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Abstract We consider a multivariable regression model under shape constraints
(monotonicity, convexity, positivity,...) built as a linear combination of product of
functions of a single variable. For each variable, the functions form a Chebyshev
system. We develop an iterative procedure, where at each step the initial shape
requirement is approximated by a set of linear constraints. The main result of
this paper is that this procedure is shown to converge to the optimal solution in
the least square sense. The theory is first established in the single variable case
and then extended to the multivariable framework by means of tensor products.
Numerical studies and a real industrial example with a multivariable polynomial
regression subject to shape constraints of monotony illustrate the performance of
the proposed method.

Keywords monotony · quadratic programming · Chebyshev system · simplexes

1 Introduction

The focus in this article is on multivariable parametric regression under shape
constraints on bounded intervals of sets of R in the case of a single variable or on a
product of V intervals with V variables. Shape constraints refer to monotonicity,
concavity or bounded constraints for the function or for its derivatives.

Let (Xi, Yi)i=1,I be a set of I observed points. Without loss of generality, the
predictors Xi belong to [0, 1]V , where V is the dimension of the input space. The
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observed responses Yi are real. We assume that (Xi, Yi) are linked through an
unknown function Fα from [0, 1]V to R, which copies the structure of traditional
polynomials: Fα is expressed as a linear combination of J + 1 known elementary
functions fj , with f0(x) = 1:

Fα(x) =
J∑
j=0

αjfj(x) = α0 +
J∑
j=1

αjfj(x), (1)

where α is the vector of coefficients, and each fj(x) is decomposed in a product
of V functions of a single variable:

fj(x) = f1,j(x1) · · · fV,j(xV ),

where ∀v ∈ [1, V ], xv ∈ [0, 1] 7→ fv,j(xv) ∈ R.

The responses Yi are subject to independent and identically distributed random
errors εi with bounded variance. The model we are working on can be written:

Yi = Fα(Xi) + εi (2)

The real coefficients stored in the vector α are to be found out.

Additionally Fα should respect shape constraints like monotonicity or convex-
ity with respect to one or more variables, that will be detailed in the sequel. The
least square problem to be solved can then be rephrased as Problem 3:

arg min
α

I∑
i=1

(Yi − Fα(Xi))
2, s.t. shape constraints. (3)

The solution to Problem 3 will be called the optimal solution.

Shape constraints have been investigated since mid 1990’s in the field of ’Com-
puter Graphic Aided Design’, CAGD for short, and is a central theme in this
area. The theory of shape constraints in CAGD is well developed in Farin (1993)
and Peña (1999) for example. This paper borrows some of the ideas of this field,
specifically around Chebyshev system of functions, simplexes and corner cutting
or refinment algorithms (Gasca and Micchelli, 2013), (Chaikin, 1974).

A common hypothesis in CAGD is that the set of functions {fj(x)}Jj=0 when
x is one dimensional forms an Extended Complete Chebyshev system of functions
called ECT system in short (Karlin and Studden, 1966). This will be one of our
main hypotheses and will be explicited in the next section 1.2.

For polynomials of more than one variable, Problem 3 remains largely open.
This is precisely the purpose of this paper and its main result to tackle the case
of multivariable polynomials and more generally of Chebyshev systems. Indeed,
with only one variable, methods like Semi-Definite Programming (Ben-Tal and
Nemirovski, 2001) (Papp and Alizadeh, 2014) are able to find the optimal estimator
in shape constraints problems when Fα is polynomial. However, as stated by Ben-
Tal Ben-Tal and Nemirovski (2001), these methods can not describe all the non-
negative polynomials in multivariable cases.
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The idea of this paper is to transform the initial non linear shape requirements
of Problem 3 in a finite number of linear constraints on the coefficients which
approach the same solution. The least square problem is thus transformed in:

arg min
α

I∑
i=1

(Yi − Fα(Xi))
2, s.t. linear constraints (4)

which is a classical convex quadratic programming problem (Nocedal and Wright,
2006).

We proceed iteratively: at step K the set of constraints attached to the previous
problem at step K − 1 is augmented by a finite number of linear new constraints,
chosen so that the sequence of solutions of Problem 4 tends to the solution of
Problem 3 when the number of steps increases toward infinity. This paper is or-
ganized as follows: a state of the art is first developed as a beginning. Notations
and reminders of Chebyshev systems theory are introduced in Subsection 1.2. The
theory is exposed for monotony constraints, first for functions of only one variable
(Section 2), where we prove the convergence of our procedure, detail the subse-
quent algorithm and discuss its implementation. We then extend our ideas to the
multivariable cases (Section 3). Practical considerations are considered in Section
4, where we detail also one industrial case in petroleum engineering related to
hydrotreatment of naphta. Conclusions and perspectives are given in Section 5.
Additionally, one can find in Appendix A a few properties of Chebyshev systems
useful for the proofs. All the proofs are postponed to Appendix B.

1.1 State of the art

Nonparametric regressions can adapt themselves very efficiently to constrain the
behavior of the resulting function. They have received considerable attention for
many years, first in one dimension and more recently in multivariable situations.
Restricting ourselves to monotone regression in more than one dimension, a few
performing algorithms have been proposed, based on splines (Ramsay and Silver-
man, 2005) (Papp and Alizadeh, 2014), on kernel type (Du et al., 2013) regressors,
on Generalized Additive Models or GAM (Wood, 2006), or very recently on kriging
approximations (Maatouk and Bay, 2017).

However, compared to nonparametric regression, parametric functions are im-
mediate to calculate. They are easier to interpret, showing very clearly the influ-
ence of each variable, and their interactions. They depend only on the number of
elementary functions in the expression of Fα and not on the number of points. A
marginal important benefit of these parametric approaches is that the expected
behavior will be respected everywhere in the domain and not only in the vicinity of
the observed points (see Meyer (2012) for a short discussion on this topic). Finally,
since no tuning parameters have to be estimated, the computational difficulty of
the whole procedure is reduced. This is why we believe as in Hawkins (1994), there
is still room for parametric regressions and especially for polynomial regression.

Their disadvantage over nonparametric regressions is that they may lack of
flexibility to represent particular function behaviors, like for example nearly flat
regions followed by abrupt changes. In contrast to classical least square problems,
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constrained extensions are also generally very hard to tackle. Even for low degree
polynomials, it implies complicated non linear expressions of the coefficients.

Studies on constrained parametric regression have focused on polynomial re-
gression. Taking the derivatives, studies on monotone polynomials reduce to the
study of positive polynomials. Polynomials in one variable can be positive first over
the entire real line, secondly over a semi-infinite interval, or thirdly on a compact
set. In these three situations, Karlin and Studden (Karlin and Studden, 1966) have
given a representation theorem. Still the obtained expressions remain highly non
linear.

Ben-Tal and Nemirovski (Ben-Tal and Nemirovski, 2001) have shown how to
solve the problem via Semi-Definite Programming techniques in the three above
situations. Hawkins (Hawkins, 1994) has set out a method based on the observation
that if a polynomial has to be monotone on the entire real line, if its first derivative
is zero at some x∗ then necessarily its second derivative at x∗ is also equal to 0.
His method is restricted to odd degree polynomials. Murray et al. (2016) have
implemented Karlin’s three alternatives in the R ’Monopoly’ package. By carefully
choosing the parametric form of the polynomials and the numerical schema of the
calculations, the evaluation of bootstrap confidence intervals for the estimated
coefficients are made possible.

To our knowledge however none of these methods can handle multivariable sit-
uations. Moreover, they are restricted to polynomials and not extended to Cheby-
shev system of functions.

1.2 Notations, Definitions and Basic Notions

The upper case letters Xi or Yi where i ∈ [1, I] are reserved for the observations.
The lower case x or xv for v ∈ [1, V ] is used for variables. The approximation
functions fj are numbered from 0 to J . Bold upper case letters like T correspond
to matrices, bold lower case letters to vectors.
Regression function. We add here a few complements to the definition of the
regression function in (1). For all v, fv,0(xv) = 1. Without fv,0(xv), we have Jv
elementary functions depending solely on xv. Furthermore each fv,j(xv) is at least
continuous and derivable on [0, 1] as many times as needed, i.e., up to the order
Jv.

In the case of a single variable, the notation F
(k)
α (x) or f

(k)
j (x) designates the

derivative of order k (k ≥ 1) of Fα(x) or fj(x) with respect to x.
Vectorial Notations. In one variable cases, f(x) refers to the the column vector
f(x) = t(f1(x), · · · , fJ(x)). We define also the derivatives

f (k)(x) = t(f
(k)
1 (x) · · · f (k)

J (x)).

f•(x) incorporates the constant term:

f•(x) = t(1, f1(x), · · · , fJ(x)).

These notations are extended to multivariable cases as well, with fv•.
Curve CJ . Alternatively, we consider the linear function defined by:

Z : [0, 1]J → R, t = (t1, · · · , tJ)→ Z(t) = α0 +
J∑
j=1

αjtj .
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The input space of Z will be denoted T instead of [0, 1]J and is viewed as an
affine space. When (t1, · · · , tJ) = (f1(x), · · · , fJ(x)), Z describes a curve if V=1, a
manifold of dimension V in multivariable situations in non degenerate cases. This
curve or manifold will be denoted CJ .
Osculating simplex. In the remainder of this section, we restrict ourselves to
the case of one variable only. As it is needed in the sequel we introduce the notion
of osculating k-spaces (Peña, 1999) and osculating hyperplanes which are special
cases of the former.

Definition 1 An osculating k-space at the point Tx = (f1(x), · · · , fJ(x)) or more
shortly at x is the affine space passing by Tx and spanned by the first k independent
vectors f (1)(x), · · · , f (k)(x).

Specifically, the osculating hyperplane to CJ at Tx is the osculating J−1-space
at Tx.

In Computer Aided Design (Farin et al., 2002), Bézier curves connecting an
initial point T0 to a final point TJ in the affine space T are integrally embedded in a
simplex SJ whose vertices are its control points. This simplex is called ’osculating
simplex’ (Peña, 1999) and is defined as follows (Gasca and Micchelli, 2013):

Definition 2 The osculating simplex between two points T0 and TJ is the simplex
for which the vertices are T0, TJ and Tj for 0 < j < J . The vertices Tj, j =
1, · · · , J − 1 are found as the intersections of the osculating j-space at T0 and the
osculating (J − j)-space at TJ .

Two examples of osculating simplexes are shown on the figure 1 below.

Fig. 1 examples of osculating simplexes Osculating simplex of the curve (x, x2) on the
left panel, and of the curve (x, x2, x3) on the right.

Chebyshev system. The study of Bézier curves is intimately linked to the theory
of Chebyshev systems of functions (Gasca and Micchelli, 2013), (Schumaker, 2007),
(Karlin and Studden, 1966). In the following, the proofs need a particular version
called Extended Chebyshev systems referred as ET in Karlin and Studden (1966).

In Theorem 1 in Section 2, the use of ET systems guarantees that CJ will be
included in its osculating simplex between any beginning point and any final point
chosen in [0, 1]. This is the heart of our construction, as will be seen in Subsection
2.2.
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Because they are more easily characterized than ET systems, as can be seen in
Theorem A2, instead of ET-systems, we use a more restricted form called Extended
Complete Chebyshev systems, defined in Appendix A and referred as ECT. From
now on, we require additionally that:

Assumption 1 The systems of functions {fv,j(xv)}Jv
j=0, for each v in [1, V ], form

an ECT on [0, 1].

More detailed considerations about Chebyshev systems can be found in Ap-
pendix A.

2 Univariate case

In the case of one variable (V = 1), we explicit the form of Problem 4. We proceed
as follows.

In Subsection 2.1, through Proposition 1 we formalize our analysis. The con-
ditions for which this proposition holds are examined in Theorem 1.

However, Proposition 1 proposes only a set of sufficient conditions for a function
Fα(x) to be monotone. To go beyond this first step in Subsection 2.2, still under
Assumption 1, we detail in Theorem 2 an algorithm which is guaranteed to find the
optimal solution. A discussion of the refinement schema employed in the algorithm
follows. We give a comparative example to Hawkin’s methodology (Hawkins, 1994)
later in Subsection 4.2.

2.1 Univariate case: Osculating simplexes

We consider a curve CJ and its osculating simplex SJ on [0, 1]. The J + 1 vertices
of SJ are gathered in a matrix T of dimension J × (J + 1), where each column is
a vertex. To take into account the constant term in the expression of Fα, we then
define the squared matrix of constraints T• of dimension (J + 1)× (J + 1) as:

T• :=

(
t1
T

)
,

where 1 is a vector of 1. The expression tT•α ≥ 0 means that each coordinate of
the vector tT•α is non negative.

As a simplex, every point of SJ can be expressed as a linear combination of
the vertices with positive coefficients. We thus claim the following proposition.

Proposition 1 Assume that the curve CJ is included in its osculating simplex on
[0, 1]. If tT•α ≥ 0 , then ∀x ∈ [0, 1], we have Fα(x) ≥ 0.

At this point, our aim is to solve the much simpler Problem 5, where the non
linear constraints of Problem 3 have been replaced by linear constraints.

arg min
α

I∑
i=1

(Yi − Fα(Xi))
2, s.t. tT•α ≥ 0. (5)

The purpose of the rest of this subsection is to make explicit the conditions
under which a curve CJ between T0 and TJ is included in its osculating simplex. To
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prepare the algorithm of Section 2.2, we require this property to be true whatever
the initial point T0 and the final point TJ taken on the curve between x = 0 and
x = 1.

Theorem 1 Let T0 and TJ be two points on the curve CJ . Under Assumption 1,
the portion of the curve between T0 and TJ is included in its osculating simplex.

We note that choosing the osculating simplex to enclose the curve is a mere
continuation of the theory of Bézier curves.

2.2 Algorithm for finding the optimal solution, one variable

As already mentioned, the conditions of Proposition 1 for finding a monotone
polynomial or more generally a monotone function fitting the observed points
(Xi, Yi)i=1,I are only sufficient. We propose here an algorithm capable of finding
the optimal solution in the least square sense as soon as the functions fj verify
the conditions of Theorem 1.

Our idea is a variation on a corner cutter or refinement algorithm. These algo-
rithms are known since the mid seventies (Chaikin, 1974) (Schumaker, 2007) and
closely linked to Bézier curves (Farin et al., 2002) and B-splines (De Boor, 2001).

In this subsection, first, the corner cutting algorithm is introduced with a
simple example for a degree 2 polynomial. It is then generalized to any function
fj(x). In Theorem 2 the convergence of the algorithm is stated. This subsection is
concluded with a few practical considerations.

Fig. 2 corner cutting algorithm the simplex (T0T1T2) is replaced by the polytope
(T0U1UU2T2), formed of two simplexes, (T0U1U) and (UU2T2). The corner T1 of the initial
simplex is cut.

Example in dimension 2. For a short while, we take J = 2. In Proposition
1 we established that a condition for Fα(x) to be positive over [0,1] is that the
corresponding function Z(t) be positive in the vertices T0, T1 and T2 (see figure
2).

But we have restrained ourselves to simplexes. In fact it is easy to obtain a
narrower polytope surrounding C2, if more than 3 vertices are allowed. For exam-
ple, in Figure 2, the polytope P ′2 whose vertices are T0, U1, U, U2, T2 is included in
the osculating simplex P2 defined by the three vertices T0, T1, T2.
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P ′2 is constructed by taking one of its sides confounded with the tangent line to
the curve C2 at the point U . After choosing the cutting point U , the two triangles
(T0, U1, U) and (U,U2, T2) are uniquely determined.

This process of cutting can continue: at each step we split a simplex in two
new simplexes, and build a chain of simplexes containing the curve. At each time
we cut one of the simplex by a new tangent, remove one corner and add two new
vertices.

To speak informally, what we are going to prove, is that when this step is
repeated indefinitely, every point of the curve C2 is transformed in a vertex of a
simplex and therefore in a constraint in the problem 5, so that the positivity of
the polynomial is ensured everywhere on [0,1].

Generalization: simplex regression. Generalizing this cutting principle to J
functions is straightforward. At each step of the algorithm, the polytope surround-
ing the curve is composed of a succession of osculating simplexes, connected by one
vertex located on the curve. This is the reason of the name given to this method,
simplex regression.

The whole process is only possible under the condition that the curve remains
inside each of these osculating simplexes. This is a consequence of Assumption
1 and Theorem 1. The convergence of the cutting algorithm is proved in Theo-
rem 2 which is stated after introducing some necessary notations and proving a
preliminary Proposition 1.

We consider PJ,K a set of nested simplexes, built so that PJ,K+1 ⊂ PJ,K .
For example, at step K, the initial vertex of each simplex of PJ,K corresponds to
x = (k − 1)/2K and the final one to k/2K with k varying from 1 to 2K .

Let AJ be the set of coefficients for which ∀x ∈ [0, 1], Fα(x) ≥ 0:

AJ = {α | ∀x ∈ [0, 1], Fα(x) ≥ 0}.

Similarly, we denote AJ,K the set of possible coefficients at step K, that is the
coefficients for which tT•Kα ≥ 0 where T•K is the matrix of constraints: its first
row is composed of ones, the rest of the matrix gathers (in columns) the vertices
of PJ,K .

α̃J,K is the vector of coefficients of the solution to Problem 5 when the con-
straints match the vertices of PJ,K . The coefficients of the optimal solution to 3
are stored in a vector denoted α̃J .

Let cost(α) be defined as cost(α) :=
∑I
i=1(Yi − Fα(Xi))

2. We have:

cost(α̃J,K) = min
α

(cost(α)), s.t. tT•Kα ≥ 0.

In the course of Theorem 2 and in Algorithm 1 below, we make use of the
following proposition.:

Proposition 2 1. ∀K,AJ,K ⊂ AJ,K+1 ⊂ AJ .
2. AJ and all the AJ,K are closed convex cones.
3. The sequence of cost(α̃J,K) is decreasing with K.

Theorem 2 Under Assumption 1, we have limK→∞ α̃J,K = α̃J .
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The proof consists of observing that
⋃
K∈N

AJ,K is dense in AJ .

Algorithm 1. The algorithm which puts Theorem 2 into practice is presented
below. As already said, at step K, the problem is solved by means of a quadratic
programming algorithm. It is well known that if the solution is not strictly inside
the convex constrained region AJ,K (see Proposition 1), then it is located on one
constraint or on the intersection of two or more constraints. In this case, the
constraints are said to be active.

The active constraints indicate which region of the variable definition domain
should be refined in the next step, since there is a one to one correspondence
between the constraints, the vertices and the values of the variables.

The fact that cost(α̃J,K) is decreasing with K gives an easy stopping criterium
for Algorithm 1 which should terminate if the difference in the cost function at
steps K and K + 1 is lighter than c a small constant chosen a priori.

The set of active constraints at step K is numbered from 1 to QK . Each
constraint q ∈ [1, QK ] matches a vertex Tq of one of the simplexes following the
curve CJ . Let Xq,0, Xq,J be the values of the parameter corresponding to the
initial and final points of the simplex containing Tq, i.e. the two vertices of this
simplex which are on the curve.

corner cutting algorithm in the univariate case

• while cost(α̃J,K)− cost(α̃J,K+1) > c do
• for each q in [1, QK ] do

– find the simplex in which Tq is a vertex;
– choose xnew a value of the variable between Xq,0 and Xq,J ;

define Tnew the corresponding point on the curve;
– create two new simplexes:

the first simplex finishes at Tnew,
the second one begins at Tnew;

– remove the vertices of the old simplex;
– gather all the remaining vertices in a matrix;

end
• K = K + 1
• Resubmit problem 5 to the fitting algorithm, with these new
constraints.

end
Algorithm 1: univariate case

Calculating the vertices of the osculating simplex. In the core of the al-
gorithm, the determination of the vertices of the osculating simplex between two
points T0 and TJ on the curve taken at locations x0 and xJ respectively is needed
repeatedly. This is detailed in Lemma 1 in Appendix B, as a preliminary to The-
orem 1 in the general case of ET systems. We also note that with the sequence
of monomials {xj}Jj=1, the vertices of the osculating simplex can be calculated
analytically.

Number of constraints. Counting the number of constraints added each time
we cut a corner gives an idea of the effort required by the algorithm.
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At each step, we replace the old simplex by two new simplexes, which have a
vertex in common. The number of vertices is thus augmented by 2× (J+1)− (J+
1)− 1 = J at each step.

2.3 Optimization of the split point, univariate case

So far, we have not discussed the location of the split point in Algorithm 1 when
we create two new simplexes out of one. When invalidating a corner a first natural
idea in Algorithm 1 is to create a new vertex on the curve for the same value of
the parameter as the vertex taken out: if we remove Tk corresponding to xk, then
the coordinates of the new vertex are (f1(xk), · · · , fJ(xk)).

However, with some extra computational work, it is possible to find the location
on the curve where the volume of the initial simplex is the most reduced.

Proposition 3 Let T0, T , TJ be three points on the curve corresponding to x0 <
x < xJ . Then the function Vnew = V (x0, x) + V (x, xJ) has a unique minimum
between x0 and xJ , where V (x0, x) (resp. V (x, xJ)) stands for the volume of the
simplex between x0 and x (resp. x and xJ).

This way of cutting leads to a variant of the initial Algorithm 1, where we look
for the optimal cut in Proposition 3 below.

We need here to introduce the determinants Dj and Dj,j :

Dj =
∣∣f (1)(x0) · · · f (j)(x0) f (1)(xJ) · · · f (J−j)(xJ)

∣∣ .
Dj,j is obtained by replacing the j-th column of DJ by f(xJ)− f(x0).

Dj,j =
∣∣f (1)(x0) · · · f (j−1)(x0) f(xJ)− f(x0) f (1)(xJ) · · · f (J−j)(xJ)

∣∣ .
Proposition 4 V (x0, xJ) =

1

J !
DJ,J

∏J−1
j=1 Dj,j∏J−1
j=1 Dj

.

The drawback of this approach is that finding the minimum of Vnew is com-
putationally costly since calculating a volume involves the evaluation of 2J − 1
determinants.

Sequence of monomials. The optimization of the split point becomes however
extremely simple when the system of functions fj(x) is the traditional sequence of
monomials: {xj}Jj=1. In the next theorem, we prove now that the optimal param-

eter for the split point is
x0 + xJ

2
.

Theorem 3 Let the system of functions fj(x) be the sequence of monomials {xj}Jj=1.

Then the optimal cut point between x0 and xJ is
x0 + xJ

2
.

As a consequence, an other way of splitting the curve in Algorithm 1 is to create

a new vertex on the curve when the value of the parameter equals x =
x0 + xJ

2
,

even if it is only fully justified for a sequence of monomials.
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3 Multivariable case

In case of multivariable functions, we proceed in two successive steps. First, we
generalize the previous methodology of Section 2 in one dimension to this new sit-
uation and conclude this subsection with Theorem 4, which transposes Proposition
1 to multivariable functions. As with a single variable, the proposed constraints are
only sufficient conditions. In the second step, we propose an algorithm in Section
3.2 capable of finding the optimal solution. Its convergence is proved in Theorem
5

3.1 Multivariable case: circumscribing simplexes

We switch to a more general situation, where x = (x1 · · ·xV ) is V -dimensional.
Our problem is to determine the vector of coefficients α, so that Fα(x) ≥ 0 (or

≤ 0) in the entire domain. As in dimension 1, one way to solve this question is to
enclose CJ in a convex polytope PJ and check the positivity of Z in every vertex
of PJ . How to choose PJ will be explained very soon. Assuming that PJ is known
and denoting Tj one of its vertices, verifying the positivity of Fα(x) amounts to
checking that Z(Tj) ≥ 0, for all j ∈ [1, J ]. We bring together all the vertices in a
matrix T and compose the matrix of constraints T• by adding to T a first row of
1 to include the coefficient α0 in the set of constraints. The problem to solve in
dimension V can be rephrased as Problem 6:

arg min
α

I∑
i=1

(Yi − Fα(Xi))
2, s.t. constraints tαT• ≥ 0. (6)

which is the analog of Problem 5, the only difference being that Xi is now V -
dimensional.

To extend the previous results from dimension 1 to V dimensions and control
the number of constraints, we proceed by means of tensor products. Specifically,
recalling that Fα(x) can be written Fα(x) = 〈α, f•(x)〉 we assume that:

f•(x) = f1•(x1)⊗ · · · ⊗ fV •(xV ). (7)

This first requirement for f•(x) will be softened later on.
Products of tensors are applied as well to the matrix of constraints.
Let Tv,jv for jv = [0, Jv] be the vertices of the osculating simplex containing

the curve CJ,v = (fv,1(xv), · · · , fv,Jv
(xv)), where xv ∈ [xv,0, xv,1]. The matrix Tv

of dimension Jv × (Jv + 1) contains in columns the vertices Tv,jv . Adding a first
row of 1 to each of the Tv, we obtain the matrices of constraints Tv• of dimension
(Jv + 1)× (Jv + 1) for each variable. The matrix of constraints T• on the domain
D = [x1,0, x1,1]× · · · ,×[xV,0, xV,1] is defined as the tensor product:

T• :=
V
⊗
v=1

Tv•.

Setting J + 1 =
V∏
v=1

(Jv + 1), the dimension of T• is (J + 1) × (J + 1). We

quote also that the first row of T• is composed of 1. The J remaining rows form
a matrix denoted T.
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Each column of T corresponds to a point Tj in the space T = [0, 1]J . We define
the polytope PJ as the convex hull of the set of vertices Tj . With J + 1 vertices,
this polytope is a simplex and contains the part of the manifold CJ corresponding
to the domain D as stated in the following theorem 4 .

Theorem 4 joins together Proposition 1 and Theorem 1, transposes their state-
ment to multivariable situations and gives a means to automatically generate the
needed constraints.

Theorem 4 Under Assumption 1

1. When x traverses D, the corresponding portion of CJ is included in PJ .
2. If tαT• ≥ 0, then ∀x ∈ D, we have F (x) ≥ 0.

Dropping terms. Actually, a function F (x) containing all the terms resulting
from the tensor product f1•(x1) ⊗ · · · ⊗ fV •(xV ) is of little practical use. If it
is not possible to drop some of these terms, these kind of functions will fail to
match practical applications. For instance, in real situations, cubic polynomials
will not include necessarily all the interactions terms: it is very common to ignore
interactions of more than two variables.

However, dropping some terms amounts to taking the corresponding coefficients
(in the function Z(t)) equal to 0. As a result, in the matrix of constraints, the
corresponding rows are merely deleted.

3.2 Algorithm for finding the optimal solution, multivariable case

In case of one variable, the proposed algorithm is based on the notion of osculating
hyperplanes. In multivariable situations, we use instead the fact that the vertices
of the polytope on which we request F (x) to be positive result from the tensor
product of V matrices Tv•,K (see below). The columns of each of these matrices
Tv•,K correspond to the vertices of a simplex for the matching variable. We note
that the resulting tensor product corresponds also to a polytope.

When v = 1, in Algorithm 1, we have replaced the initial simplex by a chain
of simplexes (see figure 2). We keep the same procedure when v > 1, except that
now we create a mesh of simplexes rather than a chain. This point will be detailed
when developing Algorithm 2 below.

Let CJv
= (fv,1(xv), · · · , fv,Jv

(xv)) be the curve corresponding to the variable
v. At step K, for each v, we build a chain Pv,Jv,K of simplexes containing CJv

,
gather all the vertices of Pv,Jv,K in a matrix Tv,K and form Tv•,K the matrix of
constraints for CJv

at step K by adding a row of 1.

We then generate the tensor products of all these matrices

T•K = ⊗
v=1,V

Tv•,K .

Excluding the first row, we obtain the matrix TK containing the coordinates of
the vertices on which we must check the positivity of the corresponding function
Z(t1, · · · , tV ).

As previously in Section 2.2, let PJ,K be the polytope whose vertices are the
columns of TK , and α̃J,K be the solution of Problem 6 when the constraints are
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issued from the vertices of PJ,K . That is:

α̃J,K = arg min
α

I∑
i=1

(Yi − Fα(Xi))
2, s.t. constraints tαT•K ≥ 0.

Analogously to Theorem 2, we examine FJ(x) the optimal solution to 3 and
α̃J its vector of coefficients. Our aim is the following theorem:

Theorem 5 Under Assumption 1, limK→∞ α̃J,K = α̃J .

The proof is similar to the previous one in Theorem 2 with the generalization
to the tensorial product of constraints.

Algorithm 2. We illustrate the refinement schema of Algorithm 2 in two dimen-
sions before giving a general formulation.
Refinement schema with 2 variables. The key to Algorithm 2 is Theorem
4. The manifold CJ represents the function f•(x) = f1•(x1) ⊗ f2•(x2) on D =
[0, 1]×[0, 1]. Choosing two arbitrary values x∗1 and x∗2 for the variables, we can refine
D in 22 subdomains:D1 = [0, x∗1]×[0, x∗2],D2 = [0, x∗1]×[x∗2, 1],D3 = [x∗1, 1]×[0, x∗2]
and D4 = [x∗1, 1]× [x∗2, 1].

On each of these subdomains, using Theorem 4, we know how to build a simplex
including a portion of CJ . Obviously the four simplexes taken together include the
whole manifold CJ , and any of these subdomains can be subdivided independently
of the others.
Solving. The generalization of the previous refinement schema to any number
of variables is straightforward. The algorithm for solving problem 6 is an exten-
sion of Algorithm 1 to more than one variable. The only difference is that when
subdividing one simplex, we create 2V new simplexes instead of two when V = 1.

In Algorithm 2, at each step K, QK constraints are supposed to be active. If
the constraint q is one of them, it should be removed at the next step. To do this,
since this constraint matches a vertex Tq of one of the simplexes containing CJ ,
we simply identify the subdomain containing Tq, split it in 2V new hypercubes,
and create a simplex in each of these hypercubes.

corner cutting algorithm in the multivariable case

• while cost(α̃J,K)− cost(α̃J,K+1) > c do
• for each q in [1, QK ] do

– find the simplex Sq in which Tq is a vertex;
– choose xnew a new value in the domain corresponding to Sq;

define Tnew the corresponding point on the curve;
– create 2V new simplexes connected at Tnew;
– remove the vertices of the old simplex;
– gather all the remaining vertices in a matrix;

end
• K = K + 1
• Resubmit problem 6 to the fitting algorithm, with these new
constraints.

end
Algorithm 2: multivariate case
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Once again, if no improvement in the fitting criterium is seen after removing
a vertex and replacing it by new ones, or if the improvement is too small, the
algorithm should stop.
Number of constraints The number of constraints corresponding to one of the
simplexes containing CJ is its number of vertices:

J + 1 =
V∏
v=1

(Jv + 1).

This leads to the following proposition.

Proposition 5 When creating a new simplex by subdividing an existing one, the
number of constraints is augmented by

3V − 22V + (J + 1) ∗ (2V − 1).

When V = 1, Proposition 4 gives the result already detailed in the single
variable case.

4 Examples

In this section we begin by enumerating the situations where our method od sim-
plex regression can be used (Subsection 4.1). The case of functions of a single
variable is illustrated in Subsection 4.2 with Hawkin’s example, and with a sum
of exponentials. We continue with one industrial example in multivariable settings
(see 4.3).

4.1 Other type of constraints

A few features open up the applicability of our method to a really large panel of
parametric regressions.This is discussed in more details in this section.

1. The same method can be applied to any shape constraints as long as the cor-
responding constraints stay linear with respect to the coefficients of the model.
This includes monotony, concavity or convexity constraints, bound constraints
on the function itself, or on its derivatives and equality constraints.

2. Monotony requirements (or other constraints) can be applied simultaneously
to any number of variables. The only consequence is that the number of con-
straints to fulfill will increase with the number of variables.

3. Obviously, every monotone transformation of the variables x1, · · · , xv will not
change the procedure.

4.2 Two examples with a single variable

In Figure 3, we illustrate our approach with the simulation data proposed by
Hawkins (Hawkins, 1994). In this example, 50 points are drawn from the equation
y = 4x(x− 2)2(x+ 0.5)2(x2 + 2) + ε with ε ∼ N(0, 1). Neither the true underlying
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5 degree polynomial and Hawkin’s values 4 degree polynomial

lower est. upper Hawkin
β5 6.087 11.332 16.332 10.99
β4 -22.927 -21.413 -19.633 -21.42
β3 0.8264 6.850 12.945 7.29
β2 20.694 22.178 23.352 22.18
β1 7.163 8.701 10.238 8.59
β0 0.662 0.991 1.336 0.99

lower est. upper
β4 -22.664 -21.546 -19.346
β3 17.455 19.294 19.768
β2 20.675 22.369 23.302
β1 5.4395 6.2205 6.9578
β0 0.37451 0.95338 1.0414

Table 1 estimation and confidence bands for the coefficients of a polynomial of degree 5
fitted on Hawkin’s data on the left, and for a polynomial of degree 4 on the right. The column
Hawkin gives the values estimated by Hawkin for the 5 degree polynomial.

function is monotone on its definition domain, nor is the unconstrained least square
fit with the points given by Hawkins.

In Hawkin’s methodology, the fit is over the entire real line R and even degree
polynomial are not permitted. We present two simulations studies, the first one
with a polynomial of degree 5 in order to make comparisons with Hawkin’s results,
and the second one with a polynomial of degree 4. The equation of the obtained
fit is given in Table 1.

These simulations have been repeated a thousand times with different draws
of ε to give an idea of the distributions of the estimators. In Table 1 the columns
’lower’ and ’upper’ give the 5% and 95% percentiles.

Not reported here because the results are very similar, we have compared our
method of simplex regression to Murray and coauthor’ algorithms (Murray et al.,
2016) who have trained their method on the same data set.

Fig. 3 Hawkins’s function In squared green, the observed points. In red, the fit. In dashed
black, the least square approximation with a polynomial of degree 4. The right panel shows
the resulting function on a restricted interval

We continue with an example which makes use of exponential functions, com-
pared to a polynomial of degree 5. The observed points, exactly the same in the left
and right figures, are random and show a shape similar to a sigmoid. The exponents
in the exponentials are completely arbitrary. In both cases, the unconstrained fit
exhibits a non monotone behavior around the origin.
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Fig. 4 sigmoid function In squared green, the observed points. In red, the fit. In dashed
black, the non restricted least square approximation. The blue crosses indicate the limits on
the x axis of each simplex. On the left panel, we use a 5 degree polynomial. On the right, it is
a sum of 5 arbitrarily chosen exponentials, exp(0.5x), exp(1.2x), exp(2x), exp(2.1x), exp(2.5x).

4.3 Real example: hydrotreatment of naphta

In petroleum process engineering, hydrotreating consists in treating a petroleum
cut under hydrogen pressure in an industrial reactor. After being extracted, the
crude oil has first to be refined and fractionated in different cuts before being
commercialized. Specifically, in naphtha cuts, impurities (mainly sulphur) must be
removed, before any further use.

Finally, a degree 2 polynomial of 4 variables is proposed to approximate this
process, where:
the response is y = log(− log( CC0

)), with C the concentration of the chemical to
be removed remaining at the outlet of the reactor and C0 its initial concentration;
x1 = 1/T , with T the temperature of the process;
x2 = log(V V H), V V H being the Velocity per Volume and per Hour;
x3 = log(PH2

), where PH2
is the partial hydrogen pressure;

x4 = log(PH2S), with PH2S the partial H2S pressure.

Some constraints must be respected : the process is more efficient (which means
that C decreases or equivalently y increases) when :
- the temperature T increases or x1 decreases
- V V H decreases or x2 increases
- PH2

or x3 increases.
- PH2S or x4 increases.

Figure 5 compares the results when regressing with and without constraints.
The left panel exhibits the residues (y calculated - y experimental ), showing minor
differences when the experimental points are predicted by both methods: the root
mean squared errors is RMSE = 0.485 with constraints and RMSE = 0.411
without. But the obtained equations are really different as shown on the right.

On the right panel, the plot shows the behavior of the response when only
one variable varies at a time, starting from a given point in the domain which
can be read on the figure. The dotted lines correspond to the regression without
constraints, the solid line to the regression with constraints. The plain triangle
marks the estimated response for the regression without constraints, the circle for
the regression with constraints. x-axis are translated so that all the curves meet
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at the center of the graphic. Black lines correspond to variations along T or x1,
red lines to V V H or x2, blue lines to PH2

or x3, green ones to PH2S or x4. The
behaviors for the regression without constraints are obviously wrong: the blue
dotted line is decreasing instead of increasing and the green has a maximum.

Fig. 5 polynomial fit to the data of HDS experiments Residue diagram for the HDS
data on the left panel. On the right the plot compares the UNconstrained and constrained
regressions.

5 Perspectives and Conclusions

The proposed procedure is very general and flexible. Moreover it can be found
useful in a lot of problems. It is specially well adapted to polynomial regression,
a problem occurring very often in industrial applications. It is also valid with
any other ECT Chebyshev systems of functions. Most importantly, our method
will give satisfactory results in multidimensional cases even with few available
experimental data.

The proposed method will suffer from the usual flaws of linear regression, as
it is based on a least squares procedure. Notably, to avoid some instabilities in
the coefficients, a bit of regularization would be welcome, as considered in Trevor
et al. (2009).

A second enhancement would be to find a way for limiting the number of the
constraints in multivariable situations. Indeed, their number grows exponentially
with the number of variables. This certainly is a bottleneck of the method.

Thirdly, the scope of this kind of regression could be extended to nonpara-
metric regressions. GAMs are natural good candidates as well as local polynomial
regression (Fan and Gijbels, 1996).

Fourth, uncertainty intervals are certainly an issue for this method. Indeed,
as the constraints change at each iteration, the residues can not be considered
as identically distributed, so that bootstrap algorithms are not adequate at first
sight.

The original algorithms are developed in Matlab R© and available upon request.
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Appendix A: Chebyshev system

The study of Bézier curves is intimately linked to the theory of Chebyshev systems
(Gasca and Micchelli, 2013), (Schumaker, 2007), (Karlin and Studden, 1966). In
the following our definitions are restricted to the interval [0, 1], but it is not manda-
tory: any interval between an initial point a and final point b, open or closed would
work.

The following determinant is traditionaly denoted

M

(
x0, · · · , xj
f0, · · · , fj

)
:=

∣∣∣∣∣∣∣∣∣
f0(x0) · · · fj(xj)

f
(1)
0 (x0) · · · f

(1)
j (xj)

· · ·
f
(j−1)
0 (x0) · · · f (j−1)

j (xj)

∣∣∣∣∣∣∣∣∣ .
Definition A1 The functions f0, f1, · · · , fJ are called an extended Chebyshev sys-
tem of class CJ−1 on [0, 1], or ET-system if they are J times differentiable on [0, 1]
and if

∀x0 ≤ · · · ≤ xJ ∈ [0, 1],M

(
x0, · · · , xJ
f0, · · · , fJ

)
> 0.

Definition A2 The functions f0, · · · , fJ are called an extended complete Cheby-
shev system on [0, 1], or ECT-system if

∀1 ≤ j ≤ J, ∀x0 ≤ · · · ≤ xJ ∈ [0, 1], M

(
x0, · · · , xj
f0, · · · , fj

)
> 0.

In Definition A2, when passing from an ET to an ECT, J is replaced by j and
x0 (resp. · · ·xj) can be repeated at most j times.

A consequence of definitions A1 and A2 which will be useful for the proofs in

Appendix B is that all the columns vectors of the determinant M

(
x1, · · · , xJ
f1, · · · , fJ

)
>

0 are linearly independent.
Two important results on ET and ECT-systems are the following. The first

one is based on the notion of multiplicity of the intersection of a curve and a
hyperplane at x.

Definition A3 Let H be a hyperplane in dimension J containing the point (a1, · · · , aJ),
and spanned by J − 1 vectors t(αj,1, · · · , αj,J)j=1,J−1. Denoting

E(t1, · · · , tJ) :=

∣∣∣∣∣∣∣∣
t1 − a1 · · · tJ − aJ
α1,1 · · · α1,J

· · ·
αJ−1,1 · · · αJ−1,J

∣∣∣∣∣∣∣∣ ,
the equation of H is given by

E(t1, · · · , tJ) = 0.

The multiplicity of the intersection at x of the hyperplane H and the curve CJ =
(f1(x), · · · , fJ(x)) is defined as the order of the first non vanishing derivative of
the determinant E(f1(x), · · · , fJ(x)).
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If the curve CJ intersects the hyperplane H at x and if its tangent at x is not
contained in H then the multiplicity is 1.

Theorem A1 (extracted from Karlin and Studden (1966), chap I first part of
Theorem 4.3) Let Z(Fα) be the number of zeros of Fα on [0, 1] counting multiplic-
ities. If one at least of the coordinates of α is different from zero, then Z(Fα) ≤ J .

The following specialization is well known in GCAD.

Corollary A1 Let f0(x) = 1 for all x ∈ [0, 1]. If f0, f1, · · · , fJ is an ET-system
on [0, 1], then any hyperplane in T intersects the curve CJ on [0, 1] at most J times
counting multiplicities.

The second theorem (see Karlin and Studden (1966),Theorem 1.1 Chap XI)
gives a characterization of an ECT-system in terms of Wronskians. The Wronskian
for 1 ≤ j ≤ J is defined as

Wf0,...,fj (x) :=

∣∣∣∣∣∣∣∣∣
f0(x) · · · fj(x)

f
(1)
0 (x) · · · f

(1)
j (x)

· · ·
f
(j−1)
0 (x) · · · f (j−1)

j (x)

∣∣∣∣∣∣∣∣∣ .

This notation is a shortcut for M

(
x, · · · , x
f0, · · · , fj

)
.

Theorem A2 (extracted from Karlin and Studden (1966)) Let f0, f1, · · · , fJ be
of class CJ on [0, 1]. Then f0, · · · , fJ is an ECT-system on [0, 1] if and only if for
j = 0, · · · , J we have Wf0,...,fj (x) > 0 on [0, 1].

Examples. Theorem A2 gives a means to easily check that a set of functions is
an ECT.

Since in our notation f0(x) = 1, a direct consequence of {fj(x)}Jj=0 being an

ECT, is that the functions f
(1)
1 (x), · · · , f (1)

J (x) form also an ECT on [0, 1].
The following systems of functions are easily proved to be ECT:

1. fj(x) = xdj , with a sequence of increasing positive real dj verifying d1 = 1 and
d1 < · · · < dj .

2. fj(x) = xj , i.e. the functions fj form a sequence of monomials.
3. fj(x) = exp(djx).

Appendix B: proofs

Preliminaries to Theorem 1
Theorem 1 needs the three following preliminary lemmas where we prove that

in a small neighborhood of a point on a curve, a smooth curve is included in its
osculating simplex.

Let T0 be a point on the curve CJ corresponding to x0 and TJ corresponding
to xJ = x0 + h. We denote T0, T1, · · · , TJ the vertices of the osculating simplex
between x0 and x0 + h (see Definition 2).
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The vectors f (1)(x0), · · · , f (j)(x0) are all linearly independent. This results from
the definition A1 of an Extended Chebyshev system. In this basis,

#        »

T0Tj =

j∑
k=1

γk,jf
(k)(x0). (8)

Similarly,

#        »

TjTJ =
J∑

k=j+1

γk,jf
(k)(xJ).

Lemma 1 Let Dj be the determinant

Dj =
∣∣f (1)(x0) · · · f (j)(x0) f (1)(xJ) · · · f (J−j)(xJ)

∣∣ .
Dj,k is obtained by replacing the k-th column of Dj by f(xJ) − f(x0). Then, that

for all j, Dj 6= 0, and γk,j =
Dj,k
Dj

.

All the determinants Dj are strictly positive as a result of the definition A1 of ET
systems.

For 0 < j < J , Tj belongs to the osculating j-space at T0 and simultaneously
to the osculating J − j-space at TJ . Thus, the vector

#        »

T0Tj is a linear combination
of the first j derivatives at T0 and similarly

#        »

TJTj is a linear combination of the
first J − j derivatives at TJ . Consequently, the coordinates γ1,j , · · · , γJ,j of Tj , as
stated in this lemma, result from the Cramer’rule applied to the linear system of
equations:(
f (1)(x0) · · · f (j)(x0)f (1)(xJ) · · · f (J−j)(xJ)

)γ1,j· · ·
γJ,j

 =
(
f(xJ)− f(x0)

)

Lemma 2 The coefficients γk,j can be approximated by γk,j ∼
hk

k!
+ o(hk).

We start from the previous lemma 1 and the expression of Dj,k.
Since xJ = x0+h, taking the Taylor expansion of f1(x0+h)−f1(x0),...,fJ(x0+

h) − fJ(x0), it can be readily shown that the first non vanishing term in the

development of the Dj,k for 1 ≤ k ≤ j is
hk

k!
Dj . This results in the statement of

the lemma.

Lemma 3 Let T0 and TJ be two points on the curve CJ corresponding to x0 and
xJ > x0. Then, in the neighborhood of x0, for h small enough, the portion of the
curve CJ corresponding to x varying in (x0, x0 +h) is strictly included in the cone
generated by { #        »

T0T1, · · · ,
#         »

T0TJ}.

Proof Our aim is to prove that any point Tx = (f1(x), · · · , fJ(x)) verifies:

#        »

T0Tx =
J∑
j=1

λj(x)
#        »

T0Tj , s.t. λj(x) ≥ 0, ∀j ∈ [1, j], ∀x ∈ [x0, x0 + h], (9)

where, for j = 1, J , λj(x) are real coefficients depending on x and Tj are the
vertices of the osculating simplex.
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For every 0 < j < J ,
#        »

T0Tj belongs to the osculating j-space at T0, and
#        »

T0Tj can
be written:

#         »

T0Tj =
∑j
k=1 γk,jf

(k)(x0). Gathering the coefficients γk,j for k ≤ j in
a matrix Γh, we obtain the system of linear equations:

t #        »

T0T1
t #        »

T0T2
· · ·

t #         »

T0TJ

 = Γh


tf (1)(x0)
tf (2)(x0)
· · ·

tf (J)(x0)

 . (10)

Furthermore, a Taylor expansion of
#        »

T0Tx gives

#        »

T0Tx =
J∑
j=1

(x− x0)j

j!
f (j)(x0) + o((x− x0)J). (11)

Plugging together equations (9), (10) and (11), we obtain:

tΓh

λ1(x)
· · ·

λJ(x)

 =


(x− x0)

1!
+ o((x− x0))

· · ·
(x− x0)J

J !
+ o((x− x0)J)

 . (12)

The next step is to solve Γh. With Lemma 2, we have

Γh =


h
1! + o(h) 0 · · ·
h2

2! + o(h2) h2

2! + o(h2) 0 · · ·
· · ·

hJ

J! + o(hJ) · · · · · · h
J

J! + o(hJ)

 . (13)

Equation (13) is rewritten:

Γh ∼ NhΓ′(1 + o(1)). (14)

The matrix Nh =


h

1!
. . .

hJ

J !

 is diagonal and Γ′ =


1 0 · · · · · ·
1 1 0 · · ·

. . . 0
1 1 · · · 1

 is lower

triangular and does not depend on h.
Assembling equations (12) and (14), solving Γh when h is small enough but

not equal to zero, and finally simplifying gives:

λ1(x)
· · ·

λJ(x)

 =


1!
h −

1!
h 0 · · · 0

0 2!
h2 − 2!

h2 · · · 0

· · · − (J−1)!
hJ−1

0 · · · 0 J!
hJ




(x− x0)

1!
+ o((x− x0))

· · ·
(x− x0)J

J !
+ o((x− x0)J)

 .

Eventually, we obtain a positive approximation for λj(x), 1 ≤ j ≤ J , in the
vicinity of x0:

λj(x) =
(x− x0)j

(xJ − x0)j
(1− 1

j + 1
(x− x0)) + o((x− x0)j).
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Theorem 1

Proof We denote Tj , for 0 < j < J , the vertex of the osculating simplex defined as
the intersection of the osculating j-space at T0 and the osculating J − j-space at
TJ (see Definition 2). We define Facej for 0 ≤ j ≤ J as the face of the osculating
simplex containing all the vertices except Tj .

For 0 < j < J , by construction of the osculating simplex, the face Facej is
supported by the vectorial sub-space spanned by the first j − 1 derivatives at T0
and the J − j − 1 derivatives at TJ . For j = 0 or j = J , Facej is the osculating
hyperplane at TJ and T0 respectively.

This amounts to saying that the multiplicity of the contact between CJ and
any Facej at T0 is j. Similarly, the multiplicity of the contact between CJ and
Facej at TJ is J − j. Finally, CJ intersects Facej J times. Due to Corollary A1,
T0 and TJ are the only intersection points between CJ and Facej .

As a conclusion, between T0 and TJ , CJ stays on one side of each of the faces
Facej for 0 ≤ j ≤ J .

SJ can be viewed as the cone generated by { #        »

T0T1, · · · ,
#         »

T0TJ} sectioned by the
face Face0. From Lemma 3, when xJ is fixed, in a small neighborhood of x0, we
know that CJ is inside the cone. Since CJ never crosses one of the face Facej
except in T0 and TJ , CJ remains inside this cone.

Preliminaries to Theorem 2

Proposition 1

Proof item 1 Thanks to Proposition 1, AJ,K can be seen as

AJ,K = {α | ∀t ∈ PJ,K , 〈α, t〉 ≥ 0}.

By construction, PJ,K+1 ⊂ PJ,K . Indeed, each simplex of PJ,K+1 results from
cutting in two one of the simplexes in PJ,K , as illustrated on Figure 2.

Thus, if we have 〈T,α〉 ≥ 0 for all the vertices T of PJ,K , then it is also true
for all the vertices of PJ,K+1. This last statement means that AJ,K ⊂ AJ,K+1.

PJ,K is a collection of successive osculating simplexes, each of them finishing
at the point where the next one begins. Thus PJ,K circumscribes the curve CJ ,
and this implies that if α is in AJ,K then ∀x ∈ [0, 1], Fα(x) ≥ 0, or equivalently
that AJ,K ⊂ AJ .

item 2 We only detail this claim for AJ , similar considerations can be applied
to the AJ,K . Indeed, if ∀x F (x) ≥ 0 for a given α, then it is also verified for λα
where λ is real and positive. Thus AJ is a cone. It is convex: if F (x) ≥ 0 for α1

and α2, then it is also non-negative for pα1 + (1− p)α2 for any p ∈ [0, 1].

The set B = {α | ∀x ∈ [0, 1], Fα(x) ≥ 0} is closed: we consider the applica-
tion gx defined as α ∈ RJ+1 7→ gx(α) ∈ R, gx(α) = 〈f•(x),α〉. gx is continuous.
The inverse image of the open set R−∗ = (−∞, 0), g−x (R−∗), is then open and
C =

⋃
x∈[0,1]

g−x (R−∗) is also open. C being the complement of B in RJ is closed.

item 3 This is a direct consequence of item 1: since AJ,K ⊂ AJ,K+1, the minimum
over AJ,K is greater or equal to the minimum over AJ,K+1.



Simplex Regression 23

We restrict our attention to the sequence PJ,K built as a chain of simplexes
Sk starting at x = (k − 1)/2K and finishing at x = k/2K with k varying from 1
to 2K . We first observe that the distance from any point of PJ,K to the curve CJ
can be made as small as needed: more precisely,

Lemma 4 ∀ε > 0,∃K ∈ N such that ∀u ∈ PJ,K , ∃t ∈ CJ for which ‖u− t‖ < ε.

Proof To prove this claim, we choose u in PJ,K , and we restrict our attention to
the simplex Sk containing u. The maximum distance of two points within Sk is
one of the distances between two of its vertices. By means of Equation (8) and
Lemma 2, when K is sufficiently large, calling Tj1 and Tj2 two of the vertices of
Sk, the vector

#            »

Tj1Tj2 is approximated by

#            »

Tj1Tj2 ∼
j2∑

l=j1+1

hl

l!
f (l)(x0) + o(hj1+1).

‖Tj1Tj2‖ and then ‖u−t‖ are bounded from above by
M

2K
=
∑J
j=1 sup

x∈[0,1]
‖f (j)(x)‖.

Theorem 2

Proof We denote B =
⋃
K∈N

AJ,K . Our goal is first to prove that B = AJ , or in

other words that the sequence of sets
⋃
K∈N

AJ,k is dense in AJ .

The inclusion B ⊂ AJ is immediate, as a consequence of items 1 and 2 of
Proposition 1. Conversely, we have to prove that every point of AJ is attained. We
choose α in AJ and want to show that α ∈

⋃
K∈N

AJ,K .

Starting from the vector α ∈ AJ , α = t(α0, α1, · · · , αJ), for any positive

integer l we define αl as αl = t(α0 +
1

l
, α1, · · · , αJ). αl belongs to AJ :

Fαl(x) ≥ Fα(x) +
1

l
> 0.

If we exhibit now an index Kl for which αl simultaneously belongs to AJ,Kl
, our

assertion is proved: α will be the limit of a sequence of αl each of them taken in
one AJ,Kl

.
The way to achieve this goal is to consider the sequence PJ,Kl

of Lemma 4.
PJ,Kl

is built as a chain of simplexes Sk for k varying from 1 to 2Kl . Picking a
point u in PJ,Kl

we examine now what is the condition for which 〈u,αl〉 > 0.
We start from the identity

〈u,αl〉 = 〈u− t,αl〉+ 〈t,αl〉.

• We observe that 〈t,αl〉 > 1/l.

• By Cauchy-Schwartz inequality, using Lemma 4, 〈u− t,αl〉 ≥ −
M

2K
‖αl‖.

• By the triangular inequality, ‖αl‖ ≤
1

l
+ ‖α‖.

Eventually,

〈u,αl〉 ≥ −
M

2Kl
(
1

l
+ ‖α‖) +

1

l
.
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For a given l, Kl is chosen so that the right part of the previous inequality be
positive. Since it is true for any u ∈ Sk and for any k, we have αl ∈ AJ,K , which
permits to conclude that B = AJ .

Thus, α̃J the optimal solution to Problem 3, as an element of AJ , is the limit
of a sequence of vectors αJ,K , each of them taken in one AJ,K . The second step
is to extend this first result to the sequence of α̃J,K , the solutions to Problem 5.

As AJ,K ⊂ AJ ,we have

I∑
i=1

(Yi − FαJ,K (Xi))
2 ≥

I∑
i=1

(Yi − Fα̃J,K (Xi))
2 ≥

I∑
i=1

(Yi − Fα̃J (Xi))
2.

This proves that cost(αJ,K) converges toward cost(α̃J).

The function cost is convex. We callX the matrix of the model,X =

f•(X1)
· · ·

f•(Xn)

.

The hessian matrix of the function cost is tXX. Assuming that tXX is definite
positive, which is the usual assumption in regression problems, we can infer that
α̃J is also the limit of the sequence of the solutions α̃J,K of Problem 5.

Proposition 2

Proof When cutting the initial simplex at x the volume of the two new simplexes
replacing the old one becomes: Vnew = V (x0, x) + V (x, xJ). If x = x0 or x = xJ
then Vnew = V (x0, xJ) and is maximum. Due to Rolle’s theorem, there exists
a x for which Vnew is minimum. This minimum is unique since by construction
V (x0, x) is strictly increasing while V (x, xJ) is strictly decreasing.

Proposition 3

Proof Indeed, the volume of a simplex with vertices (Tj)j=1,J is known to be:

V (x0, xJ) =
1

J !

∣∣ #        »

T0T1 · · ·
#         »

T0TJ
∣∣ .

Taking the notation of Lemma 1, for j < J ,
#         »

T0Tj is decomposed in

#         »

T0Tj =

j∑
k=1

Dj,k
Dj

f (k)(x0).

Standard manipulations on determinants give the expected result.

Preliminary to Theorem 3 We start by showing the following lemma, where
the symbol ∝ means ’is proportional to’.

Lemma 5 V (x0, xJ) ∝ (xJ − x0)
J(J+1)

2 .

Proof Restarting from Equation (8), when fj(x) = xj , the coefficients γk,j of

Lemma 2 become exactly γk,j =
(xJ − x0)k

k!
.
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Recalling that

#        »

T0T1 =γ1,1f
(1)(x0)

#        »

T0T2 =γ1,2f
(1)(x0) + γ2,2f

(2)(x0)

· · ·

we see that V (x0, xJ) ∝
∏J
j=1 γj,j , which gives the expected result.

Theorem 3

Proof Let x be the parameter of the cut point. From Lemma 2, x minimizes
V (x0, x) + V (x, xJ). Applying Lemma 5, it amounts to finding the minimum of

(x−x0)J(J+1)/2+(xJ−x)J(J+1)/2, which is obviously obtained when x =
x0 + xJ

2
.

Theorem 4

Proof We only have to prove item 1. Item 2 is immediate since PJ is convex by
construction.

We recall that Fα(x) can be expressed by Fα(x) = 〈α, f•(x)〉, where f•(x)
results from the tensor product

f•(x) = f1•(x1)⊗ · · · ⊗ fV •(xV ). (15)

This tensor product gives J + 1 terms. We rewrite f•(x) as

f•(x) = t (f0(x), f1(x), · · · , fJ(x)) .

CJ is described by CJ = (f1(x), · · · , fJ(x)), when x traverses [0, 1]V .
Given a point Tx∗ = t (f1(x∗), · · · , fJ(x∗)) of CJ corresponding to the values

x∗ = (x∗1, · · · , x∗V ) of the variables, we have to show that Tx∗ ∈ PJ .
We call Tj the vertices of PJ . By construction, each vertex Tj can be extracted

from the column number j of the matrix of constraints T• after removing the first
coordinate, equal to 1.

Our aim is to exhibit J + 1 non negative coefficients µj , for j = 0, J , summing
to 1, such that

Tx∗ =
J∑
j=0

µjTj .

This equation can be extended to the columns of T•, and is equivalent to(
1
Tx∗

)
=

J∑
j=0

µj

(
1
Tj

)
.

For each xv, we consider the curve Cv,Jv
described by (fv,1(xv), · · · , fv,Jv

(xv))
and the point Tv,x∗

v
corresponding to the value x∗v of the variable xv.

Cv,Jv
is included in its osculating simplex. Then we can find Jv + 1 positive

coefficients λv,jv summing to 1 such that:(
1

Tv,x∗
v

)
=

Jv∑
jv=0

λv,jv

(
1

Tv,jv

)
. (16)
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Stemming from Equation 15, by means of the tensor product, we have:(
1
Tx∗

)
=

(
1

T1,x∗
1

)
⊗ · · · ⊗

(
1

TV,x∗
V

)
. (17)

The combination of equations 16 and 17 gives:

(
1
Tx∗

)
=

J1∑
j1=0

· · ·
JV∑
jV =0

λ1,j1 · · ·λV,jV
(

1
T1,j1

)
⊗ · · · ⊗

(
1

Tv,jV

)
,

which leads to the desired expression for Tx∗ after removing the first row.

Furthermore, one can observe that:

J1∑
j1=0

· · ·
JV∑
jV =0

λ1,j1 · · ·λV,jV =
V∏
v=1

(λv,0 + · · ·+ λv,Jv
) = 1.

Thus Tx∗ is expressed as a linear combination of the vertices of PJ , where all the
coefficients are positive and sum to 1. The proof of item 1 is complete.

Theorem 5

Proof Theorem 5 is the analog of Theorem 2 for a single variable. Looking closely
to the proof of Theorem 2, we can see that it can be readily generalized without
any change to the case of more than one variable, except for the maximum distance
between two vertices of any simplex.

Indeed, calling Tj1 and Tj2 two of the vertices of one of the simplexes in the

univariate case, the vector
#            »

Tj1Tj2 has been shown to be bounded by
M

2Kl
with

M =
∑J
j=1 sup

x∈[0,1]
‖f (j)(x)‖. To generalize to the multivariate case, due to the

tensorial product,
M

2Kl
must be replaced by

∏V
v=1

Mv

2Kl
, where each Mv is taken to

be

Mv =

Jv∑
jv=1

sup
xv∈[0,1]

‖fv(jv)(xv)‖.

Proposition 4

Proof When adding a point in the center of an initial domain (see figure 6)

– we replace the vertices on the external border: we add 3V vertices and remove
2V old ones.

– for the 2V new simplexes, we add 2V (J + 1 − 2V ) interior points and remove
J + 1− 2V points corresponding to the interior vertices of the old simplex.

This gives the expected result.
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Fig. 6 number of constraints the upper row gives the limits of an initial domain ([0, 1]V

for example) when V = 1, 2, 3. The lower row gives the new definition domain when a point
drawn as a square is added in the previous lattice.
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