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Experimental and numerical investigations of
the aeroacoustics in a corrugated pipe flow

Gaeétan GALERON, Daniel MAZZONI, Muriel AMIELH, Pierre Glier MATTEI,
Fabien ANSELMET

Abstract Our study is focused on the singing risers phenomenon wkieh¢oun-

tered in corrugated channels under flow. Internal corrogatare responsible for
flow instabilities that synchronize with longitudinal actic modes of the channel
giving powerful pure tones. Experiments are performed ipec#ically designed

facility. Numerical simulations of the flow based on a latiBoltzmann method
(LBM) are faced to the experimental results. They aimed \astigating the abil-

ity of a LBM based simulation to predict the aeroacousticsmfugated channels.
Acoustic modes and turbulence in the corrugated channe]juite well predicted

except the sound pressure levels that need better desorgdtthe acoustic bound-
ary conditions.

1 Introduction

The intense noise generation when passing a flow in a coedg#be has intrigued
researchers for more than a century [3]. Works carried ottdent years agree to
show that the sound generation is related to an interactdween the flow and
acoustic resonance in the pipel[L0}[12, 4]. The turbulendesafiow, the interaction
between the cavities forming the corrugation and finallyféezlback whistling of
the flow are related to the geometry of the pipe. Due to thexilfiity and local
stiffness, corrugated pipes are used in many engineeriplgcapons. In particular,
they are widely used in the oil industry as for the transpbratural gas. Under
certain conditions of geometries and flow, the pipes maytkghigenerating harm-
ful vibrations to the adjoining industrial facilities. A \Wéknown example is the
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"singing riser” phenomenon observed on some natural géalliagons in the North
Sea.

In our studies, the lengths of the pipes are large with redpeihe dimensions
of the cavities. The flow at the center of the pipe remainsauibswith velocities
corresponding to a Mach number of less than 0.1. The flow awgties inducing a
sound field is a classic study aréa [6]. In the case of shallwitycsubjected to an
incompressible flow, the hydrodynamic instability of theeahlayer that develops
on the opening of the cavity is held responsible for the faedphenomenon[9].
In addition, when, as in our previous study [1], the inputlu pipe section has a
sufficiently sharp angle, a flow separation occurs near thleawd a veina contracta
accelerates the flow on the axis of the pipe. Within this veimatracta, the vortex
interaction with a cavity located at a short distance doreash was shown to be the
source of strong excitation of pipe longitudinal modgs [5].

The aim of the present research is to study both the acousti@erodynamic
fields within a corrugated pipe under singing conditionshArs description of the
especially laboratory designed facility is here given. @ations with LBM method
are faced to experimental results obtained for different tonfigurations. Com-
parisons between experiments and calculations conceonityeand pressure.

2 Experimental set-up

For the experimental purpose, a rectangular cross secigen p m long, 20 mm
wide, 100 mm high, has been manufactured[{fig.1). It is madeamgparent Plex-
iglas, thereby allowing the use of optical diagnostics ¥ (Particle Image Ve-
locimetry). The 100 wall-cavities are square-shaped ofedisions 10< 10 mnr.
The upstream edge of each cavity is rounded with the ragps- 2.5 mm while
the downstream edge is shargsun = 0 mm). These cavities are 10 mm deep and
10 mm spaced[1]. Point-wise measurements of velocity andsiic pressure are
made respectively by hot-wire anemometry and by microphbine velocities mea-
sured 10 mm upstream of the vein entry and downstream, itteédesin, 19 mm just
upstream of the channel exit section, are used for comperiaith the numerical
simulation results (figl2).

3 Discrete Boltzmann equation

The Lattice Boltzmann Method LBM is a recently developedrapph used to com-
pute fluid flows. It is based on the kinetic theory for a fluid flawd from the
Boltzmann Transport Equation from the classical kinetaotty of gases. The dis-
crete Boltzmann equation with the Bhatnagar-Gross-Kr@&fEK) approximation
[13] governs the evolution of the probability density fuoatfi(x,t) = f(x, §;,t) of
finding a particle at the poin¢ at the date, with velocity &, in absence of external
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Fig. 1: View of the experiment Fig. 2: Computed geometry

forces. For the two dimensional nine velocities lattice 92 used in the present
study,é; are the nine possible velociti@s= 0, ..., 8) for the particles in this discrete

velocity space.

o fi _ _7_} e
E"’EI'DXfI— T[fl fi] (2)

wherefieq is the discrete probability density function in absenceyfeollision, fieq
is usually taken as the second order expansion of the Maxsleltity distribution
leading to:
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whereu is the local resultant velocity vectavg = 4/9,wy_4=1/9,ws_9=1/36
are Gauss integration pointgg = 1/\/'3 is the lattice constant. is the relaxation
time related to fluid viscosity, see E.6. The macroscopid flensity and velocity
are the moments of the discrete density function

Mass densityp = 3; fi = 3; f™ 3)
Momentum flux:pu = 3; & fi = 3; & f™ (4)

Integrating the Boltzmann equatidd (1) along the charaties ¢, for a space-step
equal to onedix = 1), denotingg the unit vector pointing in the direction of the
velocity vectoré;, and supposing that the particles move of one cell per time st
At (ie Ax g = At &), one obtains the lattice Boltzmann equation (LBE):

f(X+8,t+At) — fi(xt) = —g [i(x,1) — £2(x,1)] (5)

Chapman-Enskog analysis| [7] shows that in the limit of levayelengths, low-
frequency, the LBE reproduces exactly the Navier-Stokesion for weakly com-
pressible flows with an ideal equation of state thalis: pc2 whereP is the pressure
and wherecs = 343 ms'! is the speed of sound in air. The kinematic viscosity of

the fluidv is: A
v=c2 <T — ?t) (6)
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Given the limitation of low Mach number of the LBM, the mainenest of the
remaining compressibility is to bring the acoustic phenoand he LBM ability to
simulate the propagation of acoustic waves is present@].iRgcent developments
of the LBM acoustic behaviour are proposedin|[15].

4 Results: comparisons with experiments

Parallel computations are performed by using/the Paldbfjslgttice Boltzmann
code with around 50 cores of the mesoceritie [8] of Aix Malesainiversity. The
velocity of the particles on the lattiog g are calculated assuming that the Mach
number is conserved so thats = ¢ g Up/Cs where (lp, ug) and Cs, CLg) are the
flow velocities and the speeds of sound respectively in thesiphl space and on
the lattice. The geometry is a two-dimensional channel hd&éng, 20 mm wide,
with corrugated walls (fifg]2). The wall-cavities are simila the experiment except
the upstream and downstream edges with the rggli= 5 mm andrgown = 1 mm.
The inlet section of this corrugated channel is connectedttanquillizer chamber
of dimensions 17& 100 mnt with absorbing walls. The role of this tranquillizer
chamber is to introduce a sudden change of section of the fitvgading firstly to
the flow destabilization and secondly to an approximatetBlet acoustic bound-
ary condition. The whole domain is meshed with ailén constant step grid. The
boundary conditions on the walls are obtained by the "botbaxek” procedure. At
the inlet of the domain, a turbulent pipe flow with A7lpower law velocity profile
is used. At the outlet, a constant density condition is ingdabat writeso = 1 in
the dimensionless form and insures acoustic Dirichlet damconditions.

Seven flow velocity cases are simulated durisgdr u; = 8.4, 13, 17, 21, 25,
29,33 ms!(j=1,..,7). These reference velocities are those calculated orxite a
5 mm downstream of the corrugated channel entry. Acoustiesvaffectively travel
in the corrugated channel as shown by spectral analysieafehsity calculated by
the LBM. When the flow velocity increases, successive atouosbdes of the pipe
appear (fig.B). The frequencies of the acoustic modes obdenv the flow simula-
tions agree with the theoretical eigenfrequencies of am @@ee: fi,, = nCess /2L
with an acceptable relative error lower than 5%. The efficigreed of sound used
for this modal identificationcest = 299 ms?, has been calculated numerically by
measuring the velocity of an acoustic plane wave propagatirthe corrugated
channel and agrees with the experimental véllie [1]. Theutangze of the velocity
field in the numerical simulation is comparediat= 21 ms to the experiment on
fig.[d. At this velocity, a strong whistling was experimehtalbserved. This com-
parison is given at the position of the downstream hot-wierom upstream of the
exit). At this location, the turbulence has developed sbtttdownstream hot-wire
velocity spectrum fits the usuél>/3 decay rate. For the numerical simulation, the
decay of the turbulence spectrum fit§ & slope, that is an expected result regard-
ing the two-dimensional geometiy[14]. The upstream haevg mainly sensitive to
the acoustic velocity. The observed strong peaks corresjedhe acoustic eigenfre-
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guencies of the corrugated channel. Corresponding acaustiles are presented in
figure[3. A good agreement between experiment and simulitioiotained with the
reference velocities. Figurg$s 5 dnd 6 concern acoustic &Rd turbulence levels
(Urms). In figurelB, one observes the main acoustic mode for eaehemede velocity.
In the experiment, the whistling occurs from the referenekeity 17 ms* with

a strong amplification of the SPL and of thlas on the upstream hot-wire. This
threshold on SPL is not observed on the simulation resultseaver the simulated
SPL level is higher than experimental ones. The lack of tadjdboundary pressure
conditions at the extremities of the pipe induces an ovienasibn of the internal
SPL. Nethertheless, the turbulence velocity lewglgs are correctly predicted in
the downstream part of the corrugated channel.
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5 Conclusion - Perspectives

First 2D-computations are performed by using a LBM opena®aode (Palabos) to
predict whistling in a corrugated channel under flow. Resfutim experiments per-
formed in similar configurations are used for comparisorustic mode shapes
are correctly predicted for the reference velocities. Hmvehe acoustic levels are
overestimated due to acoustic boundary conditions that tabe improved. Per-
spectives are now to develop 3D-simulations for betteriptiea of turbulence and

also parametric studies on the influence of corrugation g#gnon the whistling.
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