
HAL Id: hal-01262601
https://hal.science/hal-01262601v3

Preprint submitted on 18 Mar 2018 (v3), last revised 23 Apr 2018 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multivariable parametric regression under shape
constraints

François Wahl, Thibault Espinasse

To cite this version:
François Wahl, Thibault Espinasse. Multivariable parametric regression under shape constraints.
2018. �hal-01262601v3�

https://hal.science/hal-01262601v3
https://hal.archives-ouvertes.fr

Multivariable Parametric Regression under
Shape Constraints

François Wahl∗

and
Thibault Espinasse

March 18, 2018

Abstract

We consider a multivariable regression model under shape constraints (monotonic-
ity, convexity, positivity,...) built as a linear combination of product of functions of
a single variable. For each variable, the functions form a Chebyshev system. We
develop an iterative procedure, where at each step the initial shape requirement is
approximated by a set of linear constraints. The main result of this paper is that
this procedure is shown to converge to the optimal solution in the least square sense.
The theory is first established in the single variable case and then extended to the
multivariable framework by means of tensor products. Numerical studies and a real
industrial example with a multivariable polynomial regression subject to shape con-
straints of monotony illustrate the performance of the proposed method.

Keywords: monotony, quadratic programming, Chebyshev system, simplexes

∗François Wahl is Associate Professor of statistics at Camille Jordan Institute, Université Claude
Bernard Lyon 1, F-69622 Villeurbanne, France (email: Francois.Wahl@univ-lyon1.fr), and a research en-
gineer at IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize. Thibault
Espinasse is Associate Professor of statistics at Camille Jordan Institute, Université Claude Bernard Lyon
1, F-69622 Villeurbanne, France (email: Thibault Espinasse@math.univ-lyon1.fr). This work was sup-
ported by the LABEX MILYON (ANR-10-LABX-0070), and by the GdR MASCOT-NUM.

1

1 Introduction

The focus in this article is on multivariable parametric regression under shape constraints

on bounded intervals of sets of R if there is a single variable or on a product V intervals with

V variables. Shape constraints refer to monotonicity, concavity or bounded constraints for

the function or for its derivatives.

Let (Xi, Yi)i=1,I be a set of I observed points. Without loss of generality, the predictors

Xi belong to [0, 1]V , where V is the dimension of the input space. The observed responses

Yi are real. We assume that (Xi, Yi) are linked through an unknown function Fα from

[0, 1]V to R, which copies the structure of traditional polynomials: Fα is expressed as a

linear combination of J + 1 known elementary functions fj, with f0(x) = 1:

Fα(x) =
J∑
j=0

αjfj(x) = α0 +
J∑
j=1

αjfj(x), (1)

where α is the vector of coefficients, and each fj(x) is decomposed in a product of V

functions of a single variable:

fj(x) = f1,j(x1) · · · fV,j(xV),

where ∀v ∈ [1, V], xv ∈ [0, 1] 7→ fv,j(xv) ∈ R.

The responses Yi are subject to independent and identically distributed random errors

εi with bounded variance. The model we are working on can be written:

Yi = Fα(Xi) + εi (2)

The real coefficients stored in the vector α are to be found out.

Additionally Fα should respect shape constraints like monotonicity or convexity with

respect to one or more variables, that will be detailed in the sequel. The least square

problem to be solved can then be rephrased as Problem 3:

arg min
α

I∑
i=1

(Yi − Fα(Xi))
2, s.t. shape constraints. (3)

The solution to Problem 3 will be called the optimal solution.

2

Shape constraints have been investigated since mid 1990’s in the field of ’Computer

Graphic Aided Design’, CAGD for short, and is a central theme in this area. The theory of

shape constraints in CAGD is well developed in Farin (1993) and Peña (1999) for example.

This paper borrows some of the ideas of this field, specifically around Chebyshev system

of functions, simplexes and corner cutting or refinment algorithms (Gasca and Micchelli,

2013), (Chaikin, 1974).

A common hypothesis in CAGD is that the set of functions {fj(x)}Jj=0 when x is one

dimensional forms an Extended Complete Chebyshev system of functions called ECT sys-

tem in short (Karlin and Studden, 1966). This will be one of our main hypotheses and will

be explicited in the next section 1.2.

For polynomials of more than one variable, Problem 3 remains largely open. This is

precisely the purpose of this paper and its main result to tackle the case of multivariable

polynomials and more generally of Chebyshev systems. Indeed, with only one variable,

methods like Semi-Definite Programming (Ben-Tal and Nemirovski, 2001) (Papp and Al-

izadeh, 2014) are able to find the optimal estimator in shape constraints problems when

Fα is polynomial. However, as stated by Ben-Tal Ben-Tal and Nemirovski (2001), these

methods can not describe all the non-negative polynomials in multivariable cases.

The idea of this paper is to transform the initial non linear shape requirements of

Problem 3 in a finite number of linear constraints on the coefficients which approach the

same solution. The least square problem is thus transformed in:

arg min
α

I∑
i=1

(Yi − Fα(Xi))
2, s.t. linear constraints (4)

which is a classical convex quadratic programming problem (Nocedal and Wright, 2006).

We proceed iteratively: at step K the set of constraints attached to the previous problem

at step K−1 is augmented by a finite number of linear new constraints, chosen so that the

sequence of solutions of Problem 4 tends to the solution of Problem 3 when the number

of steps increases toward infinity. This paper is organized as follows: a state of the art

is first developed as a beginning. Notations and reminders of Chebyshev systems theory

are introduced in Subsection 1.2. The theory is exposed for monotony constraints, first for

functions of only one variable (Section 2), where we prove the convergence of our procedure,

detail the subsequent algorithm and discuss its implementation. We then extend our ideas

3

to the multivariable cases (Section 3). Practical considerations are considered in Section 4,

where we detail also one industrial case in petroleum engineering related to hydrotreatment

of naphta. Conclusions and perspectives are given in Section 5. Additionally, one can find

in Appendix A a few properties of Chebyshev systems useful for the proofs. All the proofs

are postponed to Appendix B.

1.1 State of the art

Nonparametric regressions can adapt themselves very efficiently to constrain the behavior

of the resulting function. They have received considerable attention for many years, first

in one dimension and more recently in multivariable situations. Restricting ourselves to

monotone regression in more than one dimension, a few performing algorithms have been

proposed, based on splines (Ramsay and Silverman, 2005) (Papp and Alizadeh, 2014), on

kernel type (Du et al., 2013) regressors, on Generalized Additive Models or GAM (Wood,

2006), or very recently on kriging approximations (Maatouk and Bay, 2017).

However, compared to nonparametric regression, parametric functions are immediate to

calculate. They are easier to interpret, showing very clearly the influence of each variable,

and their interactions. They depend only on the number of elementary functions in the

expression of Fα and not on the number of points. A marginal important benefit of these

parametric approaches is that the expected behavior will be respected everywhere in the

domain and not only in the vicinity of the observed points (see Meyer (2012) for a short

discussion on this topic). Finally, since no tuning parameters have to be estimated, the

computational difficulty of the whole procedure is reduced. This is why we believe as in

Hawkins (1994), there is still room for parametric regressions and especially for polynomial

regression.

Their disadvantage over nonparametric regressions is that they may lack of flexibility

to represent particular function behaviors, like for example nearly flat regions followed by

abrupt changes. In contrast to classical least square problems, constrained extensions are

also generally very hard to tackle. Even for low degree polynomials, it implies complicated

non linear expressions of the coefficients.

Studies on constrained parametric regression have focused on polynomial regression.

4

Taking the derivatives, studies on monotone polynomials reduce to the study of positive

polynomials. Polynomials in one variable can be positive first over the entire real line,

secondly over a semi-infinite interval, or thirdly on a compact set. In these three situations,

Karlin and Studden (Karlin and Studden, 1966) have given a representation theorem. Still

the obtained expressions remain highly non linear.

Ben-Tal and Nemirovski (Ben-Tal and Nemirovski, 2001) have shown how to solve the

problem via Semi-Definite Programming techniques in the three above situations. Hawkins

(Hawkins, 1994) has set out a method based on the observation that if a polynomial has to

be monotone on the entire real line, if its first derivative is zero at some x∗ then necessarily

its second derivative at x∗ is also equal to 0. His method is restricted to odd degree

polynomials. Murray et al. (2016) have implemented Karlin’s three alternatives in the R

’Monopoly’ package. By carefully choosing the parametric form of the polynomials and the

numerical schema of the calculations, the evaluation of bootstrap confidence intervals for

the estimated coefficients are made possible.

To our knowledge however none of these methods can handle multivariable situations.

Moreover, they are restricted to polynomials and not extended to Chebyshev system of

functions.

1.2 Notations, Definitions and Basic Notions

The upper case letters Xi or Yi where i ∈ [1, I] are reserved for the observations. The

lower case x or xv for v ∈ [1, V] is used for variables. The approximation functions fj are

numbered from 0 to J . Bold upper case letters like T correspond to matrices, bold lower

case letters to vectors.

Regression function. We add here a few complements to the definition of the regression

function in (1). For all v, fv,0(xv) = 1. Without fv,0(xv), we have Jv elementary functions

depending solely on xv. Furthermore each fv,j(xv) is at least continuous and derivable on

[0, 1] as many times as needed, i.e., up to the order Jv.

In the case of a single variable, the notation F
(k)
α (x) or f

(k)
j (x) designates the derivative

of order k (k ≥ 1) of Fα(x) or fj(x) with respect to x.

Vectorial Notations. In one variable cases, f(x) refers to the the column vector f(x) =

5

t(f1(x), · · · , fJ(x)). We define also the derivatives f (k)(x) = t(f
(k)
1 (x) · · · f (k)

J (x)). f•(x)

incorporates the constant term: f•(x) = t(1, f1(x), · · · , fJ(x)).

These notations are extended to multivariable cases as well, with fv•.

Curve CJ . Alternatively, we consider the linear function defined by:

Z : [0, 1]J → R, t = (t1, · · · , tJ)→ Z(t) = α0 +
J∑
j=1

αjtj.

The input space of Z will be denoted T instead of [0, 1]J and is viewed as an affine

space. When (t1, · · · , tJ) = (f1(x), · · · , fJ(x)), Z describes a curve if V=1, a manifold of

dimension V in multivariable situations in non degenerate cases. This curve or manifold

will be denoted CJ .

Osculating simplex. In the remainder of this section, we restrict ourselves to the case

of one variable only. As it is needed in the sequel we introduce the notion of osculating

k-spaces (Peña, 1999) and osculating hyperplanes which are special cases of the former.

Definition 1 An osculating k-space at the point Tx = (f1(x), · · · , fJ(x)) or more shortly

at x is the affine space spanned by the first k independent vectors f (1)(x), · · · , f (k)(x), and

passes by Tx.

Specifically, the osculating hyperplane to CJ at Tx is the osculating J − 1-space at Tx.

In Computer Aided Design (Farin et al., 2002), Bézier curves connecting an initial point

T0 to a final point TJ in the affine space T are integrally embedded in a simplex SJ whose

vertices are its control points. This simplex is called ’osculating simplex’ (Peña, 1999) and

is defined as follows (Gasca and Micchelli, 2013):

Definition 2 The osculating simplex between two points T0 and TJ is the simplex for which

the vertices are T0, TJ and Tj for 0 < j < J . The vertices Tj, j = 1, · · · , J − 1 are found

as the intersections of the osculating j-space at T0 and the osculating (J − j)-space at TJ .

Two examples of osculating simplexes are shown on the figure 1 below.

Chebyshev system. The study of Bézier curves is intimately linked to the theory of

Chebyshev systems of functions (Gasca and Micchelli, 2013), (Schumaker, 2007), (Karlin

and Studden, 1966). In the following, the proofs need a particular version called Extended

Chebyshev systems referred as ET in Karlin and Studden (1966).

6

Figure 1: examples of osculating simplexes Osculating simplex of the curve (x, x2) on

the left panel, and of the curve (x, x2, x3) on the right.

In Theorem 1 in Section 2, the use of ET systems guarantees that CJ will be included

in its osculating simplex between any beginning point and any final point chosen in [0, 1].

This is the heart of our construction, as will be seen in Subsection 2.2.

Because they are more easily characterized than ET systems, as can be seen in Theo-

rem A2, instead of ET-systems, we use a more restricted form called Extended Complete

Chebyshev systems, defined in Appendix A and referred as ECT. From now on, we require

additionally that:

Assumption A The systems of functions {fv,j(xv)}Jvj=0, for each v in [1, V], form an ECT

on [0, 1].

More detailed considerations about Chebyshev systems can be found in Appendix A.

2 Univariate case

In the case of one variable (V = 1), we explicit the form of Problem 4. We proceed as

follows.

In Subsection 2.1, through Proposition 1 we formalize our analysis. The conditions for

which this proposition holds are examined in Theorem 1.

However, Proposition 1 proposes only a set of sufficient conditions for a function Fα(x)

to be monotone. To go beyond this first step in Subsection 2.2, still under Assumption

7

A, we detail in Theorem 2 an algorithm which is guaranteed to find the optimal solu-

tion. A discussion of the refinement schema employed in the algorithm follows. We give a

comparative example to Hawkin’s methodology (Hawkins, 1994) later in Subsection 4.2.

2.1 Univariate case: Osculating simplexes

We consider a curve CJ and its osculating simplex SJ on [0, 1]. The J + 1 vertices of SJ are

gathered in a matrix T of dimension J × (J + 1), where each column is a vertex. To take

into account the constant term in the expression of Fα, we then define the squared matrix

of constraints T• of dimension (J + 1)× (J + 1) as:

T• :=

 t1

T

 ,

where 1 is a vector of 1. The expression tT•α ≥ 0 means that each coordinate of the

vector tT•α is non negative.

As a simplex, every point of SJ can be expressed as a linear combination of the vertices

with positive coefficients. We thus claim the following proposition.

Proposition 1 Assume that the curve CJ is included in its osculating simplex on [0, 1]. If

tT•α ≥ 0 , then ∀x ∈ [0, 1], we have Fα(x) ≥ 0.

At this point, our aim is to solve the much simpler Problem 5, where the non linear

constraints of Problem 3 have been replaced by linear constraints.

arg min
α

I∑
i=1

(Yi − Fα(Xi))
2, s.t. tT•α ≥ 0. (5)

The purpose of the rest of this subsection is to make explicit the conditions under

which a curve CJ between T0 and TJ is included in its osculating simplex. To prepare the

algorithm of Section 2.2, we require this property to be true whatever the initial point T0

and the final point TJ taken on the curve between x = 0 and x = 1.

Theorem 1 Let T0 and TJ be two points on the curve CJ . Under Assumption A, the

portion of the curve between T0 and TJ is included in its osculating simplex.

We note that choosing the osculating simplex to enclose the curve is a mere continuation

of the theory of Bézier curves.

8

2.2 Algorithm for finding the optimal solution, one variable

As already mentioned, the conditions of Proposition 1 for finding a monotone polynomial

or more generally a monotone function fitting the observed points (Xi, Yi)i=1,I are only

sufficient. In this subsection, we propose an algorithm capable of finding the optimal

solution in the least square sense as soon as the functions fj verify the conditions of Theorem

1.

Our idea is a variation on a corner cutter or refinement algorithm. These algorithms

are known since the mid seventies (Chaikin, 1974) (Schumaker, 2007) and closely linked to

Bézier curves (Farin et al., 2002) and B-splines (De Boor, 2001).

In this subsection, first, the corner cutting algorithm is introduced with a simple example

for a degree 2 polynomial. It is then generalized to any function fj(x). In Theorem 2 the

convergence of the algorithm is stated. This subsection is concluded with a few practical

considerations.

Figure 2: corner cutting algorithm the simplex (T0T1T2) is replaced by the polytope

(T0U1UU2T2), formed of two simplexes, (T0U1U) and (UU2T2). The corner T1 of the initial

simplex is cut.

Example in dimension 2. For a short while, we take J = 2. In Proposition 1 we

established that a condition for Fα(x) to be positive over [0,1] is that the corresponding

function Z(t) be positive in the vertices T0, T1 and T2 (see figure 2).

But we have restrained ourselves to simplexes. In fact it is easy to obtain a narrower

convex polytope surrounding C2, if more than 3 vertices are allowed. For example, in Figure

2, the polytope P ′2 whose vertices are T0, U1, U, U2, T2 is included in the osculating simplex

9

P2 defined by the three vertices T0, T1, T2.

P ′2 is constructed by taking one of its sides confounded with the tangent line to the

curve C2 at the point U . After choosing the cutting point U , the two triangles (T0, U1, U)

and (U,U2, T2) are uniquely determined.

This process of cutting can continue: at each step we split a simplex in two new sim-

plexes, and build a chain of simplexes containing the curve. At each time we cut one of the

simplex by a new tangent, remove one corner and add two new vertices.

To speak informally, what we are going to prove, is that when this step is repeated

indefinitely, every point of the curve C2 is transformed in a vertex of a simplex and there-

fore in a constraint in the problem 5, so that the positivity of the polynomial is ensured

everywhere on [0,1].

Generalization. Generalizing this cutting principle to J functions is straightforward. At

each step of the algorithm, the polytope surrounding the curve is composed of a succession

of osculating simplexes, connected by one vertex located on the curve. Calling U this

common vertex, the osculating hyperplane to the curve CJ at U is then the support of one

face of the first connected simplex and of one face of the second one.

The whole process is only possible under the condition that the curve remains inside

each of these osculating simplexes. This is a consequence of Assumption A and Theorem

1. The convergence of the cutting algorithm is proved in Theorem 2 which is stated after

introducing some necessary notations and proving a preliminary Proposition 2.

We consider PJ,K a set of nested simplexes, built so that PJ,K+1 ⊂ PJ,K . For example,

at step K, the initial vertex of each simplex of PJ,K corresponds to x = (k− 1)/2K and the

final one to k/2K with k varying from 1 to 2K .

Let AJ be the set of coefficients for which ∀x ∈ [0, 1], Fα(x) ≥ 0:

AJ = {α | ∀x ∈ [0, 1], Fα(x) ≥ 0}.

Similarly, we denote AJ,K the set of possible coefficients at step K, that is the coefficients

for which tT•Kα ≥ 0 where T•K is the matrix of constraints: its first row is composed of

ones, the rest of the matrix gathers (in columns) the vertices of PJ,K .

10

α̃J,K is the vector of coefficients of the solution to Problem 5 when the constraints

match the vertices of PJ,K . The coefficients of the optimal solution to 3 are stored in a

vector denoted α̃J .

Let cost(α) be defined as cost(α) :=
∑I

i=1(Yi − Fα(Xi))
2. We have:

cost(α̃J,K) = min
α

(cost(α)), s.t. tT•Kα ≥ 0.

In the course of Theorem 2 and in Algorithm 1 below, we make use of the following

proposition.:

Proposition 2 1. ∀K,AJ,K ⊂ AJ,K+1 ⊂ AJ .

2. AJ and all the AJ,K are closed convex cones.

3. The sequence of cost(α̃J,K) is decreasing with K.

Theorem 2 Under Assumption A, we have limK→∞ α̃J,K = α̃J .

The proof consists of observing that
⋃
K∈N

AJ,K is dense in AJ .

Algorithm 1. The algorithm which puts Theorem 2 into practice is presented below.

As already said, at step K, the problem is solved by means of a quadratic programming

algorithm. It is well known that if the solution is not strictly inside the convex constrained

region AJ,K (see Proposition 2), then it is located on one constraint or on the intersection

of two or more constraints. In this case, the constraints are said to be active.

The active constraints indicate which region of the variable definition domain should be

refined in the next step, since there is a one to one correspondence between the constraints,

the vertices and the values of the variables.

The fact that cost(α̃J,K) is decreasing with K gives an easy stopping criterium for

Algorithm 1 which should terminate if the difference in the cost function at steps K and

K + 1 is lighter than c a small constant chosen a priori.

The set of active constraints at step K is numbered from 1 to QK . Each constraint

q ∈ [1, QK] matches a vertex Tq of one of the simplexes following the curve CJ . Let Xq,0,

Xq,J be the values of the parameter corresponding to the initial and final points of the

simplex containing Tq, i.e. the two vertices of this simplex which are on the curve.

11

corner cutting algorithm in the univariate case

• while cost(α̃J,K)− cost(α̃J,K+1) > c do

• for each q in [1, QK] do
• find the simplex in which Tq is a vertex;

• choose xnew a value of the variable between Xq,0 and Xq,J ;

define Tnew the corresponding point on the curve;

• create two new simplexes:

the first simplex finishes at Tnew, the second one begins at Tnew;

• remove the vertices of the old simplex;

• gather all the remaining vertices in a matrix;

end

• K = K + 1

• Resubmit problem 5 to the fitting algorithm, with these new

constraints.

end

Algorithm 1: univariate case

Calculating the vertices of the osculating simplex. In the core of the algorithm, the

determination of the vertices of the osculating simplex between two points T0 and TJ on

the curve taken at locations x0 and xJ respectively is needed repeatedly. This is detailed

in Lemma B1 in Appendix B, as a preliminary to Theorem 1 in the general case of ET

systems. We also note that with the sequence of monomials {xj}Jj=1, the vertices of the

osculating simplex can be calculated analytically.

Number of constraints. Counting the number of constraints added each time we cut a

corner gives an idea of the effort required by the algorithm.

At each step, we replace the old simplex by two new simplexes, which have a vertex in

common. The number of vertices is thus augmented by 2 × (J + 1) − (J + 1) − 1 = J at

each step.

12

2.3 Optimization of the split point, univariate case

So far, we have not discussed the location of the split point in Algorithm 1 when we create

two new simplexes out of one. When invalidating a corner a first natural idea in Algorithm

1 is to create a new vertex on the curve for the same value of the parameter as the vertex

taken out: if we remove Tk corresponding to xk, then the coordinates of the new vertex are

(f1(xk), · · · , fJ(xk)).

However, with some extra computational work, it is possible to find the location on the

curve where the volume of the initial simplex is the most reduced.

Proposition 3 Let T0, T , TJ be three points on the curve corresponding to x0 < x < xJ .

Then the function Vnew = V (x0, x) + V (x, xJ) has a unique minimum between x0 and xJ ,

where V (x0, x) (resp. V (x, xJ)) stands for the volume of the simplex between x0 and x

(resp. x and xJ).

This way of cutting leads to a variant of the initial Algorithm 1, where we look for the

optimal cut in Proposition 4 below.

We need here to introduce the determinants Dj and Dj,j:

Dj =
∣∣∣f (1)(x0) · · · f (j)(x0) f (1)(xJ) · · · f (J−j)(xJ)

∣∣∣ .
Dj,j is obtained by replacing the j-th column of DJ by f(xJ)− f(x0).

Dj,j =
∣∣∣f (1)(x0) · · · f (j−1)(x0) f(xJ)− f(x0) f (1)(xJ) · · · f (J−j)(xJ)

∣∣∣ .
Proposition 4 V (x0, xJ) =

1

J !
DJ,J

∏J−1
j=1 Dj,j∏J−1
j=1 Dj

.

The drawback of this approach is that finding the minimum of Vnew is computationally

costly since calculating a volume involves the evaluation of 2J − 1 determinants.

Sequence of monomials. The optimization of the split point becomes however extremely

simple when the system of functions fj(x) is the traditional sequence of monomials: {xj}Jj=1.

In this case, we prove now that the optimal parameter for the split point is
x0 + xJ

2
.

We start with the following proposition, where the symbol ∝ means ’is proportional to’.

13

Proposition 5 V (x0, xJ) ∝ (xJ − x0)
J(J+1)

2 .

The final result of all these developments is the next theorem.

Theorem 3 Let the system of functions fj(x) be the sequence of monomials {xj}Jj=1. Then

the optimal cut point between x0 and xJ is
x0 + xJ

2
.

As a consequence, an other way of splitting the curve in Algorithm 1 is to create a new

vertex on the curve when the value of the parameter equals x =
x0 + xJ

2
, even if it is only

fully justified for a sequence of monomials.

3 Multivariable case

In case of multivariable functions, we proceed in two successive steps. First, we generalize

the previous methodology of Section 2 in one dimension to this new situation and conclude

this subsection with Theorem 4, which transposes Proposition 1 to multivariable functions.

As with a single variable, the proposed constraints are only sufficient conditions. In the

second step, we propose an algorithm in Section 3.2 capable of finding the optimal solution.

Its convergence is proved in Theorem 5

3.1 Multivariable case: circumscribing simplexes

We switch to a more general situation, where x = (x1 · · ·xV) is V -dimensional.

Our problem is to determine the vector of coefficients α, so that Fα(x) ≥ 0 (or ≤ 0) in

the entire domain. As in dimension 1, one way to solve this question is to enclose CJ in a

convex polytope PJ and check the positivity of Z in every vertex of PJ . How to choose PJ

will be explained very soon. Assuming that PJ is known and denoting Tj one of its vertices,

verifying the positivity of Fα(x) amounts to check that Z(Tj) ≥ 0, for all j ∈ [1, J]. We

bring together all the vertices in a matrix T and compose the matrix of constraints T• by

adding to T a first row of 1 to include the coefficient α0 in the set of constraints. The

problem to solve in dimension V can be rephrased as Problem 6:

arg min
α

I∑
i=1

(Yi − Fα(Xi))
2, s.t. constraints tαT• ≥ 0. (6)

14

which is the analog of Problem 5, the only difference being that Xi is now V -dimensional.

To extend the previous results from dimension 1 to V dimensions and control the number

of constraints, we proceed by means of tensor products. Specifically, recalling that Fα(x)

can be written Fα(x) = 〈α, f•(x)〉 we assume that:

f•(x) = f1•(x1)⊗ · · · ⊗ fV •(xV). (7)

This first requirement for f•(x) will be softened later on.

Products of tensors are applied as well to the matrix of constraints.

Let Tv,jv for jv = [0, Jv] be the vertices of the osculating simplex containing the curve

CJ,v = (fv,1(xv), · · · , fv,Jv(xv)), where xv ∈ [xv,0, xv,1]. The matrix Tv of dimension Jv ×

(Jv + 1) contains in columns the vertices Tv,jv . Adding a first row of 1 to each of the Tv,

we obtain the matrices of constraints Tv• of dimension (Jv + 1)× (Jv + 1) for each variable.

The matrix of constraints T• on the domain D = [x1,0, x1,1] × · · · ,×[xV,0, xV,1] is defined

as the tensor product:

T• :=
V
⊗
v=1

Tv•.

Setting J + 1 =
V∏
v=1

(Jv + 1), the dimension of T• is (J + 1) × (J + 1). We quote also

that the first row of T• is composed of 1. The J remaining rows form a matrix denoted T.

Each column of T corresponds to a point Tj in the space T = [0, 1]J . We define the

polytope PJ as the convex hull of the set of vertices Tj. With J + 1 vertices, this polytope

is a simplex and contains the part of the manifold CJ corresponding to the domain D as

stated in the following theorem 4 .

Theorem 4 joins together Proposition 1 and Theorem 1, transposes their statement to

multivariable situations and gives a means to automatically generate the needed constraints.

Theorem 4 Under Assumption A

1. When x traverses D, the corresponding portion of CJ is included in PJ .

2. If tαT• ≥ 0, then ∀x ∈ D, we have F (x) ≥ 0.

Dropping terms. Actually, a function F (x) containing all the terms resulting from the

tensor product f1•(x1)⊗ · · · ⊗ fV •(xV) is of little practical use. If it is not possible to drop

15

some of these terms, these kind of functions will fail to match practical applications. For

instance, in real situations, cubic polynomials will not include necessarily all the interactions

terms: it is very common to ignore interactions of more than two variables.

However, dropping some terms amounts to taking the corresponding coefficients (in the

function Z(t)) equal to 0. As a result, in the matrix of constraints, the corresponding rows

are merely deleted.

3.2 Algorithm for finding the optimal solution, multivariable case

In case of one variable, the proposed algorithm is based on the notion of osculating hyper-

planes. In multivariable situations, we use instead the fact that the vertices of the polytope

on which we request F (x) to be positive result from the tensor product of V matrices. The

columns of each of these matrices correspond to the vertices of a simplex for the matching

variable. We note that the resulting tensor product corresponds also to a polytope.

When v = 1, in Algorithm 1, we have replaced the initial simplex by a chain of simplexes

(see figure 2). We keep the same procedure when v > 1, except that now we create a mesh

of simplexes rather than a chain. This point will be detailed when developing Algorithm 2

below. For now, this geometrical point of view is useless.

Let CJv be the curve corresponding to the variable v, i.e. CJv = (fv,1(xv), · · · , fv,Jv(xv)).

At step K, for each v, we build a chain Pv,Jv ,K of simplexes containing CJv , gather all the

vertices of Pv,Jv ,K in a matrix Tv,K and form Tv•,K the matrix of constraints for CJv at

step K by adding a row of 1.

We then generate the tensor products of all these matrices T•K = ⊗
v=1,V

Tv•,K . Excluding

the first row, we obtain the matrix TK containing the coordinates of the vertices on which

we must check the positivity of the corresponding function Z(t1, · · · , tV).

As previously in Section 2.2, let PJ,K be the polytope whose vertices are the columns

of TK , and α̃J,K be the solution of Problem 6 when the constraints are issued from the

vertices of PJ,K . That is:

α̃J,K = arg min
α

I∑
i=1

(Yi − Fα(Xi))
2, s.t. constraints tαT•K ≥ 0.

Analogously to Theorem 2, we examine FJ(x) the optimal solution to 3 and α̃J its

16

vector of coefficients. Our aim is the following theorem:

Theorem 5 Under Assumption A, limK→∞ α̃J,K = α̃J .

The proof is similar to the previous one in Theorem 2 with the generalization to the

tensorial product of constraints.

Algorithm 2. We illustrate the refinement schema of Algorithm 2 in two dimensions

before giving a general formulation.

Refinement schema with 2 variables. The key to Algorithm 2 is Theorem 4. The

manifold CJ represents the function f•(x) = f1•(x1)⊗ f2•(x2) on D = [0, 1]× [0, 1]. Choosing

two arbitrary values x∗1 and x∗2 for the variables, we can refine D in 22 subdomains:

D1 = [0, x∗1] × [0, x∗2], D2 = [0, x∗1] × [x∗2, 1], D3 = [x∗1, 1] × [0, x∗2] and D4 = [x∗1, 1] × [x∗2, 1].

On each of these subdomains, using Theorem 4, we know how to build a simplex including

a portion of CJ . Obviously the four simplexes taken together include the whole manifold

CJ , and any of these subdomains can be subdivided independently of the others.

Solving. The generalization of the previous refinement schema to any number of variables

is straightforward.

The algorithm for solving problem 6 is an extension of Algorithm 1 to more than one

variable. The only difference is that when subdividing one simplex, we create 2V new

simplexes instead of two when V = 1.

In Algorithm 2, if at step K, the constraint q is active, it should be removed in the next

step. To do this, since this constraint matches a vertex Tq of one of the simplexes containing

CJ , we simply identify the subdomain containing Tq, split it in 2V new hypercubes, and

create a simplex in each of these hypercubes.

At each step K, QK constraints are supposed to be active.

17

corner cutting algorithm in the multivariable case

• while cost(α̃J,K)− cost(α̃J,K+1) > c do

• for each q in [1, QK] do
• find the simplex Sq in which Tq is a vertex;

• choose xnew a new value in the domain corresponding to Sj;

define Tnew the corresponding point on the curve;

• create 2V new simplexes connected at Tnew;

• remove the vertices of the old simplex;

• gather all the remaining vertices in a matrix;

end

• K = K + 1

• Resubmit problem 6 to the fitting algorithm, with these new

constraints.

end

Algorithm 2: multivariate case

Once again, if no improvement in the fitting criterium is seen after removing a vertex

and replacing it by new ones, or if the improvement is too small, the algorithm should stop.

Number of constraints The number of constraints corresponding to one of the simplexes

containing CJ is its number of vertices:

J + 1 =
V∏
v=1

(Jv + 1).

This leads to the following proposition.

Proposition 6 When creating a new simplex by subdividing an existing one, the number

of constraints is augmented by

3V − 22V + (J + 1) ∗ (2V − 1).

When V = 1, Proposition 6 gives the result already detailed in the single variable case.

18

4 Examples

In this section we begin by enumerating the situations where our method can be used

(Subsection 4.1). The case of functions of a single variable is illustrated in Subsection 4.2

with Hawkin’s example, and with a sum of exponentials. We conclude this section with

one industrial example in multivariable settings (see 4.3).

4.1 Other type of constraints

A few features open up the applicability of our method to a really large panel of parametric

regressions.This is discussed in more details in this section.

1. As it is well known, monotonicity requirements are not the only shape constraints that

can be considered. In fact, the same method can be applied to any shape constraints

as long as the corresponding constraints stay linear with respect to the coefficients

of the model. This includes monotony, concavity or convexity constraints, bound

constraints on the function itself, or on its derivatives and equality constraints.

2. Monotony requirements (or other constraints) can be applied simultaneously to any

number of variables. The only consequence is that the number of constraints to fulfill

will increase with the number of variables.

3. Obviously, every monotone transformation of the variables x1, · · · , xv will not change

the procedure.

4.2 examples with a single variable

In Figure 3, we illustrate our approach with the simulation data proposed by Hawkins

(Hawkins, 1994). In this example, 50 points are drawn from the equation y = 4x(x −

2)2(x+0.5)2(x2 +2)+ε with ε ∼ N(0, 1). Neither the true underlying function is monotone

on its definition domain, nor is the unconstrained least square fit with the points given by

Hawkins.

In Hawkin’s methodology, the fit is over the entire real line R and even degree polynomial

are not permitted. We present two simulations studies, the first one with a polynomial of

19

5 degree polynomial and Hawkin’s values 4 degree polynomial

lower estimated upper Hawkin

β5 6.0874 11.3317 16.3324 10.99

β4 -22.9273 -21.4133 -19.6327 -21.42

β3 0.8264 6.8498 12.9451 7.29

β2 20.6942 22.1779 23.3518 22.18

β1 7.1634 8.7006 10.2383 8.59

β0 0.6619 0.9910 1.3355 0.99

lower estimated upper

β4 -22.664 -21.546 -19.346

β3 17.455 19.294 19.768

β2 20.675 22.369 23.302

β1 5.4395 6.2205 6.9578

β0 0.37451 0.95338 1.0414

Table 1: estimation and confidence bands for the coefficients of a polynomial of degree

5 fitted on Hawkin’s data on the left, and for a polynomial of degree 4 on the right. The

column Hawkin gives the values estimated by Hawkin for the 5 degree polynomial.

degree 5 in order to make comparisons with Hawkin’s results, and the second one with a

polynomial of degree 4. The equation of the obtained fit is given in Table 1.

These simulations have been repeated a thousand times with different draws of ε to give

an idea of the distributions of the estimators. In Table 1 the columns ’lower’ and ’upper’

give the 5% and 95% percentiles.

Not reported here because the results are very similar, we have compared our method

to Murray and coauthor’ algorithms (Murray et al., 2016) who have trained their method

on the same data set.

We continue with an example which makes use of exponential functions, compared to a

polynomial of degree 5. The observed points, exactly the same in the left and right figures,

are random and show a shape similar to a sigmoid. The exponents in the exponentials

are completely arbitrary. In both cases, the unconstrained fit exhibits a non monotone

behavior around the origin.

4.3 Real example: hydrotreatment of naphta

In petroleum process engineering, hydrotreating consists in treating a petroleum cut under

hydrogen pressure in an industrial reactor. After being extracted, the crude oil has first to

20

Figure 3: Hawkins’s function In squared green, the observed points. In red, the fit. In

dashed black, the least square approximation with a polynomial of degree 4. The right

panel shows the resulting function on a restricted interval

Figure 4: sigmoid function In squared green, the observed points. In red, the fit.

In dashed black, the non restricted least square approximation. The blue crosses in-

dicate the limits on the x axis of each simplex. On the left panel, we use a 5

degree polynomial. On the right, it is a sum of 5 arbitrarily chosen exponentials,

exp(0.5x), exp(1.2x), exp(2x), exp(2.1x), exp(2.5x).

be refined and fractionated in different cuts before being commercialized. Specifically, in

naphtha cuts, impurities (mainly sulphur) must be removed, before any further use.

Finally, a degree 2 polynomial of 4 variables is proposed to approximate this process,

where:

the response is y = log(− log(C
C0

)), with C the concentration of the chemical to be removed

remaining at the outlet of the reactor and C0 its initial concentration;

x1 = 1/T , with T the temperature of the process;

x2 = log(V V H), V V H being the Velocity per Volume and per Hour;

21

x3 = log(PH2), where PH2 is the partial hydrogen pressure;

x4 = log(PH2S), with PH2S the partial H2S pressure.

Some constraints must be respected : the process is more efficient (which means that

C decreases or equivalently y increases) when :

- the temperature T increases or x1 decreases

- V V H decreases or x2 increases

- PH2 or x3 increases.

- PH2S or x4 increases.

Figure 5 compares the results when regressing with and without constraints. The left

panel exhibits the residues (y calculated - y experimental), showing only minor differences

when the experimental points are predicted by both methods: the root mean squared

errors is RMSE = 0.438 with constraints and RMSE = 0.411 without. But the obtained

equations are really different as shown on the right.

On the right panel, the plot shows the behavior of the response when only one variable

varies at a time, starting from a given point in the domain which can be read on the

figure. The dotted lines correspond to the regression without constraints, the solid line

to the regression with constraints. The plain triangle marks the estimated response for

the regression without constraints, the circle for the regression with constraints. x-axis are

translated so that all the curves meet at the center of the graphic. Black lines correspond to

variations along T or x1, red lines to variations with V V H or x2, blue lines to variations with

PH2 or x3, green ones to PH2S or x4. The behaviors for the regression without constraints

are obviously wrong: the black dotted line is increasing instead of decreasing and the blue

has a minimum.

5 Perspectives and Conclusions

The proposed procedure is very general and flexible. Moreover it can be found useful in a lot

of problems. It is specially well adapted to polynomial regression, a problem occurring very

often in industrial applications. It is also valid with any other ECT Chebyshev systems of

functions. Most importantly, our method will give satisfactory results in multidimensional

cases even with few available experimental data.

22

Figure 5: polynomial fit to the data of HDS experiments Residue diagram for

the HDS data on the left panel. On the right the plot compares the UNconstrained and

constrained regressions.

The proposed method will suffer from the usual flaws of linear regression, as it is based

on a least squares procedure. Notably, to avoid some instabilities in the coefficients, a bit

of regularization would be welcome, as considered in Trevor et al. (2009).

A second enhancement would be to find a way for limiting the number of the constraints

in multivariable situations. Indeed, their number grows exponentially with the number of

variables. This certainly is a bottleneck of the method.

Thirdly, the scope of this kind of regression could be extended to nonparametric regres-

sions. GAMs are natural good candidates as well as local polynomial regression (Fan and

Gijbels, 1996).

Fourth, uncertainty intervals are certainly an issue for this method. Indeed, as the

constraints change at each iteration, the residues can not be considered as identically dis-

tributed, so that bootstrap algorithms are not adequate at first sight.

The original algorithms for polynomials are developed in Matlab R© and available upon

request.

SUPPLEMENTARY MATERIAL

A short description of features of Chebyshev systems useful for the article can be found

in Appendix A. Appendix B provides the proofs of the propositions and Theorems.

23

Appendix A Short notes on Chebyshev systems (FrancoisWahl-Chebyshev1803final.pdf)

Appendix B Proofs. (FrancoisWahl-Proofs1803final.pdf)

References

Ben-Tal, A. and A. Nemirovski (2001). Lectures on Modern Convex Optimization: Analysis,

Algorithms, and Engineering Applications. Philadelphia, PA, USA: Society for Industrial

and Applied Mathematics.

Chaikin, S. (1974). An algorithm for high speed curve generation. Computer Graphics and

Image Processing 3 (4), 346–349.

De Boor, C. (2001). A practical guide to splines. Applied mathematical sciences. Berlin:

Springer.

Du, P., C. Parmeter, and J. Racine (2013). Nonparametric kernel regression with multiple

predictors and multiple shape constraints. Statistica Sinica 23, 1347–1371.

Fan, J. and I. Gijbels (1996). Local Polynomial Modelling and Its Applications: Monographs

on Statistics and Applied Probability 66. Chapman & Hall Ltd. Taylor & Francis.

Farin, G. (1993). Curves and Surfaces for Computer Aided Geometric Design (3rd Ed.):

A Practical Guide. San Diego, CA, USA: Academic Press Professional, Inc.

Farin, G., H. Hoschek, and M. Kim (2002). Handbook of Computer Aided Geometric Design.

Elsevier.

Gasca, M. and C. Micchelli (2013). Total Positivity and Its Applications. Mathematics and

Its Applications. Springer Netherlands.

Hawkins, D. (1994). Fitting monotonic polynomials to data. Computational Statistics 9,

233–247.

Karlin, S. and W. Studden (1966). Tchebycheff systems: with applications in analysis and

statistics. Pure and applied mathematics. Interscience Publishers.

24

Maatouk, H. and X. Bay (2017). Gaussian process emulators for computer experiments

with inequality constraints. Mathematical Geosciences 49 (5), 557–582.

Meyer, M. (2012). Constrained penalized splines. Canadian Journal of Statistics 40 (1),

190–206.

Murray, S., S. Müller, and B. Turlach (2016). Fast and flexible methods for monotone

polynomial fitting. Journal of Statistical Computation and Simulation 86 (15), 2946–

2966.

Nocedal, J. and S. Wright (2006). Numerical Optimization (2nd ed.). New York: Springer.

Papp, D. and F. Alizadeh (2014). Shape-constrained estimation using nonnegative splines.

Journal of Computational and Graphical Statistics 23 (1), 211–231.

Peña, J. (1999). Shape Preserving Representations in Computer-aided Geometric Design.

Nova Science Publishers.

Ramsay, J. and B. Silverman (2005). Functional Data Analysis (2nd ed.). New York:

Springer-Verlag.

Schumaker, L. (2007). Spline Functions: Basic Theory (3 ed.). Cambridge Mathematical

Library. Cambridge University Press.

Trevor, H., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning

(2nd ed.). New York: Springer-Verlag.

Wood, S. (2006). Generalized Additive Models: An Introduction with R. Chapman &

Hall/CRC Texts in Statistical Science. Taylor & Francis.

25

