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Let A be a matrix whose columns X 1 , . . . , X N are independent random vectors in R n . Assume that the tails of the 1-dimensional marginals decay as P(| X i , a | ≥ t) ≤ t -p uniformly in a ∈ S n-1 and i ≤ N . Then for p > 4 we prove that with high probability A/

√ n has the Restricted Isometry Property (RIP) provided that Euclidean norms |X i | are concentrated around √ n. We also show that the covariance matrix is well approximated by the empirical covariance matrix and establish corresponding quantitative estimates on the rate of convergence in terms of the ratio n/N . Moreover, we obtain sharp bounds for both problems when the decay is of the type exp(-t α ) with α ∈ (0, 2], extending the known case α ∈ [1, 2].

Introduction and main results

Fix positive integers n, N and let A be an n × N random matrix whose columns X 1 , . . . , X N are independent random vectors in R n . For a subset I ⊂ {1, . . . , N} of cardinality m, denote by A I the n × m matrix whose columns are X i , i ∈ I. We are interested in estimating the interval of fluctuation of the spectrum of some matrices related to A when the random vectors X i , i ≤ N have heavy tails; firstly, uniform estimates of the spectrum of (A I ) ⊤ A I which is the set of squares of the singular values of A I , where I runs over all subsets of cardinality m for some fixed parameter m and secondly estimates for the spectrum of AA ⊤ . The first problem is related to the notion of Restricted Isometry Property (RIP) with m a parameter of sparsity whereas the second is about approximation of a covariance matrix by empirical covariance matrices.

These questions have been substantially developed over recent years and many papers devoted to these notions were written. In this work, we say that a random vector X in R n satisfies the tail behavior H(φ) with parameter τ ≥ 1, if

H(φ) : ∀a ∈ S n-1 ∀t > 0 P (| X, a | ≥ t) ≤ τ /φ(t) (1) 
for a certain function φ and we assume that X i satisfies H(φ) for all i ≤ N.

We will focus on two choices of the function φ, namely φ(t) = t p , with p > 4, which means heavy tail behavior for marginals, and φ(t) = (1/2) exp(t α ), with α ∈ (0, 2], which corresponds to an exponential power type tail behavior and extends the known subexponential case (α = 1, see [START_REF] Adamczak | Quantitative estimates of the convergence of the empirical covariance matrix in log-concave Ensembles[END_REF][START_REF] Adamczak | Sharp bounds on the rate of convergence of empirical covariance matrix[END_REF]).

The concept of the Restricted Isometry Property was introduced in [START_REF] Candés | Decoding by linear programming[END_REF] in order to study an exact reconstruction problem by ℓ 1 minimization algorithm, classical in compressed sensing. Although it provided only a sufficient condition for the reconstruction, it played a decisive role in the development of the theory, and it is still an important property. This is mostly due to the fact that a large number of important classes of random matrices have RIP. It is also noteworthy that the problem of reconstruction can be reformulated in terms of convex geometry, namely in terms of neighborliness of the symmetric convex hull of X 1 , . . . , X N , as was shown in [START_REF] Donoho | Compressed sensing[END_REF].

Let us recall the intuition of RIP (for the definition see (9) below). For an n × N matrix T and 1 ≤ m ≤ N, the isometry constant of order m of T is the parameter 0 < δ m (T ) < 1 such that the square of Euclidean norms |T z| and |z| are approximately equal, up to a factor 1 + δ m (T ), for all m-sparse vectors z ∈ R N (that is, |supp(z)| ≤ m). Equivalently, this means that for every I ⊂ {1, . . . , N} with |I| ≤ m, the spectrum of (T I ) ⊤ T I is contained in the interval [1δ m (T ), 1 + δ m (T )]. In particular when δ m (T ) < θ for small θ, then the squares of singular values of the matrices T I belong to [1-θ, 1+θ]. Note that in compressed sensing for the reconstruction of vectors by ℓ 1 minimization, one does not need RIP for all θ > 0 (see [START_REF] Donoho | Compressed sensing[END_REF] and [START_REF] Chafaï | Interactions between compressed sensing random matrices and high dimensional geometry[END_REF]). The RIP contains implicitly a normalization, in particular it implies that the Euclidean norms of the columns belong to an interval centered around one.

Let A be an n × N random matrix whose columns are X 1 , . . . , X N . In view of the example of matrices with i.i.d. entries, centered and with variance one, for which E|X i | 2 = n, we normalized the matrix by considering A/

√ n and we introduce the concentration function

P (θ) := P max i≤N |X i | 2 n -1 ≥ θ . (2) 
Until now the only known cases of random matrices satisfying a RIP were the cases of subgaussian [START_REF] Candés | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Candés | Decoding by linear programming[END_REF][START_REF] Donoho | Compressed sensing[END_REF][START_REF] Mendelson | Reconstruction and subgaussian operators[END_REF] and subexponential [START_REF] Adamczak | Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling[END_REF] matrices. Our first main theorem says that matrices we consider have the RIP of order m, with "large" m of the form m = nψ(n/N) with ψ depending on φ and possibly on other parameters. In particular, when N is proportional to n, then m is proportional to n. We present a simplified version of our result, for the detailed version see Theorem 3.1 below.

Theorem 1.1 Let 0 < θ < 1. Let A be a random n × N matrix whose columns X 1 , . . . , X N are independent random vectors satisfying hypothesis H(φ) for some φ. Assume that n, N are large enough. Then there exists a function ψ depending on φ and θ such that with high probability (depending on the concentration function P (θ)) the matrix A/ √ n has RIP of order m = [nψ(n/N)] with a parameter θ (that is, δ m (A/ √ n) ≤ θ).

The second problem we investigate goes back to a question of Kannan, Lovász and Simonovits (KLS). As before assume that A is a random n × N matrix whose columns X 1 , . . . , X N are independent random vectors satisfying hypothesis H(φ) for some φ. Additionally assume that X i 's are identically distributed as a centered random vector X. KLS question asks how fast the empirical covariance matrix U := (1/N)AA ⊤ converges to the covariance matrix Σ := (1/N)EAA ⊤ = EU. Of course this depends on assumptions on X. In particular, is it true that with high probability the operator norm U -Σ ≤ ε Σ for N being proportional to n? Originally this was asked for log-concave random vectors but the general question of approximating the covariance matrix by sample covariance matrices is an important subject in Statistics as well as on its own right. The corresponding question in Random Matrix Theory is about the limit behavior of smallest and largest singular values. In the case of Wishart matrices, that is when the coordinates of X are i.i.d. centered random variables of variance one, the Bai-Yin theorem [START_REF] Bai | Limit of the smallest eigenvalue of a large dimensional sample covariance matrix[END_REF] states that under assumption of boundedness of fourth moments the limits of minimal and maximal singular numbers of U are (1 ± √ β) 2 as n, N → ∞ and n/N → β ∈ (0, 1). Moreover, it is known [START_REF] Bai | A note on the largest eigenvalue of a large dimensional sample covariance matrix[END_REF][START_REF] Silverstein | On the weak limit of the largest eigenvalue of a large dimensional sample covariance matrix[END_REF] that boundedness of fourth moment is necessary in order to have the convergence of the largest singular value. The asymptotic non-limit behavior (also called "non-asymptotic" in Statistics), i.e., sharp upper and lower bounds for singular values in terms of n and N, when n and N are sufficiently large, was studied in several works. To keep the notation more compact and clear we put

M := max i≤N |X i |, S := sup a∈S n-1 1 N N i=1 X i , a 2 -E X i , a 2 . (3) 
Note that if E X, a 2 = 1 for every a ∈ S n-1 (that is, X is isotropic), then the bound S ≤ ε is equivalent to the fact that the singular values of U belong to the interval [1ε, 1 + ε]. For Gaussian matrices it is known ( [START_REF] Edelman | Eigenvalues and condition numbers of random matrices[END_REF][START_REF] Szarek | Condition numbers of random matrices[END_REF]) that with probability close to one

S ≤ C n/N, (4) 
where C is a positive absolute constant. In [START_REF] Adamczak | Quantitative estimates of the convergence of the empirical covariance matrix in log-concave Ensembles[END_REF][START_REF] Adamczak | Sharp bounds on the rate of convergence of empirical covariance matrix[END_REF] the same estimate was obtained for a large class of random matrices, which in particular did not require that entries of the columns are independent, or that X i 's are identically distributed. In particular this solved the original KLS problem. More precisely, (4) holds with high probability under the assumptions that the X i 's satisfy hypothesis H(φ) with φ(t) = e t /2 and that M ≤ C(Nn) 1/4 with high probability. Both conditions hold for log-concave random vectors. Until recent time, quite strong conditions on the tail behavior of the one dimensional marginals of the X i were imposed, typically of subexponential type. Of course, in view of Bai-Yin theorem, it is a natural question whether one can replace the function φ(t) = e t /2 by the function φ(t) = e t α /2 with α ∈ (0, 1) or φ(t) = t p , for p ≥ 4. The first attempt in this direction was done in [START_REF] Vershynin | How close is the sample covariance matrix to the actual covariance matrix?[END_REF], where the bound S ≤ C(p, K)(n/N) 1/2-2/p (ln ln n) 2 was obtained for every p > 4 provided that M ≤ K √ n. Clearly, ln ln n is a "parasitic" term, which, in particular, does not allow to solve the KLS problem with N proportional to n. This problem was solved in [START_REF] Mendelson | On generic chaining and the smallest singular value of random matrices with heavy tails[END_REF][START_REF] Srivastava | Covariance estimation for distributions with 2 + ε moments[END_REF] under strong assumptions and in particular when M ≤ K √ n and X has i.i.d. coordinates with bounded p-th moment with p > 4. Very recently, in [START_REF] Mendelson | On singular values of matrices[END_REF], the "right" upper bound S ≤ C(n/N) 1/2 was proved for p > 8 provided that M ≤ C(Nn) 1/4 . The methods used in [START_REF] Mendelson | On singular values of matrices[END_REF] play an influential role in the present paper.

The problems of estimating the smallest and the largest singular values are quite different. One expects weaker assumption for estimating the smallest singular value. This already appeared in the work [START_REF] Srivastava | Covariance estimation for distributions with 2 + ε moments[END_REF] and was pushed further in recent works [START_REF] Koltchinskii | Bounding the smallest singular value of a random matrix without concentration[END_REF][START_REF] Tikhomirov | The smallest singular value of random rectangular matrices, with no moment assumptions on entries[END_REF][START_REF] Yaskov | Lower bounds on the smallest eigenvalue of a sample covariance matrix[END_REF] and in [START_REF] Van De Geer | On higher order isotropy conditions and lower bounds for sparse quadratic forms[END_REF][START_REF] Lecué | Sparse recovery under weak moment assumptions[END_REF][START_REF] Oliveira | The lower tail of random quadratic forms, with applications to ordinary least squares and restricted eigenvalue properties[END_REF] which led to new bounds on the performance of ℓ 1 -minimization methods.

In this paper we solve the KLS problem for 4 < p ≤ 8, in Theorem 1.2. Our argument works also in other cases and makes the bridge between the known cases p > 8 and the exponential case. Theorem 1.2 Let X 1 , . . . , X N be independent random vectors in R n satisfying hypothesis H(φ) with φ(t) = t p for some p ∈ [START_REF] Adamczak | Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling[END_REF][START_REF] Bourgain | Random points in isotropic convex sets[END_REF]. Let ε ∈ (0, 1) and

γ = p -4 -2ε > 0. Then S ≤ C M 2 n n N + C(p, ε) n N γ/p , (5) 
with probability larger than 1 -8e -n -2ε -p/2 max{N -3/2 , n -(p/4-1) }.

In particular, if N is proportional to n and M 2 /n is bounded by a constant with high probability, which is the case for large classes of random vectors, then with high probability

S ≤ C (n/N) γ/p .
Let X have i.i.d. coordinates distributed as a centered random variable with finite p-th moment, p > 2. Then by Rosenthal's inequality ( [START_REF]On the subspaces of L p (p > 2) spanned by sequences of independent random variables[END_REF], see also [START_REF] Johnson | Best constants in moment inequalities for linear combinations of independent and exchangeable random variables[END_REF] and Lemma 6.3 below), X satisfies hypothesis H(φ) with φ(t) = t p . Let X 1 , ..., X N be independent random vectors distributed as X. It is known ( [START_REF] Bai | A note on the largest eigenvalue of a large dimensional sample covariance matrix[END_REF], [START_REF] Silverstein | On the weak limit of the largest eigenvalue of a large dimensional sample covariance matrix[END_REF], see also [START_REF] Litvak | Quantitative version of a Silversteins result[END_REF] for a quantitative version) that when N is proportional to n and in the absence of fourth moment, M 2 /n → ∞ as n → ∞. Hence, bounds for S involving the term M 2 /n like the bound (5) are of interest only for p ≥ 4. We don't know if it holds in the case p = 4.

The main novelty of our proof is a delicate analysis of the behavior of norms of submatrices, namely quantities A k and B k , k ≤ N, defined in [START_REF] Bai | Limit of the smallest eigenvalue of a large dimensional sample covariance matrix[END_REF] below. This analysis is done in Theorem 2.1, which is in the heart of the technical part of the paper and it will be presented in the next section. The estimates for B k are responsible for RIP, Theorem 1.1, while the estimates for A k are responsible for KLS problem, Theorem 1.2.

As usual in this paper C, C 0 , C 1 , ..., c, c 0 , c 1 , ... always denote absolute positive constants whose values may vary from line to line.

The paper is organized as follows. In Section 2, we formulate the main technical result. For the reader convenience, we postpone its proof till Section 5. In Section 3, we discuss the results on RIP. The fully detailed formulation of the main result in this direction is Theorem 3.1, while Theorem 1.1 is its very simplified corollary. In Section 4, we prove Theorem 1.2 as a consequence of Theorem 4.5. The case p > 8 and the exponential cases are proved in Theorem 4.7 using the same argument. Symmetrization and formulas for sums of the k smallest order statistics of independent non-negative random variables with heavy tails allow to reduce the problem on hand to estimates for A k . In the last Section 6, we discuss optimality of the results.

An earlier version of the main results of this paper was announced in [START_REF] Guédon | Tomczak-Jaegermann Restricted isometry property for random matrices with heavy tailed columns[END_REF].
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Norms of submatrices

We start with a few general preliminaries and notations. We denote by B n A standard volume argument implies that for every integer n and for every ε ∈ (0, 1) there exists an ε-net Λ ⊂ B n 2 of B n 2 of cardinality not exceeding (1 + 2/ε) n ; that is, for every x ∈ B n 2 , min y∈Λ |x -y| < ε. In particular, if ε ≤ 1/2 then the cardinality of Λ is not larger than (2.5/ε) n . By M we denote the class of increasing functions φ

: [0, ∞) → [0, ∞) such that the function ln φ (1/ √ x) is convex on (0, ∞).
The examples of such functions considered in this paper are φ(x) = x p for some p > 0 and φ(x) = (1/2) exp(x α ) for some α > 0.

Recall that the hypothesis H(φ) has been defined in the introduction by [START_REF] Adamczak | Smallest singular value of random matrices with independent columns[END_REF]. Note that this hypothesis is satisfied if

sup a∈S n-1 E φ(| X, a |) ≤ τ.
For k ≤ N and random vectors X 1 , ..., X N in R n we define A k and B k by

A k := sup a∈S N-1 |supp(a)|≤k N i=1 a i X i , B 2 k := sup a∈S N-1 |supp(a)|≤k N i=1 a i X i 2 - N i=1 a 2 i |X i | 2 . ( 6 
)
We would like to note that A k is the supremum of norms of submatrices consisting of k columns of A, while B k plays a crucial role for RIP estimates. We provide more details on the role of A k and B k in the next section.

Recall also a notation from the introduction

M = max i≤N |X i |.
We formulate now the main technical result, Theorem 2.1, which is the key result for both bounds for A k and for B k . The role of A k and B k in RIP estimates will be explained in the next section. We postpone the proof to Section 5.

Theorem 2.1 Let p > 4, σ ∈ (2, p/2), α ∈ (0, 2], t > 0, and τ, λ ≥ 1. Let X 1 , . . . , X N be independent random vectors in R n satisfying hypothesis H(φ) with parameter τ either for φ(x) = x p or for φ(x) = (1/2) exp(x α ). For k ≤ N define M 1 , β and C φ in two following cases. Case 1. φ(x) = x p . We assume that λ ≤ p and we let C φ = e 4 ,

M 1 := C 1 (σ, λ, p) √ k Nτ k σ/p and β := C 2 (σ, λ)(τ N) -λ +C 3 (σ, λ, p) N 2 τ t p ,
where

C 1 (σ, λ, p) = 32 e 4 σ + λ 1 + λ/2 2p p -2σ 1+2σ/p σ + λ σ -2 2σ/p (20e) σ/p , C 2 (σ, λ) := 2(σ + λ) 5e(σ -2) λ 1 2λ -1 and C 3 (σ, λ, p) := (σ + λ) p 4(2(σ -2)) p .
Case 2. φ(x) = (1/2) exp(x α ). We assume that λ ≥ 2 and we let C φ = C 1/α , where C is an absolute positive constant,

M 1 := (Cλ) 1/α √ k ln 2Nτ k + 1 α 1/α and β := 1 (10Nτ ) λ exp - λk α/2 (3.5 ln(2k)) 2α + N 2 τ 2 exp((2t) α )
.

In both cases we also assume that β < 1/32. Then with probability at least 1 -√ β one has

A k ≤ (1 -4 β) -1 M + 2 C φ t M + M 1 and B 2 k ≤ (1 -4 β) -2 4 βM 2 + (8C φ t + M 1 ) M + 2M 2 1 .
We would like to emphasize that A k and B k are of different nature. In particular, Theorem 2.1 in the case φ(x) = x p has to be applied with different choices of the parameter σ. We summarize those choices in the following remark.

Remark. In the case φ(x) = x p we will use the following two choices for σ: 1. Choosing σ = p/4 and assuming p > 8 we get

M 1 ≤ C p λ p p -8 √ k Nτ k 1/4 and β ≤ 2(p + 4λ) 5eNτ (p -8) λ 1 2λ -1 + N 2 τ (p + 4λ) p 4(2t(p -8)) p .
2. Choosing σ = 2 + ε with ε ≤ min{1, (p -4)/4}, we get

M 1 ≤ C p p -4 1+(4+2ε)/p λ ε 2(2+ε)/p √ k Nτ k (2+ε)/p and β = 2(3 + λ) 5eεNτ λ 1 2λ -1 + N 2 τ (3 + λ) p 4(2εt) p .
Remarks on optimality.

1. The case φ(x) = x p , p > 4. Let τ ≥ 1, N ≥ (64C 2 (σ, λ)) 1/λ and t = (64N 2 C 3 (σ, λ, p)) 1/p . Then β ≤ 1/32 and √ tM ≤ C 4 (σ, λ, p)(M + M 1 )
. Hence with probability larger than 3/4 we have

A k ≤ C(σ, λ, p) M + √ k(Nτ /k) σ/p .
In Proposition 6.5 below we show that there exist independent random vectors X i 's satisfying the conditions of Theorem 2.1 with τ = 1 and such that

A k ≥ C(p) √ k(N/k) 1/p (ln(2N/k)) -1/p with probability at least 1/2. Note that M = A 1 ≤ A k . Therefore max{M, C(p) √ k(N/k) 1/p (ln(2N/k)) -1/p } ≤ A k ≤ C(σ, λ, p) M + √ k(N/k) σ/p (7
) with probability at least 1/4.

The case φ

(x) = (1/2) exp(x α ), α ∈ [1, 2]
. Let λ = 2 and t = (ln N) 1/α . Then β ≤ 1/32. Hence with probability larger than 3/4 we have

A k ≤ C M + C 1/α √ k ln(6 1/α τ N/k) 1/α .
In Proposition 6.7 below we show that there exist independent random vectors X i 's satisfying the conditions of Theorem 2.1 with τ bounded by an absolute constant and such that

A k ≥ k/2 (ln(N/(k + 1))) 1/α with probability at least 1/2. Using again that M = A 1 ≤ A k we observe max{M, k/2 (ln(N/(k + 1))) 1/α } ≤ A k ≤ C M + C 1/α √ k ln(6 1/α N/k) 1/α (8 
) with probability at least 1/4.

Restricted Isometry Property

We need more definitions and notations.

Let T be an n × N matrix and let 1 ≤ m ≤ N. The m-th isometry constant of T is defined as the smallest number δ m = δ m (T ) so that

(1 -δ m )|z| 2 ≤ |T z| 2 ≤ (1 + δ m )|z| 2 (9) 
holds for all vectors z ∈ R N with |supp(z)| ≤ m. For m = 0, we put δ 0 (T ) = 0. Let δ ∈ (0, 1). The matrix T is said to satisfy the Restricted Isometry Property of order m with parameter δ,

in short RIP m (δ), if 0 ≤ δ m (T ) ≤ δ. Recall that a vector z ∈ R N is called m-sparse if |supp(z)| ≤ m. The subset of m-sparse unit vectors in R N is denoted by U m = U m (R N ) := {z ∈ R N : |z| = 1, |supp(z)| ≤ m}.
Let X 1 , ..., X N be random vectors in R n and let A be the n × N matrix whose columns are the X i 's. By the definition of B m (see ( 6)) we clearly have

max i≤N |X i | 2 n -1 = δ 1 A √ n ≤ δ m A √ n = sup z∈Um |Az| 2 n -1 ≤ B 2 m n + max i≤N |X i | 2 n -1 . (10) 
Thus, in order to have a good bound on δ m (A/ √ n) we require a strong concentration of each |X i | around √ n and we need to estimate B m .

To control the concentration of |X i | we consider the function P (θ), defined in the introduction by [START_REF] Adamczak | Quantitative estimates of the convergence of the empirical covariance matrix in log-concave Ensembles[END_REF]. Note that this function estimates the concentration of the maximum. Therefore, when it is small, we have much better concentration of each |X i | around √ n.

We are now ready to state the main result about RIP. Theorem 1.1, announced in the introduction, is a very simplified form of it.

Theorem 3.1 Let p > 4, α ∈ (0, 2], τ ≥ 1 and 1 ≤ n ≤ N. Let X 1 , . . . , X N be independent random vectors in R n satisfying hypothesis H(φ) with the parameter τ either for φ(x) = x p or for φ(x) = (1/2) exp(x α ). Let P (•) be as in (2) and θ ∈ (0, 1). Case 1. φ(x) = x p . Let ε ≤ min{1, (p -4)/4}. Assume that 2 8 ε θ τ ≤ N ≤ c θ (c ε θ) p/2 n p/4 √ τ and set m = C(θ, ε, p) n Nτ n -2(2+ε)/(p-4-2ε) and β = 4 3e 2 ε 2 N 2 τ 2 + 5 p N 2 τ 4(2c ε θ) p n p/2 , where C(θ, ε, p) = c p -4 p 2(p+4+2ε)/(p-4-2ε) ε 4(2+ε)/(p-4-2ε) θ 2p/(p-4-2ε) , (11) 
c and C are absolute positive constants. Case 2. φ(x) = (1/2) exp(x α ). Assume that

1 τ max 2 1/α , 4/θ ≤ N ≤ c θ √ τ exp (1/2) c θ √ n α and set m = C -2/α θ 2 n ln(C 2/α Nτ /(θ 2 n)) -2/α and β = 1 (10Nτ ) 2 exp -2m α/2 (3.5 ln(2m)) 2α + N 2 τ 2 exp -c θ √ n α ,
where c and C are absolute positive constants.

Then in both cases we have

P δ m (A/ √ n) ≤ θ ≥ 1 -β -P (θ/2).
Remarks. 1. Note that for instance in case 1, the constraint N ≤ c(θ, ε, τ, p)n p/4 is not important because for N ≫ n p/4 one has

m = C(θ, ε, p) n Nτ n -2(2+ε)/(p-4-2ε) = 0.
A similar remark is valid in the second case.

2. In most applications P (θ) → 0 very fast as n, N → ∞. For example, for so-called isotropic log-concave random vectors it follows from results of Paouris ( [START_REF] Paouris | Concentration of mass on convex bodies[END_REF][START_REF] Paouris | Small ball probability estimates for log-concave measures[END_REF], see also [START_REF] Klartag | Power-law estimates for the central limit theorem for convex sets[END_REF][START_REF] Guédon | Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures[END_REF] or Lemma 3.3 of [START_REF] Adamczak | Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling[END_REF]). As another example consider the model when X i 's are i.i.d. and moreover the coordinates of X 1 are i.i.d. random variables distributed as a random variable ξ. In the case when ξ is of variance one and has finite p-th moment, p > 4, then by Rosenthal's inequality P (θ) is well bounded (for a precise bound see Corollary 6.4 below, see also Proposition 1.3 of [START_REF] Srivastava | Covariance estimation for distributions with 2 + ε moments[END_REF]). Another case is when ξ is the Weibull random variable of variance one, that is consider ξ 0 such that P (|ξ 0 | > t) = exp (-t α ) for α ∈ (0, 2] and let ξ = ξ 0 / Eξ 2 0 . By Lemma 3.4 from [START_REF] Adamczak | Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling[END_REF] (see also Theorem 1.2.8 in [START_REF] Chafaï | Interactions between compressed sensing random matrices and high dimensional geometry[END_REF]), P (θ) satisfies (37) below. 3. Optimality. Taking ε in the Case 1 of order (p -4) 2 / ln(2Nτ /n) and assuming that it satisfies the condition of the theorem, we observe that in Case 1

m = C(θ, p) n Nτ n -4/(p-4) ln 2Nτ n -8/(p-4)
.

Moreover, Proposition 6.6 below shows that for q > p > 4 there are independent random vectors X i 's satisfying hypothesis H(φ) with parameter τ = τ (p, q) and such that for θ = 1/2, N ≤ C(p, q)n p/4 (ln(2N/n)) -p/2 one can't get better estimate than m ≤ 8 (N/n) -2/(q-2) n.

Optimality.

In Case 2 with τ bounded by an absolute constant and α ∈

[1, 2], let c 0 n ≤ N ≤ c 1 exp(c 2 n α/2
), θ = 0.4 and assume that P (θ/2) is small enough. Then P(δ m ≤ 1/2) ≥ 1/2 provided that m = n C ln(C 2/α N/n) 2/α . Proposition 6.7 below shows that the estimate for m is sharp, that is in general m can't be larger than m = n (C ln(2N/n)) 2/α .

Proof. We first pass to the subset Ω 0 of our initial probability space where

max i≤N |X i | 2 n -1 ≤ θ/2.
Note that by (2) the probability of this event is at least 1 -P (θ/2) and if this event occurs then we also have

max i≤N |X i | ≤ 3 √ n/2.
We will apply Theorem 2.1 with k = m, t = θ √ n/(100C φ ), where C φ is the constant from Theorem 2.1. Additionally we assume that β ≤ 2 -9 θ 2 and M 1 ≤ t. Then with probability at least 1 -√ β -P (θ/2) we have

B 2 m ≤ (16 β + θ/4)n ≤ θ n/2.
Together with [START_REF] Candés | Decoding by linear programming[END_REF] this proves δ m (A/ √ n) ≤ θ. Thus we only need to check when the estimates for β and M 1 are satisfied. Case 1. φ(x) = x p . We start by proving the estimate for M 1 . We let σ = 2 + ε, ε ≤ min{1, (p -4)/4} and λ = 2. Then by Theorem 2.1 (see also the Remark following it), for some absolute constant C we have

M 1 ≤ C p p -4 1+(4+2ε)/p 1 ε 2(2+ε)/p √ m Nτ m (2+ε)/p . Therefore the estimate M 1 ≤ c θ √ n with c = 1/(100e 4 ) is satisfied provided that m = C(θ, ε, p) n Nτ n -2(2+ε)/(p-4-2ε)
, with C(θ, ε, p) defined in [START_REF] Chafaï | Interactions between compressed sensing random matrices and high dimensional geometry[END_REF] and the absolute constants properly adjusted. Now we estimate the probability. From Theorem 2.1 (and the Remark following it), with our choice of t and λ we have

β ≤ 4 3e 2 ε 2 N 2 τ 2 + 5 p N 2 τ 4(2c ε θ) p n p/2 ≤ 2 -9 θ 2 provided that 2 8 /(ε θτ ) ≤ N ≤ 2 -4 θ √ τ (0.4c ε θ) p/2 n p/4
. This completes the proof of the first case.

Case 2. φ(x) = (1/2) exp(x α ).
As in the first case we start with the condition M 1 ≤ t. We choose λ = 4. Note that Nτ /m ≥ 2 1/α as Nτ ≥ 2 1/α n. Therefore for some absolute constant C,

M 1 ≤ √ m (C ln(2Nτ /m)) 1/α . Therefore the condition M 1 ≤ t is satisfied provided that m ≤ C -2/α 1 θ 2 n ln(C 2/α 1 Nτ /(θ 2 n)) -2/α
for an absolute positive constant C 1 . This justifies the choice of m. Now we estimate the probability. From Theorem 2.1 with our choice of t and λ we have

β ≤ 1 (10Nτ ) 2 exp -2m α/2 (3.5 ln(2m)) 2α + N 2 τ 2 exp -c θ √ n α ≤ 2 -9 θ 2 , provided that 4/(θτ ) ≤ N ≤ 2 -5 θ √ τ exp c (θ √ n) α .
This completes the proof. 2

Approximating the covariance matrix

We start with the following ε-net argument for bilinear forms, which will be used below. Since T is a real matrix, then for every x ∈ R m , Sx, x = 2 T x, x . This concludes the proof. 2

Now we can prove the following technical lemma, which emphasizes the role of the parameter A k in estimates of the distance between the covariance matrix and the empirical one. This role was first recognized in [START_REF] Bourgain | Random points in isotropic convex sets[END_REF] and [START_REF] Adamczak | Quantitative estimates of the convergence of the empirical covariance matrix in log-concave Ensembles[END_REF]. Other versions of the lemma appeared in [START_REF] Adamczak | Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling[END_REF][START_REF] Adamczak | Geometry of log-concave Ensembles of random matrices and approximate reconstruction[END_REF]. Its proof uses the symmetrization method as in [START_REF] Mendelson | On singular values of matrices[END_REF]. 4) and assume

Lemma 4.2 Let τ ≥ 1, 1 ≤ k < N and X 1 , . . . , X N be independent random vectors in R n . Let p ≥ 2, α ∈ (0, 2]. Let φ be either φ(t) = t p in which case we set C φ = 8τ 2/p N 2/ min(p,
∀1 ≤ i ≤ N ∀a ∈ S n-1 E | X i , a | p ≤ τ,
or φ(t) = (1/2) exp(t α ) in which case we assume that X i 's satisfy hypothesis H(φ) with parameter τ and set C φ = 8 √ C α Nτ , where C α = (8/α) Γ(4/α), Γ(•) is the Gamma function. Then, for every A, Z > 0, sup

a∈S n-1 N i=1 ( X i , a 2 -E X i , a 2 ) ≤ 2A 2 + 6 √ n Z + C φ
with probability larger than

1 -4 exp(-n) -4P(A k > A) -4 × 9 n sup a∈S n-1 P i>k ( X i , a * ) 4 1/2 > Z .
The term involving Z in the upper bound will be bounded later using general estimates in Lemma 4.4. Thus Lemma 4.2 clearly stresses the fact that in order to estimate the distance between the covariance matrix and the empirical one, it will remain to estimate A k , to get A.

Proof: Let Λ ⊂ R n be a (1/4)-net of the unit Euclidean ball in the Euclidean metric of cardinality not greater than 9 n . Let (ε i ) 1≤i≤N be i.i.d. ±1 Bernoulli random variables of parameter 1/2. By Hoeffding's inequality, for every t > 0 and every (s i ) 1≤i≤N ∈ R N ,

P (ε i ) N i=1 ε i s i ≥ t( N i=1 |s i | 2 ) 1/2 ≤ 2 exp(-t 2 /2).
Fix an arbitrary 1 ≤ k < N. For every (s i ) 1≤i≤N ∈ R N + there exists a permutation π of {1, . . . , N} such that

N i=1 ε i s i ≤ k i=1 s * i + N i=k+1 ε π(i) s * i ,
where (s * i ) i denotes a non-increasing rearrangement of (|s i |) i . Also, it is easy to check using (6) that for any a ∈ S n-1 and any I ⊂ {1, . . . , N} with |I| ≤ k, i∈I X i , a 2 ≤ A 2 k . Thus, for every a ∈ S n-1 ,

P (ε i ) N i=1 ε i X i , a 2 ≤ A 2 k + t N i=k+1 ( X i , a * ) 4 1/2 ≥ 1 -2 exp(-t 2 /2). Note that N i=1 ε i X i , a 2 = i∈E X i , a 2 -N i∈E c X i , a 2
for some set E ⊂ {1, ..., N} and we can apply a union bound argument indexed by Λ together with Lemma 4.1. We get that

P (ε i ) sup a∈S n-1 N i=1 ε i X i , a 2 ≤ 2 A 2 k + t sup a∈Λ N i=k+1 ( X i , a * ) 4 1/2 ≥ 1 -2 × 9 n exp(-t 2 /2).
Using again a union bound argument and the triangle inequality to estimate the probability that the (X i ) satisfy

sup a∈Λ N i=k+1 ( X i , a * ) 4 1/2 > Z,
and choosing t = 3 √ n (so that 2 • 9 n exp(-t 2 /2) ≤ e -n ) we get that sup

a∈S n-1 N i=1 ε i X i , a 2 ≤ 2A 2 + 6 √ n Z
with probability larger than

1 -e -n -P(A k > A) -9 n sup a∈S n-1 P N i=k+1 ( X i , a * ) 4 1/2 > Z .
Now we transfer the result from Bernoulli random variables to centered random variables (see [START_REF] Ledoux | Probability in Banach Spaces. Isoperimetry and processes[END_REF], Section 6.1). By the triangle inequality, for every s, t > 0, one has m(s) P sup

a∈S n-1 N i=1 X i , a 2 -E X i , a 2 > s + t ≤ 2P sup a∈S n-1 N i=1 ε i X i , a 2 > t where m(s) = inf a∈S n-1 P N i=1 X i , a 2 -E X i , a 2 ≤ s .
To conclude the proof it is enough to find s so that m(s) ≥ 1/2. To this end we will use a general Lemma 4.3 (below). First consider φ(t) = t p .

For a ∈ S n-1 , set Z i = | X i , a | 2 /τ 2/p and q = p/2. Then by Lemma 4.3 we have m(s) ≥ 1/2 for s = 4τ 2/p N 1/r and r = min(p/2, 2). Now consider φ(t) = (1/2) exp(t α ). Then for every a ∈ S n-1 and every i ≤ N using hypothesis H(φ) we have

E| X i , a | 4 ≤ 8τ ∞ 0 t 3 exp(-t α ) dt = 8τ α Γ 4 α := τ C α . Given a ∈ S n-1 , set Z i = | X i , a | 2 / √ τ C α . Then EZ 2 i ≤ 1.
Applying again Lemma 4.3 (with q = 2), we observe that m(s) ≥ 1/2 for s = 4 √ C α N . This completes the proof.

2

It remains to prove the following general lemma. For convenience of the argument above, we formulate this lemma using two powers q and r rather than just one. Lemma 4.3 Let q ≥ 1 and Z 1 , . . . , Z N be independent non-negative random variables satisfying

∀1 ≤ i ≤ N EZ q i ≤ 1. Let r = min(q, 2), then ∀z ≥ 4N 1/r P N i=1 Z i -EZ i ≤ z ≥ 1 2 .
Proof: By definition of r, we have for all i = 1, . . . , N, EZ r i ≤ 1. Since the Z i 's are independent, we deduce by a classical symmetrization argument that

E N i=1 Z i -EZ i ≤ 2EE (ε i ) N i=1 ε i Z i ≤ 2E N i=1 Z 2 i 1/2 ≤ 2E N i=1 Z r i 1/r since r ∈ [1, 2]. From EZ r i ≤ 1, we get that E N i=1 Z i -EZ i ≤ 2E N i=1 Z r i 1/r ≤ 2 N i=1 EZ r i 1/r ≤ 2N 1/r .
By Markov's inequality we get

P N i=1 Z i -EZ i ≥ 4N 1/r ≤ 1 2 ,
and since z ≥ 4N 1/r , this implies the required estimate.

2

The following lemma is standard (cf. Lemma 5.8 in [START_REF] Ledoux | Probability in Banach Spaces. Isoperimetry and processes[END_REF], which however contains a misprint). Lemma 4.4 Let q > 0 and let Z 1 , . . . , Z N be independent non-negative random variables satisfying

∀1 ≤ i ≤ N ∀t ≥ 1 P(Z i ≥ t) ≤ 1/t q .
Then, for every s > 1, with probability larger than 1s -k , one has

N i=k Z * i ≤        (2es) 1/q 1-q N 1/q k 1-1/q if 0 < q < 1 2esN ln eN k if q = 1 12q(es) 1/q q-1 N if q > 1.
Proof: Assume first that 0 < q ≤ 1. It is clear that

∀1 ≤ i ≤ N P(Z * i > t) ≤ N i t -iq ≤ (Ne/it q ) i ,
where we used the inequality N i ≤ (Ne/i) i . Thus if eNt -q ≤ 1, then

P(sup i≥k i 1/q Z * i > t) ≤ i≥k (Ne/t q ) i = eN t q k (1 -eNt -q ) -1 .
Therefore if eNt -q ≤ 1/2, then P(sup i≥k i 1/q Z * i > t) ≤ (2eNt -q ) k . Since the inequality is trivially true if eNt -q ≥ 1/2, it is proved for every t > 0. Therefore for q < 1 we have

N i=k Z * i ≤ t ∞ i=k i -1/q ≤ t k -1/q - k 1-1/q 1 -1/q ≤ t 1 -q k 1-1/q
with probability larger than 1 -(2eN/t q ) k . Choosing t = (2esN) 1/q , we obtain the estimate in the case 0 < q < 1.

For q = 1 we have

N i=k Z * i ≤ t N i=k i -1 ≤ t 1 k + ln(N/k) ≤ t ln(eN/k)
with probability larger than 1 -(2eN/t) k . To obtain the desire estimate choose t = 2esN. Now assume that q > 1. Set ℓ = ⌈log 2 k⌉. The same computation as before for the scale (2 i/q ) instead of (i 1/q ) gives that

P sup i≥ℓ 2 i/q Z * 2 i > t ≤ i≥ℓ Net -q 2 i ≤ 2eNt -q 2 ℓ .
Note also that

P k 1/q Z * k > t ≤ Net -q k . Thus N i=k Z * i ≤ kZ * k + ⌈log 2 N ⌉ i=ℓ 2 i Z * 2 i ≤ t k 1-1/q + (4N) 1-1/q /(2 1-1/q -1) ≤ t k 1-1/q + 2q 1 -q (4N) 1-1/q ≤ t 3q 1 -q (4N) 1-1/q
with probability larger than (Net -q ) k +(2Net -q ) k . Thus, taking t = (4esN) 1/q , we obtain

P N i=k Z * i ≤ 12q(es) 1/q q -1 N ≥ 1 -s -k .
2

We are now ready to tackle the problem of approximating the covariance matrix by the empirical covariance matrices, under hypothesis H(φ) with φ(t) = t p . As our proof works for all p > 4, we also include the case p > 8 originally solved in [START_REF] Mendelson | On singular values of matrices[END_REF] (under additional assumption on max i |X i |). For clarity, we split the result into two theorems. The case 4 < p ≤ 8 has been stated as Theorem 1.2 in the Introduction.

Before we state our result, let us remark that p > 2 is a necessary condition. Indeed, let (e i ) 1≤i≤n be an orthonormal basis of R n and let Z be a random vector such that Z = √ ne i with probability 1/n. The covariance matrix of Z is the identity I. Let A be an n × N random matrix with independent columns distributed as Z. Note that if 1 N AA ⊤ -I < 1 with some probability, then AA ⊤ is invertible with the same probability. It is known (coupon collector's problem) that N ∼ n log n is needed to have {Z i : i ≤ N} = { √ ne i : i ≤ n} with probability, say, 1/2. Thus for vector Z, the hypothesis H(φ), φ(t) = t 2 is satisfied but N ∼ n log n is needed for the covariance matrix to be well approximated by the empirical covariance matrices with probability 1/2. We also would like to mention that we don't know how sharp the power γ/p appearing in the bound below is. In particular, it is not clear if it can be improved to 1/2. Theorem 4.5 Let 4 < p ≤ 8 and φ(t) = t p . Let X 1 , . . . , X N be independent random vectors in R n satisfying hypothesis H(φ). Let ε ≤ min{1, (p -4)/4} and γ = p -4 -2ε. Then with probability larger than

1 -8e -n -2ε -p/2 max N -3/2 , n -(p/4-1)
one has

sup a∈S n-1 1 N N i=1 ( X i , a 2 -E X i , a 2 ) ≤ C 1 N max i≤N |X i | 2 + C(p, ε) n N γ/p , where C(p, ε) = (p -4) -1/2 ε -4(2+ε)/p .
and C is an absolute constant.

An immediate consequence of this theorem is the following corollary.

Corollary 4.6 Under assumptions of Theorem 4.7, assuming additionally that max i |X i | 2 ≤ Cn γ/p N 1-γ/p with high probability, we have with high probability

sup a∈S n-1 1 N N i=1 ( X i , a 2 -E X i , a 2 ) ≤ C 1 C(p, ε) n N γ/p
, where C and C 1 are absolute positive constants.

Theorem 4.7 There exists a universal positive constant C such that the following holds. Let p > 8, α ∈ (0, 2]. Let φ and C φ be either φ(t) = t p and C φ = C or φ(t) = (1/2) exp(t α ) and C φ = (C/α) 2.5/α . Let X 1 , . . . , X N be independent random vectors in R n satisfying hypothesis H(φ). In the case φ(t) = t p we also define

p 0 = 8e -n + 2 3p -8 6(p -8) p/2 N -(p-8)/8 n -p/8
and in the case φ(t) = (1/2) exp(t α ), we assume N ≥ (4/α) 8/α and define

p 0 = 8e -n + 1 (10N) 4 exp 4n α/2 (3.5 ln(2n)) 2α + N 2 2 exp((2nN) α/4 )
.

Then in both cases with probability larger than 1p 0 one has

sup a∈S n-1 1 N N i=1 ( X i , a 2 -E X i , a 2 ) ≤ C N max i≤N |X i | 2 + C φ n N .
As our argument works in all cases we prove both theorems together.

Proof of Theorems 4.5 and 4.7. We first consider the case φ = t p . Note that in this case

E | X i , a | 4 ≤ 1 + ∞ 1 P |X i | 4 > t dt ≤ 1 + ∞ 1 4s 3-p ds = p p -4 .
Thus, by Lemma 4.2 it is enough to estimate A 2 + √ n Z + p/(p -4) √ N and the corresponding probabilities. We choose k = n.

In the case φ = t p we apply Lemma 4.4 with

Z i = | X i , a | 4 , i ≤ N, q = p/4 > 1 and s = 9e. It gives P   i>n ( X i , a * ) 4 1/2 > Z   ≤ (9e) -n , for Z = 12q q -1 (es) 1/2q √ N = 12p p -4 (3e) 4/p √ N .
Now we estimate A n , using Theorem 2.1.

Case 1: 4 < p ≤ 8 (Theorem 4.5). We apply Theorem 2.1 (and the Remark following it), with σ = 2 + ε, where ε < (p -4)/4, λ = 3 and t = 3N 2/p n δ for δ = 1/2 -2/p. Then

M 1 ≤ C(p, ε) √ n (N/n) (2+ε)/p , where C 0 (p, ε) = C 1 p -4 (p-4-2ε)/p 1 ε 2(2+ε)/p and β ≤ 1 5 12 5eεN 3 + 1 4(p -4) p n δp ≤ ε -p max{N -3 , n -δp } ≤ 1/64
provided that n is large enough. Then, using δ = 1/2 -2/p, we obtain

A 2 n ≤ C max i≤N |X i | 2 + N 2/p n δ max i≤N |X i | + C 2 0 (p, ε) n (N/n) 2(2+ε)/p ≤ 2C max i≤N |X i | 2 + C 2 0 (p, ε) n (N/n) 2(2+ε)/p .
Combining all estimates and noticing that (p -4) -γ < 2, we obtain that the desired estimate holds with probability

1 -8e -n -2ε -p/2 max{N -3/2 , n -(p/4-1) }.
Case 2: p > 8 (Theorem 4.7). In this case we apply Theorem 2.1 (see also the Remark following it), with σ = p/4, λ = (p -4)/2, t = 3(nN) 

1/4 . Then M 1 ≤ C √ n(N/n)
A 2 n ≤ C max i≤N |X i | 2 + (nN) 1/4 max i≤N |X i | + √ nN ≤ 2C max i≤N |X i | 2 + √ nN .
Combining all estimates we obtain that the desired estimate holds with probability 

1 -8e -n -2 3p -8 6(p -8) p/2 N -(p-
P (|X|/C ′ α ) 4 > t ≤ 2 exp(C ′ α ) t α/4 ≤ 1 t 2 .
We apply Lemma 4.4 with

Z i = | X i , a | 4 / C ′ α , i ≤ N, q = 2 and s = 9e. It gives P   i>k ( X i , a * ) 4 1/2 > Z   ≤ (9e) -n , for Z = (C ′ α ) 1/4 6 √ 6e √ N .
To estimate A n we use Theorem 2.1 with t = (nN) 1/4 and

λ = 10 (N/n) α/4 min 1, (α ln(2N/n)) -1 . Note that max 4, 10 (N/n) α/4 (ln(2N/n)) -1 ≤ λ ≤ 10 (N/n) α/4 .
Then for absolute positive constants C, C ′ ,

M 1 ≤ √ n (Cλ) 1/α ln 2N n + 1 α 1/α ≤ C ′ α 1/α (nN) 1/4 and β ≤ 1 (10N) 4 exp 4n α/2 (3.5 ln(2n)) 2α + N 2 2 exp((2nN) α/4 ) ≤ 1/64, provided that N ≥ (4/α) 8/α .
Thus with probability at least 1 -√ β we have

A 2 n ≤ C ′′ max i≤N |X i | 2 + C ′′′ α 2/α √ nN ,
where C ′′ and C ′′′ are absolute positive constants. This together with the estimate for Z completes the proof (note that C(α) ≤ C(2/α) 5/α ). 2

5 The proof of Theorem 2.1

In this section we prove the main technical result of this paper, Theorem 2.1, which establishes upper bounds for norms of submatrices of random matrices with independent columns. Recall that for 1 ≤ k ≤ N the parameters A k and B k are defined by (6).

Bilinear forms of independent vectors

Let X 1 ,... X N be independent random vectors and a ∈ R N . Given disjoint sets T, S ⊂ {1, ..., N} we let

Q(a, T, S) = i∈T a i X i , j∈S a j X j , (12) 
with the convention that i∈∅ a i X i = 0.

The following two lemmas are in the spirit of Lemma 2.3 in [START_REF] Mendelson | On singular values of matrices[END_REF]. Recall that (s * i ) i denotes a non-increasing rearrangement of (|s i |) i . 

V i = a i X i , j∈I c a j X j for i ∈ I, W j = i∈I a i X i , a j X j for j ∈ I c .
Proof. Let E ⊂ {1, ..., N} be such that supp(a) ⊂ E and |E| = k. Everything is clear when k = 0 or 1, because then Q(a, I, I c ) = 0. Thus we may assume that k ≥ 2. Let F 1 = E ∩ I and F 2 = E ∩ I c . First assume that

s := |F 1 | ≥ k/2. Note that (1 -γ)k ≤ k/2 ≤ s, so that ℓ ≤ s. Let J ⊂ F 1 be a set with |J| = ℓ such that the set {|V j | : j ∈ J} consists of ℓ smallest values among the values {|V i | : i ∈ F 1 }. (That is, J ⊂ F 1 is such that |J| = ℓ
and for all j ∈ J and i ∈ F 1 \ J we have

|V i | ≥ |V j |.) Now we let F1 = F 1 \ J and F2 = F 2 .
Define the vector ā ∈ R N by the conditions

ā| F1 = a | F1 , ā| J = 0, ā| F2 = a | F2 .
Thus ā differs from a only on coordinates from J; in particular its support has cardinality less than or equal to |supp(a

)| -|J| = s -ℓ ≤ k -ℓ = γk. Moreover, Q(a, I, I c ) = i∈F 1 a i X i , j∈F 2 a j X j ≤ i∈J a i X i , j∈F 2 a j X j + i∈F 1 \J a i X i , j∈F 2 a j X j = i∈J a i X i , j∈F 2 a j X j + Q(ā, I, I c ).
Then we have

Q(a, I, I c ) ≤ Q(ā, I, I c ) + i∈J a i X i , j∈F 2 a j X j ≤ Q(ā, I, I c ) + s i=s-ℓ+1 V * i ≤ Q(ā, I, I c ) + m+ℓ-1 i=m V * i ,
where m = ⌈(γ -1/2)k⌉ and using that s

-ℓ + 1 ≥ k/2 -⌈(1 -γ)k⌉ + 1 > (γ -1/2)k. If |F 1 | < k/2 then |F 2 | ≥ k/2
and we proceed similarly interchanging the role of F 1 and F 2 and obtaining

Q(a, I, I c ) ≤ Q(ā, I, I c ) + m+ℓ-1 i=m W * i . 2 
Lemma 5.2 Let τ ≥ 1 and X 1 , • • • , X N be independent random vectors in R n satisfying hypothesis H(φ) for some function φ ∈ M with parameter τ . Let a ∈ R N with |a| = 1. In the notation of Lemma 5.1, for every t > 0 one has

P m+ℓ-1 i=m U * i > tA k ≤ (2τ ) k φ t √ m ℓ -m ≤ (2τ ) k φ t √ γ 0 k (1 -γ)k + 1 -γ 0 k , where {U i } i denotes either {V i } i or {W i } i , and γ 0 = γ -1/2.
Remarks. 1. Taking φ(t) = t p for some p > 0, we obtain that if

P (| X i , a | ≥ t) ≤ t -p (13) 
then

P m+ℓ-1 i=m U * i > tA k ≤ (2τ ) k t √ m ℓ -mp . (14) 
Note that the condition ( 13) is satisfied if

sup i≤N sup a∈S n-1 E| X i , a | p ≤ τ.
2. Taking φ = (1/2) exp(x α ) for some α > 0, we obtain that if

P (| X i , a | ≥ t) ≤ 2 exp(-t α ) (15) 
then

P m+ℓ-1 i=m U * i > tA k ≤ (2τ ) k+m exp -m t √ m ℓ α . (16) 
Note that the condition ( 15) is satisfied if

sup i≤N sup a∈S n-1 E exp (| X i , a | α ) ≤ 2τ.
Proof. Without loss of generality assume that U i = V i for every i. Then

m+ℓ-1 i=m V * i ≤ ℓV * m .
Let F 1 = supp(a) ∩ I and F 2 = supp(a) ∩ I c . Note that V * m > s means that there exists a set F ⊂ F 1 of cardinality m such that V i > s for every i ∈ F (if cardinality of F 1 is smaller than m, the estimate for probability is trivial). Since |F 1 | ≤ k, we obtain

P m+ℓ-1 i=m V * i > tA k ≤ P (ℓV * m > tA k ) ≤ k m max F ⊂F 1 |F |=m P ∀i ∈ F : |V i | > tA k ℓ .
Denote Z := j∈F 2 a j X j . Since |a| ≤ 1 then |Z| ≤ A k , and note that the X i 's, i ∈ F 1 are independent of Z. Thus, conditioning on Z we obtain

P m+ℓ-1 i=m V * i > tA k ≤ 2 k max F ⊂F 1 |F |=m i∈F P |a i || X i , Z | > tA k ℓ ≤ (2τ ) k max F ⊂F 1 |F |=m i∈F φ t ℓ|a i | -1
. Now we show that for every s > 0,

i∈F φ s |a i | -1 ≤ φ s √ m -m ,
Indeed, this estimate is equivalent to

1 m i∈F ln φ s |a i | ≥ ln φ s √ m ,
which holds by convexity of ln φ(1/ √ x), the facts that |a| ≤ 1 and |F | = m, and since φ is increasing. Taking s = t/ℓ, we obtain

P m+ℓ-1 i=m V * i > tA k ≤ (2τ ) k φ t √ m/ℓ -m . Finally note that m = ⌈(γ -1/2)k⌉ ≥ γ 0 k and ℓ = ⌈(1 -γ)k⌉ ≤ (1 -γ)k + 1.
Since φ is increasing, we obtain the last inequality, completing the proof. 2

Estimates for off-diagonal of bilinear forms

For 1 ≤ k ≤ N and I ⊂ {1, ..., N} we define Q k (I) by

Q k (I) = sup E⊂{1,...,N} |E|≤k sup a∈B E 2 Q(a, E ∩ I, E ∩ I c ). (17) 
Lemmas 5.1, 5.2 and 4.1 imply the following proposition.

Proposition 5.3 Let τ ≥ 1 and X 1 , • • • , X N be independent random vectors in R n satisfying hypothesis H(φ) with parameter τ for some function φ ∈ M. Let ε ∈ (0, 1/2), 2 ≤ k ≤ N, I ⊂ {1, ..., N}, γ ∈ (1/2, 1), and γ 0 = γ -1/2.
Then for every t > 0 one has

P Q k (I) > Q [γk] (I) + tA k 1 -2ε ≤ exp k ln 5τ eN kε -γ 0 ln φ t √ γ 0 k (1 -γ)k + 1 .
Moreover, letting M = max i |X i | one has, for all ℓ > 1 and t > 0,

P (Q ℓ (I) > tM) ≤ N 2 τ 4φ(4t/ℓ) . Proof. For every E ⊂ 1, ..., N with |E| = k let N E be an ε-net in B E 2 of cardinality at most (2.5/ε) k . Let N denote the union of N E 's. Lemma 4.1 yields Q k (I) ≤ (1 -2ε) -1 sup E⊂{1,...,N} |E|≤k sup a∈N E Q(a, E ∩ I, E ∩ I c ).
Therefore, applying Lemmas 5.1 and 5.2, we observe that the event

Q k (I) ≤ (1 -2ε) -1   sup E⊂{1,...,N} |E|≤γk sup a∈N Q(a, E ∩ I, E ∩ I c ) + tA k  
occurs with probability at least

1 - N k 2.5 ε k (2τ ) k φ t √ γ 0 k (1 -γ)k + 1 -γ 0 k
This implies the first estimate. Now we prove the "moreover" part. For every E ⊂ {1, . . . , N} of cardinality ℓ denote

F 1 = E ∩ I, F 2 = E ∩ I c , m = |F 1 | (so |F 2 | = ℓ -m).
We also denote

M 0 := max i∈I max j∈I c | X i , X j | and M 1 := max j∈I c |X j |
Then for any a ∈ B E 2 we have

i∈F 1 a i X i , j∈F 2 a j X j ≤ i∈F 1 a i j∈F 2 a j M 0 ≤ m(ℓ -m) i∈F 1 a 2 i 1/2 j∈F 2 a 2 j 1/2 M 0 ≤ ℓ 2 M 0 2 .
Therefore, by the union bound,

P (Q ℓ (I) > tM 1 ) ≤ P (M 0 > 4tM 1 /ℓ) ≤ i∈I j∈I c P (| X i , X j | > 4tM 1 /ℓ) .
Finally, using the fact that X i is independent of X j for i = j, |X j | ≤ M 1 for every j ∈ I c , and using the tail behavior of variables X i , z , we obtain

P (Q ℓ (I) > tM) ≤ P (Q ℓ (I) > tM 1 ) ≤ |I| |I c | φ(4t/ℓ) ≤ N 2 τ 4φ(4t/ℓ) . 2 Proposition 5.4 Let 1 ≤ k ≤ N. Let τ ≥ 1 and X 1 , • • • , X N be independent random vectors in R n satisfying hypothesis H(φ) with parameter τ for some function φ ∈ M. Let t > 0, λ ≥ 1. Case 1. Let p > 4 and φ(x) = x p . Let σ ∈ (2, p/2). Then Q k (I) ≤ e 4 t max i≤N |X i | + C 2 (σ, λ, p) √ k 5τ eN k σ/p A k
occurs with probability at least

1 - 2(σ + λ) 5τ eN(σ -2) λ 1 2λ -1 - N 2 τ (σ + λ) p 4(2t(σ -2)) p (18) 
and

C 2 (σ, λ, p) = 8 σ + λ 1 + λ/2 2p p -2σ 1+2σ/p 2(σ + λ) σ -2 2σ/p . Case 2.
Assume that φ(x) = (1/2) exp(x α ) for some α > 0. Then for every t > 0,

Q k (I) ≤ C 1/α t max i≤N |X i | + (Cλ) 1/α √ k ln 20τ eN k 1/α + 1 α 1/α A k with probability at least 1 - 1 (10τ N) λ exp - λk α/2 (3.5 ln(2k)) 2α - N 2 τ 2 exp((2t) α ) .
Proof. Let γ ∈ (1/2, 1) to be chosen later. For integers s ≥ 0 denote

k 0 = k, k s+1 = [γk s ].
Clearly, the sequence is strictly decreasing whenever k s ≥ 1 and k s ≤ γ s k. Assume that k ≥ 1/(1γ). Define m to be the largest integer m ≥ 1 such that k m-1 ≥ 1/(1γ). Note that γk m-1 ≥ 1. Therefore

1 ≤ k m < 1 1 -γ ≤ k m-1 . (19) 
By Proposition 5.3 we observe that for every positive t s and ε s ∈ (0, 1/2), 0 ≤ s ≤ m, the event

Q k (I) ≤ Q km (I) + m-1 s=0 t s A ks m-1 s=0 (1 -2ε s ) -1
occurs with probability at least

1 -2 m-1 s=0 exp k s ln 5τ eN k s ε s -γ 0 ln φ t s √ γ 0 k (1 -γ)k + 1 . ( 20 
)
Let ε > 0 and a positive decreasing sequence (ε s ) s be chosen later and set

t s = (1 -γ)k s + 1 √ γ 0 k s φ -1 5τ eN k s ε s (1+ε)/γ 0 ,
where φ -1 (s) = min{t ≥ 0 : φ(t) ≥ s}.

We start estimating Q k (I). Since ln(1x) ≥ -2x on (0, 3/4], we observe that for ε s < 3/8,

m-1 s=0 ln(1 -2ε s ) ≥ m-1 s=0 -4ε s so that m-1 s=0 (1 -2ε s ) -1 ≤ exp 4 m-1 s=0 ε s Note that m-1 s=0 t s A ks ≤ A k m-1 s=0 t s .
Thus by [START_REF] Lecué | Sparse recovery under weak moment assumptions[END_REF] and by our choice of t s ,

Q k (I) ≤ exp 4 m-1 s=0 ε s Q km (I) + A k m-1 s=0 t s (21) 
with probability at least

1 -2 m-1 s=0 exp -k s ε ln 5τ eN k s ε s ≥ 1 -2 exp -k m-1 ε ln 5τ eN k m-1 m-1 s=0 ε ksε s .
Since k m-1 ≥ 1/(1γ), this probability is larger than

1 -2 exp - ε 1 -γ ln (5τ e(1 -γ)N) m-1 s=0 ε ksε s . ( 22 
)
Thus it is enough to choose appropriately ε s and to estimate m-1 s=0 t s , Q km (I) and m-1 s=0 ε ksε s . We distinguish two cases for φ. Case 1: φ(x) = x p .

In this case we choose ε s = (s + 2) -2 so that

m-1 s=0 ε ksε s = m-1 s=0 (s + 2) -2ksε ≤ m-1 s=0 (s + 2) -2k m-1 ε ≤ 1 2k m-1 ε -1 . Choose ε = λ(1 -γ). Since λ ≥ 1 and k m-1 ≥ 1/(1 -γ), we have 2k m-1 ε ≥ 2ε/(1 -γ) = 2λ and m-1 s=0 (s + 2) -2ksε ≤ 1 2λ -1 .
Using again k m-1 ≥ (1γ) -1 , we conclude that the probability in ( 22) is larger than

1 -(5τ eN(1 -γ)) -λ 2 2λ -1 . ( 23 
)
Now we estimate m-1 s=0 t s . We have

t s = (1 -γ)k s + 1 √ γ 0 k s φ -1 5τ eN k s ε s (1+ε)/γ 0 = (1 -γ)k s + 1 √ γ 0 k s 5τ eN k s ε s (1+ε)/γ 0 p . Recall that γ > 1/2, k m-1 ≥ 1/(1 -γ), so that (1 -γ)k s + 1 ≤ 2(1 -γ)k s for s ≤ m -1. Thus t s ≤ 2(1 -γ) √ k s √ γ 0 5τ eN k s ε s (1+ε)/γ 0 p . Let b = (1 + ε)/γ 0 p. Assume that b < 1/2. Since k s ≤ γ s k, we have m-1 s=0 t s ≤ 2(1 -γ)k 1/2-b (5τ eN) b √ γ 0 m-1 s=0 (s + 2) δb γ s(1/2-b) . ( 24 
)
Since the function h(z) = z 2b γ z(1/2-b) on R + is first increasing and then decreasing, we get

m-1 s=0 (s + 2) 2b γ s(1/2-b) = γ -2(1/2-b) m+1 s=2 h(s) ≤ γ -1 sup z>0 h(z) + ∞ 0 h(z) dz ≤ 2 2b (1/2 -b)e ln(1/γ) 2b + Γ(1 + 2b) ((1/2 -b) ln(1/γ)) 1+2b .
As 2b ≤ 1, Γ(1 + 2b) ≤ 1. Using also that ln(1/γ) ≥ 1γ, we observe that the previous quantity does not exceed

4 ((1/2 -b)(1 -γ)) 1+2b .
Coming back to [START_REF] Mendelson | On generic chaining and the smallest singular value of random matrices with heavy tails[END_REF], we get

m-1 s=0 t s ≤ 8k 1/2-b (5τ eN) b (1/2 -b) 1+2b (1 -γ) 2b γ -1/2 . ( 25 
)
To conclude this computation, we choose the parameter

γ = 1 + λ + σ/2 σ + λ .
Note that γ ∈ (1/2, 1) as required, since λ ≥ 1 and 2 < σ. With such a choice of γ, we have b = σ/p < 1/2, since σ < p/2. Thus from ( 25) and ( 23)

m-1 s=0 t s ≤ 8 √ k 5τ eN k σ/p p p/2 -σ 1+2σ/p σ + λ σ/2 -1 2σ/p σ + λ 1 + λ/2
holds with probability larger than

1 -5τ eN σ/2 -1 σ + λ -λ 2 2λ -1 .
Finally, to estimate Q km , we note that

k m < 1 1 -γ = σ + λ σ/2 -1 ,
and apply "moreover" part of Proposition 5.3 (with ℓ = k m ). Note that at the beginning of the proof we assumed that k ≥ 1/(1γ). In the case k < 1/(1γ) the result trivially holds by the "moreover" part of Proposition 5.3 applied with ℓ = k.

Case 2: φ(x) = (1/2) exp(x α ).

In this case we choose γ = 2/3, so that γ 0 = 1/6. As before we assume that k ≥ 1/(1γ) = 3 (otherwise Q k (I) ≤ Q 2 (I)). By [START_REF] Koltchinskii | Bounding the smallest singular value of a random matrix without concentration[END_REF] we have k m < 3, hence, by ( 21)

Q k (I) ≤ exp 4 m-1 s=0 ε s Q 2 (I) + A k m-1 s=0 t s .
We define k s by

ε s = 1 2 exp - k k s α/2 1 (s + 2) 2α .
Observe that since k s ≤ γ s k and γ = 2/3, one has

ε s ≤ 1 2 exp - 3 2 αs/2 1 (s + 2) 2α ≤ 1 2e (s + 2) 2α 2 3 sα/2 , which implies m-1 s=0 ε s ≤ C α , (26) 
for a positive absolute constant C. We have

t s = √ 6 k s /3 + 1 √ k s φ -1 5τ eN k s ε s 6(1+ε) = √ 6 k s /3 + 1 √ k s ln 2 5τ eN k s ε s 6(1+ε) 1/α
.

By [START_REF] Koltchinskii | Bounding the smallest singular value of a random matrix without concentration[END_REF] we have

k m < 3 ≤ k m-1 , hence, t s ≤ √ 6 2 3 k s (6 (1 + ε)) 1/α ln 20τ eN k s ε s + ln 1 2ε s 1/α ≤ √ 6 2 3 2 1/α k s (6 (1 + ε)) 1/α ln 20τ eN k s ε s 1/α + ln 1 2ε s 1/α
.

By the choice of ε s we obtain

m-1 s=0 k s ln 1 2ε s 1/α ≤ √ k m-1 s=0 (s + 2) -2 ≤ 3 √ k. ( 27 
) Since 3 -s k ≤ k s ≤ (2/3) s k, we observe m-1 s=0 k s ln 20τ eN k s ε s 1/α ≤ √ k m-1 s=0 2 3 s/2 ln 20τ eN3 s k 1/α ≤ √ k m-1 s=0 2 3 s/2 2 1/α ln 20τ eN k 1/α + m-1 s=0 2 3 s/2 (2s ln 3) 1/α ≤ C 1/α 1 √ k ln 20τ eN k 1/α + Γ(1 + 1/α) ,
where C 1 is an absolute positive constant and Γ is the Gamma function. This together with [START_REF] Paouris | Concentration of mass on convex bodies[END_REF] implies that

m-1 s=0 t s ≤ (C 2 (1 + ε)) 1/α √ k ln 20τ eN k 1/α + Γ(1 + 1/α) , (28) 
where C 2 is an absolute positive constant. Now we estimate the probability. By the choice of k s we have

m-1 s=0 ε εks s = m-1 s=0 exp (-εk s ln(1/ε s )) = m-1 s=0 exp -εk s ln 2 + (k/k s ) α/2 (s + 2) -2α ≤ m-1 s=0 exp -εk 1-α/2 s k α/2 (s + 2) -2α . Since k s ≥ k m-1 ≥ 1/(1 -γ) and s + 2 ≤ m + 1 for every s ≤ m -1, we get that m-1 s=0 ε εks s ≤ m exp - ε (1 -γ) 1-α/2 k α/2 (m + 1) 2α . Since m is chosen such that 1/(1 -γ) ≤ k m-1 ≤ (2/3) m-1 k, we observe that m -1 ≤ ln(k(1 -γ)) ln(3/2) . Therefore, m-1 s=0 ε εks s ≤ 1 + ln(k/3) ln(3/2) exp - ε (1/3) 1-α/2 k α/2 (2.5 ln k) 2α ≤ 2 exp -3ε k α/2 3 α/2 (2.5 ln k) 2α , which shows that probability in (22) is at least 1 - 4 (15τ eN) 3ε exp -3ε k α/2 (3.5 ln k) 2α .
Finally, to estimate Q 2 (I) we apply the "moreover" part of Proposition 5.3 (with ℓ = 2). Choosing ε = λ/3 and combining estimates [START_REF] Oliveira | The lower tail of random quadratic forms, with applications to ordinary least squares and restricted eigenvalue properties[END_REF], and (28) with the estimate for Q 2 (I) we obtain the desired result.
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Proof of Theorem 2.1. From Lemma 5.6 we have

N i=1 a i X i 2 - N i=1 a 2 i |X i | 2 = 2 2-N I⊂{1,2,...,N } i∈I a i X i , j∈I c a j X j .
We deduce that

B 2 k ≤ 2 2-N sup a∈U k I⊂{1,2,...,N } Q(a, I, I c ) ≤ 2 2-N I⊂{1,2,...,N } sup a∈U k Q(a, I, I c ) ≤ 2 2-N I⊂{1,2,...,N } Q k (I).
Let I ⊂ {1, . . . , N} be fixed. Proposition 5.4 implies

P (Q k (I) ≤ M 0 ) ≥ 1 -β, (29) 
where

M 0 := C φ t max i≤N |X i | + (M 1 /4) A k .
Consider two probability spaces {I : I ⊂ {1, ..., N}} with the normalized counting measure µ and our initial probability space (Ω, P), on which X i 's are defined. By [START_REF]On the subspaces of L p (p > 2) spanned by sequences of independent random variables[END_REF] we observe that the µ ⊗ P probability of the event V := {Q k (I) ≤ M 0 } is at least 1β. Then Lemma 5.5 implies that there exists W ⊂ Ω such that P(W ) ≥ 1 -√ β and such that for every ω ∈ W one has µ({Q k (I)

≤ M 0 }) ≥ 1 - √ β. Since Q k (I) ≤ A 2 k , we obtain that for every ω ∈ W , B 2 k ≤ 4M 0 + 4 βA 2 k . Since A 2 k ≤ max i≤N |X i | 2 + B 2 k , we have A 2 k ≤ 4M 0 + max i≤N |X i | 2 1 -4 √ β and B 2 k ≤ 4(M 0 + √ β max i≤N |X i | 2 ) 1 -4 √ β . (30) 
Therefore

A 2 k ≤ (1 -4 β) -1 max i≤N |X i | 2 + 4C φ t max i≤N |X i | + M 1 A k . Using √ u 2 + v 2 ≤ u + v, and denoting γ = (1 -4 √ β) -1 (recall M = max i≤N |X i |) we obtain A k ≤ √ γ M + 2 C φ γ t M + γ M 1 ,
which proves the estimate for A k . Plugging this into (30), we also observe

B 2 k ≤ γ 4 β M 2 + 4C φ tM + γM 2 1 + √ γ M M 1 + 2 C φ γ tM M 1 ≤ γ 4 β M 2 + 8C φ tM + 2γM 2 1 + √ γ M M 1 .
This completes the proof. 2

Optimality

In this section we discuss optimality of estimates in Theorems 2.1 and 3.1. In Propositions 6.5, 6.6 and 6.7 we will prove results justifying remarks on optimality following these theorems.

To obtain the lower estimates on A m we use the following observation.

Lemma 6.1 Let A = (X ij ) i≤n,j≤N be an n × N matrix with i.i.d. entries. Then

P(A m ≥ t) ≥ 1 2 whenever P |X 11 | ≥ t √ m ≥ m + 1 N . (31) 
Proof. For every i ≤ N, let X j ∈ R n be the j-th columns of A. For m ≤ N we have

A m = sup a∈Um N j=1 a j X j ≥ sup a∈Um N j=1 a j X 1j ≥ sup a∈Um a j ∈{±1/ √ m,0} N j=1 a j X 1j = 1 √ m m j=1 X * 1j ≥ √ m X * 1m .
Therefore, using independence, we have

P (A m ≥ t) ≥ P X * 1m ≥ t √ m = P(Y ≥ m),
where Y is a real random variable with a binomial distribution of size N and parameter v = P(|X 11 | ≥ t √ m ). It is well known that the median of Y , med(Y ) satisfies ⌊Nv⌋ ≤ med (Y ) ≤ ⌈Nv⌉.

Thus P(A m ≥ t) ≥ 1 2 whenever m ≤ ⌊Nv⌋. This implies the result. 2

To evaluate RIP, we will use the following simple observation. Lemma 6.2 Let n ≤ N and m ≤ N. Let A be an n × N random matrix satisfying

P(A m ≥ t √ m) ≥ 1 2 .
Assume also that A satisfies RIP m (δ) for some δ < 1 with probability greater than 1/2. Then mt 2 ≤ 2n.

Proof. As A satisfies RIP m (δ) for some δ < 1 with probability greater than 1/2, then clearly

A 2 m = sup a∈Um | a i X i | 2 ≤ 2n
with probability greater than 1/2. Therefore, with positive probability one has

t √ m ≤ A m ≤ √ 2n,
which implies the result. 2

In order to show that a matrix with i.i.d. random variables satisfies condition H(φ) with φ(t) = t p we need the Rosenthal's inequality ( [START_REF]On the subspaces of L p (p > 2) spanned by sequences of independent random variables[END_REF], see also [START_REF] Johnson | Best constants in moment inequalities for linear combinations of independent and exchangeable random variables[END_REF]). As usual, by • q for a random variable ξ we mean its L q -norm and for an a ∈ R n its ℓ q -norm, that is ξ q = (E|ξ| q ) 1/q and a q = n i=1

|a i | q 1/q .
Note that originally the Rosenthal inequality was proved for symmetric random variables, but using standard symmetrization argument (i.e., passing from random variables ξ i 's to (ξ iξ ′ i )'s, where (ξ ′ i )'s have the same distribution and are independent), one can pass to centered random variables. Lemma 6.3 Let q > 2 and a ∈ R n . Let ξ 1 , ..., ξ n be i.i.d. centered random variables with finite q-th moment. Then there exists a positive absolute constant C such that

1 2 M q ≤ n i=1 a i ξ i q ≤ C q ln q M q ( 32 
)
where M q := max { a 2 ξ 1 2 , a q ξ 1 q }.

The following is an almost immediate corollary of Rosenthal's inequality. It should be compared with Proposition 1.3 of [START_REF] Srivastava | Covariance estimation for distributions with 2 + ε moments[END_REF]. Corollary 6.4 Let p > 4. Let ξ be a random variable of variance one and with a finite p-th moment. Let ξ ij , i ≤ n, j ≤ N be i.i.d. random variables distributed as ξ. Then for every t > 0, As is mentioned in remarks on optimality following Theorem 2.1 the next proposition gives a lower bound for A m to be compared with Case 1 of Theorem 2.1. Proposition 6.5 Let p > 2, 1 ≤ m ≤ N. There exists a sequence of independent random vectors

P
X 1 , • • • , X N in R n satisfying ∀1 ≤ i ≤ N ∀a ∈ S n-1 E| X i , a | p ≤ 1 ( 33 
)
and such that

P A m ≥ Cp ln p √ m N m 1/p ln 2N m -1/p ≥ 1 2 ,
where C is an absolute positive constant.

Proof. Let λ ≥ 1 to be set later and let us put Finally, to satisfy condition [START_REF] Tikhomirov | The smallest singular value of random rectangular matrices, with no moment assumptions on entries[END_REF], we pass from matrix A to A ′ = A/c p = (X ij /c p ) ij , where c p ≤ Cp/ ln p is a constant in Rosenthal's inequality [START_REF] Szarek | Condition numbers of random matrices[END_REF]. By Rosenthal's inequality, the sequence of columns of A ′ satisfies the condition [START_REF] Tikhomirov | The smallest singular value of random rectangular matrices, with no moment assumptions on entries[END_REF].

f p (x) =
2

The next proposition gives an upper bound on the size of sparsity m in order to satisfy RIP under condition of Case 1 of Theorem 3.1 (see Remark 3 following this theorem). Now we estimate A m for the matrix A, whose columns are (X ij ) i , j ≤ N. Since, for s ≥ 1, P (|ξ| > s) = s -q , by [START_REF] Srivastava | Covariance estimation for distributions with 2 + ε moments[END_REF], we obtain that P(A m ≥ t) ≥ 1 2 provided that t ≤ √ m q -2 q N m + 1

1/q
. This means

P A m ≥ √ m q -2 q N m + 1 1/q ≥ 1 2 ,
and we complete the proof applying Lemma 6.2. 2

The next proposition shows the optimality (up to absolute constants) of the sparsity parameter in Case 2 of Theorem 3.1 (see Remark 4 following this theorem) as well as optimality of bounds for A m in Case 2 of Theorem 2.1 (see remarks on optimality following this theorem). Proposition 6.7 There exist absolute positive constants c, C such that the following holds. Let α ∈ [1, 2], 1 ≤ m ≤ N/2 and n satisfies N ≤ exp(cn α/2 ). There exists an n × N matrix A, whose columns X 1 , ..., X N are independent random vectors satisfying Let X ij , i ≤ n, j ≤ N be i.i.d. copies of ξ/ √ a, A = (X ij ) ij and X j 's be its columns. Applying Lemma 3.4 from [START_REF] Adamczak | Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling[END_REF] (see also Theorem 1.2.8 in [START_REF] Chafaï | Interactions between compressed sensing random matrices and high dimensional geometry[END_REF]) we observe that X i 's satisfy conditions (36) and (37). By [START_REF] Srivastava | Covariance estimation for distributions with 2 + ε moments[END_REF] 

∀1 ≤ i ≤ N ∀a ∈ S n-1 E exp (| X i , a | α ) ≤ C ( 

2 and S n- 1

 21 the standard unit Euclidean ball and the unit sphere in R n and by | • | and •, • the corresponding Euclidean norm and inner product. Given a set E ⊂ {1, ..., N}, |E| denotes its cardinality and B E 2 denotes the unit Euclidean ball in R E , with the convention B ∅ 2 = {0}.

Lemma 4 . 1 m 2 | 2 | 2 |

 41222 Let m ≥ 1 be an integer and T be an m × m matrix. Let ε ∈ (0, 1/2) and N ⊂ B m 2 be an ε-net of B m 2 (in the Euclidean metric). Thensup x∈B T x, x | ≤ (1 -2ε) -1 sup y∈N | T y, y |.Proof. Let S = T + T * . For any x, y ∈ R m , Sx, x = Sy, y + Sx, xy + S(xy), y . Therefore | Sx, x | ≤ | Sy, y | + 2|x -y| S . Since S is symmetric, we have S = sup x∈B m Sx, x |. Thus, if |x -y| ≤ ε, then S ≤ sup y∈N | Sy, y | + 2ε S and sup x∈B m Sx, x | ≤ (1 -2ε) -1 sup y∈N | Sy, y |.

Lemma 5 . 1 ,

 51 Let X 1 ,... X N be independent random vectors in R n . Let γ ∈ (1/2, 1), I ⊂ {1, ..., N}, and a ∈ R N . Let k ≥ |supp(a)|. Then there exists ā ∈ R N such that supp(ā) ⊂ supp (a), |supp(ā)| ≤ γk, |ā| ≤ |a|, and Q(a, I, I c ) ≤ Q(ā, I, I c ) + max where ℓ = ⌈(1γ)k⌉, m = ⌈(γ -1/2)k⌉, and

p 2 (.

 2 1-λ -p )|x| p+1 if 1 ≤ |x| ≤ λ 0 otherwise.We have f p (x) dx = 1 anda p p := |x| p f p (x) dx = p ln λ 1λ -p .Consider the random variable ξ(ω) = ω with respect to the density f p and let (X ij ) be i.i.d. copies of ξ/a p . Clearly,E|X 11 | p = 1. Since, for s ∈ [1, λ] P (|ξ| > s) = 1 1λ -p 1 s p -1 λ p ,a short computation using[START_REF] Srivastava | Covariance estimation for distributions with 2 + ε moments[END_REF] shows that P(A m ≥ t) ≥ 1 2 provided that t ≤ 1λ -p p ln λ 1/p √ m N (m + 1)(1λ -p ) + Nλ -pChoosing λ from λ p -1 = N/(m + 1), we obtain P(A m ≥ t)

  8)/8 n -p/8 .

	with C(α) from Lemma 4.2, and the corresponding probabilities. A direct
	calculations show that in this case we have for C ′ α = (4/α) 1/α and t > 1,
	Case 3: φ(t) = (1/2) exp(t α ) (Theorem 4.7). Lemma 4.2. It implies that it is enough to estimate A 2 + As in Case 2 we apply √ n Z + C(α)N,

  max E|ξ| p N n p/4 ,where C is a positive constant.Proof. Let ξ 1 , ..., ξ n be i.i.d. random variables distributed as ξ. We apply Rosenthal's inequality to random variables (ξ 2 i -1) with q = p/2 and a = (1, 1, ..., 1). Then

				j≤N	1 n	n i=1	ξ 2 ij -1 > t ≤	t ln p Cp	p/2
	n i=1	(ξ 2 i -1)	p/2	≤ C p	√	n ξ 2 -1 p/2 ≤ C p	√	n ξ 2	p/2 + 1 ≤ 2C p	√	n ξ 2
		P	1 n	n i=1	ξ 2 i -1 > t ≤	E n i=1 |ξ 2 i -1| p/2 (tn) p/2	≤	(2C p ) p/2 ξ p

p , where C p = Cp/ ln p for an absolute positive constant C. Using Chebyshev's inequality we observe p t p/2 n p/4 .

The result follows by the union bound.

2

  Additionally, if n ≤ N and if A satisfies RIP m (δ) for some δ < 1 with probability greater than 1/2, then Proof. We consider a symmetric random variable ξ with the distribution defined by P (|ξ| > t) = exp(-t α ). It is easy to check that

	and			a := Eξ 2 = Γ		2 α	+ 1 ∈ [1, 2].
											36)
	and	P max i≤N	|X i | 2 n	-1 ≥	√	2 -1 2	≤ 2 exp(-cn α/2 ),	(37)
	and such that	P A m ≥	m 2	ln	N m + 1	1/α	≥	1 2	.	(38)
				m ln	N m + 1		2/α	≤ 4n.
						E exp(|ξ| α /2) = 2

  we observe thatP(A m ≥ t) ≥ 1 2 provided that

	P |ξ| ≥	√ a t √ m	= exp -	√	at/	√	m	α ≥	m + 1 N	.
	Thus it is enough to take								
		t ≤	m a	ln	m + 1 N	1/α		

.

This proves the estimate (38).

Finally, the "additionally" part follows by Lemma 6.2. 2
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Estimating A k and B k

We are now ready to pass to the proof of Theorem 2.1. To prove the theorem we need two simple lemmas. Lemma 5.5 Let β ∈ (0, 1). Let P 1 and P 2 be probability measures on Ω 1 and Ω 2 respectively and let V ⊂ Ω 1 ⊗ Ω 2 be such that

Then there exists W ⊂ Ω 2 such that

Proof. Fix some δ ∈ (0, 1). Let

Clearly,

The following lemma is obvious.

x i , x j . Proposition 6.6 Let q > p > 2, n ≤ N and m ≤ N. There exist an absolute positive constant C, an n × N matrix A, whose columns X 1 , ..., X N are independent random vectors satisfying

and for every t ∈ (0, 1),

provided that

Assume that A satisfies RIP m (δ) for some δ < 1 with probability greater than

Proof. Consider the density

We have f (x) dx = 1,

Consider the random variable ξ(ω) = ω with respect to the density f and let (X ij ) ij be i.i.d. copies of ξ/a 2 . Clearly, E|X 11 | 2 = 1 and E|X 11 | p = q qp q -2 q p/2

. Then Rosenthal's inequality [START_REF] Szarek | Condition numbers of random matrices[END_REF] implies the condition (34) and Corollary 6.4 implies [START_REF] Yaskov | Lower bounds on the smallest eigenvalue of a sample covariance matrix[END_REF].