
HAL Id: hal-01262601
https://hal.science/hal-01262601v2

Preprint submitted on 27 Nov 2017 (v2), last revised 23 Apr 2018 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multivariate parametric regression under shape
constraints

François Wahl, Thibault Espinasse

To cite this version:
François Wahl, Thibault Espinasse. Multivariate parametric regression under shape constraints. 2017.
�hal-01262601v2�

https://hal.science/hal-01262601v2
https://hal.archives-ouvertes.fr


Multivariate parametric regression under
shape constraints

François Wahl, Thibault Espinasse

November 27, 2017

Abstract

We consider a multivariate regression model built as a linear combination of functions
of a single variable in univariate situations, or of product of univariate functions in
multivariate cases. For each variable, the univariate functions form a Chebyshev
system. The regression model is defined on a bounded domain and subject to one
or more shape constraints on its definition domain, with the restriction that they
can be transformed in positivity constraints for the regression function itself or for
its derivatives. We develop an iterative procedure, where at each step the initial
shape requirement is approximated by a set of linear constraints. This procedure is
shown to converge to the optimal solution in the least square sense for univariate
and then for multivariate cases. Numerical studies and a real industrial example
with a multivariate polynomial regression subject to shape constraints of monotony
illustrate the performance of the proposed method.

Keywords. multivariate parametric regression, monotony, shape constraints, quadratic
programming, Chebyshev system, simplexes

1



1 Introduction

Our focus in this article is on multivariate parametric regression under shape constraints
and especially on monotone polynomial regression on bounded sets of RV , for V ≥ 1. Basi-
cally, polynomials are linear combinations of elementary functions, the monomials, resulting
from the product of integer power law functions in each variable. In this paper, we keep
this structure: the fitting function can be decomposed in a sum of products of elementary
functions in each variable, but our methodology can deal with other elementary functions
than monomials, and other constraints than as long as they expressions remain linear with
respect to the coefficients.

More specifically, let (Xi, Yi)i=1,I be a set of I observed points. Without loss of gener-
ality, the predictors Xi belong to [0, 1]V , where V is the dimension of the input space. The
observed responses Yi are real.

We assume that (Xi, Yi) are linked through an unknown function Fα from [0, 1]V to
R expressed as a linear combination of J known elementary functions fj: Fα(x) = α0 +
J∑
j=1

αjfj(x). The responses Yi are subject to independent and identically distributed random

errors εi with bounded variance. The model we are working on can then be written:

Yi = Fα(Xi) + εi (1)

The real coefficients, stored in the vector α = t(α0, α1, · · · , αJ), are to be found out.

Additionally Fα should respect shape constraints like monotonicity or convexity with
respect to one or more variables, that will be detailed in the sequel. The least square
problem to be solved can then be rephrased as

argmin
α

I∑
i=1

(Yi − Fα(Xi))
2, s.t. shape constraints. (2)

The solution to (2) will be called the optimal solution.
The purpose of this paper is to transform these initial shape requirements in a finite

number of linear constraints on the coefficients which approach the same solution as in the
problem (2). The least square problem is thus transformed in a classical convex quadratic
programming problem (see [16]).

Shape constraints have been investigated since mid 1990’s in the field of ’Graphic Com-
puter Aided Design’, GCAD for short, and is a central theme in this area. Our purpose in
this paper is to transpose some of these ideas to regression analysis.

The theory of shape constraints in GCAD is well developed in [6] and [18] for example,
around Bernstein polynomials [12], Bézier curves and splines. In this field, the concern is
to follow smoothly a set of control points given a priori, in order to represent adequately
what the designer has in mind. As explained in this paper, in a certain sense, in regression
analysis, the goal is the opposite and is to find the control points so that the regression

2



curve behaves as desired. Nonetheless this paper borrows some of the ideas of this field,
specifically around simplexes and corner cutting or refinment algorithms [7], [2].

We keep the structure implemented in GCAD. In the univariate case, a common hy-
pothesis in GCAD is that the set of functions f1(x), · · · , fJ(x) form a set of Chebyshev
functions [10]. This will one of our main hypothesis and will be detailed in the next section
1.2.

When Fα(x) is multivariate, one possible way in GCAD is to proceed through tensor
products as in [7]. This is the reason why we assume that each fj(x) can be decomposed
in a product of V univariate functions:

fj(x) = fj1(x1) · · · fjV (xV ).

Each of the fjv (v ∈ [1, V ]) maps [0, 1] to R, and is at least continuous and derivable on
[0, 1] as many times as needed, i.e., up to the order J . As in the univariate case, we impose
that each set of functions f1v(xv), · · · , fJv(xv) for 1 ≤ v ≤ V forms a Chebyschev system.
This will be explained in section 3.

Typically, Fα is a polynomial. But the interest of using Chebyschev systems is that the
framework can handle more general cases as well, as sum of power functions, or sum of
exponentials for example (see subsection 1.2).

This paper is organized as follows: a state of the art is first developed as a beginning
and then our general framework is introduced in the subsection 1.2. The theory is exposed
for monotony constraints, first for univariate functions (section 2), before extending our
ideas to more variables (section 3). Practical considerations are detailed in subsection 4.1.
Simulations studies are then demonstrated with an example for a one variable polynomial
bounded from above (subsection 4.2) and for a polynomial in 2 variables (subsection 4.3).
Eventually, one industrial case is detailed in petroleum engineering related to hydrotreat-
ment of naphta (subsection 4.4). Conclusions and perspectives are given in section 5.
Finally, we give in Appendix (section 5) the proofs of the results.

1.1 State of the art

Compared to non parametric regression, polynomials are immediate to calculate, involving
only a few multiplications and additions. Most of all, they are easy to interpret, showing
very clearly the influence of each variable, and their interactions.

Their disadvantage over nonparametric regressions is that they may lack of flexibility
to represent particular function behaviors, like for example nearly flat regions followed by
abrupt changes. However, compared to parametric regressions, final expressions in non
parametric fitting are not easy to handle and the help of the computer is unavoidable.
They are also not interpretable. This is why we believe as in [9], there is still room for
parametric regressions and especially for polynomial regression.

In contrast to classical least square problems, constrained extensions are generally very
hard to tackle, even for low degree polynomials. Indeed, most of the time it implies compli-
cated non linear expressions of the coefficients. On the contrary, nonparametric regressions
can adapt themselves very efficiently to constrain the behavior of the resulting function.
They have received considerable attention for many years, first in one dimension and more

3



recently in multivariate situations. Restricting ourselves to isotonic regression in more than
one dimension, a few performing algorithms have been proposed, based on splines [19] [17],
on kernel type [5] [13] regressors, or on GAM [22].

Taking the derivatives, studies on monotone polynomials reduce to the study of positive
polynomials. These latter can be positive over the entire real line, over a semi-infinite
interval, or on a compact set. In these three situations, Karlin and Studden([10]) have
given a representation theorem for positive polynomials in one variable of any degree. Still
the obtained expressions remain highly non linear.

Ben-Tal and Nemirovski [1] have shown how to solve the problem via Semi-Definite
Programming techniques in the three above situations. Hawkins [9] has set out a method
and put his results into practice for positive polynomials in one variable on R. Murray [15]
has proposed a few improvements over this initial framework.

For more than one variable, the problem remains largely open.This is precisely the
purpose of this paper to tackle the case of multivariable situations. In our methodology,
we restrict the domain of definition to be a compact interval for one variable or a product
of compact interval for more variables.

As already mentioned, even if the first motivation of this work is polynomial regression,
it appears that the scope of our framework can be enlarged to deal with more general
functions, as long as the basis functions form a Chebyshev system.

In non parametric methodologies, very often, the initial shape constraints are trans-
formed in linear constraints on the coefficients of the regression. Once the constraints are
set, the problem of minimizing the sum of squared errors under linear conditions reduces
to a standard quadratic programming optimization procedure [16] and can be solved by
classical algorithms available in usual mathematical softwares. In this paper, we keep this
idea of expressing the constraints linearly.

The general idea is to solve the above minimization problem with a subset of the needed
constraints and then allow this subset to grow iteratively. This method shares a few aspects
with the method of sieves. Sieves designate a sequence of subset of functions Ak of some
space A containing the function to be estimated, with the restriction that

⋃
Ak should be

dense in A. The difference in our method is that the space of functions is fixed, and the
constraints change from one iteration to the other (see Section 2.2). The interested reader
can find more details in [17], which concerns mainly monotonic splines.

Compared to non parametric methodologies, our method depends only on the number
of elementary functions in the expression of Fα and not on the number of points. A
marginal important benefit of our approach is that the expected behavior will be respected
everywhere in the domain and not only in the vicinity of the observed points (see [14] for a
short discussion on this topic). Finally, since no tuning parameters have to be estimated,
the computational difficulty of the whole procedure is reduced compared to non parametric
regression.

1.2 Notations and Definitions and Basic Notions

The indices i ∈ [1, I] will refer to the observation points, j ∈ [1, J ] to the approximation
functions, v ∈ [1, V ] to the variables. The upper case letters X or Y are reserved for the

4



observed points, while the lower case x or xv for v ∈ [1, V ] is used for variables. Bold upper
case letters like T correspond to matrices, bold lower case letters to vectors.

Regression function. As already introduced, we consider Fα(x) a function from [0, 1]V

to R in the form of a linear combination of J + 1 known elementary functions fj, with
f0(x) = 1.

Fα(x) ==
J∑
j=0

αjfj(x) = α0 +
J∑
j=1

αjfj(x),

where α = t(α0, α1, · · · , αJ) is the vector of coefficients.
Each fj(x) is decomposed in a product of V univariate functions:

fj(x) = fj,1(x1) · · · fj,V (xV ),

where ∀v ∈ [1, V ], xv ∈ [0, 1] 7→ fj,v(xv) ∈ R.

For all v, f0,v(xv) = 1. Each of the fj,v is at least continuous and derivable on [0, 1] as
many times as needed, i.e., up to the order Jv.

When Fα is a polynomial, each fj(x) is a monomial. In the univariate case, we have
fj(x) = xdj , for j ∈ [0, J ], and the resulting polynomial is of degree dJ . In the multivariate

case, fj(x) takes the form fj(x) = x
dj1
1 x

dj2
2 · · ·x

djV
V where each of the djv for j ∈ [1, J ] and

v ∈ [1, V ] are integers.
The notation

F (k)
α (x) or f

(k)
j (x)

designates the derivative of order k (k ≥ 1) of Fα(x) or fj(x) with respect to x in the
univariate case.

Vectorial Notations. In univariate cases, f(x) refers to the the column vector

f(x) = t(f1(x), · · · , fJ(x)).

We define also the derivatives

f (k)(x) = t(f
(k)
1 (x) · · · f (k)

J (x)).

f•(x) incorporates the constant term:

f•(x) = t(1, f1(x), · · · , fJ(x)).

These notations are extended to multivariate cases as well.

Curve CJ . Alternatively, we consider the linear function defined by:

Z : [0, 1]J → R

t = (t1, · · · , tJ)→ Z(t) = α0 +
J∑
j=1

αjtj.

5



The input space of Z will be denoted T instead of [0, 1]J . When (t1, · · · , tJ) = (f1(x), · · · , fJ(x)),
Z describes a curve if V=1, a manifold of dimension V in multivariate situations in non
degenerate cases, and of dimension smaller than V otherwise. This curve or manifold will
be denoted CJ .

T is an affine space. A point in this space is written Tindex where the index is numeric
or litteral. The notation T designates the matrix of a collection of points in T, e.g. the
vertices of a simplex or a polytope.

Osculating simplex. In the remainder of this section, we restrict ourselves to the uni-
variate case. As it is needed in the sequel we introduce the notion of osculating k-spaces
and osculating hyperplanes which are special cases of the former.

Definition 1 An osculating k-space at the point Tx = (f1(x), · · · , fJ(x)) or more shortly
at x is the affine space spanned by the first k independent vectors f (l)(x) for l = 1, k, and
passes by Tx.

The osculating hyperplane to CJ at Tx is the osculating J − 1-space at Tx.

In Computer Aided Design ([8]), Bézier curves connecting an initial point T0 to a final
point TJ in the affine space T are integrally embedded in a simplex SJ whose vertices are
its control points. This simplex is called ’osculating simplex’ [18] and is defined as follows
(see [7]):

Definition 2 The osculating simplex between two points T0 and TJ is the simplex for which
the vertices are T0, TJ and Tj for 0 < j < J . The vertices Tj, j = 1, · · · , J − 1 are found
as the intersections of the osculating j-space at T0 and the osculating (J − j)-space at TJ .

With our choice of functions, f0(x) = 1 and the osculating simplex is contained in an affine
space of dimension J .

Chebyshev system. The study of Bézier curves is intimately linked to the theory of
Chebyshev systems [7], [20], [10]. In the following our definitions are restricted to the
interval [0, 1], but it is not mandatory: any interval between an initial point a and final
point b, open or closed would work.

The following determinant is denoted

M

(
x0, · · · , xj
f0, · · · , fj

)
:=

∣∣∣∣∣∣∣∣
f0(x0) · · · fj(xj)

f
(1)
0 (x0) · · · f

(1)
j (xj)

· · ·
f
(j−1)
0 (x0) · · · f

(j−1)
j (xj)

∣∣∣∣∣∣∣∣ .
Definition 3 The functions f0, f1, · · · , fJ are called an extended Chebyshev system of class
CJ−1 on [0, 1], or ET-system if they are J times differentiable on [0, 1] and if

∀x1 ≤ · · · ≤ xJ ∈ [0, 1],M

(
x0, · · · , xJ
f0, · · · , fJ

)
> 0.

6



Definition 4 The functions f0, · · · , fJ are called an extended complete Chebyshev system
on [0, 1], or ECT-system if

∀j, 1 ≤ j ≤ J, ∀x0 ≤ · · · ≤ xJ ∈ [0, 1], M

(
x0, · · · , xj
f0, · · · , fj

)
> 0.

In Definition 4, when passing from an ET to an ECT, J is replaced by j and x0 (resp.
x1, · · · , xj) can be repeated at most j times.

A consequence of definition 3 and 4 which will be useful for the proofs in the appendix

is that all the columns vectors of the determinant M

(
x0, · · · , xJ
f0, · · · , fJ

)
> 0 are linearly

independent.
Two important results on ET and ECT-systems are the following. The first one is based

on the notion of multiplicity of the intersection of a curve and a hyperplane at x.

Definition 5 Let H be a hyperplane in dimension J containing the point (a1, · · · , aJ), and
spanned by J − 1 vectors t(αj,1, · · · , αj,J)j=1,J−1. Denoting

E(t1, · · · , tJ) :=

∣∣∣∣∣∣∣∣
t1 − a1 · · · tJ − aJ
α1,1 · · · α1,J

· · ·
αJ−1,1 · · · αJ−1,J

∣∣∣∣∣∣∣∣ ,
the equation of H is given by

E(t1, · · · , tJ) = 0.

The multiplicity of the intersection at x of the hyperplane H and the curve CJ = (f1(x), · · · , fJ(x))
is defined as the order of the first non vanishing derivative of the determinant E(f1(x), · · · , fJ(x)).

If the curve CJ intersects the hyperplane H at x and if its tangent at x is not contained in
H then the multiplicity is 1.

Theorem 1 (extracted from [10], chap I Corollary 4.1) Let f0(x) = 1 for all x ∈ [0, 1]. If
f0, f1, · · · , fJ is an ET-system on [0, 1], then any hyperplane in T intersects the curve CJ
in T at most J times counting multiplicities.

The second theorem (see [10],Theorem 1.1 Chap XI) gives a characterization of an
ECT-system in terms of Wronskians. The Wronskian for 1 ≤ j ≤ J is defined as

Wf0,...,fj(x) ≡

∣∣∣∣∣∣∣∣
f0(x) · · · fj(x)

f
(1)
0 (x) · · · f

(1)
j (x)

· · ·
f
(j−1)
0 (x) · · · f

(j−1)
j (x)

∣∣∣∣∣∣∣∣ .

This notation is a shortcut for M

(
x, · · · , x
f0, · · · , fj

)
.

7



Theorem 2 (extracted from [10]) Let f0, f1, · · · , fJ be of class CJ on [0, 1]. Then f0, · · · , fJ
is an ECT-system on [0, 1] if and only if for j = 0, · · · , J we have Wf0,...,fj(x) > 0 on [0, 1].

Examples. Theorem 2 gives a means to easily check that a set of functions is an ECT.
With a sequence of increasing positive real dj verifying 0 < d1 < · · · < dj, the following
W
f
(1)
1 ,...,f

(1)
J

(x) never vanish on the interval [a, 1] with 0 < a < 1 for the first example, and

on the entire [0, 1] for the other two:

1. fj(x) = xdj ,

W
f
(1)
1 ,...,f

(1)
J

(x) =
J∏
j=1

dj

J∏
1≤j<k

(dk − dj) x

J∑
j=1

dj−J(J+1)/2

.

2. fj(x) = xj, i.e. the functions fj form a sequence of monomials, the previous formula
simplifies to

W
f
(1)
1 ,...,f

(1)
J

(x) =
J∏
j=1

j!

3. fj(x) = exp(djx),

W
f
(1)
1 ,...,f

(1)
J

(x) =
J∏
j=1

dj

J∏
1≤j<k

(dk − dj) exp(
J∑
j=1

djx).

From now on, we require additionally that:

Assumption A The functions f0, f1, · · · , fJ form an ECT on [0, 1].

Since f0(x) = 1, a direct consequence of this assumption, is that the functions f
(1)
1 , · · · , f (1)

J

form also an ECT on [0, 1].
Hypothesis A is very common in GCAD. In fact a stronger version, total positivity [7],

is most of the times put into practice in this area, but this will not be necessary for our
purpose.

Assumption A is requested because we expect that CJ will be included in its osculating
simplex between any beginning point and any final point chosen in [0, 1]. This is detailed
in Theorem 3 in section 2.

All the proofs are postponed to the appendix.

8



2 Univariate case

In this section, we detail the linear constraints approaching (2) in one dimension (V = 1)
which is then transformed into Problem (3) below. We proceed as follows.

In subsection 2.1, through Proposition 1 we formalize our analysis. The conditions for
which this proposition is true are examined in Theorem 3.

However, Proposition 1 proposes only a set of sufficient conditions for a function Fα(x)
to be monotone. To go beyond this first step in subsection 2.2, still under Assumption
A, we detail in Theorem 4 an algorithm which is guaranteed to find the optimal solu-
tion. A discussion of the refinement schema employed in the algorithm follows. We give a
comparative example to Hawkin’s methodology [9].

2.1 Univariate case: Osculating simplexes

The J + 1 vertices of the osculating simplex are gathered in a matrix T of dimension
J × (J + 1), where each column is a vertex. The expression tTα ≥ 0 means that each
coordinate of the vector tTα is non negative.

Because of the linearity of Z(t) and because a simplex is convex, we claim the following
proposition.

Proposition 1 Assume that the curve CJ is included in its osculating simplex on [0, 1]. If
tTα ≥ 0 , then ∀x ∈ [0, 1], we have Fα(x) ≥ 0.

At this point, the problem we have to solve is transformed in Problem (3):

argmin
α

I∑
i=1

(Yi − Fα(Xi))
2, s.t. tTα ≥ 0. (3)

The purpose of the rest of this subsection is to make explicit the conditions under
which a curve CJ between T0 and TJ is included in its osculating simplex. To prepare the
algorithm of section 2.2, we require this property to be true whatever the initial point T0
and the final point TJ taken on the curve between x = 0 and x = 1.

Theorem 3 Let T0 and TJ be two points on the curve CJ . Under Assumption A, the
portion of the curve between T0 and TJ is included in its osculating simplex.

Choosing the osculating simplex to enclose the curve is natural in Bézier curves theory.
As a consequence of Lemma 2 in the Appendix, this simplex shrinks to a single point when
TJ tends to T0.

2.2 Algorithm for finding the optimal solution, univariate case

As already mentioned, the conditions of Proposition 1 for finding a monotone polynomial
or more generally a monotone function fitting the observed points (Xi, Yi)i=1,I are only
sufficient. In this subsection, we propose an algorithm capable of finding the optimal

9



solution in the least square sense as soon as the functions fj verify the conditions of Theorem
3.

Our idea is a variation on a corner cutter or refinement algorithm. These algorithms are
known since the mid seventies [2] [20] and closely linked to Bézier curves [8] and B-splines
[4].

In this subsection, first, the corner cutting algorithm is introduced with a simple example
for a degree 2 polynomial. It is then generalized to any function fj(x). In Theorem 4 the
convergence of this algorithm is stated. This subsection is concluded with a few practical
considerations.

Figure 1: corner cutting algorithm the simplex (T0T1T2) is replaced by the polytope
(T0U1UU2T2), formed of two simplexes, (T0U1U) and (UU2T2). The corner T1 of the initial
simplex is cut.

Example in dimension 2. For a short while, Fα(x) is assumed to be a polynomial of
degree 2. In Section 2.1 we established that a sufficient condition for Fα(x) to be positive
over [0,1] is that the corresponding function Z(t) be positive in the vertices T0, T1 and T2
(see figure 1).

But we have restrained ourselves to simplexes. In fact it is easy to obtain a narrower
convex polytope surrounding C2, if more than 3 vertices are allowed. For example, in Figure
1, the polytope P ′2 whose vertices are T0, U1, U2, T2 is included in the osculating simplex P2

defined by the three vertices T0, T1, T2.
P ′2 is constructed by taking one of its sides on the tangent to the curve C2 at x =

1/2 corresponding to the point U . After choosing the cutting point U , the two triangles
(T0, U1, U) and (U,U2, T2) are uniquely determined. We obtain the polytope (P ′2) with
vertices (T0, U1, U, U2, T2).

This process of cutting can continue: each time we cut a simplex of the current polytope
by a new tangent, we remove one corner and add two new vertices. What we are going to
prove, is that when this step is repeated indefinitely, every point of curve C2 can in this
fashion be transformed in a vertex of a simplex and therefore in a constraint in the problem
(3), so that the positivity of the polynomial is ensured everywhere on [0,1].

Generalization. There is no difference if the degree J of the polynomial is greater than 2,
or more generally in dimension J if the monomials are replaced by the functions fj(x). At

10



each step of the algorithm, the polytope surrounding the curve is composed of a succession
of osculating simplexes, connected by one vertex located on the curve. Calling U this
common vertex, the osculating hyperplane to the curve CJ at U is then the support of one
face of the first connected simplex and of one face of the second one.

The whole process is only possible under the condition that the curve remains inside
each of these osculating simplexes. This is a consequence of Assumption A and Theorem
3.

The convergence of the cutting algorithm is stated in the next theorem. We consider
PJ,K a set of nested simplexes, built so that PJ,K+1 ⊂ PJ,K . For example, at step K, the
initial vertex of each simplex of PJ,K corresponds to x = (k − 1)/2K and the final one to
k/2K with k varying from 1 to 2K . In the proof of 4, we need the following proposition.

Proposition 2 Let AJ be the set of coefficients for which ∀x ∈ [0, 1], Fα(x) ≥ 0:

AJ = {α | ∀x ∈ [0, 1], Fα(x) ≥ 0}.

Similarly, we denote AJ,K the set of possible coefficients at step K, that is the coefficients
for which tTα ≥ 0 where T is the matrix gathering (in columns) the vertices of PJ,K. Let
CostJ,K be:

CostJ,K = min
α

I∑
i=1

(Yi − Fα(Xi))
2, s.t. tTα ≥ 0.

Then,

1. ∀K,AJ,K ⊂ AJ,K+1 ⊂ AJ .

2. AJ and all the AJ,K are closed convex cones.

3. Å = {α | ∀x ∈ [0, 1], Fα(x) > 0}.

4. The sequence of CostJ,K is decreasing with K.

The fact that the value CostJ,K of the cost function corresponding to the solution
of Problem (3) at step K is decreasing with K gives an easy stopping criterium for the
algorithm 1 below.

We define α̃J,K the vector of coefficients of the solution of Problem (3) when the con-
straints match the vertices of PJ,K . The coefficients of the optimal solution to (2) are stored
in a vector denoted α̃J .

Theorem 4 Under Assumption A, we have

lim
K→∞

α̃J,K = α̃J .

The proof consists of proving that
⋃

K→∞
AJ,K is dense in AJ . This is an analog of sieves

methods [17].

11



Algorithm 1. The algorithm which puts Theorem 4 into practice is presented below.
As already said, at step K, the problem is solved by means of a quadratic programming
algorithm. If the solution is not strictly inside the convex constrained region AJ,K (see
Proposition 2), then it is located on one constraint or on the intersection of two or more
constraints. In this case, the constraints are said to be active. The active constraints
indicate which region of the parameter values should be refined in the next step, since
there is a one to one correspondence between the constraints, the vertices and the values
of the parameter.

The set of active constraints at step K is numbered from 1 to QK . Each constraint
q ∈ [1, QK ] matches a vertex Tq of one of the simplexes following the curve CJ . Let xq,0,
xq,J be the values of the parameter corresponding to the initial and final points of the
simplex containing Tq, i.e. the two vertices of this simplex which are on the curve.

corner cutting algorithm in the univariate case

• while CostJ,K > CostJ,K+1 do
• for each q in [1, QK ] do

• find the simplex in which Tq is a vertex.

• choose xnew a value of the parameter between xq,0 and xq,J
define Tnew the corresponding point on the curve.

• create two new simplexes:
the first simplex finishes at Tnew, the second one begins at Tnew

• remove the vertices of the old simplex

• gather all the remaining vertices in a matrix

end
• K=K+1
• Resubmit problem (3) to the fitting algorithm, with these new
constraints.

end
Algorithm 1: univariate case

Stopping the procedure. To count the number of constraints added each time we cut
a corner, we notice that at each step, we replace the old simplex by two new simplexes,
which have a vertex in common. The number of vertices is finally augmented by 2× (J +
1)− (J + 1)− 1 = J at each step.

Practically, no one can afford to add an infinite number of constraints. If no im-
provement is seen after removing a corner and replacing it by J new vertices, or if the
improvement is too small, the algorithm should stop.

12



5 degree polynomial and Hawkin’s values 4 degree polynomial

lower estimated upper Hawkin
β5 6.0874 11.3317 16.3324 10.99
β4 -22.9273 -21.4133 -19.6327 -21.42
β3 0.8264 6.8498 12.9451 7.29
β2 20.6942 22.1779 23.3518 22.18
β1 7.1634 8.7006 10.2383 8.59
β0 0.6619 0.9910 1.3355 0.99

lower estimated upper
β4 -22.664 -21.546 -19.346
β3 17.455 19.294 19.768
β2 20.675 22.369 23.302
β1 5.4395 6.2205 6.9578
β0 0.37451 0.95338 1.0414

Table 1: estimation and confidence bands for the coefficients of a polynomial of degree
5 fitted on Hawkin’s data on the left, and for a polynomial of degree 4 on the right. The
column Hawkin gives the values estimated by Hawkin for the 5 degree polynomial.

Calculating the vertices of the osculating simplex. In the core of the algorithm,
the determination of the vertices of the osculating simplex between two points T0 and TJ
on the curve taken at locations x0 and xJ respectively is often needed. This is detailed in
Lemma 1 in the Appendix, as a preliminary to Theorem 3.

Hawkin’s example. In Figure 2, we illustrate our approach with the simulation data
proposed by Hawkins [9]. In this example, 50 points are drawn from the equation y =
4x(x− 2)2(x + 0.5)2(x2 + 2) + ε with ε ∼ N(0, 1). Neither the true underlying function is
monotone on its definition domain, nor is the unconstrained least square fit with the points
given by Hawkins.

In Hawkin’s methodology, the fit is over the entire real line R and even degree polynomial
are not permitted. We present two simulations studies, the first one with a polynomial of
degree 5 in order to make comparisons with Hawkin’s results, and the second one with a
polynomial of degree 4. The equation of the obtained fit is given in Table 1.

These simulations have been repeated a thousand times to give an idea of the distribu-
tions of the estimators. In Table 1 the columns ’lower’ and ’upper’ give the 5% and 95%
percentiles.

2.3 Optimization of the split point, univariate case

So far, we have not discussed the location of the split point in Algorithm 1 when we create
two new simplexes out of one. When invalidating a corner a first natural idea in Algorithm
1 is to create a new vertex on the curve for the same value of the parameter as the vertex
taken out: if we remove Tk corresponding to xk, then the coordinates of the new vertex are
(f1(xk), · · · , fJ(xk)).

However, with some extra computational work, it is possible to find the location on the
curve where the volume of the initial simplex is the most reduced.

Proposition 3 Let T0, T , TJ be three points on the curve corresponding to x0 < x < xJ .
Then the function Vnew = V (x0, x) + V (x, xJ) has a unique minimum between x0 and xJ ,

13



Figure 2: Hawkins’s function In squared green, the observed points. In red, the fit. In
black, the true function. In dashed blue, the least square approximation with a polynomial
of degree 4. The right panel shows the resulting function on a restricted interval

where V (x0, x) (resp. V (x, xJ)) stands for the volume of the simplex between x0 and x
(resp. x and xJ).

This way of cutting leads to a variant of the initial Algorithm 1, where we look for
the optimal cut. The drawback of this approach is that finding the minimum of Vnew
is computationally costly since calculating a volume involves the evaluation of 2J − 1
determinants as explained in Proposition 4 below.

We need here to introduce the determinants Dj and Dj,j:

Dj =
∣∣f (1)(x0) · · · f (j)(x0) f (1)(xJ) · · · f (J−j)(xJ)

∣∣ .
Dj,j is obtained by replacing the j-th column of DJ by f(xJ)− f(x0).

Dj,j =
∣∣f (1)(x0) · · · f (j−1)(x0) f(xJ)− f(x0) f (1)(xJ) · · · f (J−j)(xJ)

∣∣ .
Proposition 4 V (x0, xJ) =

1

J !
DJ,J

∏J−1
j=1 Dj,j∏J−1
j=1 Dj

.

Sequence of monomials. The optimization of the split point becomes extremely simple
when the system of functions fj(x) is the traditional sequence of monomials: {xj}Jj=1. In

this case, we prove now that the optimal parameter for the split point is
x0 + xJ

2
.

As a consequence, an other way of splitting the curve in Algorithm 1 is to create a new

vertex on the curve for a value of the parameter equal to x =
x0 + xJ

2
, even if it is only

fully justified for a sequence of monomials.
We start with the following proposition, where the symbol ∝ means ’is proportional to’.

Proposition 5 V (x0, xJ) ∝ (xJ − x0)
J(J+1)

2 .

The final result of all these developments is that in the case of a sequence of monomials,

the optimal cut point corresponds to
x0 + xJ

2
as stated in the next theorem.

14



Theorem 5 Let the system of functions fj(x) be the sequence of monomials {xj}Jj=1. Then

the optimal cut point between x0 and xJ is
x0 + xJ

2
.

As a last comment, the complete procedure which involves calculating the new vertices
after finding out the split point, is especially simple with the sequence of monomials {xj}Jj=1,
since the vertices of the osculating simplex can be calculated analytically.

3 Multivariate case

In case of multivariate functions, we proceed in three successive steps. We begin with a
simple example in order to introduce our approach. In a second step, we generalize the
previous methodology of section 2 in one dimension to this new situation and conclude
this subsection with Theorem 6, which transposes Proposition 1 to multivariate functions.
As in the univariate case, the proposed constraints are only sufficient conditions. We then
propose an algorithm in section 3.2 capable of finding the optimal solution.

3.1 Multivariate case: circumscribing simplexes

We switch to a more general situation, where x = (x1 · · ·xV ) is V-dimensional. We recall
that Fα(x) is written as a linear combination of J functions

Fα(x) = α0 +
J∑
j=1

αjfj(x),

where each of the fj(x) is decomposed in a product of V univariate functions:

fj(x) = fj1,1(x1) · · · fjV ,V (xV ),

with j1 (resp. jV ) taken in the set [0, J1] (resp. [0, JV ]), and f0,v(xv) = 1 for all v.
Fα(x) can be expressed as the scalar product

Fα(x) = 〈α, f•(x)〉

where f•(x) = (1, f1(x), · · · , fJ(x)) gathers all the functional terms in Fα(x).
Restricting our attention to each variable xv, the vector

fv•(xv) = (1, fv,1(xv), · · · , fv,Jv(xv))

collects all the functions depending on xv exclusively.
When x traverses its definition domain, the points (f1(x), · · · , fJ(x)) describe a manifold

called CJ , which is of dimension V in non degenerate cases, and of dimension lesser than
V otherwise.

Alternatively, we examine the linear function

Z(t) = α0 +
J∑
j=1

αjtj,

15



which coincides with Fα(x) when tj = fj(x).

Our problem is to determine the vector of coefficients α, so that Fα(x) ≥ 0 (or ≤ 0) in
the entire domain. As in dimension 1, one way to solve this question is to enclose CJ in
a convex polytope PJ and check the positivity of Z in every vertex of PJ . How to choose
PJ will be explained very soon. Assuming that PJ is known and denoting Tj one of its
vertices, verifying the positivity amounts to check that Z(Tj) ≥ 0, for all j ∈ [1, J ]. We
bring together all the constraints in a matrix T where each column corresponds to one of
the Tj. The problem to solve in dimension V can be rephrased as

Problem (4)

argmin
α

I∑
i=1

(Yi − Fα(Xi))
2, s.t. constraints tαT ≥ 0. (4)

which is the analog of Problem (3), the only difference being that Xi is now V -dimensional.
To extend the previous results from dimension 1 and control the number of constraints,

we proceed by tensorization. Specifically, we assume that

f•(x) = f1•(x1)⊗ · · · ⊗ fV •(xV ). (5)

This is formalized in Theorem 6 which gives a means to automatically generate the
needed constraints. Theorem 6 joins together Proposition 1 and Theorem 3 and trans-
poses their statement to multivariate situations. We suppose that each family of functions
{fv,jv(xv)}Jvjv=0 verifies Assumption A for 1 ≤ v ≤ V .

Let Tv,jv for jv = [0, Jv] be the vertices of the osculating simplex containing the curve
CJ,v = (fv,1(xv), · · · , fv,Jv(xv)), for xv ∈ [0, 1]. The matrix Tv of dimension Jv × (Jv + 1)
contains in columns the vertices Tv,jv . The matrix T is defined as the tensor product:

T =
V
⊗
v=1

Tv.

Setting J + 1 =
V∏
v=1

(Jv + 1), the dimension of T is J × (J + 1).

In the space T = [0, 1]J , each column of T corresponds to a vertex of a polytope PJ .
This polytope is a simplex: the number of its vertices is J + 1 . It contains the curve CJ
as stated in the following theorem.

Theorem 6 Under Assumption A

1. CJ is included in PJ .

2. If tαT ≥ 0, then ∀x ∈ [0, 1]V , we have F (x) ≥ 0.

Dropping terms. Actually, a function F (x) containing all the terms resulting from the
tensor product f1•(x1)⊗ · · · ⊗ fV •(xV ) is of little practical use. If we can not drop some of
these terms, these kind of functions will fail to match practical applications. For instance,

16



in real situations, cubic polynomials will not include necessarily all the interactions terms:
it is very common to ignore interactions of more than two variables.

Dropping some terms amounts to take the corresponding coefficients (in the function
Z(t)) equal to 0. As a result, in the matrix of constraints, the corresponding rows are
merely deleted.

Number of constraints and optimality. Since for each variable, the number of vertices
is Jv + 1, we derive the corollary 1.

Corollary 1 The number of constraints in Theorem 6 is at most

J + 1 =
V∏
v=1

(Jv + 1).

3.2 Algorithm for finding the optimal solution, multivariate case

In univariate cases, the proposed algorithm is based on the notion of osculating hyperplanes.
In multivariate situations, we use instead the fact that the vertices of the polytope on which
we request F (x) to be positive result from the tensor product of V matrices. The columns
of each of these matrices correspond to the vertices of a simplex for the matching variable.
We note that the tensor product of all these matrices corresponds also to a polytope.

To extend Algorithm 2.2, in each dimension v (v ∈ [1, V ]), instead of taking a simplex,
we can consider a polytope with more than Jv + 1 vertices. This polytope is constructed
by means of the algorithm exposed in the univariate case (see subsection 2.2). At step K,
for each v, we can as in subsection 2.2 build a polytope (Pv,Jv ,K), and for each v, gather all
the vertices of the corresponding polytope in a matrix Tv,K . We then generate the tensor
products of all these matrices TK = ⊗

v=1,V
Tv,K and obtain the coordinates of the vertices

on which we must check the positivity of the corresponding function Z(t1, · · · , tV ).
Now, CJ = (f1(x1, · · · , xV ), · · · , fJ(x1, · · · , xV )) is a manifold of dimension V . When

K →∞, all the points of CJ will become a vertex in TK . As previously in section 2.2 let
us call PJ,K the polytope whose vertices are the columns of TK , FK(x) the solution to the
problem (4) when the constraints are formed by the vertices of PJ,K . The coefficients are
collected in the vector α̃J,K . Analogously, we examine FJ(x) the optimal solution to (2)
and α̃J its vector of constraints.

Theorem 7 We assume that each family of functions {fv,j(xv)}Jvj=1 verifies Assumption A
for 1 ≤ v ≤ V . Then

lim
K→∞

α̃J,K = α̃J .

The proof is similar to the previous one in Theorem 4 with the generalization to the
tensorial product of constraints.

Algorithm. Practically, the algorithm for solving problem (4) proceeds iteratively. At
each step, the vertices corresponding to the QK active constraints should be removed as in

17



a classical cutting algorithm and replaced by new ones. Since these vertices result from a
tensor product, one constraint in the product refers to V constraints, one in each dimension.
For each q in 1, QK , we consider the vertex Tq in the product space corresponding to the
constraint q. We have Tq = ⊗

v=1,V
Tv,q. The simplex to which Tv,q belongs begins at the

value xv,0 of the parameter xv and finishes at xv,Jv .
Each vertex Tv,q can also be interpreted as a constraint for the variable v. The idea

is then to proceed as if all the V constraints corresponding to the V vertices Tv,q were active.

Corner cutting algorithm in the multivariate case

• while CostJ,K > CostJ,K+1 do
• for each q in [1, QK ] do

for each variable v in [1, V ] do

• choose xv,new a value of the parameter in [xv,0, xv,Jv ]
define Tv,new = t(fv,1(xv,new), · · · , fv,Jv(xv,new)).

• create two new simplexes:
the first simplex finishes at Tv,new,
the other one begins at at Tv,new.

• remove the vertices of the old simplex (containing Tv,q)

• gather all the remaining vertices in a matrix

end

end
• K=K+1
• Form the new constraints by applying the tensor product to the
new matrices;
• Resubmit problem (4) to the fitting algorithm, with these new
constraints;

end
Algorithm 2: multivariate case

Once again, if no improvement in the fitting criterium is seen after removing a vertex
and replacing it by new ones, or if the improvement is too small, the algorithm should stop.
Also, since the number of constraints will grow extremely fast in multivariate situations,
the number of allowed constraints should not exceed a limit set by the user (one hundred
thousand for example is possible on modern computers).

18



4 Examples

In this section we examine how to apply our theory. We begin by enumerating the situ-
ations where our method can be used (subsection 4.1). The case of univariate functions
is illustrated in subsection 2.2 with Hawkin’s example. We add the case of a bounded
function in 4.2. Next, we consider an example with a bivariate polynomial. We conclude
this section with one industrial example (see 4.4).

All the figures and the examples are based on R©Matlab routines, available upon request.
These routines comprise two main parts. The first one sets up the initial constraints and
is problem dependent. The second one solves the problem in the case of multivariate
polynomials subject to constraints of monotony. Other examples may be obtained by
altering slightly this second part.

Not reported here, we have compared our method to Murray and coauthor ([15]) al-
gorithms. The results are quite similar. The main difference comes from the fact that
the polynomials they are fitting must be monotone over the entire real line. This has the
consequence to slightly degrade the fit, when compared to our algorithms which works on a
bounded interval. On the other hand, the coefficients of the polynomials may be very dif-
ferent and the shape of our solution is not guaranteed to be monotone outside the definition
interval.

In the simulations below, the examples we consider are based on polynomials which do
not respect the sufficient conditions of Theorem 3. Another characteristic very different
from the examples taken in [15] is that we work with very few points as it is representative of
many real world situations: gathering experimental data is always a long and hard process.

4.1 Other type of constraints

A few features open up the applicability of our method to a really large panel of parametric
regressions.This is discussed in more details in this section.

1. As it is well known, monotonicity requirements are not the only shape constraints that
can be considered. In fact, the same method can be applied to any shape constraints
as long as the corresponding constraints stay linear with respect to the coefficients
of the model. This includes monotony, concavity or convexity constraints, bound
constraints on the function itself, or on its derivatives and equality constraints.

2. Monotony requirements (or other constraints) can be applied simultaneously to any
number of variables. The only consequence is that the number of constraints to fulfill
will increase with the number of variables. Four constraints are required in the real
example worked out in section 4.4.

3. Obviously, every monotone transformation of the variables x1, · · · , xv will not change
the procedure. This includes dealing with decreasing requirements by changing the
corresponding variable x1 (for example) in 1− x1, or changing the definition domain
in any bounded interval in R.

19



4. An other advantage of the method is that expert knowledge can be incorporated in
the polynomial to obtain the desired behavior more easily. If one expects a linear
variation with respect to the first variable, while the second variable should correspond
to a third degree polynomial, then the corresponding terms can be omitted in the fit
to force the response to exhibit the correct shape.

4.2 A bounded function in dimension 1

We consider here the function y = 1− 4(x− 1/2)2, drawn on Figure 3, in black, on the left
panel.

At x = 1/2 , this function reaches its maximum, y = 1. Ten values for x are drawn
uniformly on [0, 1], and a random gaussian noise of standard deviation 0.1 is added to the
resulting values of y. The points are shown as green squares on the Figure 3. They are
fitted with a 2 degree polynomial with the additional constraint that the maximum should
not exceed 1.

The resulting polynomial is drawn in red. In dashed blue, we find the original equation
and in black, the least square solution. We can see that the obtained fit respects the con-
straint, unlike the least square fit with a maximum exceeding 1. In this case, 12 constraints
were necessary.

Figure 3: fit of the function y = 1 − 4(x − 1/2)2. The original function is in blue, the
obtained constrained function with a maximum of 1 in red. In black the least square
solution.

4.3 Simulated example in dimension 2

In Figure 4, 100 points are generated with the equation y = −6x31x2 + 10x21 − 3x1. A
gaussian noise with a standard deviation of 0.1 is again added to y.

On the left panel, the original function is plotted. On the right panel, we show the
calculated regression with the constraint that y should increase with x1. The figures are
rotated to clearly show the behavior of the original and calculated functions. It can be seen
that the original function first decreases with x1 and then increases. On the right panel,
the calculated function is always increasing with respect to x1.

20



Figure 4: regression in dim 2 with d = 3, monotony constraints on x1

4.4 Real example: hydrotreatment of naphta

In petroleum process engineering, hydrotreating consists in treating a petroleum cut under
hydrogen pressure in an industrial reactor. After being extracted, the crude oil has first to
be refined and fractionated in different cuts before being commercialized. Specifically, in
naphtha cuts, impurities (mainly sulphur) must be removed, before any further use.

A pseudo-kinetic model is commonly proposed to approximate this process and is given
by the following equation :

ln(
C

C0

) = −k 1

V V H
exp(− Ea

RT
)P J

H2
P s
H2S

with the following variables : C the concentration of the chemical to be removed remaining
at the outlet of the reactor;
C0 its initial concentration;
T the temperature of the process;
PH2 the partial hydrogen pressure;
PH2S the partial H2S pressure;
V V H the Velocity per Volume and per Hour;
k, E, m and s are parameters and must be estimated from experimental measurements.

Taking the logarithm of each side of this formula, the equation can be easily linearized
and rewritten as y =

∑4
j=1 βjxj , where y = ln(−ln( C

C0
)), x1 = 1/T , x2 = ln(V V H),

x3 = ln(PH2), x4 = ln(PH2S).
Unfortunately, this expression is unable to take into account the full complexity of the

process, and a few empirical terms must be added. Finally, a degree 2 polynomial in the
variables x = (x1, x2, x3, x4) is postulated. But some constraints must be respected : the
process is more efficient (which means that C decreases or equivalently y increases) when :
- the temperature T increases or x1 decreases
- V V H decreases or x2 increases
- PH2 or x3 increases.

21



Figure 5 compares the results when regressing with and without constraints. The left
panel exhibits the residues (y calculated - y experimental ), showing only minor differ-
ences when the experimental points are predicted by both methods: RMSE=0.438 with
constraints and 0.411 without. But the obtained equations are really different as shown on
the right.

On the right panel, we see a kind of spider plot, showing the behavior of the response
when only one variable varies at a time, starting from a given point in the domain (here:
[x1 = 0.71, x2 = 0.64, x3 = 0.174, x4 = 0.062]). The dotted lines correspond to the re-
gression without constraints, the solid line to the regression with constraints. The plain
triangle marks the estimated response for the regression without constraints, the circle for
the regression with constraints. x-axis are translated so that every curve crosses at the
center of the graphic. Black lines correspond to variations along T or x1, red lines to
variations with V V H or x2, blue lines to variations with PH2 or x3. The behaviors for
the regression without constraints are obviously wrong: the black dotted line is increasing
instead of decreasing and the blue has a minimum.

Figure 5: polynomial fit to the data of HDS experiments Residue diagram for the
HDS data on the left panel and spider plot for a comparison of the UNconstrained and
constrained multivariate regression on the right

5 Perspectives and Conclusions

The proposed procedure is very general and flexible. Moreover it can be found useful in a
lot of problems. It is specially well adapted to polynomial regression, a problem occurring
very often in industrial applications. Most importantly, our method will give satisfactory
results in multidimensional cases even with few available experimental data.

For big data set, the limitations will come from the number of variables. To give a
rough idea, if we set the limit at 500000 constraints, it gives a limit of about 80 variables
for a fit with a multivariate degree 3 polynomial in every variable at the first iteration..

The proposed method will suffer from the usual flaws of linear regression, as it is based
on a least squares procedure. Notably, to avoid some instabilities in the coefficients, a bit
of regularization would be welcome, as considered in [21].

A second enhancement would be to optimize the parameters of the basis functions. In
this paper, the parameters of the Chebyshev functions are supposed fixed. But obviously,

22



with extra computational work, they could be automatically chosen to fit as best as possible
the observation points at hand.

Thirdly, the scope of this kind of regression could be extended to non parametric re-
gressions. GAMs are natural good candidates as well as local polynomial regression.

Fourth, uncertainty intervals are not included in the method. Indeed, as the contraints
change at each iteration, the residues can not be considered as identically distributed, so
that bootstrap algorithms are not available at first sight.

The original algorithms for polynomials are developed in Matlab R© and available upon
request.

Acknowledgements

The authors would like to thank Damien Hudebine from IFPEN for the example in hy-
drotreatment, Pr. Fabrice Gamboa for his advices and Pr. G. Ciuperca for her careful
reading. This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of
Université de Lyon, within the program ”Investissements d’Avenir” (ANR-11-IDEX- 0007)
operated by the French National Research Agency (ANR), and by the GdR MASCOT-
NUM.

Appendix: proofs

Proof of Proposition 1.
Because of the linearity of Z on T and because a simplex is convex by definition, FJ(x)

is guaranteed to be positive on [0, 1], if it is positive in every vertices of SJ .
Preliminaries to Theorem 3 .

Theorem 3 needs the three following preliminary lemmas where we prove that in a small
neighborhood of a point on a curve, a smooth curve is included in its osculating simplex.

Let T0 be a point on the curve CJ corresponding to x0 and TJ corresponding to xJ =
x0 + h. We denote T0, T1, · · · , TJ the vertices of the osculating simplex between x0 and
x0 + h.

The vectors f (1)(x0), · · · , f (j)(x0) are all linearly independent. This results from the
definition 3 of an ET. In this basis,

#      »

T0Tj =

j∑
k=1

γk,jf
(k)(x0). (6)

Similarly,

#       »

TjTJ =
J∑

k=j+1

γk,jf
(k)(xJ).

Lemma 1 Let Dj be the determinant

Dj =
∣∣f (1)(x0) · · · f (j)(x0) f (1)(xJ) · · · f (J−j)(xJ)

∣∣ .
23



Dj,k is obtained by replacing the k-th column of Dj by f(xJ)− f(x0). Then, that for all j,

Dj 6= 0, and γk,j =
Dj,k

Dj

.

All the determinants Dj are strictly positive as a result of the definition 3 of ET systems
and ([10] chapter 1).

For 0 < j < J , Tj belongs to the osculating j-space at T0 and simultaneously to the

osculating J − j-space at TJ . Thus, the vector
#      »

T0Tj is a linear combination of the first j

derivatives at T0 and similarly
#       »

TJTj is a linear combination of the first J − j derivatives at
TJ . Consequently, the coordinates γ1,j, · · · , γJ,j of Tj, as stated in this lemma, result from
the Cramer’rule applied to the linear system of equations:(
f (1)(x0) · · · f (j)(x0)f (1)(xJ) · · · f (J−j)(xJ)

)γ1,j· · ·
γJ,j

 =
(
f(xJ)− f(x0)

)

Lemma 2 The coefficients γk,j can be approximated by γk,j ∼
hk

k!
+ o(hk).

We start from the previous lemma 1 and the expression of Dj,k.
Since xJ = x0+h, taking the Taylor expansion of f1(x0+h)−f1(x0),...,fJ(x0+h)−fJ(x0),

it can be readily shown that the first non vanishing term in the development of the Dj,k

for 1 ≤ k ≤ j is
hk

k!
Dj. This results in the statement of the lemma.

Lemma 3 Let T0 and TJ be two points on the curve CJ corresponding to x0 and xJ = x0+h.
Then, for h small enough, the portion of the curve CJ between x0 and xJ is included in the
cone generated by { #      »

T0T1, · · · ,
#       »

T0TJ}.

Our aim is to prove that any point Tx = (f1(x), · · · , fJ(x)) verifies:

#      »

T0Tx =
J∑
j=1

λj(x)
#       »

T0Tj, s.t. λj(x) ≥ 0, ∀j ∈ [1, j],∀x ∈ [x0, x0 + h],

where, for j = 1, J , λj(x) are real coefficients depending on x and Tj are the vertices of
the osculating simplex.

Since
#      »

T0Tj belongs to the osculating j-space at T0 for any 0 < j < J ,
#      »

T0Tj can be

written:
#       »

T0Tj =
∑j

k=1 γk,jf
(k)(x0). That is:

#      »

T0T1 =γ1,1f
(1)(x0)

#      »

T0T2 =γ1,2f
(1)(x0) + γ2,2f

(2)(x0)

· · ·

24



Gathering all the coefficients γk,j in a matrix Γ, we obtain the system of linear equations:
t #      »

T0T1
t #      »

T0T2
· · ·

t #       »

T0TJ

 = Γ


tf (1)(x0)
tf (2)(x0)
· · ·

tf (J)(x0)

 . (7)

The matrix Γ is lower triangular and non singular: indeed, its determinant is the product

of all the γj,j, which are approximated by
hj

j!
(see Lemma 2). Therefore the determinant

of Γ is different from 0 as long as h is distinct from 0.
Furthermore, a Taylor expansion of

#      »

T0Tx gives

#      »

T0Tx ∼
J∑
j=1

(x− x0)j

j!
f (j)(x0) + o((x− x0)J). (8)

Plugging together equations (7) and (10), we obtain:

λ1(x)
· · ·
λJ(x)

 ∼ tΓ−1


(x− x0)

1!
· · ·

(x− x0)J

J !

+ o((x− x0)J).

The next step is to solve Γ−1. With Lemma 2, we have

Γ ∼


h
1!

0 · · ·
h2

2!
h2

2!
0 · · ·

· · ·
hJ

J !
· · · · · · hJ

J !

+ o(h).

We find a lower band matrix for Γ−1:

Γ−1 =


1!
h

0 0 · · · 0
−1!

h
2!
h2

0 · · · 0
0 − 2!

h2
3!
h3

· · · 0
· · · · · ·
0 · · · − (J−1)!

hJ−1
J !
hJ

+ o(h).

Finally, replacing h by xJ−x0, we obtain a positive approximation for λj(x), 1 ≤ j ≤ J :

λj(x) ∼ (x− x0)j

(xJ − x0)j
(1− 1

j + 1
(x− x0)) + o(h).

Proof of Theorem 3.
We denote Tj, for 0 < j < J , the vertex of the osculating simplex defined as the

intersection of the osculating j-space at T0 and the osculating J − j-space at TJ . We define
Fj for 0 ≤ j ≤ J as the face of the osculating simplex containing all the vertices except Tj.

25



Each Fj, 0 ≤ j ≤ J , intersects CJ exactly J times taking into account the multiplicities.
Indeed, T0 is the only contact point between CJ and FJ since the osculating hyperplane at
T0 is the supporting hyperplane of FJ . The same holds for TJ and F0.

For Fj, for 0 < j < J , by construction of the osculating simplex, T0, T1, · · · , Tj−1
belong to the osculating j − 1-space at T0. Thus the face T0, T1, · · · , Tj−1 is supported
by the vectorial sub-space spanned by the first j − 1 derivatives at T0. In the same way,
TJ−j−1, · · · , TJ−1, TJ is included in the vectorial sub-space spanned by the first J − j − 1
derivatives at TJ .

This amounts to say that the multiplicity of the contact between CJ and Fj at T0 is
j. Similarly, the multiplicity of the contact between CJ and Fj at TJ is J − j. Finally,
CJ intersects J times FJ . Due to Theorem 1 T0 and TJ are the only intersection points
between T0 and TJ . As a conclusion, CJ stays on one side of each of the faces Fj.

The curve CJ lies inside its osculating simplex between x0 and xJ because since it is
the case in a small neighborhood of x0 (see Lemma 3), it is true everywhere.

Proof of Proposition 2.
item 1 Thanks to Proposition 1, AJ,K can be seen as

AJ,K = {α | ∀t ∈ PJ,K , 〈α, t〉 ≥ 0}.

By construction, PJ,K+1 ⊂ PJ,K . Indeed, each simplex of PJ,K+1 results from cutting in two
one of the simplexes in PJ,K , as illustrated on Figure 1.

Thus, if we have 〈T,α〉 ≥ 0 for all the vertices T of PJ,K , then it is also true for all the
vertices of PJ,K+1. This last statement means that AJ,K ⊂ AJ,K+1.

PJ,K is a collection of successive osculating simplexes, each of them finishing at the
point where the next one begins. Thus PJ,K circumscribes the curve CJ , and this implies
that if α is in AJ,K then ∀x ∈ [0, 1], Fα(x) ≥ 0, or equivalently that AJ,K ⊂ AJ .

item 2 We only detail this claim for AJ , similar considerations can be applied to the AJ,K .
Indeed, if ∀x F (x) ≥ 0 for a given α, then it is also verified for λα where λ is real and
positive. Thus AJ is a cone. It is convex: if F (x) ≥ 0 for α1 and α2, then it is also
non-negative for pα1 + (1− p)α2 for any p ∈ [0, 1].

If AJ were not closed, then we could find a vector of coefficients α, limit of a sequence
of coefficients βl belonging to AJ , for which ∃x ∈ [0, 1] such that Fα(x) < 0.

We rewrite Fβl(x) as Fβl(x) = Fβl(x)− Fα(x) + Fα(x).
α being the limit of the sequence βl, we could make the difference Fβl(x) − Fα(x) as

small as needed. Indeed, Fα(x) (resp. Fβl(x)) is built as the scalar product of α (resp. βl)
and f•(x) = t(1, f1(x), · · · , fJ(x)). Thus,

Fβl(x)− Fα(x) = 〈βl −α, f•(x)〉.

By Cauchy-Schwartz inequality, we have:

|〈βl −α, f•(x)〉| ≤ ‖βl −α‖‖f•(x)‖ ≤ ‖βl −α‖ sup
x∈[0,1]

‖f•(x)‖.

26



Thus we could determine an integer L for which:

∀l > L, |〈βl −α, f•(x)〉| < |Fα(x)|.

Fβl(x) would be negative. This is a contradiction.

item 3 Indeed, the set B = {α | ∀x ∈ [0, 1], Fα(x) > 0} is open and B ⊂ AJ . We aim at
proving that B = AJ , which will show that B = ÅJ , the adherence of AJ .

If α ∈ AJ , for all positive integer l the vector αl = α +
1

l
belongs to B:

Fαl
(x) ≥ Fα(x) +

1

l
> 0.

The sequence formed by the vectors αl converges to α when l approaches infinity, which
permits to conclude that B = AJ .

item 4 This is a direct consequence of item 1: since AJ,K ⊂ AJ,K+1, the minimum over
AJ,K is greater or equal to the minimum over AJ,K+1.
Proof of Theorem 4.

We denote B =
⋃

K→∞
AJ,K . Our goal is to prove that B = AJ , or in other words that

B is dense in AJ . If this is true, α̃J the optimal solution to Problem (2), as an element of
AJ , is the limit of a sequence of vectors αJ,K , each of them taken in one AJ,K .

αJ,K is not necessarily the solution α̃J,K to Problem (3). However, since AJ,K ⊂ AJ ,we
have

I∑
i=1

(Yi − FαJ,K
(Xi))

2 ≥
I∑
i=1

(Yi − Fα̃J,K
(Xi))

2 ≥
I∑
i=1

(Yi − Fα̃J
(Xi))

2.

α̃J being the limit of the sequence αJ,K when K tends to infinity is then the limit of α̃J,K .

The inclusion B ⊂ AJ is immediate, as a consequence of items 1 and 2 of Lemma 2.
Conversely, we have to prove that every point of AJ is attained. We choose α in AJ and
want to show that α ∈

⋃
K→∞

AJ,K .

Continuing with the sequence of αl defined in item 3 of Lemma 2, since αl belongs to
the open set ÅJ , we can find an open ball Bl of radius rl, centered in αl and included in
Å. The radius rl is chosen to be decreasing with l toward 0 as its limiting value. If we
exhibit now a vector βl ∈ Bl simultaneously belonging to AJ,Kl

for some Kl, our assertion
is proved: α will be the limit of a sequence of βl taken in AJ,Kl

, since ‖βl −α‖ ≤ 1/l + rl
by the triangular inequality.

We first observe that the distance from any point of PJ,Kl
to the curve CJ can be made

as small as needed: more precisely,

∀ε,∃Kl such that ∀u ∈ PJ,Kl
, ∃t ∈ CJ for which ‖u− t‖ < ε.

Indeed, we restrict our attention to one of the simplexes Sk composing PJ,Kl
, the simplex

containing u. Sk begins at the value x0 =
k

2Kl
and finishes at x0 + h with h =

1

2Kl
. The

27



maximum distance of two points within Sk is one of the distances between two of its vertices.
By means of Equation (6) and Lemma 2, when Kl is sufficiently large, calling Tj1 and Tj2
two of these vertices, the vector

#         »

Tj1Tj2 is approximated by

#         »

Tj1Tj2 ∼
j2∑

l=j1+1

hl

l!
f (l)(x0) + o(hj1+1).

‖Tj1Tj2‖ and then ‖u− t‖ are bounded from above by
M1

2Kl
with M1 =

∑J
j=1 sup

x∈[0,1]
‖f (j)(x)‖.

Now, for any βl ∈ Bl and any u ∈ Sk we would like to prove that 〈u,βl〉 > 0. We start
from the identity

〈u,βl〉 = 〈u− t,βl〉+ 〈t,βl −αl〉+ 〈t,αl〉.

• We observe that 〈t,αl〉 > 1/l.
• By Cauchy-Schwartz inequality 〈t,βl −αl〉 ≥ −rlM2 with M2 = sup

x∈[0,1]
‖f(x)‖.

• Similarly, 〈u− t,βl〉 ≥ −
M1

2Kl
‖βl‖. Decomposing βl in βl − αl + αl − α + α, we obtain

‖βl‖ ≤ rl + 1/l + ‖α‖.
Eventually,

〈u,βl〉 ≥ −
M1

2Kl
(rl +

1

l
+ ‖α‖)− rlM2 +

1

l
.

For a given l, rl and Kl are chosen so that the right part of the previous inequality be
positive.

Proof of Proposition 3.

When cutting the initial simplex at x the volume of the two new simplexes replacing the
old one becomes: Vnew = V (x0, x) + V (x, xJ). If x = x0 or x = xJ then Vnew = V (x0, xJ)
and is maximum. Due to Rolle’s theorem, there exists a x for which Vnew is minimum. This
minimum is unique since by construction V (x0, x) is a strictly increasing function while
V (x, xJ) is strictly decreasing.

Proof of Proposition 4.

Indeed, the volume of a simplex with vertexes T0, · · · , TJ is known to be:

V (x0, xJ) =
1

J !

∣∣ #      »

T0T1 · · ·
#       »

T0TJ
∣∣ .

Taking the notation of Lemma 1, for j < J ,
#       »

T0Tj is decomposed in

#       »

T0Tj =

j∑
k=1

Dj,k

Dj

f (k)(x0).

Standard manipulations on determinants give the expected result.

28



Proof of Proposition 5.

We recall the expressions of Dj and Dj,j that will be used abundantly in this proposition.

Dj = |f (1)(x0) · · · f (j)(x0) f (1)(xJ) · · · f (J−j)(xJ)|
Dj,j = |f (1)(x0) · · · f(xJ)− f(x0) f (1)(xJ) · · · f (J−j)(xJ)|
DJ,J = |f (1)(x0) · · · f (j)(x0) · · · f (J−1)(x0) f(xJ)− f(x0)|

The first step is to prove that Dj ∝ (xJ − x0)δj where δj = j(J − j). Then we establish
with the same kind of reasoning that Dj,j ∝ (xJ−x0)δj+j. The conclusion of the proposition
follows immediately as a final step.

case DJ−1. We begin by DJ−1 = |f (1)(x0) · · · f (J−1)(x0) f (1)(xJ)| to illustrate how

to proceed. Only the last column of this determinant depends on xJ and is equal to f (1)(xJ).
We consider DJ−1 as a function of xJ . Developing along the last column we see that

DJ−1 is a polynomial of degree J − 1 in xJ . Besides, by construction, DJ−1 and its first
J − 2 derivatives with respect to xJ vanish at xJ = x0.

Therefore, DJ−1 ∝ (xJ − x0)J−1.
case Dj. For a general j, the last J − j columns depend on xJ . We face two situations

depending on whether the number of columns where we find xJ is smaller or equal to the
number of columns where x0 is present (J ≤ 2j or not).

We assume first that J ≤ 2j. Dj can be considered as a polynomial in xJ . The terms
of highest degree come from the product of coordinates taken in the last J − j columns.
This results in a polynomial of degree δj = j(J − j).

We examine now the derivatives of Dj evaluated at xJ = x0. We must take at least
the j-th derivative to remove the collinearity between the derivative of the column f (1)(xJ)
and any of the f (k)(x0) when k = 1, · · · , j and xJ = x0. Then, we take the derivative
of the column f (2)(x) in Dj at least again j times. This process continues until the last
column. Eventually, the derivative of Dj has been taken j(J − j) times before we find the

first non vanishing derivative of Dj(x) taken at xJ = x0: indeed, D
(j(J−j))
j (x0) is exactly

the wronskian of the system of functions {f (1)
k (x)}Jk=1 evaluated at x = x0, which is strictly

positive since this system is assumed to be an ECT.
As a conclusion to the case J ≤ 2j, Dj ∝ (xJ − x0)δj is the only possibility.
The second alternative is when J > 2j. Here, we reverse the role of x0 and xJ and

obtain exactly the same result for symmetry reasons.
case Dj,j. The analysis is exactly the same as for Dj save for a supplementary column

where xJ is present, since f (j)(x0) is replaced by f(xJ)− f(x0). This results in a polynomial
of degree δj,j = δj + j = j(J − j + 1).

When J < 2(J − j), Dj,j is treated as a polynomial in x0 and a similar reasoning leads
to the same conclusion.

Conclusion. Plugging all these evaluations in the formula of the volume of the oscu-
lating simplex (Proposition 4) gives the expected result when the fj form a sequence of
monomials.

Proof of Theorem 5.

29



Let x be the parameter of the cut point. From Lemma 3, xminimizes V (x0, x)+V (x, xJ).
Applying Proposition 5, it amounts to find the minimum of (x−x0)J(J+1)/2+(xJ−x)J(J+1)/2,

which is obviously obtained when x =
x0 + xJ

2
.

Proof of Theorem 6
We only have to prove item 1. Item 2 is immediate.
Given a point Tx∗ = t (f1(x

∗), · · · , fJ(x∗)) corresponding to the values x∗ = (x∗1, · · · , x∗V )
of the variables, we have to show that Tx∗ ∈ PJ .

By construction, each T1,j1 ⊗ · · · ⊗ Tv,jV matches Tj one of the vertex of PJ .
Our aim is then to exhibit J + 1 non negative coefficients µj, j = 0, J , summing to 1

such that

Tx∗ =
J∑
j=0

µjTj.

For each xv, we consider the curve CJ,v described by (f1,v(xv), · · · , f1,Jv(xv)) and the
point Tv,x∗v corresponding to the value x∗v of the variable xv.

Then we may find Jv + 1 positive coefficients λv,jv summing to 1 such that:

Tv,x∗v =
Jv∑
jv=0

λv,jvTv,jv . (9)

Stemming from Equation 5, Tx∗ can be decomposed in the tensor product:

Tx∗ = T1,x∗1 ⊗ · · · ⊗ TV,x∗V . (10)

The combination of equations 10 and 9 gives:

Tx∗ =

J1∑
j1=0

· · ·
JV∑
jV =0

(λ1,j1 · · ·λV,jV T1,j1 ⊗ · · · ⊗ Tv,jV )

Furthermore, one can observe that:

J1∑
j1=0

· · ·
JV∑
jV =0

λ1,j1 · · ·λV,jV =
V∏
v=1

(λv,0 + · · ·+ λv,Jv) = 1.

Thus Tx∗ is expressed as a linear combination of the vertices of PJ , where all the coefficients
are positive and sum to 1. The proof of item 1 is complete.

References

[1] Aharon Ben-Tal and Arkadiaei Semenovich Nemirovskiaei. Lectures on Modern Con-
vex Optimization: Analysis, Algorithms, and Engineering Applications. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.

[2] S. M. Chaikin. An algorithm for high speed curve generation. Computer Graphics and
Image Processing, pages 346–349, 1974.

30



[3] S. Da Veiga and A. Marrel. Gaussian process modeling with inequality constraints.
Annales de la faculté des sciences de Toulouse Mathématiques, 21(3):529–555, 4 2012.

[4] Carl De Boor. A practical guide to splines; rev. ed. Applied mathematical sciences.
Springer, Berlin, 2001.

[5] P. Du, C.F. Parmeter, and J.S. Racine. Nonparametric kernel regression with multiple
predictors and multiple shape constraints. Statistica Sinica, 23:1347–1371, 2013.

[6] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design (3rd Ed.):
A Practical Guide. Academic Press Professional, Inc., San Diego, CA, USA, 1993.

[7] M. Gasca and C.A. Micchelli. Total Positivity and Its Applications. Mathematics and
Its Applications. Springer Netherlands, 2013.

[8] Myung-Soo Kim Gerald E. Farin, Josef Hoschek. Handbook of Computer Aided Geo-
metric Design. Elsevier, 2002.

[9] Douglas M. Hawkins. Fitting monotonic polynomials to data. Computational Statis-
tics, 9:233–247, 1994.

[10] S. Karlin and W.J. Studden. Tchebycheff systems: with applications in analysis and
statistics. Pure and applied mathematics. Interscience Publishers, 1966.

[11] F. Lauer and G. Bloch. Incorporating prior knowledge in support vector regression.
Machine Learning, 2008.

[12] G.G. Lorentz. Bernstein polynomials. Mathematical expositions. University of Toronto
Press, 1953.

[13] H. Maatouk and X Bay. Gaussian process emulators for computer experiments with
inequality constraints. Mathematical Geosciences, 49(5):557–582, 2017.

[14] M.C. Meyer. Constrained penalized splines. Canadian Journal of Statistics, 40(1):190–
206, 2012.

[15] K. Murray, S. Müller, and B. A. Turlach. Fast and flexible methods for monotone
polynomial fitting. Journal of Statistical Computation and Simulation, 86(15):2946–
2966, 2016.

[16] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York, 2nd edition,
2006.

[17] Dávid Papp and Farid Alizadeh. Shape-constrained estimation using nonnegative
splines. Journal of Computational and Graphical Statistics, 23(1):211–231, 2014.

[18] J.M. Peña. Shape Preserving Representations in Computer-aided Geometric Design.
Nova Science Publishers, 1999.

31



[19] J.O. Ramsay and B.W. Silverman. Functional Data Analysis. Springer-Verlag, New
York, 2nd edition, 2005.

[20] Larry Schumaker. Spline Functions: Basic Theory. Cambridge Mathematical Library.
Cambridge University Press, 3 edition, 2007.

[21] H. Trevor, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer-Verlag, New York, 2nd edition, 2009.

[22] S. Wood. Generalized Additive Models: An Introduction with R. Chapman &
Hall/CRC Texts in Statistical Science. Taylor & Francis, 2006.

32


