Appendix B: proofs

Proposition 1. Assume that the curve C_{J} is included in its osculating simplex on $[0,1]$. If ${ }^{t} \mathbf{T} \boldsymbol{\alpha} \geq 0$, then $\forall x \in[0,1]$, we have $F_{\alpha}(x) \geq 0$.

Proof. Because of the linearity of Z on \mathbb{T} and because a simplex is convex by definition, $F_{J}(x)$ is guaranteed to be positive on $[0,1]$, if it is positive in every vertices of S_{J}.

Preliminaries to Theorem 1

Theorem 1 needs the three following preliminary lemmas where we prove that in a small neighborhood of a point on a curve, a smooth curve is included in its osculating simplex.

Let T_{0} be a point on the curve C_{J} corresponding to x_{0} and T_{J} corresponding to $x_{J}=$ $x_{0}+h$. We denote $T_{0}, T_{1}, \cdots, T_{J}$ the vertices of the osculating simplex between x_{0} and $x_{0}+h$ (see Definition 2).

The vectors $\mathbf{f}^{(1)}\left(x_{0}\right), \cdots, \mathbf{f}^{(j)}\left(x_{0}\right)$ are all linearly independent. This results from the definition A1 of an Extended Chebyshev system. In this basis,

$$
\begin{equation*}
\overrightarrow{T_{0} T_{j}}=\sum_{k=1}^{j} \gamma_{k, j} \mathbf{f}^{(k)}\left(x_{0}\right) \tag{1}
\end{equation*}
$$

Similarly,

$$
\overrightarrow{T_{j} T_{J}}=\sum_{k=j+1}^{J} \gamma_{k, j} \mathbf{f}^{(k)}\left(x_{J}\right)
$$

Lemma B1. Let D_{j} be the determinant

$$
D_{j}=\left|\mathbf{f}^{(1)}\left(x_{0}\right) \quad \cdots \quad \mathbf{f}^{(j)}\left(x_{0}\right) \quad \mathbf{f}^{(1)}\left(x_{J}\right) \quad \cdots \quad \mathbf{f}^{(J-j)}\left(x_{J}\right)\right| .
$$

$D_{j, k}$ is obtained by replacing the k-th column of D_{j} by $\mathbf{f}\left(x_{J}\right)-\mathbf{f}\left(x_{0}\right)$. Then, that for all j, $D_{j} \neq 0$, and $\gamma_{k, j}=\frac{D_{j, k}}{D_{j}}$.

All the determinants D_{j} are strictly positive as a result of the definition A1 of ET systems.

For $0<j<J, T_{j}$ belongs to the osculating j-space at T_{0} and simultaneously to the osculating $J-j$-space at T_{J}. Thus, the vector $\overrightarrow{T_{0} T_{j}}$ is a linear combination of the first j derivatives at T_{0} and similarly $\overrightarrow{T_{J} T_{j}}$ is a linear combination of the first $J-j$ derivatives at T_{J}. Consequently, the coordinates $\gamma_{1, j}, \cdots, \gamma_{J, j}$ of T_{j}, as stated in this lemma, result from the Cramer'rule applied to the linear system of equations:

$$
\left(\mathbf{f}^{(1)}\left(x_{0}\right) \cdots \mathbf{f}^{(j)}\left(x_{0}\right) \mathbf{f}^{(1)}\left(x_{J}\right) \cdots \mathbf{f}^{(J-j)}\left(x_{J}\right)\right)\left(\begin{array}{c}
\gamma_{1, j} \\
\cdots \\
\gamma_{J, j}
\end{array}\right)=\left(\mathbf{f}\left(x_{J}\right)-\mathbf{f}\left(x_{0}\right)\right)
$$

Lemma B2. The coefficients $\gamma_{k, j}$ can be approximated by $\gamma_{k, j} \sim \frac{h^{k}}{k!}+o\left(h^{k}\right)$.

We start from the previous lemma ?? and the expression of $D_{j, k}$.
Since $x_{J}=x_{0}+h$, taking the Taylor expansion of $f_{1}\left(x_{0}+h\right)-f_{1}\left(x_{0}\right), \ldots, f_{J}\left(x_{0}+h\right)-f_{J}\left(x_{0}\right)$, it can be readily shown that the first non vanishing term in the development of the $D_{j, k}$ for $1 \leq k \leq j$ is $\frac{h^{k}}{k!} D_{j}$. This results in the statement of the lemma.

Lemma B3. Let T_{0} and T_{J} be two points on the curve C_{J} corresponding to x_{0} and $x_{J}>$ x_{0}. Then, in the neighborhood of x_{0}, for h small enough, the portion of the curve C_{J} corresponding to x varying in $\left(x_{0}, x_{0}+h\right)$ is strictly included in the cone generated by $\left\{\overrightarrow{T_{0} T_{1}}, \cdots, \overrightarrow{T_{0} T_{J}}\right\}$.

Proof. Our aim is to prove that any point $T_{x}=\left(f_{1}(x), \cdots, f_{J}(x)\right)$ verifies:

$$
\begin{equation*}
\overrightarrow{T_{0} T_{x}}=\sum_{j=1}^{J} \lambda_{j}(x) \overrightarrow{T_{0} T_{j}}, \text { s.t. } \lambda_{j}(x) \geq 0, \forall j \in[1, j], \forall x \in\left[x_{0}, x_{0}+h\right] \tag{2}
\end{equation*}
$$

where, for $j=1, J, \lambda_{j}(x)$ are real coefficients depending on x and T_{j} are the vertices of the osculating simplex.

For every $0<j<J, \overrightarrow{T_{0} T_{j}}$ belongs to the osculating j-space at T_{0}, and $\overrightarrow{T_{0} T_{j}}$ can be written: $\overrightarrow{T_{0} T j}=\sum_{k=1}^{j} \gamma_{k, j} \mathbf{f}^{(k)}\left(x_{0}\right)$. That is:

$$
\begin{aligned}
& \overrightarrow{T_{0} T_{1}}=\gamma_{1,1} \mathbf{f}^{(1)}\left(x_{0}\right) \\
& \overrightarrow{T_{0} T_{2}}=\gamma_{1,2} \mathbf{f}^{(1)}\left(x_{0}\right)+\gamma_{2,2} \mathbf{f}^{(2)}\left(x_{0}\right)
\end{aligned}
$$

Gathering the coefficients $\gamma_{k, j}$ for $k \leq j$ in a matrix $\boldsymbol{\Gamma}_{h}$, we obtain the system of linear equations:

$$
\left(\begin{array}{c}
{ }^{t} \overrightarrow{T_{0} \vec{T}_{1}} \tag{3}\\
{ }^{t} \overrightarrow{T_{0} T_{2}} \\
\cdots \\
{ }^{t} \overrightarrow{T_{0} T_{J}}
\end{array}\right)=\boldsymbol{\Gamma}_{h}\left(\begin{array}{c}
{ }^{t} \mathbf{f}^{(1)}\left(x_{0}\right) \\
{ }^{t} \mathbf{f}^{(2)}\left(x_{0}\right) \\
\cdots \\
{ }^{\mathbf{f}^{(J)}\left(x_{0}\right)}
\end{array}\right) .
$$

Furthermore, a Taylor expansion of $\overrightarrow{T_{0} T_{x}}$ gives

$$
\begin{equation*}
\overrightarrow{T_{0} T_{x}}=\sum_{j=1}^{J} \frac{\left(x-x_{0}\right)^{j}}{j!} \mathbf{f}^{(j)}\left(x_{0}\right)+o\left(\left(x-x_{0}\right)^{J}\right) \tag{4}
\end{equation*}
$$

Plugging together equations (??), (??) and (??), we obtain:

$$
{ }^{t} \boldsymbol{\Gamma}_{h}\left(\begin{array}{c}
\lambda_{1}(x) \tag{5}\\
\cdots \\
\lambda_{J}(x)
\end{array}\right)=\left(\begin{array}{c}
\frac{\left(x-x_{0}\right)}{1!}+o\left(\left(x-x_{0}\right)\right) \\
\cdots \\
\frac{\left(x-x_{0}\right)^{J}}{J!}+o\left(\left(x-x_{0}\right)^{J}\right)
\end{array}\right)
$$

The next step is to solve $\boldsymbol{\Gamma}_{h}$. With Lemma ??, we have

$$
\boldsymbol{\Gamma}_{h}=\left(\begin{array}{cccc}
\frac{h}{1!}+o(h) & 0 & & \cdots \tag{6}\\
\frac{h^{2}}{2!}+o\left(h^{2}\right) & \frac{h^{2}}{2!}+o\left(h^{2}\right) & 0 & \cdots \\
\cdots & & & \\
\frac{h^{J}}{J!}+o\left(h^{J}\right) & \cdots & \cdots & \frac{h^{J}}{J!}+o\left(h^{J}\right)
\end{array}\right)
$$

Equation (??) is rewritten:

$$
\begin{equation*}
\boldsymbol{\Gamma}_{h} \sim \mathbf{N}_{h} \boldsymbol{\Gamma}^{\prime}(1+o(1)) \tag{7}
\end{equation*}
$$

The matrix $\mathbf{N}_{h}=\left(\begin{array}{ccc}\frac{h}{1!} & & \\ & \ddots & \\ & & \frac{h^{J}}{J!}\end{array}\right)$ is diagonal and $\boldsymbol{\Gamma}^{\prime}=\left(\begin{array}{cccc}1 & 0 & \cdots & \cdots \\ 1 & 1 & 0 & \cdots \\ & & \ddots & 0 \\ 1 & 1 & \cdots & 1\end{array}\right)$ is lower triangular and does not depend on h.

Assembling equations (??) and (??), solving $\boldsymbol{\Gamma}_{h}$ when h is small enough but not equal to zero, and finally simplifying gives:

$$
\left(\begin{array}{c}
\lambda_{1}(x) \\
\cdots \\
\lambda_{J}(x)
\end{array}\right)=\mathbf{N}_{h}^{-1 t} \boldsymbol{\Gamma}^{\prime-1}\left(\begin{array}{c}
\frac{\left(x-x_{0}\right)}{1!}+o\left(\left(x-x_{0}\right)\right) \\
\cdots \\
\frac{\left(x-x_{0}\right)^{J}}{J!}+o\left(\left(x-x_{0}\right)^{J}\right)
\end{array}\right) .
$$

We find an upper band matrix for $\mathbf{N}_{h}^{-1} \boldsymbol{\Gamma}^{\prime-1}$:

$$
\mathbf{N}_{h}^{-1} t \boldsymbol{\Gamma}^{\prime-1}=\left(\begin{array}{ccccc}
\frac{1!}{h} & -\frac{1!}{h} & 0 & \cdots & 0 \\
0 & \frac{2 l^{2}}{h^{2}} & -\frac{2!}{h^{2}} & \cdots & 0 \\
0 & 0 & \frac{3!}{h^{3}} & & \cdots \\
\cdots & & & & -\frac{(J-1)!}{h_{J!}^{J-1}} \\
0 & \cdots & & 0 & \frac{!}{h^{J}}
\end{array}\right)
$$

Eventually, we obtain a positive approximation for $\lambda_{j}(x), 1 \leq j \leq J$, in the vicinity of x_{0} :

$$
\lambda_{j}(x)=\frac{\left(x-x_{0}\right)^{j}}{\left(x_{J}-x_{0}\right)^{j}}\left(1-\frac{1}{j+1}\left(x-x_{0}\right)\right)+o\left(\left(x-x_{0}\right)^{j}\right) .
$$

Theorem 1. Let T_{0} and T_{J} be two points on the curve C_{J}. Under Assumption A, the portion of the curve between T_{0} and T_{J} is included in its osculating simplex.

Proof. We denote T_{j}, for $0<j<J$, the vertex of the osculating simplex defined as the intersection of the osculating j-space at T_{0} and the osculating $J-j$-space at T_{J} (see Definition 2). We define Face_{j} for $0 \leq j \leq J$ as the face of the osculating simplex containing all the vertices except T_{j}.

Each Face ${ }_{j}, 0 \leq j \leq J$, intersects C_{J} exactly J times taking into account the multiplicities. Indeed, the multiplicity of the contact at T_{0} between C_{J} and Face $_{j}$ is J since the osculating hyperplane at T_{0} is the supporting hyperplane of Face_{j} and Face_{j} contains the first $J-1$ derivatives $\mathbf{f}^{(1)}\left(x_{0}\right), \cdots, \mathbf{f}^{(J-1)}\left(x_{0}\right)$. Thus T_{0} is the only contact point between C_{J} and Face $_{j}$ (see Corollary A1). The same holds for T_{J} and Face $_{0}$.

For Face $_{j}$, for $0<j<J$, by construction of the osculating simplex, $T_{0}, T_{1}, \cdots, T_{j-1}$ belong to the osculating $j-1$-space at T_{0}. Thus the face $T_{0}, T_{1}, \cdots, T_{j-1}$ is supported by the vectorial sub-space spanned by the first $j-1$ derivatives at T_{0}. In the same way, $T_{J-j-1}, \cdots, T_{J-1}, T_{J}$ is included in the vectorial sub-space spanned by the first $J-j-1$ derivatives at T_{J}.

This amounts to saying that the multiplicity of the contact between C_{J} and Face $_{j}$ at T_{0} is j. Similarly, the multiplicity of the contact between C_{J} and Face ${ }_{j}$ at T_{J} is $J-j$. Finally, C_{J} intersects Face $_{J} J$ times. Due to Corollary A1, T_{0} and T_{J} are the only intersection points between C_{J} and Face $_{J}$.

As a conclusion, between T_{0} and T_{J}, C_{J} stays on one side of each of the faces Face ${ }_{j}$ for $0 \leq j \leq J$.
S_{J} can be viewed as the cone generated by $\left\{\overrightarrow{T_{0} T_{1}}, \cdots, \overrightarrow{T_{0} T_{J}}\right\}$ sectioned by the face Face ${ }_{0}$. From Lemma ??, when x_{J} is fixed, in a small neighborhood of x_{0}, we know that C_{J} is inside the cone. Since C_{J} never crosses one of the face $F_{a c e}^{j}$ except in T_{0} and T_{J}, C_{J} remains inside this cone.

Preliminaries to Theorem 2 We recall the notations already introduced in the main paper, state two introductory propositions or lemmas, and then prove the theorem.

We consider $P_{J, K}$ a set of nested simplexes, built so that $P_{J, K+1} \subset P_{J, K}$.
Let A_{J} be the set of coefficients for which $\forall x \in[0,1], F_{\alpha}(x) \geq 0$:

$$
A_{J}=\left\{\boldsymbol{\alpha} \mid \forall x \in[0,1], F_{\alpha}(x) \geq 0\right\}
$$

Similarly, we denote $A_{J, K}$ the set of possible coefficients at step K, that is the coefficients for which ${ }^{t} \mathbf{T}_{\cdot K} \boldsymbol{\alpha} \geq 0$ where $\mathbf{T}_{\boldsymbol{.}_{K}}$ is the matrix of constraints at step K. Removing the first row, we obtain \mathbf{T}_{K} the matrix gathering (in columns) the vertices of $P_{J, K}$.
$\tilde{\boldsymbol{\alpha}}_{J, K}$ is the vector of coefficients of the solution to Problem 5 when the constraints match the vertices of $P_{J, K}$. The coefficients of the optimal solution to 3 are stored in a vector denoted $\tilde{\boldsymbol{\alpha}}_{J}$.

Let $\operatorname{cost}(\boldsymbol{\alpha})$ be defined as $\operatorname{cost}(\boldsymbol{\alpha}):=\sum_{i=1}^{I}\left(Y_{i}-F_{\alpha}\left(X_{i}\right)\right)^{2}$. We have,

$$
\operatorname{cost}\left(\tilde{\boldsymbol{\alpha}}_{J, K}\right)=\min _{\alpha}(\operatorname{cost}(\boldsymbol{\alpha})), \text { s.t. }{ }^{t} \mathbf{T}_{\cdot K} \boldsymbol{\alpha} \geq 0
$$

Proposition 2. 1. $\forall K, A_{J, K} \subset A_{J, K+1} \subset A_{J}$.
2. A_{J} and all the $A_{J, K}$ are closed convex cones.
3. The sequence of $\operatorname{cost}\left(\tilde{\boldsymbol{\alpha}}_{J, K}\right)$ is decreasing with K.

Proof. item 1 Thanks to Proposition 1, $A_{J, K}$ can be seen as

$$
A_{J, K}=\left\{\boldsymbol{\alpha} \mid \forall t \in P_{J, K},\langle\boldsymbol{\alpha}, t\rangle \geq 0\right\}
$$

By construction, $P_{J, K+1} \subset P_{J, K}$. Indeed, each simplex of $P_{J, K+1}$ results from cutting in two one of the simplexes in $P_{J, K}$, as illustrated on Figure 2.

Thus, if we have $\langle T, \boldsymbol{\alpha}\rangle \geq 0$ for all the vertices T of $P_{J, K}$, then it is also true for all the vertices of $P_{J, K+1}$. This last statement means that $A_{J, K} \subset A_{J, K+1}$.
$P_{J, K}$ is a collection of successive osculating simplexes, each of them finishing at the point where the next one begins. Thus $P_{J, K}$ circumscribes the curve C_{J}, and this implies that if $\boldsymbol{\alpha}$ is in $A_{J, K}$ then $\forall x \in[0,1], F_{\alpha}(x) \geq 0$, or equivalently that $A_{J, K} \subset A_{J}$.
item 2 We only detail this claim for A_{J}, similar considerations can be applied to the $A_{J, K}$. Indeed, if $\forall x F(x) \geq 0$ for a given $\boldsymbol{\alpha}$, then it is also verified for $\lambda \boldsymbol{\alpha}$ where λ is real and positive. Thus A_{J} is a cone. It is convex: if $F(x) \geq 0$ for $\boldsymbol{\alpha}_{1}$ and $\boldsymbol{\alpha}_{2}$, then it is also non-negative for $p \boldsymbol{\alpha}_{1}+(1-p) \boldsymbol{\alpha}_{2}$ for any $p \in[0,1]$.

The set $B=\left\{\boldsymbol{\alpha} \mid \forall x \in[0,1], F_{\alpha}(x) \geq 0\right\}$ is closed: we consider the application g_{x} defined as $\boldsymbol{\alpha} \in \mathbb{R}^{J+1} \mapsto g_{x}(\boldsymbol{\alpha}) \in \mathbb{R}, g_{x}(\boldsymbol{\alpha})=\langle\mathbf{f} .(x), \boldsymbol{\alpha}\rangle . g_{x}$ is continuous. The inverse image of the open set $\mathbb{R}^{-*}=(-\infty, 0), g_{x}^{-}\left(\mathbb{R}^{-*}\right)$, is then open and $C=\bigcup_{x \in[0,1]} g_{x}^{-}\left(\mathbb{R}^{-*}\right)$ is also open. C being the complement of B in \mathbb{R}^{J} is closed.
item 3 This is a direct consequence of item 1: since $A_{J, K} \subset A_{J, K+1}$, the minimum over $A_{J, K}$ is greater or equal to the minimum over $A_{J, K+1}$.

We restrict our attention to the sequence $P_{J, K}$ built as a chain of simplexes S_{k} starting at $x=(k-1) / 2^{K}$ and finishing at $x=k / 2^{K}$ with k varying from 1 to 2^{K}. We first observe that the distance from any point of $P_{J, K}$ to the curve C_{J} can be made as small as needed: more precisely,

Lemma B4. $\forall \epsilon>0, \exists K \in \mathbb{N}$ such that $\forall u \in P_{J, K}, \exists t \in C_{J}$ for which $\|u-t\|<\epsilon$.
Proof. To prove this claim, we choose u in $P_{J, K}$, and we restrict our attention to the simplex S_{k} containing u. The maximum distance of two points within S_{k} is one of the distances between two of its vertices. By means of Equation (??) and Lemma ??, when K is sufficiently large, calling $T_{j_{1}}$ and $T_{j_{2}}$ two of the vertices of S_{k}, the vector $\overrightarrow{T_{j_{1}} T_{j_{2}}}$ is approximated by

$$
\overrightarrow{T_{j_{1}} T_{j_{2}}} \sim \sum_{l=j_{1}+1}^{j_{2}} \frac{h^{l}}{l!} \mathbf{f}^{(l)}\left(x_{0}\right)+o\left(h^{j_{1}+1}\right) .
$$

$\left\|T_{j_{1}} T_{j_{2}}\right\|$ and then $\|u-t\|$ are bounded from above by $\frac{M}{2^{K}}$ with $M=\sum_{j=1}^{J} \sup _{x \in[0,1]}\left\|\mathbf{f}^{(j)}(x)\right\|$.

Theorem 2. Under Assumption A, we have $\lim _{K \rightarrow \infty} \tilde{\boldsymbol{\alpha}}_{J, K}=\tilde{\boldsymbol{\alpha}}_{J}$.
Proof. We denote $B=\overline{\bigcup_{K \in \mathbb{N}} A_{J, K}}$. Our goal is first to prove that $B=A_{J}$, or in other words that the sequence of sets $\bigcup_{K \in \mathbb{N}} A_{J, k}$ is dense in A_{J}.

The inclusion $B \subset A_{J}$ is immediate, as a consequence of items 1 and 2 of Proposition 2. Conversely, we have to prove that every point of A_{J} is attained. We choose $\boldsymbol{\alpha}$ in A_{J} and want to show that $\boldsymbol{\alpha} \in \overline{\bigcup_{K \in \mathbb{N}} A_{J, K}}$.

Starting from the vector $\boldsymbol{\alpha} \in A_{J}, \boldsymbol{\alpha}={ }^{t}\left(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{J}\right)$, for any positive integer l we define $\boldsymbol{\alpha}_{l}$ as $\boldsymbol{\alpha}_{l}={ }^{t}\left(\alpha_{0}+\frac{1}{l}, \alpha_{1}, \cdots, \alpha_{J}\right)$. $\boldsymbol{\alpha}_{l}$ belongs to A_{J} :

$$
F_{\alpha_{l}}(x) \geq F_{\alpha}(x)+\frac{1}{l}>0 .
$$

If we exhibit now an index K_{l} for which $\boldsymbol{\alpha}_{l}$ simultaneously belongs to $A_{J, K_{l}}$, our assertion is proved: $\boldsymbol{\alpha}$ will be the limit of a sequence of $\boldsymbol{\alpha}_{l}$ each of them taken in one $A_{J, K_{l}}$.

The way to achieve this goal is to consider the sequence $P_{J, K_{l}}$ of Lemma ??. $P_{J, K_{l}}$ is built as a chain of simplexes S_{k} for k varying from 1 to $2^{K_{l}}$. Picking a point u in $P_{J, K_{l}}$ we examine now what is the condition for which $\left\langle u, \boldsymbol{\alpha}_{l}\right\rangle>0$.

We start from the identity

$$
\left\langle u, \boldsymbol{\alpha}_{l}\right\rangle=\left\langle u-t, \boldsymbol{\alpha}_{l}\right\rangle+\left\langle t, \boldsymbol{\alpha}_{l}\right\rangle .
$$

- We observe that $\left\langle t, \boldsymbol{\alpha}_{l}\right\rangle>1 / l$.
- By Cauchy-Schwartz inequality, using Lemma ??, $\left\langle u-t, \boldsymbol{\alpha}_{l}\right\rangle \geq-\frac{M}{2^{K}}\left\|\boldsymbol{\alpha}_{l}\right\|$.
- By the triangular inequality, $\left\|\boldsymbol{\alpha}_{l}\right\| \leq \frac{1}{l}+\|\boldsymbol{\alpha}\|$.

Eventually,

$$
\left\langle u, \boldsymbol{\alpha}_{l}\right\rangle \geq-\frac{M}{2^{K_{l}}}\left(\frac{1}{l}+\|\boldsymbol{\alpha}\|\right)+\frac{1}{l} .
$$

For a given l, K_{l} is chosen so that the right part of the previous inequality be positive.
Since it is true for any $u \in S_{k}$ and for any $k, \boldsymbol{\alpha}_{l} \in A_{J, K}$, which permits to conclude that $B=A_{J}$.

Thus, $\tilde{\boldsymbol{\alpha}}_{J}$ the optimal solution to Problem 3, as an element of A_{J}, is the limit of a sequence of vectors $\boldsymbol{\alpha}_{J, K}$, each of them taken in one $A_{J, K}$. The second step is to extend this first result to the sequence of $\tilde{\boldsymbol{\alpha}}_{J, K}$, the solutions to Problem 5.

As $A_{J, K} \subset A_{J}$,we have

$$
\sum_{i=1}^{I}\left(Y_{i}-F_{\alpha_{J, K}}\left(X_{i}\right)\right)^{2} \geq \sum_{i=1}^{I}\left(Y_{i}-F_{\tilde{\alpha}_{J, K}}\left(X_{i}\right)\right)^{2} \geq \sum_{i=1}^{I}\left(Y_{i}-F_{\tilde{\alpha}_{J}}\left(X_{i}\right)\right)^{2}
$$

This proves that $\operatorname{cost}\left(\boldsymbol{\alpha}_{J, K}\right)$ converges toward $\operatorname{cost}\left(\tilde{\boldsymbol{\alpha}}_{J}\right)$.

The function cost is convex. Calling \boldsymbol{X} the matrix of the model, $\boldsymbol{X}=\left(\begin{array}{c}\mathbf{f}_{\mathbf{\bullet}}\left(X_{1}\right) \\ \cdots \\ \mathbf{f}_{\mathbf{\bullet}}\left(X_{n}\right)\end{array}\right)$, then the hessian matrix of the function cost is simply ${ }^{t} \boldsymbol{X} \boldsymbol{X}$. Assuming that ${ }^{t} \boldsymbol{X} \boldsymbol{X}$ is definite positive, which is the usual assumption in regression problems, we can infer that $\tilde{\boldsymbol{\alpha}}_{J}$ is also the limit of the sequence of the solutions $\tilde{\boldsymbol{\alpha}}_{J, K}$ of Problem 5 .

Proposition 3. Let T_{0}, T, T_{J} be three points on the curve corresponding to $x_{0}<x<x_{J}$. Then the function $V_{\text {new }}=V\left(x_{0}, x\right)+V\left(x, x_{J}\right)$ has a unique minimum between x_{0} and x_{J}, where $V\left(x_{0}, x\right)$ (resp. $V\left(x, x_{J}\right)$) stands for the volume of the simplex between x_{0} and x (resp. x and x_{J}).

Proof. When cutting the initial simplex at x the volume of the two new simplexes replacing the old one becomes: $V_{\text {new }}=V\left(x_{0}, x\right)+V\left(x, x_{J}\right)$. If $x=x_{0}$ or $x=x_{J}$ then $V_{\text {new }}=V\left(x_{0}, x_{J}\right)$ and is maximum. Due to Rolle's theorem, there exists a x for which $V_{\text {new }}$ is minimum. This minimum is unique since by construction $V\left(x_{0}, x\right)$ is a strictly increasing function while $V\left(x, x_{J}\right)$ is strictly decreasing.

Proposition 4. $V\left(x_{0}, x_{J}\right)=\frac{1}{J!} D_{J, J} \frac{\prod_{j=1}^{J-1} D_{j, j}}{\prod_{j=1}^{J-1} D_{j}}$.
Proof. Indeed, the volume of a simplex with vertexes T_{0}, \cdots, T_{J} is known to be:

$$
V\left(x_{0}, x_{J}\right)=\frac{1}{J!}\left|\overrightarrow{T_{0} T_{1}} \ldots \quad \overrightarrow{T_{0} T_{J}}\right|
$$

Taking the notation of Lemma ??, for $j<J, \overrightarrow{T_{0} T j}$ is decomposed in

$$
\overrightarrow{T_{0} T j}=\sum_{k=1}^{j} \frac{D_{j, k}}{D_{j}} \mathbf{f}^{(k)}\left(x_{0}\right)
$$

Standard manipulations on determinants give the expected result.

Proposition 5. $V\left(x_{0}, x_{J}\right) \propto\left(x_{J}-x_{0}\right)^{\frac{J(J+1)}{2}}$.
Proof. Restarting from Equation (??), when $f_{j}(x)=x^{j}$, the coefficients $\gamma_{k, j}$ of Lemma ?? become exactly $\gamma_{k, j}=\frac{\left(x_{J}-x_{0}\right)^{k}}{k!}$.

Recalling that

$$
\begin{aligned}
& \overrightarrow{T_{0} T_{1}}=\gamma_{1,1} \mathbf{f}^{(1)}\left(x_{0}\right) \\
& \overrightarrow{T_{0} T_{2}}=\gamma_{1,2} \mathbf{f}^{(1)}\left(x_{0}\right)+\gamma_{2,2} \mathbf{f}^{(2)}\left(x_{0}\right)
\end{aligned}
$$

we see that $V\left(x_{0}, x_{J}\right)=\left|\overrightarrow{T_{0} T_{1}}, \cdots \overrightarrow{T_{0} T_{J}}\right|=\prod_{j=1}^{J} \gamma_{j, j}=\frac{\left(x_{J}-x_{0}\right)^{J(J+1) / 2}}{\prod_{j=1}^{J} j!}$, which is precisely what we had to establish.

Theorem 3. Let the system of functions $f_{j}(x)$ be the sequence of monomials $\left\{x^{j}\right\}_{j=1}^{J}$. Then the optimal cut point between x_{0} and x_{J} is $\frac{x_{0}+x_{J}}{2}$.

Proof. Let x be the parameter of the cut point. From Lemma 3, x minimizes $V\left(x_{0}, x\right)+$ $V\left(x, x_{J}\right)$. Applying Proposition 5, it amounts to find the minimum of $\left(x-x_{0}\right)^{J(J+1) / 2}+$ $\left(x_{J}-x\right)^{J(J+1) / 2}$, which is obviously obtained when $x=\frac{x_{0}+x_{J}}{2}$.

Theorem 4. Let D be $D=\left[x_{1,0}, x_{1,1}\right] \times \cdots, \times\left[x_{V, 0}, x_{V, 1}\right]$. Under Assumption A

1. When x traverses D, the corresponding portion of C_{J} is included in P_{J}.
2. If ${ }^{t} \boldsymbol{\alpha} \mathbf{T}_{\mathbf{\bullet}} \geq 0$, then $\forall x \in D$, we have $F(x) \geq 0$.

Proof. We only have to prove item 1. Item 2 is immediate since P_{J} is convex by construction.

We recall that $F_{\alpha}(x)$ can be expressed by $F_{\alpha}(x)=\left\langle\boldsymbol{\alpha}, \mathbf{f}_{\mathbf{0}}(x)\right\rangle$, where $\mathbf{f}_{\mathbf{0}}(x)$ results from the tensor product

$$
\begin{equation*}
\mathbf{f}_{\bullet}(x)=\mathbf{f}_{1}\left(x_{1}\right) \otimes \cdots \otimes \mathbf{f}_{V \cdot}\left(x_{V}\right) \tag{8}
\end{equation*}
$$

This tensor product gives $J+1$ terms. We rewrite $\mathbf{f}_{\mathbf{0}}(x)$ as

$$
\mathbf{f}_{\mathbf{\bullet}}(x)={ }^{t}\left(f_{0}(x), f_{1}(x), \cdots, f_{J}(x)\right)
$$

C_{J} is described by $C_{J}=\left(f_{1}(x), \cdots, f_{J}(x)\right)$, when x traverses $[0,1]^{V}$.
Given a point $T_{x^{*}}={ }^{t}\left(f_{1}\left(x^{*}\right), \cdots, f_{J}\left(x^{*}\right)\right)$ of C_{J} corresponding to the values $x^{*}=$ $\left(x_{1}^{*}, \cdots, x_{V}^{*}\right)$ of the variables, we have to show that $T_{x^{*}} \in P_{J}$.

We call T_{j} the vertices of P_{J}. By construction, each vertex T_{j} can be extracted from the column number j of the matrix of constraints \mathbf{T}. after removing the first coordinate, equal to 1 .

Our aim is to exhibit $J+1$ non negative coefficients μ_{j}, for $j=0, J$, summing to 1 , such that

$$
T_{x^{*}}=\sum_{j=0}^{J} \mu_{j} T_{j} .
$$

This equation can be extended to the columns of $\mathbf{T}_{\text {. }}$, and is equivalent to

$$
\binom{1}{T_{x^{*}}}=\sum_{j=0}^{J} \mu_{j}\binom{1}{T_{j}} .
$$

For each x_{v}, we consider the curve $C_{v, J_{v}}$ described by $\left(f_{v, 1}\left(x_{v}\right), \cdots, f_{v, J_{v}}\left(x_{v}\right)\right)$ and the point $T_{v, x_{v}^{*}}$ corresponding to the value x_{v}^{*} of the variable x_{v}.
$C_{v, J_{v}}$ is included in its osculating simplex. Then we can find $J_{v}+1$ positive coefficients $\lambda_{v, j_{v}}$ summing to 1 such that:

$$
T_{v, x_{v}^{*}}=\sum_{j_{v}=0}^{J_{v}} \lambda_{v, j_{v}} T_{v, j_{v}}
$$

or equivalently

$$
\begin{equation*}
\binom{1}{T_{v, x_{v}^{*}}}=\sum_{j_{v}=0}^{J_{v}} \lambda_{v, j_{v}}\binom{1}{T_{v, j_{v}}} . \tag{9}
\end{equation*}
$$

Stemming from Equation ??, by means of the tensor product, we have:

$$
\begin{equation*}
\binom{1}{T_{x^{*}}}=\binom{1}{T_{1, x_{1}^{*}}} \otimes \cdots \otimes\binom{1}{T_{V, x_{V}^{*}}} . \tag{10}
\end{equation*}
$$

The combination of equations ?? and ?? gives:

$$
\binom{1}{T_{x^{*}}}=\sum_{j_{1}=0}^{J_{1}} \cdots \sum_{j_{V}=0}^{J_{V}} \lambda_{1, j_{1}} \cdots \lambda_{V, j_{V}}\binom{1}{T_{1, j_{1}}} \otimes \cdots \otimes\binom{1}{T_{v, j_{V}}}
$$

which leads to the desired expression for $T_{x^{*}}$ after removing the first row.
Furthermore, one can observe that:

$$
\sum_{j_{1}=0}^{J_{1}} \cdots \sum_{j_{V}=0}^{J_{V}} \lambda_{1, j_{1}} \cdots \lambda_{V, j_{V}}=\prod_{v=1}^{V}\left(\lambda_{v, 0}+\cdots+\lambda_{v, J_{v}}\right)=1
$$

Thus $T_{x^{*}}$ is expressed as a linear combination of the vertices of P_{J}, where all the coefficients are positive and sum to 1 . The proof of item 1 is complete.

Theorem 5. We assume that each family of functions $\left\{f_{v, j}\left(x_{v}\right)\right\}_{j=1}^{J_{v}}$ for $1 \leq v \leq V$ verifies Assumption A. Then $\lim _{K \rightarrow \infty} \tilde{\boldsymbol{\alpha}}_{J, K}=\tilde{\boldsymbol{\alpha}}_{J}$.

Proof. Theorem 5 is the analog of Theorem 2 for a single variable. Looking closely to the proof of Theorem 2, we can see that it can be readily generalized without any change to the case of more than one variable, except for the maximum distance between two vertices of any simplex.

Indeed, calling $T_{j_{1}}$ and $T_{j_{2}}$ two of the vertices of one of the simplexes in the univariate case, the vector $\overrightarrow{T_{j_{1}} T_{j_{2}}}$ has been shown to be bounded by $\frac{M}{2^{K_{l}}}$ with $M=\sum_{j=1}^{J} \sup _{x \in[0,1]}\left\|\mathbf{f}^{(j)}(x)\right\|$. To generalize to the multivariate case, due to the tensorial product, $\frac{M}{2^{K_{l}}}$ must be replaced by $\prod_{v=1}^{V} \frac{M_{v}}{2^{K_{l}}}$, where each M_{v} is taken to be

$$
M_{v}=\sum_{j_{v}=1}^{J_{v}} \sup _{x_{v} \in[0,1]}\left\|\mathbf{f}_{\mathbf{v}}^{\left(j_{v}\right)}\left(x_{v}\right)\right\|
$$

Proposition 6. When creating a new simplex by subdividing an existing one, the number of constraints is augmented by:

$$
3^{V}-2^{2 V}+(J+1) *\left(2^{V}-1\right)
$$

Proof.
Figure 1: number of constraints the upper row gives the limits of an initial domain ($[0,1]^{V}$ for example) when $V=1,2,3$. The lower row gives the new definition domain when a point is added in the previous lattice. For example, when $V=3$ each cube corresponds to a simplex.

When adding a point in the center of an initial domain (see figure ??)

- we replace the vertices on the external border: we add 3^{V} vertices and remove 2^{V} old ones.
- for the 2^{V} new simplexes, we add $2^{V}\left(J+1-2^{V}\right)$ interior points and remove $J+1-2^{V}$ points corresponding to the interior vertexes of the old simplex.
This gives the expected result.

