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Multivariate parametric regression

under shape constraints

François Wahl, Thibault Espinasse

January 25, 2016

Abstract

This paper first shows how to calculate a polynomial regression of any
degree and of any number of variables under shape constraints. This
framework is readily extended to linear combinations of basis functions as
long as they respect a few key properties. It is proved that the procedure
developed here is optimal in a certain sense. Theoretical explanations are
first introduced for monotony constraints and then applied to simulated
examples to show the behavior of the proposed algorithm. Two real in-
dustrial cases are then detailed and solved.
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1 Introduction

Fitting a multivariate regression function to a set of observed points is a com-
mon industrial problem. In this context, polynomial regression is a very classic
tool. Its ease of use makes it a natural candidate to engineers. It is effective
even with a low number of experimental points. The resulting function depends
on a limited number of coefficients and is computed very efficiently, since its
terms involve only powers of the variables. It is solved in most cases by means
of standard least squares procedure, available in every statistical software. It
avoids the use of extra computational parameters, usually referred as hyperpa-
rameters, often hard to determine [21], particularly when using non parametric
regression.

Adding some constraints is a current demand of practitioners, who would
like to incorporate their knowledge and their expertise in the behavior of the
resulting function. But, in contrast to the previous classical polynomial regres-
sion problem, these natural extensions are generally very hard to tackle, even
in low dimensions, and for low degree polynomials. Indeed, most of the time it
implies complicated non linear expressions of the coefficients.

In this paper, we first address the problem of multivariate polynomial re-
gression under monotonicity constraints. But we extend very rapidly this initial
framework to much more general situations as long as the function to fit can be
expressed as a linear combination of basis functions, verifying a few properties
detailed in the following sections. Among others we are then able to deal with
sum of power law functions and sum of exponentials.

The key idea of this article is to transform the initial shape constraints into
a limited number of linear constraints. In this way, the regression problem is
reduced to a standard quadratic programming optimization procedure that can
be solved by classical algorithms available in usual mathematical softwares. Our
methodology ensures that the number of linear constraints added to the initial
problem is minimal and that these constraints are optimal. To our knowledge,
these are new results.

A marginal important benefit of this approach is that the expected behavior
will be respected everywhere in the domain and not only in the vicinity of the
observed points (see [13] for a short discussion on this topic). Finally, since
no tuning parameters have to be estimated, the computational difficulty of the
whole procedure is reduced compared to non parametric regression.

This paper is organized as follows : after a short bibliography in section 2,
the theory is exposed for monotony constraints, first in dimension 1 (section
3.1), before extending the idea to more dimensions (section 4). Simulations
studies are then demonstrated with ad hoc examples (section 6.1 and 6.2). Fi-
nally, two industrial cases are detailed: one in petroleum engineering related to
hydrotreatment of naphta (section 6.4), and one in nuclear experiments (section
6.5).

2 Selected bibliography

Imposing shape restrictions is a very usual demand in regression analysis, and
is still a very active domain of research. Shape restrictions include equality
constraints and prior knowledge on particular points for which values are cer-
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tain, like intercept, maximum or minimum values or inequality constraints like
monotony requirements or positivity constraints on the function and its deriva-
tive , concavity or convexity (see Lauer [10]).

In univariate settings, one can say that each regression method has its own
extension taking into account shape restrictions. The Pool Adjacent Violators
Algorithm (PAVA) from Barlow [2] for solving monotonic regression problems
results in step functions. Ramsay [17] introduced the use of regression splines
for monotone regression functions. Constrained penalized splines are studied in
[13].

Another type of method for regression subject to monotonicity constraints is
kernel-type estimators (Hall and Huang 2001 [9], Dette et al. [6]). Local polyno-
mial is the base of the work of Marron [12]. Generalized Additive Models (GAM)
are theoretically explored in the work of Wood [21]. Antoniadis and coauthors
[1] propose a constrained regression function using penalized wavelet regression
techniques. Extensive review on these subjects can be found in Mammen [11].

Until recently, relatively to the univariate case, only a few works existed in
multivariate settings, and we focus in this section to extensions of the isotonic
regression, kernel regression, SVR and GAM.

The authors in [3] extend the PAVA procedure via graph theory to higher
dimensions. Numerical experiments show that GPAV algorithms enjoy both low
computational burden and high accuracy. It can be run with large data sets and
several variables. But the solution is not guaranteed to be C2, and may exhibit
a staircase behavior, with large regions of constant shape followed by an abrupt
step to the next level.

A variety of methods ([6], [16], [10], [4]) exist nowadays in kernel regressions,
for which constraints are defined locally. A very common way of doing things
is to define a grid and apply the needed constraints on every node. Obviously,
the number of conditions grows exponentially with the dimension of the input
space and this way of proceeding is only possible in low dimension problems.
Besides, there is no guarantee that between each node, constraints are still
valid. Moreover, each prediction on a new point requests to solve a new complex
problem if one does not interpolate between the points of the grid.

Dette and Scheder [6] start by proposing a procedure of isotonization in one
dimension to obtain a strictly monotone function. The algorithm is then applied
successively to each dimension in case of multivariate regression.

Racine and Parmeter [16] suggest a weighted kernel regression where the
weights have to be adjusted to satisfy the monotonicity constraints. This method
has been extended recently to more than two dimensions [7].

Da Veiga and Marrel ([4]) use a kriging estimator and incorporate shape
restrictions by means of conditional expectations of the truncated multinormal
distribution.

In SVR, the coefficients are found by solving a quadratic programming op-
timization problem (see Lauer and Bloch [10]). In case of additional linear
constraints (with respect to the coefficients), only the number of conditions is
increased, the solving mechanism remains the same.

Another family of multivariate regression functions is based on the GAM
theory. They may be applied to very large data sets as investigated by Wood
and coauthors in [22]. GAM models are sum of one dimensional functions, and
each of them is estimated by means of a non parametric regression. Like kernel
regressions, they can adapt themselves to a wide variety of function behaviors,
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for example to nearly flat regions followed by abrupt changes. When splines
are chosen, these univariate regressions can be constrained to respect imposed
shape requirements through Ramsay’s method [17], or De Boor [5] inequalities.
Practical implementations in R and refinements are detailed in [20], [19] or in
[15].

However, a GAM model may be difficult to estimate, the resulting function
is not analytic and interactions of variables are not easy to handle. Moreover, in
practical applications, fitting as accurately as possible a set of given points is not
necessarily the main objective of the regression. Very often, obtaining a function
approximating the experimental points and respecting adequately the expected
behavior anticipated by the experts is sufficient. In this case, polynomials-like
functions are very good natural candidate.

3 Univariate case

Our approach is first investigated on a simple example, in order to introduce the
main concepts of our methodology: we fit a polynomial P (x) =

∑
j=0,d

αjx
j to a

set of given points under a constraint of monotonicity. This first study is rapidly
extended to tackle the case of sum of power law functions P (x) =

∑
j=0,m

αjx
dj ,

where the exponents dj are positive real numbers, in increasing order. Finally,
we set out a general framework to handle the case of a sum of nested functions,
P (x) =

∑
j=0,m

αjfj(x), where the functions fj share a few elementary properties.

3.1 First approach in dimension 1

Let us begin with a very simple example, in dimension v = 1 where we try
to adjust a third-degree polynomial (d = 3) expressed as P (x) = β0 + β1x +
β2x

2 + β3x
3 to a set of n given points (x(i), y(i))i=1,n, with the constraint that

the resulting solution should be monotonically increasing within the domain of
definition of x, taken to be [0, 1] without loss of generality.

The derivative P ′(x) = β1 + 2β2x + 3β3x
2 is linear with respect to the

coefficients β1, β2 and β3. To empathize this, we rewrite P ′(x) as P ′(x) =
Z(t1, t2) = β1 + 2β2t1 + 3β3t2 taking t1 = x and t2 = x2. Since Z is linear with
respect to the coefficients and since its domain of definition, [0, 1]2, is convex, if
Z(t1, t2) is positive in every four corners of the square [0, 1]2, then Z(t1, t2) will
be positive everywhere in [0, 1]2, and so will P ′(x) for all x ∈ [0, 1].

In fact all these four inequalities are not necessary: all the possible values
for [t1, t2] are included in the triangle defined by the vertices [0,0], [1,0], [1,1],
by convexity of the function t → t2 for t ∈ [0, 1]. Consequently, to be sure of
the sign of the derivative, it is only necessary to check the three linear following
inequalities, instead of the four initial one in every corner:

β1 ≥ 0, β1 + 2β2 ≥ 0, β1 + 2β2 + 3β3 ≥ 0 (1)

corresponding to the equation of Z(t1, t2) in the three corners [0, 0], [1, 0] and
[1, 1].

Mathematically, the least square problem to be solved can be expressed as
argmin

β

∑
i=1,n

(y(i) − P (x(i)))
2, s.t. constraints (1), which is a classical convex
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quadratic programming problem (see [14]).
This example is illustrated on the following figure, with the function

y = 1.5x+
3

4π
sin(4πx),

which is approached by a polynomial regression of degree 3. Ten values for
x are randomly taken in the interval [0,1], and the corresponding y are calcu-
lated. A random normal noise of standard deviation σ = 0.1 is added to each
y. The green squares indicate the chosen points. In the case of the constrained
regression, three linear conditions as indicated above are added to the initial
optimization problem.

Three curves are drawn on the figure 1: in plain red, the calculated con-
strained regression; in dotted blue, the non constrained standard multivariate
polynomial regression; in plain black, the true function. As can be seen on the
graphic, the regression without any shape constraints is not monotone.

We use the root mean square error defined asRMSE =
1

n

√
(
∑n
i=1(ŷ(i) − y(i))2)

as an indicator of the quality of the regression, where n is the number of points,
and ŷ(i) the calculated i-th value. In this case, without constraints, the calcu-
lated RMSE is RMSE = 0.1060; with constraints, the same indicator is only
slightly worse, RMSE = 0.1081.

Figure 1: an example with a degree 3 polynomial

In a more general setting, still in one dimension, if the polynomial to fit is
of degree d, we are going to prove in the next proposition (1) that the number
of constraints needed is d. Let us quote that if the constraints were to be
applied in every corner of the hypercube [0, 1]d, we would have to take care of
2d constraints, instead of d. If this is still manageable in the univariate case, it
would become rapidly intractable in multivariate situations.
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The constraints will be applied to the derivative P ′(x) which is a polynomial
of degree d − 1. P ′(x) can be in turn transformed in a linear function Z(t) =
Z(t1, t2, ..., td−1) with t1 = x, ..., td−1 = xd−1, with values of t taken in the
hypercube [0, 1]d contained in a T space.

For x is in [0,1], a point of coordinate t = (x, x2, ..., xd−1) is always inscribed
in the convex polytope (Pd) delimited by the d + 1 vertices Tj defined as 0 ≤
j ≤ d, Tj = (1i∈[0,j])i=0,d, where the first j + 1 coordinates are equal to 1 and
the others equal to 0. Note that T0 = (1, 0, · · · , 0) and Td = (1, · · · , 1). This
leads to write exactly d constraints corresponding to the d edges of (Pd) as in
the proposition (1) below.

Proposition 1. If all the following constraints (χ0, χ1, ..., χd) are verified:

∀ 0 ≤ j ≤ d, χj :=

j∑
i=0

αi ≥ 0

then,

∀x ∈ [0, 1], P (x) :=

d∑
i=0

αix
i ≥ 0.

The mathematical demonstration is omitted here, and delayed to the ap-
pendix 7.

3.2 Theorems in dimension 1 : the case of power law func-
tions

In fact, this first polytope (Pd) can be reduced, using the tangents as edges.
Numerically this is highly desirable: the larger the region where the constrained
are to be respected the more difficult the problem is to solve.

In dimension d = 2, the natural idea is to look at the intersection of the
tangent at the point T2 = (1, 1) with the t1 axis (see figure (2), second panel
from the left). We thus define T1 = (1/2, 0). In dimension 3, we keep T0 and
T1. And we look at the intersection of the tangent to the curve at T3 = (1, 1, 1)
with the plane (t1, t2). It gives T2 = (2/3, 1/3, 0) (see figure (2), fourth panel
from the left). We continue this process until dimension d and we obtain the
following Tj : we still have Td = (1, · · · , 1) but for the other vertices Tj when

0 ≤ j < d, the first j coordinates are equal to
j + 1− i
j + 1

with 0 ≤ i ≤ j.
The following figure 2 illustrates the previous statement when the degree d

is 2 or 3. Each panel consists of one figure with the first proposed polytope in
black, and the second one with the tightened up polytope in blue, to clearly
emphasize the differences.

In the following theorem (1), we establish the set of linear constraints corre-
sponding to this last situation. But beforehand, we introduce an improvement to
the original idea which enlarges considerably the applicability of the upcoming
theorem.

As a matter of fact, the exponents in P (x) need not to be integers. The next
proposition works as well if the exponents are positive real numbers. In this
case, of course, P (x) can not be stated any longer as a polynomial, but rather
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Figure 2: single variable polynomial Curve followed by t1 = x, t2 = x2 on
the left panel and by t1 = x, t2 = x2, t3 = x3 on the right, when x ∈ [0, 1]

as a sum of m power law functions and P (x) =
∑

j=0,m

αjx
dj , where the dj are

positive real numbers, increasing with j.

Theorem 1. if all the following constraints (χ0, χ1, ..., χm) are verified:

∀j, 0 ≤ j ≤ m− 1, χj :=

j∑
i=0

dj+1 − di
dj+1

αi ≥ 0

χm :=

m∑
i=0

αi ≥ 0

then,

∀x ∈ [0, 1], P (x) :=

m∑
j=0

αjx
dj ≥ 0.

If P (x) is a classical polynomial, P (x) =
∑

j=0,m

αjx
j , then

dj+1 − di
dj+1

becomes

j + 1− i
j + 1

.

The idea of the proof is given as follows (the details can be found in Ap-
pendix 7). In the space (t1, ..., tm), we consider the points Tj corresponding to
the vertices of the examined polytope (Pm). If the constraints are verified in
every Tj , then for any t inside (Pm), Z(t) will be positive. The proof consists
in verifying that the curve given by (t1 = xd1 , ..., tm = xdm) is included in the
convex polytope (Pm) delimited by the vertices (Tj)j=0,m.

The next theorem states that the number of points of the polytope of theorem
(1) is minimal. Indeed, (Pm) is a simplex or a convex polytope in a dimension m
space defined by m+1 vertices which are not in the same hyperplane. Moreover
it can be said that this last polytope is optimal as expressed in the next theorem
(2).

Theorem 2. The simplex (Pm) of theorem (1) is optimal in the sense that any
convex polytope with m+ 1 points, including the curve (t1 = xd1 , ..., tm = xdm),
contains also (Pm).
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For example, the polytope of proposition (1) contains the polytope of the-
orem (1). This last theorem (2) has two meanings. First the number of con-
straints is minimum. As we shall see this is particularly important with func-
tions of two or more variables, especially with polynomials. Secondly, these
constraints can not be improved.

3.3 Generalization in the univariate case : sum of expo-
nentials

In theorem (2), we abundantly use the fact that the tangents to the curve
(xdj , xdk) for dk greater than dj are on the x-axis. We wish here to deal with
more general functions than power law functions, as for example exponentials
on a bounded interval, for which the derivatives at the origin are not zero. In
this section, we first generalize our theorem (1) to a series of functions and then
extend our approach to the case of tangents with a non-zero slope at x = 0.

Thus we consider a set of functions defined on [0, 1]. In the following, cj =
f ′j(0) and dj = f ′j(1), the value of the derivative of fj at the points x = 0 and
x = 1. For power functions, the dj correspond to the exponents. By convention,
f0(x) = 1 on [0,1].

In the next propositions, we make use of some of these conditions:

1. ∀j, 1 ≤ j ≤ m, fj(0) = 0, fj(1) = 1,

2. ∀j, 1 ≤ j ≤ m− 1, 0 ≤ fj+1(x) ≤ fj(x) ≤ 1,

3. ∀j, 1 ≤ j ≤ m, f ′j(0) = 0,

4. ∀j, 1 ≤ j ≤ m, f ′j(1) =∞.

Then still going a step further, the preceding power law functions can be
replaced by such a series of functions which satisfies some of the previous el-
ementary properties as long as they respect the constraints of theorem (1).
At this point, P (x) is expressed as a sum of m nested functions on [0,1] and
P (x) =

∑
j=0,m

αjfj(x).

Theorem 3. Under conditions 1, 2 and 3, and the complementary fourth con-
dition

∀j, 0 ≤ j ≤ m− 2,
fj(x)− fj+1(x)

dj+1 − dj
− fj+1(x)− fj+2(x)

dj+2 − dj+1
≥ 0,

if all the following constraints (χ0, χ1, ..., χm) are verified:

∀j, 0 ≤ j ≤ m− 1, χj :=

j∑
i=0

dj+1 − di
dj+1

αi ≥ 0

χm :=

m∑
i=0

αi ≥ 0

then,

∀x ∈ [0, 1], P (x) :=

m∑
j=0

αjfj(x) ≥ 0.
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The proof is similar to the previous one in theorem (1). One can check easily
that the fourth condition is fulfilled for power law functions.

Many functions, not necessarily very smooth, verify this fourth item. Let us

take gj(x) =
xdj − xdj+1

dj+1 − dj
for 0 ≤ j ≤ m− 1. Then a sufficient condition for the

fourth item to be accepted is that gj−1(x) ≥ fj(x)− fj+1(x)

dj+1 − dj
≥ gj(x) for all x

in [0,1].
The complete generalization of this series of propositions would be a theorem

which encompasses all the cases we have discussed up to now: the derivatives
would take any value between 0 and 1 at the origin, and any value greater than
one at the point (f1(1), · · · , fm(1)). Unfortunately, our recursive construction of
the polytope enclosing the curve (f1(x), · · · , fm(x)) would not work anymore:
adding a dimension to the curve when passing from (f1(x), · · · , fm−1(x)) to
(f1(x), · · · , fm(x)) changes all the vertices.

However with theorem (3) we have a tool to relax the third condition con-

cerning the tangents at the origin. We take now hj(x) =
fj(x)− cjx

1− cj
and P (x)

becomes P (x) =
∑

j=0,m

αj(1− cj)hj(x) + x
∑

j=0,m

αjcj . It is clear that hj(x) ≥ 0,

hj(0) = 0 and hj(1) = 1.
Thus we apply the theorem (3) to

∑
j=0,m

αj(1−cj)hj(x) and we add the condition∑
j=0,m

αjcj ≥ 0 to ensure the positivity of P (x) everywhere on [0,1].

Here h′j(1) =
dj − cj
1− cj

.

Corollary 1. Under conditions 1 and 2 and if

• ∀j, 1 ≤ j ≤ m− 1, hj(x) =
fj(x)− cjx

1− cj
≥ hj+1(x) =

fj+1(x)− cj+1x

1− cj+1

• ∀j, 0 ≤ j ≤ m− 2,

hj(x)− hj+1(x)

h′j+1(1)− h′j(1)
− hj+1(x)− hj+2(x)

h′j+2(1)− h′j+1(1)
≥ 0,

if all the following constraints (χ0, χ1, ..., χm) are verified:

∀j, 0 ≤ j ≤ m− 1, χj := α0 +

j∑
i=1

(
(1− ci)− (1− cj+1)

di − ci
dj+1 − cj+1

)
αi ≥ 0

χm :=

m∑
j=0

αj ≥
m∑
j=0

αjcj ≥ 0

then,

∀x ∈ [0, 1], P (x) :=

m∑
j=0

αjfj(x) ≥ 0.

Finally, for symmetry reasons, before ending this section, we now take into
account the situation of infinite tangents at (1, · · · , 1). In this situation, the
slope of the tangents at the origin can take any value between 0 and 1.
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Proposition 2. Under conditions 1, 2 and 4,

if ∀j, 1 ≤ j ≤ m− 2,
fj(x)− fj+1(x)

cj − cj+1
− fj+1(x)− fj+2(x)

cj+1 − cj+2
≥ 0,

if all the following constraints (χ0, χ1, ..., χm) are verified:

χ0 := α0 ≥ 0

∀j, 1 ≤ j ≤ m− 1, χj :=

j∑
i=0

αi +

m∑
i=j+1

ci
cj
αi ≥ 0

χm :=

m∑
i=0

αi ≥ 0

then,

∀x ∈ [0, 1], P (x) :=

m∑
j=0

αjfj(x) ≥ 0.

As in theorem (2), and proved in the appendix, the previous simplices are
also optimal.

Corollary 2. The simplices of theorem (3), corollary (2) and proposition (2)
are also optimal.

Here are some examples of functions satisfying the conditions of corollary
(2) or proposition (2), depending on one (or more parameters) parameter kj
(sometimes k1j , k2j ) strictly positive and increasing with j.

• exp(kjx)− 1

exp(kj)− 1

• (x+ 1)kj − 1

2kj − 1

• cosh(kjx)− 1

cosh(kj)− 1

• 1

2
(xk1j + xk2j ), for adequate k1j and k2j

• sin(π/2 kj ∗ (x− 1))

sin(π/2 kj)
+ 1, when kj ≥ 1 for all j

• 1− (1− x)1/kj for kj > 1.

4 Multivariate case

We switch to a more general situation, where x = (x1 · · ·xv) is v-dimensional,
with a monotony constraint required for the first coordinate x1: P (x) should
monotonically increase or decrease with x1, when all the variables remain un-
changed. To introduce the next proposition, we take the case of a polynomial
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P (x) composed of m + 1 monomials. Each of these monomials can be written
xi11 · · ·xivv , where i1 · · · iv are integer degrees.

As in the preceding section, we rewrite P ′1(x), the derivative of P with respect
to x1, as:
P ′1(x) = Z(t) = Z(t1, t2, ..., tm) =

∑
k=1···m

βktk,

where each tk for k = 1,m is one of the m monomials in the expression of P ′1,
with corresponding coefficient βk. t and β are the vectors containing all the tk
and the βk respectively.

To check monotonicity in every point of the hypercube covered by x1, x2, ..., xv,
we examine P ′1(x), and we have to verify that P ′1(x) ≥ 0 (or ≤ 0) in the entire
domain.

Indeed, as in dimension 1, our first claim is that one way to be sure P
is monotone with respect to x1 is to impose that Z should be positive (or
negative) in every corner of the corresponding hypercube. Denoting Ci one of
these corners, it amounts to check that Z(Ci) ≥ 0 for all i. Bringing together
all the constraints in a matrix form we get Cβ ≥ 0, and the problem to solve in
dimension v can be rephrased as:

argmin
β

∑
i=1,n

(y(i) − P (x(i)))
2, s.t. constraints Cβ ≥ 0. (2)

This is a classical quadratic optimization problem with linear inequality con-
straints. It is nowadays easily solvable by usual available mathematical software,
save for the number of constraints. If the principle is simple, the realization is
much more tedious since the number of constraints, 2m, will increase exponen-
tially with the number of necessary monomials, and thus with the number of
variables v and the degrees of the corresponding monomials .

Similarly to dimension 1, our second claim is that we can reduce drastically
the number of constraints. We first explain on a simple example how to extend
the previous results from dimension 1. Then we introduce a general proposition
which gives a means to automatically generate the needed constraints.

We consider first a polynomial of two variables P (x1, x2). resulting from
the tensor product of two polynomials P1(x1) and P2(x2): if the variable x1
appears in some monomial with the degree di1 in P1 and the variable x2 in
some other monomial in P2 with degree di2 then P (x1, x2) incorporates a mono-

mial x
di1
1 x

di2
2 . For example, if (1, x1) and (1, x2, x

3
2) are the powers of x1 and

x2 in P (x1, x2) then all the following 6 monomials are present in P (x1, x2):
(1, x1, x2, x1x2, x

3
2, x1x

3
2).

In this example, the curve (1, x1) is contained in the segment T1,0 =

(
1
0

)
,

T1,1 =

(
1
1

)
. While for the curve (1, x2, x

3
2), we consider the triangle

T2,0 =

1
0
0

 , T2,1 =

1
2
3
0

 , T2,2 =

1
1
1

 .

When x1 and x2 browse [0, 1]2, the surface generated by all the possible values
of (1, x1, x2, x1x2, x

3
2, x1x

3
2) will be inside the convex delimited by the 6 vertices
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T0 T1 T2 T3 T4 T5
1 1 1 1 1 1
0 2/3 1 0 2/3 1
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 0 2/3 1
0 0 0 0 0 1


These points result from the intersections of the tangent hyperplanes at T0 and
T5 with the other axis. They can also be arranged in a matrix T defined as the
tensor product of (T1,0, T1,1)⊗ (T2,0, T2,1, T2,2). This last statement is the basis
of the proof of the next proposition, which is similar to theorem (1), but with
matrix notations.

Here, all the coefficients of the polynomial are gathered in a vector tα =
(α0...0, · · · , αi1...iv , · · · , αd1...dv ). The indices i1 (respectively i2,...,iv) take their
value in a subset of integers between 0 and d1. d1 is the maximum degree for
x1 and is necessarily included in the indices i1. The notation tαT ≥ 0 simply
implies that all the coordinates of the vector tαT are positive. Consequently,
if tαT ≥ 0, then P (x) ≥ 0 for all x ∈ [0, 1].

As in the univariate case, a few additional remarks are worth mentioning
before giving a generalized version of the corresponding proposition.

1. P (x) can take a much more general form than a polynomial. For two
variables, we need to define two series of functions, f1,1(x1), · · · , f1,m1

(x1)
and f2,1(x2), · · · , f2,m2(x2). Each series verify individually the conditions
of theorem (3).
We then express P (x) as P (x) =

∑
j=1,m

αjgj(x), where m is the total

number of terms in P (x). Each gj(x) is the product of a function from
the first series by a function from the second one. Obviously, this process
can be generalized to as many variables as needed.

2. Actually, a function P (x) containing all the terms resulting from the tensor
product (1, f1,1, · · · , f1,m1

)⊗ · · · ⊗ (1, f2,1, · · · , f2,m2
) is of little practical

use. If we can not drop some of these terms, these kind of functions will
fail to match practical applications. For instance, in real situations, cu-
bic polynomial will not include necessarily all interactions terms: it is very
common to ignore interactions of mote than two variables in this situation.

In the T space, each gj is interpreted as a coordinate tk and we con-
sider the d-dimensional variety defined by (tj = gj(x))i=1,m. Dropping
some term amounts to projecting the polytope resulting from the tensor
product on a subspace where the corresponding coordinates are omitted.
As it happens, this projection does not create any new vertex. As a result,
in the matrix of constraints, the corresponding rows are merely deleted.

Theorem 4. If tαT ≥ 0 then,

∀x1, · · ·xv ∈ [0, 1]v, P (x1, · · · , xv) ≥ 0.
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Corollary 3. The number of constraints in theorem (4) is at most m + 1 =∏
j=1,v (mj + 1).

In the previous example where P is a linear combination of (1, x1, x2, x1x2, x
3
2, x1x

3
2)

the number of variables in P ′1(x) is 2, m1 = 1 and m2 = 2. Therefore, the num-
ber of constraints is at most 6. The set of constraints in this case has been
already given. The proof of corollary (3) is to be found in the appendix.

To give an idea of how much it reduces the number of constraints, we an-
ticipate a little bit one of our industrial example: in section 6.5, a degree 3
polynomial with 6 variables is needed. This polynomial includes 84 monomials.
If all of them are kept, a single monotony requirement will give rise to 36 = 729
constraints with our theorem (4) and this is easily manageable in most numer-
ical softwares. As explained in section (6.5), since 6 monotony constraints are
required, we need 6 ∗ 36 = 4374 linear inequalities.

As in the preceding univariate case, this convex is optimal : first the number
of constraints is minimal. Secondly, these constraints can not be tightened up.
We consider a convex with the same number of vertices, which includes the
algebraic variety (V ) whose terms are given by the terms of P (x).

Theorem 5. The convex (Pm) of theorem (4) is optimal in the sense that any
convex polytope with m+ 1 points, including the previous variety, contains also
(Pm).

5 Practical considerations

5.1 Other type of constraints

A few features open up the applicability of our method to a really large panel
of parametric regressions.This is discussed in more details in this section.

1. Monotony requirements can be applied simultaneously to any number of
variables. The only consequence is that the number of constraints to fulfill
will increase with the number of variables. Two real examples are worked
out in sections 6.4 and 6.5.

2. Of course, every monotone transformation of the variables x1, · · · , xv will
not change the procedure. If P is monotone with respect to x1, then
through the transformation x1 = h(u), P will also be monotone with

respect to u as long as the derivative
dh(u)

du
is strictly increasing or de-

creasing and is bounded on its domain of definition.

3. Up to now, we have only considered increasing polynomials with respect to
one variable. It is easy to deal with decreasing requirements by changing
the corresponding variable x1 (for example) in 1 − x1 and continue with
the previous procedure.

4. Until now, we forced the variables to be included in the interval [0,1]. This
limitation can also be easily relaxed to any bounded interval in <.

13



5. As in [10] or [4], monotonicity requirements are not the only shape con-
straints that can be considered. In fact, the same method can be applied
to any shape constraints as long as the corresponding constraints stay
linear with respect to the coefficients of the model.

This includes :

• monotony constraints;

• concavity or convexity constraints as they result on an upper or lower
zero bound on the second derivative, which remains linear with re-
spect to the coefficients;

• bound constraints on the function itself, or on its derivatives;

• equality constraints;

• any kind of linear constraint on the coefficients.

6. An other advantage of the method is that expert knowledge can be in-
corporated in the polynomial to obtain the desired behavior more easily.
If one expects a linear variation with respect to the first variable, while
the second variable should correspond to a third degree polynomial, then
the corresponding terms can be omitted in the fit to force the response to
exhibit the correct shape.

5.2 implementation

Two steps are needed in practical implementations. In the first one we set up the
matrix of constraints and in the second we solve the corresponding optimization
problem. For this second step any standard algorithm in QP problems will fit
our need, for example active-set algorithms.

The proposed method has been implemented in a general form for monotony
constraints applied on polynomials and power law functions with Matlab R©, and
tried on ad hoc examples for other general cases (exponential functions or bound
constraints for example).

In this implementation, for monotony constraints on polynomials or power
law functions, we need to take the derivative of the initial function and to
perform some symbolic manipulations as follows: the considered polynomial is
coded by means of one matrix and a vector of coefficients. Each line of the
matrix represents a monomial and each column a variable. The values stored in
this matrix are the powers of each variable in the monomials. By convention, the
first column corresponds to the constant term, which is considered as a variable
elevated to the power 0. For example, with three variables, the row (0, 1, 2, 3)
will represent x1x

2
2x

3
3.

In this way, to establish the derivative of a polynomial formula with respect
to one variable means only subtracting one to the elements of the corresponding
column and multiplying the coefficients by the previous values of this column.

With this structure, the various propositions presented previously can be
coded without major difficulties for polynomial or power law functions.
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6 Examples

6.1 Simulated example in dimension 1

In this example, 10 points are generated from the equation y = −6x3+10x2−3x,
on the interval [0, 1]. A random gaussian noise of standard deviation 0.1 is added
to y. Our request here is to fit a monotone increasing function to these points.

On the left panel of the following figure, we choose a third degree polynomial
as the fitting function and the constraints come from theorem (1). On the
right panel, we take Q(x) = α0 +

∫ x
0

∑
j=1,4

αjfj(x)dx as the fitting function; the

derivative P (x) =
∑
j=1,4

αjfj(x) should be positive everywhere on [0,1] according

to corollary (2). In this latter case, the fj take the form fj(x) =
exp(kjx)− 1

exp(kj)− 1
,

and the kj are randomly chosen beween 0 and 5 (on the figure, k1 ' 0.21, k2 '
0.95, k3 ' 1.41, k4 ' 3.18).

The resulting function is drawn on the following figure (3). The dashed
blue line is the original regression function. The plain red line is the obtained
regression function. One can see only minor differences between the two panels,
maybe more apparent at the beginning and at the end of the curves.

Figure 3: 10 points from y = −6x3 +10x2−3x plus some noise. On the left, the
fit is based on a third degree polynomial, on the right on a sum of 4 exponential
functions.

6.2 a bounded function in dimension 1

We consider here the function y = 1 − 4(x − 1/2)2, drawn on figure (4), in
black, on the left panel. At x = 1/2 , this function reaches its maximum, y = 1.
Twenty values for x are drawn uniformly on [0, 1], and a random gaussian noise
of standard deviation 0.1 is added to the resulting values of y. The points
are shown as green square on the figure 4. They are fitted with a 2 degree
polynomial with the additional constraint that the maximum should be 1. The
resulting polynomial is drawn in red.

We can see that the obtained fit respects the constraint, but is obviously
not what is expected: constraints seem too stringent. The problem comes from

15



the fact that the original function does not respect our sufficient conditions of
theorem (1).

A much better fit is obtained if we try a sum of four power law functions,
[x0.5x0.75x4x5] (see right panel of figure (4)). The reason to this is that near
x = 0, the tangent to the original y is very steep, as it is at x = 1.

Figure 4: fit of the function y = 1 − 4(x − 1/2)2. The original function is in
blue, the obtained constrained function with a maximum of 1 in red. On the
left panel, the regression function is a polynomial of degree 2. On the right, it
is a sum of power law functions.

6.3 Simulated example in dimension 2

In figure (5) 100 points are generated with the equation y = −6x31x2+10x21−3x1.
A gaussian noise with a standard deviation of 0.1 is again added to y.

Figure 5: regression in dim 2 with d = 3, monotony constraints on x1

On the left panel, the original function is plotted. On the right panel, we
show the calculated regression with the constraint that y should increase with
x1. The figures are rotated to clearly show the behavior of the original and
calculated functions. It can be seen that the original function first decreases
with x1 and then increases. On the right panel, the calculated function is
always increasing with respect to x1.
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6.4 Real example: hydrotreatment of naphta

In petroleum process engineering, hydrotreating consists in treating a petroleum
cut under hydrogen pressure in an industrial reactor. After being extracted, the
crude oil has first to be refined and fractionated in different cuts before being
commercialised. Specifically, in naphtha cuts, impurities (mainly sulphur) must
be removed, before any further use.

A pseudo-kinetic model is commonly proposed to approximate this process
and is given by the following equation :

ln(
C

C0
) = −k. 1

V V H
.exp(− Ea

RT
).PmH2

.P sH2S

with the following variables :
C the concentration of the chemical to be removed remaining at the outlet of the
reactor; C0 its initial concentration; T the temperature of the process; PH2 the
partial hydrogen pressure; PH2S the partial H2S pressure; V V H the Velocity
per Volume and per Hour, proportional to the inverse of the time; k, E, m and
s are parameters and must be estimated from experimental measurements.

Taking the logarithm of each side of this formula, the equation can be easily
linearized and rewritten as y =

∑
i=1,4 βix

i , where y = ln(−ln( CC0
)), x1 = 1/T ,

x2 = ln(V V H), x3 = ln(PH2
), x4 = ln(PH2S).

Unfortunately, this expression is unable to take into account the full com-
plexity of the process, and empirical terms must be added. Finally, a degree
2 polynomial in the variables x = (x1, x2, x3, x4) is postulated. But some con-
straints must be respected : the process is more efficient (which means that C
decreases or equivalently y increases) when :
- the temperature T increases or x1 decreases
- V V H decreases or x2 increases
- PH2

or x3 increases.
The following figure (6) compares the results when regressing with and with-

out constraints. The left panel exhibits the residues (y calculated - y experimen-
tal ), showing only minor differences when the experimental points are predicted
by both methods : Root Mean Square Error is RMSE=0.438 with constraints
and 0.411 without. But the obtained equations are really different as shown on
the right.

On the right panel, we see a kind of spider plot, showing the behavior of
the response when only one variable varies at a time, starting from a given
point in the domain (here: [x1 = 0.71, x2 = 0.64, x3 = 0.174, x4 = 0.062]).
The dotted lines correspond to the regression without constraints, the solid
line to the regression with constraints. The plain triangle marks the estimated
response for the regression without constraints, the circle for the regression with
constraints. x-axis are translated so that every curve crosses at the center of
the graphic. Black lines correspond to variations along T or x1, red lines to
variations with V V H or x2, blue lines to variations with PH2

or x3. Behaviors
for the regressions without constraints are obviously wrong: the black dotted
line is increasing instead of decreasing and the blue has a minimum.
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Figure 6: polynomial fit to the data of HDS experiments Residue diagram
for the HDS data on the left panel and spider plot for a comparison of the
UNconstrained and constrained multivariate regression on the right

6.5 Real example: radiative shock experiments

This work is described in the reference [8]. The response y is named ’Radiative
Accretion shocks’ and characterizes laser experiments pertinent in astrophysics.
Six dimensionless variables characterizing the radiative flow should influence the
answer. For clarity in this paper, these variables are named x1 to x6 but the
interested reader should refer to the original paper for details. 2000 experimental
observations are available for fitting the model, from which 200 were extracted
by latin hypercube sampling.

Physical reasons indicate that the response is monotonically increasing with
the first 3 variables and decreasing with the other 3. The response is fit with a
polynomial of degree 3 in six variables, which includes 84 terms. The number
of constraints is 4374, exactly the maximum possible number stated in corollary
(3) of theorem (4): each function fj is a degree 2 polynomial with mj = 2
monomials. Thus the number of constraints is at most

∏
j=1,v (mj + 1) = 36 =

729, for each monotony requirement, giving finally 4374=6*729 constraints.
The following figure (7) shows the results. The lines corresponds to the

conditional mean of the response with respect to the indicated variable. The
plain lines on the left panel correspond to the proposed methodology and the
dotted lines on the right to a multivariate linear regression on the same data.
Obviously while the general behaviours of the curves are very similar, we can
see that the magenta curve for x4 on the right panel is not monotone.

In this case, the RMSE changes from RMSE = 0.006 for the unconstrained
case to RMSE = 0.014, roughly a multiplication by 2.

7 Perspectives and Conclusions

The proposed procedure is very general and flexible and can be found useful in a
lot of problems. It is specially well adapted to polynomial regression, a problem
occurring very often in industrial applications. Most importantly the method
will give satisfactory results in multidimensional cases even with few available
experimental data.

For big data set, the limitations will come from the number of constraints.
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Figure 7: polynomial fit to the data of radiative shock experiments
Spider plot for the constrained regression on the left panel and spider plot for
the UNconstrained multivariate regression on the right

To give a rough idea, if we set the limit at 500000 constraints, it gives a limit
of about 80 variables for a fit with a multivariate degree 3 polynomial.

The proposed method will suffer from the usual flaws of linear regression, as
it is based on a least squares procedure. Notably, to avoid some instabilities in
the coefficients, a bit of regularization would be welcome, as in [18].

A second enhancement would be to optimize if necessary the parameters of
the basis functions. In this paper, the parameters are fixed. But of course, with
extra computational work, they could be automatically chosen to fit as best as
possible the observation points at hand.

Thirdly, the scope of this kind of regression could be extended to non para-
metric regressions. GAMs are natural good candidates as well as local polyno-
mial regression.

The original algorithms for polynomials are developed in Matlab R© and avail-
able upon request.
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Appendix: proofs

Proposition (1).

Proof. In the T space (t1, ..., td), we consider the points Tj when 0 ≤ j ≤ d,
where only the first j coordinates are different from zero and equal to 1. These
points define a convex polytope (Pd).

We note immediately that the constraints can be rewritten: ∀ 0 ≤ j ≤
d, Z(Tj) ≥ 0. If the constraints are verified in every vertices Tj of (Pd), then for
any point T inside (Pd), Z(T ) will be positive, because Z is linear. The proof
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consists in verifying that the curve (Cd) given by (t1 = x, ..., td = xd) is enclosed
in (Pd).

Since (Pd) is convex, this means that any point C(x) = (x, ..., xd) of the
curve (C) can be expressed as a linear combination of the (Tj)j=0,d: C(x) =∑d
j=0 λj(x)Tj , where

∑d
j=0 λj(x) = 1 and all the λj(x) are positive or null.

The λj(x) are very easy to find in this case and are defined as

∀j, 0 ≤ j < d, λj(x) = xj − xj+1

λd(x) = xd

Theorem 1.

Proof. The idea of the proof is the same as in the previous proposition (1). We
consider the simplex (Pm) given by the vertices Tj :

∀j, 0 ≤ j ≤ m, Tj(i) :=
dj+1 − di
dj+1

110≤i≤j

∀i, 0 ≤ i ≤ m, Tm(i) := 1.

We are going to prove that the curve (xd1 , ..., xdm) is enclosed in the convex set
(Pm).

Taking d0 = 0, this time, the λj(x) are defined as:

∀j, 0 ≤ j ≤ m− 2, λj(x) =
dj+1

dj+1 − dj
(xdj − dj+2 − dj

dj+2 − dj+1
xdj+1 +

dj+1 − dj
dj+2 − dj+1

xdj+2)

λm−1(x) =
dm

dm − dm−1
(xdm−1 − xdm)

λm(x) = xm.

They are found as the solution of the linear system:

T

λ0(x)
...

λm(x)

 =

xd0...
xdm

 ,

where T is the matrix formed by the coordinates of all the vertices Tj .

The equality
∑d
j=0 λj(x) = 1 comes from the first line of the previous sys-

tem, since the first coordinate of all the vertices Tj is always 1.

We check immediately that λm(x) and λm−1(x) are positive for x ∈ [0, 1].

For the general λj(x), we first factor λj(x) as λj(x) =
dj+1

dj+1 − dj
xdjµj(x) and

we have to check that

µj(x) = 1− dj+2 − dj
dj+2 − dj+1

xdj+1−dj +
dj+1 − dj
dj+2 − dj+1

xdj+2−dj

is positive. The derivative of µ(x) is readily seen to be negative when x ∈ [0, 1].
Since µj(0) = 1 and µj(1) = 0, µj(x) decreases from 1 to 0, and is positive on
the definition interval.
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Theorem 2.

We proceed in two steps, and in the first one we state two introductory
lemmas. The first lemma links the optimal (Pm−1) to (Pm). Let Tm−1,j (resp.
Tm,j) when j ≤ m − 1 (resp. m) be the vertices of (Pm−1) (resp. (Pm)). The
subscript m or m− 1 is added to distinguish the polytope from where they are
taken. However, for j ≤ m − 2, Tm,j and Tm−1,j are confounded. The affine
hyperplane defined by the equation tm = 0 is denoted Htm=0.

Lemma 1. The three following items are true:

1. Tm−1,m is on the line joining Tm−2,m−1 to Tm−1,m−1.

2. The face of (Pm) not containing T0,m is perpendicular to the hyperplane
Htm=0.

3. The projection of (Pm) on the hyperplane Htm=0 is exactly (Pm−1).

Proof. This proof can be followed on figure 8 (m = 3). Everything stems from
the fact that the face of (Pm) not containing Tm,m (delimited by T0,m, Tm−2,m
and Tm−1,m on the figure) is perpendicular to the face not containing T0,m
(Tm,m, Tm−2,m and Tm−1,m on the figure).

Figure 8: (Cm) in red, (Pm−1)=(T0,m−1, Tm−2,m−1, Tm−1,m−1) in black and
(Pm)=(T0,m, Tm−2,m, Tm−1,m, Tm,m) in blue

1. In the space (t1, · · · , tm) we have

Tm−2,m−1 = (1, dm−1−d1
dm1

, · · · , dm−1−dm−2

dm−1
, 0, 0)

Tm−1,m = (1, dm−d1dm
, · · · , dm−dm−1

dm
, 0)

Tm−1,m−1 = (1, · · · , 1, 0).

The vectors Tm−2,m−1Tm−1,m−1 and Tm−1,mTm−1,m−1 are then collinear.

2. The vector Tm−1,m−1Tm,m is orthogonal to Htm=0 and orthogonal to the
vector Tm−2,m−1Tm−1,m−1. Due to the first item, Tm−1,m−1Tm,m is then
orthogonal to Tm−2,mTm−1,m which is one edge the face of (Pm) not con-
taining T0,m.
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3. (Pm) and (Pm−1) share m− 1 vertices. The two vertices that are in (Pm)
and not in (Pm−1) are Tm,m and Tm−1,m. The point Tm−1,m−1 of (Pm−1)
is the projection of Tm,m. And as proved in the first item, Tm−1,m is on
the edge joining Tm−2,m−1 to Tm−1,m−1.

In the second introductory lemma, we consider a simplex (P ′m) enclosing the
curve (Cm) in [0, 1]m.

Lemma 2. The face of (P ′m) opposite to the vertex Tm belongs to the hyperplane
Htm=0.

Proof. We consider a vector v = (v1, · · · , vm−1, 0) belonging to Htm=0, and the
projection of (Cm) onto the plane generated by v and tm. In this plane, the

curve is governed by the equation

( ∑
i=1,m−1

vix
di

xdm

)
. Let k be the index of the

first non null coordinate of v. The direction of the tangent at x = 0 is thus

given by

(
vkdk

0

)
.

Suppose ad absurdum that the face not containing Tm is not included in
Htm=0. Then, we can find a vector v for which the tangent at x = 0 of the
projection of (Cm) in the plane (v, tm) has a non null second coordinate. Oth-
erwise, the curve would not be included in the projection of (P ′m) on (v, tm).
And this is impossible, because the second coordinate of the tangent is always
zero.

We can now proceed with the proof of theorem (2). As we consider mainly
(Pm), the subscript m is unnecessary and omitted in the notation of the vertices.
It is only maintained for Tm−1,m−1.

Proof. Our geometrical considerations can be followed on figure 9. We proceed
by recursion. Theorem (2) is easily seen to be true in dimension m = 2 (see the
left panel of figure 2).

Assume now that this property is true until dimension m−1. We consider a
simplex (P ′m) containing the curve (Cm), and we are going to prove that (P ′m)
contains also (Pm).

1. T0 and Tm correspond to x = 0 and x = 1 respectively in the T space and
are necessarily two vertices of (P ′m) since they belong to the curve (Cm).

2. The face of (P ′m) not containing Tm is included in the hyperplane Htm=0

(see lemma 2).

3. The face of (Pm) not containing T0 is perpendicular to Htm=0. This results
from lemma 1. Let us callH⊥tm=0 the affine hyperplane containing this face.

4. We cut now the simplex P ′m with H⊥tm=0. The intersection always exists:
Tm is contained in both P ′m and H⊥tm=0. Since H⊥tm=0 passes through Tm,
we create two simplices. Only one of them contains the curve (Cm), since
(Cm) can not cross H⊥tm=0. We call it (P ′′m).
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Figure 9: (Pm)=(T0,Tm−2,Tm−1,Tm) in blue, and (Pm−1)=(T0,Tm−2,Tm−1,m−1)
in black. The difference with figure 8 is that the simplex (P ′m) has been added
in magenta and is represented by the four vertices (T0, T

′
m−2, T

′
m−1, Tm). The

point Tm is the only point not belonging to the hyperplane Htm=0. The points
Tm−2, Tm−1, Tm−1,m−1, Tm are in a hyperplane perpendicular to Htm=0 called
H⊥tm=0.

5. Due to the fact that the face of (P ′′m) not containing T0 is perpendicular
to Htm=0, the orthogonal projection of (P ′′m) on Htm=0 is also a simplex.
Thus, it contains (Pm−1) by means of our recursion hypothesis. We can
now conclude that all the vertices shared by (Pm−1) and (Pm) are inside
(P ′′m) and thus inside (P ′m).

6. By construction, only two points belong to (Pm) and not to (Pm−1): Tm
and Tm−1. Tm is one of the vertices of (P ′m) (see the first item). We

consider now Tm−1 = (1, dm−d1dm
, · · · , dm−1

dm
, 0). Tm−1 is constructed as

the intersection of the tangent to the curve (Cm) at the point Tm with
the hyperplane Htm=0. This point is necessarily included in any simplex
enclosing (Cm), and thus inside (P ′m).

Theorem 3.

Proof. The proof is similar to the previous one in theorem (1). The xdj are
simply replaced by fj(x) everywhere. Due to the fourth item, the λj(x) are
guaranteed to be positive.

Corollary (2).

Proof. For theorem (3) and corollary (2), the optimality comes from the fact
that the face opposite to the point Tm (with all coordinates equal to 1) is always
in the hyperplane Htm=0, as soon as the dj are all different in the case of power
law functions, or more generally the function fj are independent in the vicinity
of x = 0. For proposition (2), the result follows from symmetry reasons.
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Theorem 4.

As a preliminary lemma, we first prove this theorem when the terms in the
curve Cm result from the tensor product

⊗
k=1,v

(1, fk1(xk), ..., fkmk
(xk)).

Lemma 3.

Proof. This is an immediate consequence of the preceding propositions. Indeed,
we note that the issue here is to show that the curve resulting from the tensor
product (1, f11(x1)), · · · , f1m1

(x1)) ⊗ · · · ⊗ (1, fv1(xv)), · · · , fvmv
(xv)) is in the

convex hull of the points defined by

Tj1,··· ,jv (i1, · · · , ip) =

v∏
k=1

djk+1 − dik
djk+1

11i1≤j1,··· ,iv≤jv

Td1,··· ,dv = 1

This is true since Tj1,··· ,jv = Tj1 ⊗ · · · ⊗ Tjv .
In theorem (3), we showed that each individual curve (1, fk1(xk), ..., fkmk

(xk)) is
enclosed in the convex polytope defined by the vertices Tjk so that for some well
chosen (λjk)jk=1,dk we can write the decomposition: (1, fk1(xk), ..., fkmk

(xk)) =∑
jk=0,mk

λjk(xk)Tjk . Consequently,

∑
j1,··· ,jv

λj1(x1) · · ·λjv (xv)Tj1,··· ,jv =
⊗ dk∑

jk=1

λjk(xk)Tjk

=
⊗

(1, fk1(xk), ..., fkmk
(xk)).

We can know proceed with the proof of theorem (4)

Proof. Any curve (Cm) can be completed as a curve (C ′m) whose terms come
from a tensor product. Thus, any point of (C ′m) is decomposed in (C ′m) =∑m′k
jk=0 λjk(xk)T ′jk , where the T ′jk are the vertices of (C ′m).

Alternatively, (Cm) is defined as a projection Pr of (C ′m) on the adequate
space. Consequently, the polytope defined by the projection of the vertices T ′

enclose (Cm). As a matter of fact, each of these projected vertices is one of the
T , some of the T ′ being projected on the same T . Then the previous relation

becomes (Cm) =
∑m′k
jk=0 λjk(xk)Pr(T ′jk).

Corollary (3).

Proof. The first part of corollary 3 is a direct consequence of theorem 4 : the
number of constraints is the product of the number of possible values for each
(jk)k=1,v. This is also the number of monomials in P (x1, · · · , xv) plus one, since
we must take into account the constant factor in the function P (x).

The second part of this corollary when the terms in P (x) result from a tensor
product can be explained this way: in this case, the convex hull of the m + 1
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points Tjk is by definition a simplex, the convex polytope with the minimal
number of vertices in a space of dimension m + 1. We are then in exactly the
same situation as before in theorem (2).

In general, with any kind of P (x), the projection property will apply in the
same manner as in (4).
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21(3):529–555, 4 2012.

[5] C. De Boor. A Practical Guide to Splines. Springer-Verlag, New York, 2nd
edition, 1978.

[6] H. Dette and R. Scheder. Strictly monotone and smooth nonparametric
regression for two or more variables. The Canadian Journal of Statistics,
34(4):535–561, 2006.

[7] P. Du, C.F. Parmeter, and J.S. Racine. Nonparametric kernel regression
with multiple predictors and multiple shape constraints. Statistica Sinica,
23:1347–1371, 2013.
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