

e−
pt2r20

2

pt2
· pt

2(1− r20)

2

≤ 1

n
e−pt2 +

pt2

n
e−

pt2

18 ≤ 2e−
pt2

18 .

For the first term in (2.6) we thus have (assuming that n ≥ 2),

∫ 1

0

rn−1e−
pt2r2

2 dr ≤







(

n
pt2

log
(

ept2

n

))n/2

pt2 ≥ n,

2e−
pt2

18 pt2 ≤ n.
(2.11)

If n− βp ≤ 2 then

∫ ∞

1

rn−βp−1e−
pt2r2

2 dr ≤
∫ ∞

1

re−
pt2r2

2 dr =
2e−

pt2

2

pt2
≤ e−

pt2

2 . (2.12)

Otherwise, if n − βp ≥ 2, then again we consider two different cases. If pt2 ≤ n − βp , we

have

1

2

(

2

pt2

)
n−βp

2
∫ ∞

pt2

2

r
n−βp

2
−1e−rdr ≤ 1

2

(

2

pt2

)
n−βp

2
∫ ∞

0

r
n−βp

2
−1e−rdr

=
1

2

(

2

pt2

)
n−βp

2

Γ

(

n− βp

2

)

. (2.13)
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Otherwise, suppose that we still have n−βp ≥ 2, but now pt2 ≥ n−βp. Then by Proposition

2.4, we have

1

2

(

2

pt2

)
n−βp

2
∫ ∞

pt2

2

r
n−βp

2
−1e−rdr ≤ 2

n−βp
2 e−

pt2

2

n− βp
≤ 2

n−βp
2

−1e−
pt2

2 . (2.14)

Altogether, combining (2.12), (2.13) and (2.14), we obtain

1

2

(

2

pt2

)
n−βp

2
∫ ∞

pt2

2

r
n−βp

2
−1e−rdr ≤



















2
n−βp

2 e−
pt2

2 2 ≤ n− βp ≤ pt2,
(

2
pt2

)
n−βp

2
Γ
(

n−βp
2

)

2 ≤ pt2 ≤ n− βp,

e−
pt2

2 n− βp ≤ 2 ≤ pt2.

(2.15)

Plugging (2.11) and (2.15) into (2.6) gives

∫ ∞

0

rn−1min
(

1, r−βp
)

e−
pt2r2

2 dr ≤















































2e−
pt2

18 +
(

2
pt2

)
n−βp

2
Γ
(

n−βp
2

)

2 ≤ pt2 ≤ n− βp,

2e−
pt2

18 + 2
n−βp

2 e−
pt2

2 2 ≤ n− βp ≤ pt2 ≤ n,
(

n
pt2

log
(

ept2

n

))n/2

+ 2
n−βp

2 e−
pt2

2 2 ≤ n− βp ≤ n ≤ pt2,

2e−
pt2

18 + e−
pt2

2 n− βp ≤ 2 ≤ pt2 ≤ n,
(

n
pt2

log
(

ept2

n

))n/2

+ e−
pt2

2 n− βp ≤ 2 ≤ n ≤ pt2.

In order to simplify the last expression, first notice that when n ≤ pt2, we have

e−
pt2

2 ≤
(

n

pt2
log

(

ept2

n

))n/2

.

Also, we have that whenever pt2 ≥ n − βp ≥ 2, since we have that 1 − log 2 > 1/4 we get

the following estimate,

2
n−βp

2 e−
pt2

2 ≤ e−
pt2

2
(1−log 2) ≤ e−

pt2

8 ≤ e−
pt2

18 .

Hence, we conclude that,

∫ ∞

0

rn−1min
(

1, r−βp
)

e−
pt2r2

2 dr ≤























2e−
pt2

18 +
(

2
pt2

)
n−βp

2
Γ
(

n−βp
2

)

2 ≤ pt2 ≤ n− βp,

3e−
pt2

18 n− βp ≤ pt2 ≤ n,
(

2n
pt2

log
(

ept2

n

))n/2

n ≤ pt2.

�

We are now in a position to prove Theorem 2.2.
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Proof of Theorem 2.2. we have,
∫

Rn

∣

∣f̂X(ξ)
∣

∣e−
t2|ξ|22

2 dξ ≤
∥

∥

∥

(

1 + |ξ|2
)β/2

f̂X

∥

∥

∥

Lp′ (R
n)

∥

∥

∥

∥

(

1 + |ξ|2
)−β/2

e−
t2|ξ|22

2

∥

∥

∥

∥

Lp(Rn)

.

Since 1 < p ≤ 2, F : Lp → Lp′ is bounded with norm 1. Hence,
∥

∥

∥

(

1 + |ξ|2
)β/2

f̂X

∥

∥

∥

Lp′(R
n)

=
∥

∥

∥
F
(

F−1
(

(

1 + |ξ|2
)β/2

f̂X

))
∥

∥

∥

Lp′ (R
n)

≤
∥

∥

∥
F−1

(

(

1 + |ξ|2
)β/2

f̂X

)
∥

∥

∥

Lp(Rn)

(2.3)
= ‖fX‖β,p.

Altogether,
∫

Rn

∣

∣f̂X(ξ)
∣

∣e−
t2|ξ|22

2 dξ ≤
∥

∥

∥

∥

(

1 + |ξ|2
)−β/2

e−
t2|ξ|22

2

∥

∥

∥

∥

Lp(Rn)

‖f‖β,p.

Now use Lemma 2.3. �

3. Littlewood-Offord type estimates

Let a1, . . . , aN be (deterministic) vectors in R
n, and denote by A the N × n matrix whose

rows are a1, . . . , aN . Let δ1, . . . , δN be i.i.d random variables for which there exists b ∈ (0, 1)

such that

sup
x∈R

P (|δi − x| ≤ 1) ≤ 1− b. (3.1)

Now, consider the random vector

X =
N
∑

k=1

δkak. (3.2)

As in [FS07, RV09], the small ball estimate of X involves the least common denominator of

the matrix A. Thus, for α > 0 and γ ∈ (0, 1), define

LCDα,γ (A)
def
= inf {|θ|2 : θ ∈ R

n, d2 (Aθ,Z
n) < min (γ|Aθ|2, α)} . (3.3)

Theorem 3.1. Let X be defined as in (3.2), and assume that the N × n matrix A satisfies

|Aθ|2 ≥ |θ|2 for all θ in R
n. Assume also that t ≥

√
n

LCDα,γ(A)
. Then

P (‖X‖ ≤ t) ≤ |K|
γn (K)

(

CK

π

)n((
t

γ
√
b

)n

+ exp
(

−bα2
)

)

,

where CK is again the quasi-norm constant from (1.3). In particular, for any p > 0,

P
(

|X|p ≤ tn1/p
)

≤ (C · Cp)
n

((

t

γ
√
b

)n

+ exp
(

−bα2
)

)

,

11



where Cp = min
{

21/p−1, 1
}

.

The first step of the proof is to estimate the small ball probability using the integer structure

of the vectors ai. To do that, for a given θ ∈ R
n, define

f(θ)
def
= inf

m∈ZN

∣

∣

∣

z

t
Aθ −m

∣

∣

∣

2
. (3.4)

Lemma 3.2 (Small ball estimate in terms of integer structure). Let X be a random vector

as in (3.2) and let t > 0. Then

P (‖X‖ ≤ t) ≤ |K|
γn(K)

(C ′
Kt)

n · sup
z≥ 1

2π

∫

Rn

e−4bf(θ)2−|θ|22/2dθ.

Proof. By (1.4) we have

P (‖X‖ ≤ t) ≤ |K|
γn (K)

(C ′
Kt)

n

∫

Rn

∣

∣φX(ξ)
∣

∣e−
t2|ξ|22

2 dξ.

Setting θ = tξ,

tn
∫

Rn

∣

∣φX(ξ)
∣

∣e−
t2|ξ|22

2 dξ =

∫

Rn

∣

∣φX(θ/t)
∣

∣e−
|θ|22
2 dθ. (3.5)

Using the definition of X , and the independence of δ1, . . . , δN , we have

|φX (θ/t)| = E exp

(

i

〈

N
∑

i=1

δiai, θ/t

〉)

=
N
∏

k=1

E exp

(

iδk
〈ak, θ〉

t

)

=
N
∏

k=1

∣

∣

∣

∣

φδ

(〈θ, ak〉
t

)
∣

∣

∣

∣

,

(3.6)

where δ is an independent copy of δ1, . . . , δN . In order to estimate the right side of (3.6),

follow the conditioning argument that was used in [FS07, RV09]. Let δ′ be an independent

copy of δ, and denote by δ̄ the symmetric random variable δ − δ′. We have, |φδ (ξ) |2 =

E cos
(

ξδ̄
)

. Using the inequality |x| ≤ exp (− (1− x2) /2), which is valid for all x ∈ R, we

obtain

|φδ (ξ) | ≤ exp

(

−
(

1− E cos
(

ξδ̄
))

2

)

. (3.7)

By assumption (3.1) it follows that P
(

|δ̄| ≥ 1
)

≥ b. Therefore, by conditioning on δ̄, we get

1− E cos
(

ξδ̄
)

≥ P
(

|δ̄| ≥ 1
)

· E
(

1− cos
(

ξδ̄
)

∣

∣

∣
|δ̄| ≥ 1

)

≥ b · E
(

1− cos
(

ξδ̄
)

∣

∣

∣
|δ̄| ≥ 1

)

.

By the fact that 1− cos θ ≥ 2
π2θ

2, for any |θ| ≤ π, we have for any θ ∈ R,

1− cos θ ≥ 2

π2
min
m∈Z

|θ − 2πm|2.
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Hence,

1− E cos
(

ξδ̄
)

≥ 2b

π2
· E
(

min
m∈Z

∣

∣ξδ̄ − 2πm
∣

∣

2
∣

∣

∣

∣

∣δ̄
∣

∣ ≥ 1

)

= 8b · E
(

min
m∈Z

∣

∣ξδ̄ −m
∣

∣

2
∣

∣

∣

∣

∣δ̄
∣

∣ ≥ 1/2π

)

.

Plugging this into (3.7) gives

∣

∣φδ(ξ)
∣

∣ ≤ exp

(

−4bE

(

min
m∈Z

∣

∣ξδ̄ −m
∣

∣

2
∣

∣

∣

∣

∣δ̄
∣

∣ ≥ 1/2π

))

. (3.8)

Replacing the conditional expectation with supremum over all the possible values z ≥ 1/2π

and using Jensen’s inequality, we get

∫

Rn

|φX (θ/t)| e−|θ|22/2dθ
(3.6)
=

∫

Rn

N
∏

k=1

∣

∣

∣

∣

φδ

(〈θ, ak〉
t

)
∣

∣

∣

∣

e−|θ|22/2dθ

(3.8)

≤
∫

Rn

exp

(

−4b · E
(

N
∑

k=1

min
m∈Z

∣

∣

∣

∣

〈θ, ak〉
t

δ̄ −m

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

∣δ̄
∣

∣ ≥ 1/2π

)

− |θ|22/2
)

dθ

≤ E

[

∫

Rn

exp

(

−4b min
m∈ZN

∣

∣

∣

∣

δ̄

t
Aθ −m

∣

∣

∣

∣

2

2

− |θ|22/2
)

dθ

∣

∣

∣

∣

∣

∣

∣δ̄
∣

∣ ≥ 1/2π

]

≤ sup
z≥1/2π

∫

Rn

exp
(

−4bf (θ)2 − |θ|22/2
)

dθ.

Using (3.5) the result follows. �

Define the set

Ts
def
= {θ ∈ R

n : f(θ) ≤ s} .
The next step in the proof is to rewrite the integral that appears in Lemma 3.2 in the

following way:
∫

Rn

exp
(

−4bf (θ)2
)

exp
(

−|θ|22/2
)

dθ =

∫

Rn

∫

s≥f(θ)

8bs exp
(

−4bs2
)

ds exp
(

−|θ|22/2
)

dθ

= (2π)n/2
∫ ∞

0

8bs exp
(

−4bs2
)

γn (Ts) ds, (3.9)

which means that we have to bound γn(Ts). To do that, we start with the following covering

lemma.

Lemma 3.3 (Covering of Ts). Let α > 0 and γ ∈ (0, 1). Assume that t ≥
√
n

LCDα,γ(A)
. Assume

also that |Aθ|2 ≥ |θ|2 for all θ ∈ R
n. If 0 ≤ s ≤ α/2, then there exist vectors {xi}i∈I ⊆ R

n

such that

Ts ⊆
⋃

i∈I
B(xi, r) and |xi − xi′ |2 ≥ R, ∀i 6= i′, (3.10)
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where r = 2st
γz

and R =
√
n
z
. Moreover, for any j ≥ 1,

card ({i ∈ I : jR ≤ |xi|2 < (j + 1)R}) ≤ n2n (j + 1)n−1 . (3.11)

Proof. Let θ1, θ2 ∈ Ts. By (3.4), there exists p1, p2 ∈ Z
N such that

∣

∣

∣

z

t
Aθ1 − p1

∣

∣

∣
≤ s and

∣

∣

∣

z

t
Aθ2 − p2

∣

∣

∣
≤ s.

By the triangle inequality,
∣

∣

∣

z

t
A (θ1 − θ2)− (p1 − p2)

∣

∣

∣
≤ 2s,

which means that d2
(

Aτ,ZN
)

≤ 2s ≤ α, where τ = z (θ1 − θ2) /t. By (3.3) this implies that

either

|τ |2 ≥ LCDα,γ (A) ,

or

α ≥ 2s ≥ d2
(

Aτ,ZN
)

≥ min (γ|Aτ |2, α) = γ|Aτ |2.
By the assumptions that |Aτ |2 ≥ |τ |2 and LCDα,γ (A) ≥

√
n/t, we conclude that

either |θ1 − θ2|2 ≥
√
n

z
=: R or |θ1 − θ2|2 ≤

2st

γz
=: r.

Hence, Ts can be covered by a union of euclidean balls of radius r whose centers are R-

separated, which proves (3.10). Next, for j ≥ 1, let

Mj
def
= card ({i ∈ I : jR ≤ |xi|2 ≤ (j + 1)R}) .

To estimate Mj , use a well-known volumetric argument. Indeed, since {xi}i∈I are R-

separated, we know that the Euclidean balls B (xi, R/2) are disjoint and contained in the

shell

{y ∈ R
n : (j − 1/2)R ≤ |y|2 ≤ (j + 3/2)R} .

Hence, taking the volume,

Mj

(

R

2

)n

≤ Rn ((j + 3/2)n − (j − 1/2)n) = Rn (j + 1/2)n
((

1 +
1

2j + 1

)n

−
(

1− 1

2j + 1

)n)

.

Since for every x ∈ (0, 1), we have (1 + x)n − (1− x)n ≤ 2nx (1 + x)n−1, we conclude that

Mj ≤ n2n (j + 1)n−1 .

�

Using the covering lemma, we can now prove the required volume estimate.
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Corollary 3.4. Let r and R be as in Lemma 3.3. If R ≥ 2r, then

γn (Ts) ≤
(

Cr

R

)n

=

(

2Cts

γ
√
n

)n

.

Proof. Let y ∈ R
n, we have

γn (B (y, r)) =
1

(2π)n/2

∫

|y−x|2≤r

e−
|x|22
2 dx.

Since |x|22 + |x− y|22 = 1
2
(|y|22 + |2x− y|22) ≥ 1

2
|y|22,

γn (B (y, r)) ≤ 1

(2π)n/2
e−

|y|22
4

∫

|y−x|2≤r

e
|y−x|22

2 dx.

Therefore, if |y|2 ≥ R ≥ 2r,

γn (B (y, r)) ≤ 1

(2π)n/2
exp

(

−|y|22
4

)

er
2/2|B (0, r) | ≤ 1

(2π)n/2
exp

(

−|y|22
8

)

|B (0, r) |.

(3.12)

Assume that s is such that r ≤ R/2, i.e. 4ts ≤ γ
√
n, then by (3.10)

γn (Ts) ≤
∑

i∈I
γn (B (xi, r)) ≤

∞
∑

j=0

∑

i∈I:jR≤|xi|2<(j+1)R

γn (B (xi, r)) .

Also, for j ≥ 1, we have by (3.11)

card ({i ∈ I : jR ≤ |xi|2 < (j + 1)R}) ≤ Cnjn−1.

By (3.12),

γn (B (xi, r)) ≤
1

(2π)n/2
exp

(

−j2R2

8

)

|B(0, r)|.

Hence

γn (Ts) ≤ γn (B (0, r)) +
∞
∑

j=1

(

C2

2π

)n/2

jn−1 exp

(

−j2R2

8

)

|B (0, r) |

≤ |B (0, r) |
(2π)n/2

(

1 + Cn

∞
∑

j=1

jn−1 exp

(

−j2R2

8

)

)

. (3.13)

The function v 7→ vn−1e−v2R2/8 is decreasing for v ≥ 2
√
n/R. By comparing series with

integrals,

∞
∑

j=1

jn−1 exp

(

−j2R2

8

)

≤
(

2
√
n

R

)n

+

∫ ∞

0

vn−1e−v2R2/8dv

=

(

2
√
n

R

)n

+
8n/2

Rn

∫ ∞

0

u
n−1
2

−1e−udu ≤
(

Cn1/2

R

)n

.
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Since z ≥ 1/2π, we have R ≤ 2π
√
n, so that

(

1 + Cn
∞
∑

j=1

jn−1 exp

(

−j2R2

8

)

)

≤
(

C1n
1/2

R

)n

.

Moreover, it is well-known that |B (0, r) | ≤ Cn
2 n

−n/2rn which implies by (3.13) that

γn (Ts) ≤
(

Cr

R

)n

=

(

2Cts

γ
√
n

)n

.

�

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.2 and (3.9), to have a small ball estimate it is enough

to evaluate the integral
∫ ∞

0

8bs exp
(

−4bs2
)

γn (Ts) ds.

We have,
∫ ∞

0

8bs exp
(

−4bs2
)

γn (Ts) ds

=

∫ α/2

0

8bs exp
(

−4bs2
)

γn (Ts) ds+

∫ ∞

α/2

8bs exp
(

−4bs2
)

γn (Ts) ds

≤
∫ α/2

0

8bs exp
(

−4bs2
)

γn (Ts) ds+ exp
(

−bα2
)

.

Assume first that α ≤ 2γ
√
n/t so that for any t ≤ α/2 we have R ≥ 2r. By Corollary 3.4,

γn (Ts) ≤
(

2Cts

γ
√
n

)n

,

and so
∫ α/2

0

8bs exp
(

−4bs2
)

γn (Ts) ds ≤
∫ α/2

0

8bs exp
(

−4bs2
)

(

2Cts

γ
√
n

)n

ds

≤ 8b

(

2Ct

γ
√
n

)n ∫ ∞

0

sn+1e−4bs2ds

=

(

Ct

γ
√
b
√
n

)n ∫ ∞

0

un/2e−udu

≤
(

C ′t

γ
√
b

)n

.

Assume otherwise that α ≥ 2γ
√
n/t

def
= α0. Then, as before,

∫ ∞

0

8bs exp
(

−4bs2
)

γn (Ts) ds ≤
∫ α0/2

0

8bs exp
(

−4bs2
)

γn (Ts) ds+ exp
(

−bα2
0

)

.
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For s ≤ α0/2 we do exactly the same computation as in the first case and obtain
∫ ∞

0

8bs exp
(

−4bs2
)

γn (Ts) dt ≤
(

C ′s

γ
√
b

)n

+ exp
(

−bα2
0

)

.

In that case, we also have

exp
(

−bα2
0

)

= exp
(

−4bγ2n/t2
)

≤
(

Ct

γ
√
b

)n

.

That concludes the fact that
∫

Rn

exp
(

−4bf (θ)2
)

exp
(

−|θ|22/2
)

dθ ≤
(

Ct

γ
√
b

)n

+ exp
(

−bα2
)

.

Using Lemma 3.2, Theorem 3.1 follows. �
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