Appendix B: proofs

Proposition 1. Assume that the curve Cy is included in its osculating simplex on [0, 1].
If "Ta > 0, then Vx € [0,1], we have F,(x) > 0.

Proof. Because of the linearity of Z on T and because a simplex is convex by definition,
F;(x) is guaranteed to be positive on [0, 1], if it is positive in every vertices of S;. O

Preliminaries to Theorem 1
Theorem 1 needs the three following preliminary lemmas where we prove that in a small
neighborhood of a point on a curve, a smooth curve is included in its osculating simplex.
Let Ty be a point on the curve C; corresponding to xy and T’y corresponding to x; =

xo + h. We denote Ty, T,--- ,T; the vertices of the osculating simplex between xy and
xo + h (see Definition 2).
The vectors £ (z),--- ,f9)(xy) are all linearly independent. This results from the

definition A1 of an Extended Chebyshev system. In this basis,

j
ToT; =Y % (0). (1)
k=1

Similarly,
J
Y}TJ = Z ’}/k’jf(k)<:L’J).
k=j+1

Lemma B1. Let D; be the determinant
D; = |f(1)(x0) v £0 (o) £D(zy) --- f(H)(IJ)’_

D is obtained by replacing the k-th column of D; by f(x;) — f(zo). Then, that for all j,

D.
D; #0, and v ; = D—]k

J

All the determinants D; are strictly positive as a result of the definition Al of ET
systems.

For 0 < 57 < J, T} belongs to the osculating j-space at T, and simultaneously to the
osculating J — j-space at T;. Thus, the vector YTT; is a linear combination of the first j
derivatives at Tj and similarly TJ—T; is a linear combination of the first J — j derivatives at

T;. Consequently, the coordinates vy j,- -+, vy, of Tj, as stated in this lemma, result from
the Cramer’rule applied to the linear system of equations:
A A V1,5
(f(l)(g;o) .. .f(])(xo)f(l)(xj) . ..f(J—J)<xJ)) o] = (f(xj) - f(xo))
Y.

k

h
Lemma B2. The coefficients vy j can be approzimated by 7y ; ~ T + o(hF).



We start from the previous lemma ?? and the expression of D .
Since x; = xo+h, taking the Taylor expansion of fi(xo+h)— fi(xo),....fs(xo+h)—f;(x0),

it can be readily shown that the first non vanishing term in the development of the D
k

for1<k<jis FDj. This results in the statement of the lemma.

Lemma B3. Let Ty and T; be two points on the curve C; corresponding to xo and xj >
xo. Then, in the neighborhood of xq, for h small enough, the portion of the curve C;
corresponding to x varying in (xo,xo + h) is strictly included in the cone generated by

{ToTh, -, 10Ty}

Proof. Our aim is to prove that any point T, = (fi(x),--- , f;(x)) verifies:

J
ToT, = Y _N(2)ToT;, st. Aj(x) >0, V) € [1, 4], Va € [xo, 70 + b, (2)

J=1

where, for j =1, J, A\j(x) are real coefficients depending on x and T are the vertices of
the osculating snnplex

For every 0<g <, TOT belongs to the osculating j-space at Tj, and TOT can be
written: TOT] =37 i £8) (20). That is:

ToTy :’71,1f(1)(33'0)
115 :71,2f(1)($0) + 72,2f(2) (1’0)

Gathering the coefficients «; ; for & < j in a matrix I',, we obtain the system of linear
equations:

tToTl tf(l)(.]?g)

t te(2)

O —p, | T )
"ToTy tf(J)(l’O)

Furthermore, a Taylor expansion of TyT), gives

—>

TOTx LL’ - «TO

z0) + o((z — x0)”). (4)

M“

7j=1
Plugging together equations (?7), (?7) and (??), we obtain:

(@) @ +o((z — 20))



The next step is to solve I'. With Lemma 7?7, we have

ﬁ + o(h) 0
h 2 h? 2

hTJ!jLO(hJ) hT{JrO(hJ)
Equation (?7?) is rewritten:

T ~ N, I'(1 + o(1)). (7)

1! e
The matrix N, = is diagonal and I = , is lower trian-
h’ h
J
gular and does not depend on h.
Assembling equations (??) and (?7), solving I'y, when A is small enough but not equal

to zero, and finally simplifying gives:

—_
_ O

A (2) (x;—,%) + o((z — @)

— N;l tI\/—l

A(z T —x9)’ ;
(@) 00 o o))

We find an upper band matrix for N, ' ‘TV=1;

1! 1!
= _25 ()| 0
NTrt=]10 0 &
_ -
hI—1
0 o &

Eventually, we obtain a positive approximation for \;(x), 1 < j < J, in the vicinity of

M) = 20l

() — o) j+1(l’—$0))+0((x—x0)j).

Theorem 1. Let Ty and T; be two points on the curve Cy. Under Assumption A, the
portion of the curve between Ty and T is included in its osculating simplez.



Proof. We denote Tj, for 0 < j < J, the vertex of the osculating simplex defined as
the intersection of the osculating j-space at Ty and the osculating J — j-space at T (see
Definition 2). We define Face; for 0 < j < J as the face of the osculating simplex containing
all the vertices except Tj.

Each Face;, 0 < j < J, intersects C; exactly J times taking into account the multi-
plicities. Indeed, the multiplicity of the contact at Ty between C; and Face; is J since the
osculating hyperplane at 7j is the supporting hyperplane of Face; and Face; contains the

first J — 1 derivatives £ (), -+, f/=1(xq). Thus Ty is the only contact point between
Cy and Face; (see Corollary Al). The same holds for T; and Face.
For Face;, for 0 < j < J, by construction of the osculating simplex, Ty, T4, -+, 71

belong to the osculating j — 1-space at Ty. Thus the face Tp, Ty, - ,T;—1 is supported
by the vectorial sub-space spanned by the first 7 — 1 derivatives at Ty. In the same way,
Tj_j—1,---,Ty_1,Ty is included in the vectorial sub-space spanned by the first J — j — 1
derivatives at T;.

This amounts to saying that the multiplicity of the contact between C; and Face; at Tj
is j. Similarly, the multiplicity of the contact between C; and Face; at Ty is J — j. Finally,
C; intersects Face; J times. Due to Corollary Al, Ty and T'; are the only intersection
points between C; and Facej.

As a conclusion, between T and Ty, C; stays on one side of each of the faces Face; for
0<7<J. N .

S can be viewed as the cone generated by {TyT1, - -, ToT;} sectioned by the face Facey.
From Lemma ?7?, when x; is fixed, in a small neighborhood of x4, we know that C} is inside
the cone. Since C; never crosses one of the face Face; except in Ty and Ty, C; remains
inside this cone. []

Preliminaries to Theorem 2 We recall the notations already introduced in the main
paper, state two introductory propositions or lemmas, and then prove the theorem.

We consider Pk a set of nested simplexes, built so that Pjxi1 C Pjk.

Let A be the set of coefficients for which Vx € [0,1], F,(z) > 0:

A;={a|Vz€[0,1],Fy(x) > 0}.

Similarly, we denote Aj;x the set of possible coefficients at step K, that is the coeffi-
cients for which ‘T, xa > 0 where T, is the matrix of constraints at step K. Removing
the first row, we obtain Tk the matrix gathering (in columns) the vertices of Pj k.

o i is the vector of coefficients of the solution to Problem 5 when the constraints
match the vertices of P;x. The coefficients of the optimal solution to 3 are stored in a
vector denoted & ;.

Let cost(a) be defined as cost(a) := Zi]:l(Y; — F,(X;))% We have,

cost(@ k) = min(cost(a)), s.t. "T,xax > 0.

Proposition 2. 1. VK, AJ’K C AJ7K+1 C Aj.



2. Ay and all the Aj are closed convex cones.

3. The sequence of cost(by k) is decreasing with K.

Proof. item 1 Thanks to Proposition 1, A;x can be seen as
AJyK = {a | Vit € PJyK, <Cll,t> > 0}

By construction, P;xi1 C Pjk. Indeed, each simplex of Pj k1 results from cutting in two
one of the simplexes in Pj, as illustrated on Figure 2.

Thus, if we have (T, o) > 0 for all the vertices T' of Py, then it is also true for all the
vertices of Pjgyq. This last statement means that A;x C Ajgyq.

Pjk is a collection of successive osculating simplexes, each of them finishing at the
point where the next one begins. Thus P circumscribes the curve C;, and this implies
that if a is in Ak then Vo € [0, 1], F,,(x) > 0, or equivalently that A C A;.

item 2 We only detail this claim for A, similar considerations can be applied to the A k.
Indeed, if Vo F(xz) > 0 for a given a, then it is also verified for A where A is real and
positive. Thus A; is a cone. It is convex: if F(z) > 0 for a; and ap, then it is also
non-negative for pa; + (1 — p)as for any p € [0, 1].

The set B = {a | Vo € [0,1], F,(z) > 0} is closed: we consider the application g,
defined as @ € R/ — g.(a) € R, g.(a) = (f.(z),a). g, is continuous. The inverse

image of the open set R™ = (—00,0), g, (R™*), is then open and C' = |J g, (R™*) is also
z€[0,1]
open. C being the complement of B in R” is closed.

item 3 This is a direct consequence of item 1: since Ajx C Ajxi1, the minimum over
Ak is greater or equal to the minimum over A g ;. O

We restrict our attention to the sequence Pjx built as a chain of simplexes S}, starting
at r = (k—1)/2% and finishing at = k/2% with k varying from 1 to 25. We first observe
that the distance from any point of Pjx to the curve C; can be made as small as needed:
more precisely,

Lemma B4. Ve > 0,3K € N such that Yu € Py, 3t € C; for which ||u —t|| < e.

Proof. To prove this claim, we choose u in Pjg, and we restrict our attention to the
simplex Sj containing u. The maximum distance of two points within Sy is one of the
distances between two of its vertices. By means of Equation (??) and Lemma ?7?, when
K is sufficiently large, calling T}, and T}, two of the vertices of Sj, the vector TJI—T]; is
approximated by

—>

J2 l
T T;

3T~ Y ﬂf(l)(%)JrO(hle)-

I=j1+1

M .
|75, T}, and then ||u — || are bounded from above by Y3 with M = Z}]:1 81[Lp]||f(j)($)||.
z€(0,1
[



Theorem 2. Under Assumption A, we have limg_, & = Q.

Proof. We denote B = |J A k. Our goal is first to prove that B = A, or in other words
KeN
that the sequence of sets |J A,y is dense in A;.
KeN

The inclusion B C A; is immediate, as a consequence of items 1 and 2 of Proposition
2. Conversely, we have to prove that every point of A; is attained. We choose v in A; and

want to show that a € |J A, k.
KeN

Starting from the vector @ € Ay, @ = (g, g, -+ ,ay), for any positive integer [ we
1
define oy as oy = (g + Z,al, -+ ,ay). oy belongs to Ay:

F,, (x) > F,(x) +% > 0.
If we exhibit now an index K for which oy simultaneously belongs to A k,, our assertion
is proved: o will be the limit of a sequence of oy each of them taken in one A g, .

The way to achieve this goal is to consider the sequence Pjg, of Lemma ??. Pjg, is
built as a chain of simplexes Sy, for k varying from 1 to 25!. Picking a point u in Pjg, we
examine now what is the condition for which (u, ay) > 0.

We start from the identity

(u, al) = <U — t, al> —+ <t, Oél>.

e We observe that (t,a;) > 1/I.

M
e By Cauchy-Schwartz inequality, using Lemma 77, (u —t, ;) > —2—K\|al\|.

1
e By the triangular inequality, ||ay|| < 7t || ex]].
Eventually,

M 1 1
(u,aq) > —%(7 + [ledl) + 7

For a given [, K is chosen so that the right part of the previous inequality be positive.

Since it is true for any u € Sy, and for any k, oy € Ak, which permits to conclude that
B=A;.

Thus, &; the optimal solution to Problem 3, as an element of Aj, is the limit of a
sequence of vectors a; g, each of them taken in one A;x. The second step is to extend
this first result to the sequence of & g, the solutions to Problem 5.

As Ajx C Ay,we have

1

Z(Y; - FaJ,K (Xl>>2 > Z(Y; - FdJ,K (Xl>>2 > Z(Y; - FdJ (Xl))2

i=1

This proves that cost(a; k) converges toward cost(éy).



f.(X1)
The function cost is convex. Calling X the matrix of the model, X = e , then
f,(X,)
the hessian matrix of the function cost is simply ‘X X. Assuming that X X is definite
positive, which is the usual assumption in regression problems, we can infer that a; is also

the limit of the sequence of the solutions &k of Problem 5.
O

Proposition 3. Let Ty, T, Ty be three points on the curve corresponding to xo < x < xj.
Then the function Ve, = V(xo,z) + V(x,25) has a unique minimum between xy and x;,
where V(xg,x) (resp. V(x,x;)) stands for the volume of the simplex between xoy and x
(resp. x and x;).

Proof. When cutting the initial simplex at x the volume of the two new simplexes replacing
the old one becomes: Viewy = V(2g,2)+V (2, 25). If x = 2 or & = x5 then View = V(z0,2)
and is maximum. Due to Rolle’s theorem, there exists a x for which Ve is minimum. This
minimum is unique since by construction V(zg,x) is a strictly increasing function while
V(x,xy) is strictly decreasing.

O

J-1
1 HJ 1 D]J

Proposition 4. V(zy,z,) = ﬁD HJ D,

Proof. Indeed, the volume of a simplex with vertexes Ty, --- , T is known to be:
V(l’o, I‘J ‘TOTl tee TOTJ .

Taking the notation of Lemma ??, for 7 < J, TyT'j is decomposed in
J

TS = 3 ki)

k=1 7

Standard manipulations on determinants give the expected result.

Proposition 5. V(zg,z;) x (x; — xo)%

Proof. Restarting from Equation (??), when f;(x) = a7, the coefficients 7 ; of Lemma ??

(z7— l‘o)k'

become exactly i ; = o



Recalling that

ToTy =7v1,1£% ()
ToTy =y12fW (20) + y22f® (20)

(xJ _ xO)J(J+1)/2

7.
IT- 5!

we see that V (2o, z5) = |ToTy, - ToTy| = H;le Vi = , which is precisely
what we had to establish.
O]

Theorem 3. Let the system of functions f;(z) be the sequence of monomials {x’ }‘jjzl. Then

. . . o+ X
the optimal cut point between xy and xy is 0 5 2

Proof. Let x be the parameter of the cut point. From Lemma 3, x minimizes V(xq, z) +
V(z,z;). Applying Proposition 5, it amounts to find the minimum of (z — x()//*1/2 +
J(J+1)/2 To + Ty

, which is obviously obtained when z = 5 - O]

(7 — )

Theorem 4. Let D be D = [x19,211] X -+, X[Tv0, 2va]. Under Assumption A

1. When x traverses D, the corresponding portion of C'; is included in Pj.

2. If 'aT, >0, then Vx € D, we have F(z) > 0.

Proof. We only have to prove item 1. Item 2 is immediate since P; is convex by construc-
tion.

We recall that F,,(x) can be expressed by F,(x) = (e, f,(z)), where f,(z) results from
the tensor product

f.(x) =fi.(x) @ - @ fy.(zy). (8)

This tensor product gives J + 1 terms. We rewrite f,(z) as

f-(x> = t(f0<x>7fl(x)>“' 7fJ<x))

Cj is described by C; = (fi(z), -, fs(z)), when z traverses [0,1]".

Given a point T« = ' (fi(z*), -+, fs(x*)) of C; corresponding to the values z* =
(a3, ,a},) of the variables, we have to show that T,« € P;.

We call T the vertices of P;. By construction, each vertex T can be extracted from
the column number j of the matrix of constraints T, after removing the first coordinate,
equal to 1.



Our aim is to exhibit J + 1 non negative coefficients p;, for j = 0, .J, summing to 1,

such that p
=0

This equation can be extended to the columns of T,, and is equivalent to

(1)-2m (1)

For each x,, we consider the curve C, ;, described by (fy1(xy), -, fu., (%)) and the
point T, ;- corresponding to the value z} of the variable x,.

(.7, is included in its osculating simplex. Then we can find J, + 1 positive coefficients
Av,j, summing to 1 such that:

Jy
T’U,.’t: = : :AUJ’UT’UJ’U’

Ju=0

1 T 1
(Tv,mj) - Z )\U’jv (Tu,_jU) ' (9>

jv:[)

or equivalently

Stemming from Equation 7?7, by means of the tensor product, we have:

(1) = () o2 (i) R

The combination of equations 7?7 and 7?7 gives:
J1 Ty
1 1 1
<T*> S S A (Ty)@...@ (T | )
T j1=0 jv=0 J1 v,yv

which leads to the desired expression for T« after removing the first row.
Furthermore, one can observe that:

J1 Jyv 1%
Z Z AL, Ay :H()\v’0+...+)\v7h) = 1.
=0 jv=0 v=1

Thus T« is expressed as a linear combination of the vertices of P;, where all the coefficients
are positive and sum to 1. The proof of item 1 is complete.

]

Theorem 5. We assume that each family of functions { f, ; (xv)}jll for 1 < v <V verifies
Assumption A. Then limg_, Gy = Q.



Proof. Theorem 5 is the analog of Theorem 2 for a single variable. Looking closely to the
proof of Theorem 2, we can see that it can be readily generalized without any change to
the case of more than one variable, except for the maximum distance between two vertices
of any simplex.

Indeed, calling T}, and T}, two of the vertices of one of the simplexes in the univariate

> M . j
case, the vector T}, T}, has been shown to be bounded by 5R; with M = Z}]:1 xz%pl] I1£9) (2)]].

M
To generalize to the multivariate case, due to the tensorial product, o must be replaced

M, _
by HL/ZI oK, where each M, is taken to be

Ju
M= sup (18,9,

jo=1 4, €[0,1]

O

Proposition 6. When creating a new simplex by subdividing an existing one, the number
of constraints is augmented by:

3V 22V 4 (J+1)x(2V —1).

Proof.

Figure 1: number of constraints the upper row gives the limits of an initial domain
([0, 1]V for example) when V' = 1,2, 3. The lower row gives the new definition domain when
a point is added in the previous lattice. For example,when V' = 3 each cube corresponds
to a simplex.

When adding a point in the center of an initial domain (see figure ?7)

e we replace the vertices on the external border: we add 3" vertices and remove 2" old

ones.
e for the 2" new simplexes, we add 2" (J+1—2") interior points and remove J+1—2"

points corresponding to the interior vertexes of the old simplex.

This gives the expected result. O
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