
Appendix B: proofs

Proposition 1. Assume that the curve CJ is included in its osculating simplex on [0, 1].
If tTα ≥ 0 , then ∀x ∈ [0, 1], we have Fα(x) ≥ 0.

Proof. Because of the linearity of Z on T and because a simplex is convex by definition,
FJ(x) is guaranteed to be positive on [0, 1], if it is positive in every vertices of SJ .

Preliminaries to Theorem 1
Theorem 1 needs the three following preliminary lemmas where we prove that in a small

neighborhood of a point on a curve, a smooth curve is included in its osculating simplex.
Let T0 be a point on the curve CJ corresponding to x0 and TJ corresponding to xJ =

x0 + h. We denote T0, T1, · · · , TJ the vertices of the osculating simplex between x0 and
x0 + h (see Definition 2).

The vectors f (1)(x0), · · · , f (j)(x0) are all linearly independent. This results from the
definition A1 of an Extended Chebyshev system. In this basis,

#      »

T0Tj =

j∑
k=1

γk,jf
(k)(x0). (1)

Similarly,

#       »

TjTJ =
J∑

k=j+1

γk,jf
(k)(xJ).

Lemma B1. Let Dj be the determinant

Dj =
∣∣f (1)(x0) · · · f (j)(x0) f (1)(xJ) · · · f (J−j)(xJ)

∣∣ .
Dj,k is obtained by replacing the k-th column of Dj by f(xJ)− f(x0). Then, that for all j,

Dj 6= 0, and γk,j =
Dj,k

Dj

.

All the determinants Dj are strictly positive as a result of the definition A1 of ET
systems.

For 0 < j < J , Tj belongs to the osculating j-space at T0 and simultaneously to the

osculating J − j-space at TJ . Thus, the vector
#      »

T0Tj is a linear combination of the first j

derivatives at T0 and similarly
#       »

TJTj is a linear combination of the first J − j derivatives at
TJ . Consequently, the coordinates γ1,j, · · · , γJ,j of Tj, as stated in this lemma, result from
the Cramer’rule applied to the linear system of equations:(
f (1)(x0) · · · f (j)(x0)f (1)(xJ) · · · f (J−j)(xJ)

)γ1,j· · ·
γJ,j

 =
(
f(xJ)− f(x0)

)

Lemma B2. The coefficients γk,j can be approximated by γk,j ∼
hk

k!
+ o(hk).

1



We start from the previous lemma ?? and the expression of Dj,k.
Since xJ = x0+h, taking the Taylor expansion of f1(x0+h)−f1(x0),...,fJ(x0+h)−fJ(x0),

it can be readily shown that the first non vanishing term in the development of the Dj,k

for 1 ≤ k ≤ j is
hk

k!
Dj. This results in the statement of the lemma.

Lemma B3. Let T0 and TJ be two points on the curve CJ corresponding to x0 and xJ >
x0. Then, in the neighborhood of x0, for h small enough, the portion of the curve CJ
corresponding to x varying in (x0, x0 + h) is strictly included in the cone generated by

{ #      »

T0T1, · · · ,
#       »

T0TJ}.

Proof. Our aim is to prove that any point Tx = (f1(x), · · · , fJ(x)) verifies:

#      »

T0Tx =
J∑
j=1

λj(x)
#      »

T0Tj, s.t. λj(x) ≥ 0, ∀j ∈ [1, j],∀x ∈ [x0, x0 + h], (2)

where, for j = 1, J , λj(x) are real coefficients depending on x and Tj are the vertices of
the osculating simplex.

For every 0 < j < J ,
#      »

T0Tj belongs to the osculating j-space at T0, and
#      »

T0Tj can be

written:
#       »

T0Tj =
∑j

k=1 γk,jf
(k)(x0). That is:

#      »

T0T1 =γ1,1f
(1)(x0)

#      »

T0T2 =γ1,2f
(1)(x0) + γ2,2f

(2)(x0)

· · ·

Gathering the coefficients γk,j for k ≤ j in a matrix Γh, we obtain the system of linear
equations: 

t #      »

T0T1
t #      »

T0T2
· · ·

t #       »

T0TJ

 = Γh


tf (1)(x0)
tf (2)(x0)
· · ·

tf (J)(x0)

 . (3)

Furthermore, a Taylor expansion of
#      »

T0Tx gives

#      »

T0Tx =
J∑
j=1

(x− x0)j

j!
f (j)(x0) + o((x− x0)J). (4)

Plugging together equations (??), (??) and (??), we obtain:

tΓh

λ1(x)
· · ·
λJ(x)

 =


(x− x0)

1!
+ o((x− x0))
· · ·

(x− x0)J

J !
+ o((x− x0)J)

 . (5)
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The next step is to solve Γh. With Lemma ??, we have

Γh =


h
1!

+ o(h) 0 · · ·
h2

2!
+ o(h2) h2

2!
+ o(h2) 0 · · ·

· · ·
hJ

J !
+ o(hJ) · · · · · · hJ

J !
+ o(hJ)

 . (6)

Equation (??) is rewritten:

Γh ∼ NhΓ
′(1 + o(1)). (7)

The matrix Nh =


h

1!
. . .

hJ

J !

 is diagonal and Γ′ =


1 0 · · · · · ·
1 1 0 · · ·

. . . 0
1 1 · · · 1

 is lower trian-

gular and does not depend on h.
Assembling equations (??) and (??), solving Γh when h is small enough but not equal

to zero, and finally simplifying gives:

λ1(x)
· · ·
λJ(x)

 = N−1h
tΓ′−1


(x− x0)

1!
+ o((x− x0))
· · ·

(x− x0)J

J !
+ o((x− x0)J)

 .

We find an upper band matrix for N−1h
tΓ′−1:

N−1h
tΓ′−1 =


1!
h
−1!

h
0 · · · 0

0 2!
h2
− 2!
h2
· · · 0

0 0 3!
h3

· · ·
· · · − (J−1)!

hJ−1

0 · · · 0 J !
hJ

 .

Eventually, we obtain a positive approximation for λj(x), 1 ≤ j ≤ J , in the vicinity of
x0:

λj(x) =
(x− x0)j

(xJ − x0)j
(1− 1

j + 1
(x− x0)) + o((x− x0)j).

Theorem 1. Let T0 and TJ be two points on the curve CJ . Under Assumption A, the
portion of the curve between T0 and TJ is included in its osculating simplex.
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Proof. We denote Tj, for 0 < j < J , the vertex of the osculating simplex defined as
the intersection of the osculating j-space at T0 and the osculating J − j-space at TJ (see
Definition 2). We define Facej for 0 ≤ j ≤ J as the face of the osculating simplex containing
all the vertices except Tj.

Each Facej, 0 ≤ j ≤ J , intersects CJ exactly J times taking into account the multi-
plicities. Indeed, the multiplicity of the contact at T0 between CJ and Facej is J since the
osculating hyperplane at T0 is the supporting hyperplane of Facej and Facej contains the
first J − 1 derivatives f (1)(x0), · · · , f (J−1)(x0). Thus T0 is the only contact point between
CJ and Facej (see Corollary A1). The same holds for TJ and Face0.

For Facej, for 0 < j < J , by construction of the osculating simplex, T0, T1, · · · , Tj−1
belong to the osculating j − 1-space at T0. Thus the face T0, T1, · · · , Tj−1 is supported
by the vectorial sub-space spanned by the first j − 1 derivatives at T0. In the same way,
TJ−j−1, · · · , TJ−1, TJ is included in the vectorial sub-space spanned by the first J − j − 1
derivatives at TJ .

This amounts to saying that the multiplicity of the contact between CJ and Facej at T0
is j. Similarly, the multiplicity of the contact between CJ and Facej at TJ is J − j. Finally,
CJ intersects FaceJ J times. Due to Corollary A1, T0 and TJ are the only intersection
points between CJ and FaceJ .

As a conclusion, between T0 and TJ , CJ stays on one side of each of the faces Facej for
0 ≤ j ≤ J .

SJ can be viewed as the cone generated by { #      »

T0T1, · · · ,
#       »

T0TJ} sectioned by the face Face0.
From Lemma ??, when xJ is fixed, in a small neighborhood of x0, we know that CJ is inside
the cone. Since CJ never crosses one of the face Facej except in T0 and TJ , CJ remains
inside this cone.

Preliminaries to Theorem 2 We recall the notations already introduced in the main
paper, state two introductory propositions or lemmas, and then prove the theorem.

We consider PJ,K a set of nested simplexes, built so that PJ,K+1 ⊂ PJ,K .
Let AJ be the set of coefficients for which ∀x ∈ [0, 1], Fα(x) ≥ 0:

AJ = {α | ∀x ∈ [0, 1], Fα(x) ≥ 0}.

Similarly, we denote AJ,K the set of possible coefficients at step K, that is the coeffi-
cients for which tT•Kα ≥ 0 where T•K is the matrix of constraints at step K. Removing
the first row, we obtain TK the matrix gathering (in columns) the vertices of PJ,K .

α̃J,K is the vector of coefficients of the solution to Problem 5 when the constraints
match the vertices of PJ,K . The coefficients of the optimal solution to 3 are stored in a
vector denoted α̃J .

Let cost(α) be defined as cost(α) :=
∑I

i=1(Yi − Fα(Xi))
2. We have,

cost(α̃J,K) = min
α

(cost(α)), s.t. tT•Kα ≥ 0.

Proposition 2. 1. ∀K,AJ,K ⊂ AJ,K+1 ⊂ AJ .
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2. AJ and all the AJ,K are closed convex cones.

3. The sequence of cost(α̃J,K) is decreasing with K.

Proof. item 1 Thanks to Proposition 1, AJ,K can be seen as

AJ,K = {α | ∀t ∈ PJ,K , 〈α, t〉 ≥ 0}.

By construction, PJ,K+1 ⊂ PJ,K . Indeed, each simplex of PJ,K+1 results from cutting in two
one of the simplexes in PJ,K , as illustrated on Figure 2.

Thus, if we have 〈T,α〉 ≥ 0 for all the vertices T of PJ,K , then it is also true for all the
vertices of PJ,K+1. This last statement means that AJ,K ⊂ AJ,K+1.

PJ,K is a collection of successive osculating simplexes, each of them finishing at the
point where the next one begins. Thus PJ,K circumscribes the curve CJ , and this implies
that if α is in AJ,K then ∀x ∈ [0, 1], Fα(x) ≥ 0, or equivalently that AJ,K ⊂ AJ .

item 2 We only detail this claim for AJ , similar considerations can be applied to the AJ,K .
Indeed, if ∀x F (x) ≥ 0 for a given α, then it is also verified for λα where λ is real and
positive. Thus AJ is a cone. It is convex: if F (x) ≥ 0 for α1 and α2, then it is also
non-negative for pα1 + (1− p)α2 for any p ∈ [0, 1].

The set B = {α | ∀x ∈ [0, 1], Fα(x) ≥ 0} is closed: we consider the application gx
defined as α ∈ RJ+1 7→ gx(α) ∈ R, gx(α) = 〈f•(x),α〉. gx is continuous. The inverse
image of the open set R−∗ = (−∞, 0), g−x (R−∗), is then open and C =

⋃
x∈[0,1]

g−x (R−∗) is also

open. C being the complement of B in RJ is closed.

item 3 This is a direct consequence of item 1: since AJ,K ⊂ AJ,K+1, the minimum over
AJ,K is greater or equal to the minimum over AJ,K+1.

We restrict our attention to the sequence PJ,K built as a chain of simplexes Sk starting
at x = (k− 1)/2K and finishing at x = k/2K with k varying from 1 to 2K . We first observe
that the distance from any point of PJ,K to the curve CJ can be made as small as needed:
more precisely,

Lemma B4. ∀ε > 0,∃K ∈ N such that ∀u ∈ PJ,K , ∃t ∈ CJ for which ‖u− t‖ < ε.

Proof. To prove this claim, we choose u in PJ,K , and we restrict our attention to the
simplex Sk containing u. The maximum distance of two points within Sk is one of the
distances between two of its vertices. By means of Equation (??) and Lemma ??, when

K is sufficiently large, calling Tj1 and Tj2 two of the vertices of Sk, the vector
#         »

Tj1Tj2 is
approximated by

#         »

Tj1Tj2 ∼
j2∑

l=j1+1

hl

l!
f (l)(x0) + o(hj1+1).

‖Tj1Tj2‖ and then ‖u− t‖ are bounded from above by
M

2K
with M =

∑J
j=1 sup

x∈[0,1]
‖f (j)(x)‖.
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Theorem 2. Under Assumption A, we have limK→∞ α̃J,K = α̃J .

Proof. We denote B =
⋃
K∈N

AJ,K . Our goal is first to prove that B = AJ , or in other words

that the sequence of sets
⋃
K∈N

AJ,k is dense in AJ .

The inclusion B ⊂ AJ is immediate, as a consequence of items 1 and 2 of Proposition
2. Conversely, we have to prove that every point of AJ is attained. We choose α in AJ and
want to show that α ∈

⋃
K∈N

AJ,K .

Starting from the vector α ∈ AJ , α = t(α0, α1, · · · , αJ), for any positive integer l we

define αl as αl = t(α0 +
1

l
, α1, · · · , αJ). αl belongs to AJ :

Fαl
(x) ≥ Fα(x) +

1

l
> 0.

If we exhibit now an index Kl for which αl simultaneously belongs to AJ,Kl
, our assertion

is proved: α will be the limit of a sequence of αl each of them taken in one AJ,Kl
.

The way to achieve this goal is to consider the sequence PJ,Kl
of Lemma ??. PJ,Kl

is
built as a chain of simplexes Sk for k varying from 1 to 2Kl . Picking a point u in PJ,Kl

we
examine now what is the condition for which 〈u,αl〉 > 0.

We start from the identity

〈u,αl〉 = 〈u− t,αl〉+ 〈t,αl〉.

• We observe that 〈t,αl〉 > 1/l.

• By Cauchy-Schwartz inequality, using Lemma ??, 〈u− t,αl〉 ≥ −
M

2K
‖αl‖.

• By the triangular inequality, ‖αl‖ ≤
1

l
+ ‖α‖.

Eventually,

〈u,αl〉 ≥ −
M

2Kl
(
1

l
+ ‖α‖) +

1

l
.

For a given l, Kl is chosen so that the right part of the previous inequality be positive.
Since it is true for any u ∈ Sk and for any k, αl ∈ AJ,K , which permits to conclude that

B = AJ .
Thus, α̃J the optimal solution to Problem 3, as an element of AJ , is the limit of a

sequence of vectors αJ,K , each of them taken in one AJ,K . The second step is to extend
this first result to the sequence of α̃J,K , the solutions to Problem 5.

As AJ,K ⊂ AJ ,we have

I∑
i=1

(Yi − FαJ,K
(Xi))

2 ≥
I∑
i=1

(Yi − Fα̃J,K
(Xi))

2 ≥
I∑
i=1

(Yi − Fα̃J
(Xi))

2.

This proves that cost(αJ,K) converges toward cost(α̃J).
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The function cost is convex. Calling X the matrix of the model, X =

f•(X1)
· · ·

f•(Xn)

, then

the hessian matrix of the function cost is simply tXX. Assuming that tXX is definite
positive, which is the usual assumption in regression problems, we can infer that α̃J is also
the limit of the sequence of the solutions α̃J,K of Problem 5.

Proposition 3. Let T0, T , TJ be three points on the curve corresponding to x0 < x < xJ .
Then the function Vnew = V (x0, x) + V (x, xJ) has a unique minimum between x0 and xJ ,
where V (x0, x) (resp. V (x, xJ)) stands for the volume of the simplex between x0 and x
(resp. x and xJ).

Proof. When cutting the initial simplex at x the volume of the two new simplexes replacing
the old one becomes: Vnew = V (x0, x)+V (x, xJ). If x = x0 or x = xJ then Vnew = V (x0, xJ)
and is maximum. Due to Rolle’s theorem, there exists a x for which Vnew is minimum. This
minimum is unique since by construction V (x0, x) is a strictly increasing function while
V (x, xJ) is strictly decreasing.

Proposition 4. V (x0, xJ) =
1

J !
DJ,J

∏J−1
j=1 Dj,j∏J−1
j=1 Dj

.

Proof. Indeed, the volume of a simplex with vertexes T0, · · · , TJ is known to be:

V (x0, xJ) =
1

J !

∣∣ #      »

T0T1 · · ·
#       »

T0TJ
∣∣ .

Taking the notation of Lemma ??, for j < J ,
#       »

T0Tj is decomposed in

#       »

T0Tj =

j∑
k=1

Dj,k

Dj

f (k)(x0).

Standard manipulations on determinants give the expected result.

Proposition 5. V (x0, xJ) ∝ (xJ − x0)
J(J+1)

2 .

Proof. Restarting from Equation (??), when fj(x) = xj, the coefficients γk,j of Lemma ??

become exactly γk,j =
(xJ − x0)k

k!
.
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Recalling that

#      »

T0T1 =γ1,1f
(1)(x0)

#      »

T0T2 =γ1,2f
(1)(x0) + γ2,2f

(2)(x0)

· · ·

we see that V (x0, xJ) =
∣∣ #      »

T0T1, · · ·
#       »

T0TJ
∣∣ =

∏J
j=1 γj,j =

(xJ − x0)J(J+1)/2∏J
j=1 j!

, which is precisely

what we had to establish.

Theorem 3. Let the system of functions fj(x) be the sequence of monomials {xj}Jj=1. Then

the optimal cut point between x0 and xJ is
x0 + xJ

2
.

Proof. Let x be the parameter of the cut point. From Lemma 3, x minimizes V (x0, x) +
V (x, xJ). Applying Proposition 5, it amounts to find the minimum of (x − x0)J(J+1)/2 +

(xJ − x)J(J+1)/2, which is obviously obtained when x =
x0 + xJ

2
.

Theorem 4. Let D be D = [x1,0, x1,1]× · · · ,×[xV,0, xV,1]. Under Assumption A

1. When x traverses D, the corresponding portion of CJ is included in PJ .

2. If tαT• ≥ 0, then ∀x ∈ D, we have F (x) ≥ 0.

Proof. We only have to prove item 1. Item 2 is immediate since PJ is convex by construc-
tion.

We recall that Fα(x) can be expressed by Fα(x) = 〈α, f•(x)〉, where f•(x) results from
the tensor product

f•(x) = f1•(x1)⊗ · · · ⊗ fV •(xV ). (8)

This tensor product gives J + 1 terms. We rewrite f•(x) as

f•(x) = t (f0(x), f1(x), · · · , fJ(x)) .

CJ is described by CJ = (f1(x), · · · , fJ(x)), when x traverses [0, 1]V .
Given a point Tx∗ = t (f1(x

∗), · · · , fJ(x∗)) of CJ corresponding to the values x∗ =
(x∗1, · · · , x∗V ) of the variables, we have to show that Tx∗ ∈ PJ .

We call Tj the vertices of PJ . By construction, each vertex Tj can be extracted from
the column number j of the matrix of constraints T• after removing the first coordinate,
equal to 1.
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Our aim is to exhibit J + 1 non negative coefficients µj, for j = 0, J , summing to 1,
such that

Tx∗ =
J∑
j=0

µjTj.

This equation can be extended to the columns of T•, and is equivalent to(
1
Tx∗

)
=

J∑
j=0

µj

(
1
Tj

)
.

For each xv, we consider the curve Cv,Jv described by (fv,1(xv), · · · , fv,Jv(xv)) and the
point Tv,x∗v corresponding to the value x∗v of the variable xv.

Cv,Jv is included in its osculating simplex. Then we can find Jv + 1 positive coefficients
λv,jv summing to 1 such that:

Tv,x∗v =
Jv∑
jv=0

λv,jvTv,jv ,

or equivalently (
1

Tv,x∗v

)
=

Jv∑
jv=0

λv,jv

(
1

Tv,jv

)
. (9)

Stemming from Equation ??, by means of the tensor product, we have:(
1
Tx∗

)
=

(
1

T1,x∗1

)
⊗ · · · ⊗

(
1

TV,x∗V

)
. (10)

The combination of equations ?? and ?? gives:(
1
Tx∗

)
=

J1∑
j1=0

· · ·
JV∑
jV =0

λ1,j1 · · ·λV,jV
(

1
T1,j1

)
⊗ · · · ⊗

(
1

Tv,jV

)
,

which leads to the desired expression for Tx∗ after removing the first row.
Furthermore, one can observe that:

J1∑
j1=0

· · ·
JV∑
jV =0

λ1,j1 · · ·λV,jV =
V∏
v=1

(λv,0 + · · ·+ λv,Jv) = 1.

Thus Tx∗ is expressed as a linear combination of the vertices of PJ , where all the coefficients
are positive and sum to 1. The proof of item 1 is complete.

Theorem 5. We assume that each family of functions {fv,j(xv)}Jvj=1 for 1 ≤ v ≤ V verifies
Assumption A. Then limK→∞ α̃J,K = α̃J .
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Proof. Theorem 5 is the analog of Theorem 2 for a single variable. Looking closely to the
proof of Theorem 2, we can see that it can be readily generalized without any change to
the case of more than one variable, except for the maximum distance between two vertices
of any simplex.

Indeed, calling Tj1 and Tj2 two of the vertices of one of the simplexes in the univariate

case, the vector
#         »

Tj1Tj2 has been shown to be bounded by
M

2Kl
withM =

∑J
j=1 sup

x∈[0,1]
‖f (j)(x)‖.

To generalize to the multivariate case, due to the tensorial product,
M

2Kl
must be replaced

by
∏V

v=1

Mv

2Kl
, where each Mv is taken to be

Mv =
Jv∑
jv=1

sup
xv∈[0,1]

‖fv(jv)(xv)‖.

Proposition 6. When creating a new simplex by subdividing an existing one, the number
of constraints is augmented by:

3V − 22V + (J + 1) ∗ (2V − 1).

Proof.

Figure 1: number of constraints the upper row gives the limits of an initial domain
([0, 1]V for example) when V = 1, 2, 3. The lower row gives the new definition domain when
a point is added in the previous lattice. For example,when V = 3 each cube corresponds
to a simplex.

When adding a point in the center of an initial domain (see figure ??)

• we replace the vertices on the external border: we add 3V vertices and remove 2V old
ones.

• for the 2V new simplexes, we add 2V (J+1−2V ) interior points and remove J+1−2V

points corresponding to the interior vertexes of the old simplex.

This gives the expected result.
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