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Experimental and numerical investigations of
the aeroacoustics in a corrugated pipe flow

Gaëtan GALERON, Daniel MAZZONI, Muriel AMIELH, Pierre Olivier MATTEI,
Fabien ANSELMET

Abstract Our study is focused on the singing risers phenomenon which is encoun-
tered in corrugated channels under flow. Internal corrugations are responsible for
flow instabilities that synchronize with longitudinal acoustic modes of the channel
giving powerful pure tones. Experiments are performed in a specifically designed
facility. Numerical simulations of the flow based on a lattice Boltzmann method
(LBM) are faced to the experimental results. They aimed at investigating the abil-
ity of a LBM based simulation to predict the aeroacoustics ofcorrugated channels.
Acoustic modes and turbulence in the corrugated channel arequite well predicted
except the sound pressure levels that need better description of the acoustic bound-
ary conditions.

1 Introduction

The intense noise generation when passing a flow in a corrugated pipe has intrigued
researchers for more than a century [3]. Works carried out inrecent years agree to
show that the sound generation is related to an interaction between the flow and
acoustic resonance in the pipe [10, 12, 4]. The turbulence ofthe flow, the interaction
between the cavities forming the corrugation and finally thefeedback whistling of
the flow are related to the geometry of the pipe. Due to their flexibility and local
stiffness, corrugated pipes are used in many engineering applications. In particular,
they are widely used in the oil industry as for the transport of natural gas. Under
certain conditions of geometries and flow, the pipes may whistle, generating harm-
ful vibrations to the adjoining industrial facilities. A well-known example is the
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Gaëtan GALERON, Pierre Olivier MATTEI
CNRS - UPR 7051, F-13453, Marseille, e-mail:gaetan.galeron@centrale-marseille.fr

1

daniel.mazzoni@centrale-marseille.fr
gaetan.galeron@centrale-marseille.fr


2 G. Galeron et al.

”singing riser” phenomenon observed on some natural gas installations in the North
Sea.

In our studies, the lengths of the pipes are large with respect to the dimensions
of the cavities. The flow at the center of the pipe remains subsonic with velocities
corresponding to a Mach number of less than 0.1. The flow over cavities inducing a
sound field is a classic study area [6]. In the case of shallow cavity subjected to an
incompressible flow, the hydrodynamic instability of the shear layer that develops
on the opening of the cavity is held responsible for the feedback phenomenon [9].
In addition, when, as in our previous study [1], the input of the pipe section has a
sufficiently sharp angle, a flow separation occurs near the wall and a veina contracta
accelerates the flow on the axis of the pipe. Within this veinacontracta, the vortex
interaction with a cavity located at a short distance downstream was shown to be the
source of strong excitation of pipe longitudinal modes [5].

The aim of the present research is to study both the acoustic and aerodynamic
fields within a corrugated pipe under singing conditions. A short description of the
especially laboratory designed facility is here given. Simulations with LBM method
are faced to experimental results obtained for different flow configurations. Com-
parisons between experiments and calculations concern velocity and pressure.

2 Experimental set-up

For the experimental purpose, a rectangular cross section pipe, 2 m long, 20 mm
wide, 100 mm high, has been manufactured (fig.1). It is made bytransparent Plex-
iglas, thereby allowing the use of optical diagnostics likePIV (Particle Image Ve-
locimetry). The 100 wall-cavities are square-shaped of dimensions 10× 10 mm2.
The upstream edge of each cavity is rounded with the radiusrup = 2.5 mm while
the downstream edge is sharp (rdown = 0 mm). These cavities are 10 mm deep and
10 mm spaced [1]. Point-wise measurements of velocity and acoustic pressure are
made respectively by hot-wire anemometry and by microphone. The velocities mea-
sured 10 mm upstream of the vein entry and downstream, insidethe vein, 19 mm just
upstream of the channel exit section, are used for comparisons with the numerical
simulation results (fig.2).

3 Discrete Boltzmann equation

The Lattice Boltzmann Method LBM is a recently developed approach used to com-
pute fluid flows. It is based on the kinetic theory for a fluid flowand from the
Boltzmann Transport Equation from the classical kinetic theory of gases. The dis-
crete Boltzmann equation with the Bhatnagar-Gross-Krook (BGK) approximation
[13] governs the evolution of the probability density function fi(x, t) = f (x,ξ i, t) of
finding a particle at the pointx, at the datet, with velocityξi, in absence of external
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Fig. 1: View of the experiment Fig. 2: Computed geometry

forces. For the two dimensional nine velocities lattice (D2Q9) used in the present
study,ξi are the nine possible velocities(i = 0, ...,8) for the particles in this discrete
velocity space.
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whereu is the local resultant velocity vector.w0 = 4/9, w1,..,4 = 1/9, w5,..,9 = 1/36
are Gauss integration points.cLB = 1/

√
3 is the lattice constant.τ is the relaxation

time related to fluid viscosity, see eq.6. The macroscopic fluid density and velocity
are the moments of the discrete density functionfi:

Mass density:ρ = ∑i fi = ∑i f eq
i (3)

Momentum flux:ρu = ∑i ξ i fi = ∑i ξ i f eq
i (4)

Integrating the Boltzmann equation (1) along the characteristicsξ i, for a space-step
equal to one (∆x = 1), denotingei the unit vector pointing in the direction of the
velocity vectorξ i, and supposing that the particles move of one cell per time step
∆ t (ie ∆x ei = ∆ t ξ i), one obtains the lattice Boltzmann equation (LBE):

fi(x+ei, t +∆ t)− fi(x, t) =−
∆ t
τ
[

fi(x, t)− f eq
i (x, t)

]

(5)

Chapman-Enskog analysis [7] shows that in the limit of long-wavelengths, low-
frequency, the LBE reproduces exactly the Navier-Stokes equation for weakly com-
pressible flows with an ideal equation of state that is:P=ρc2

s whereP is the pressure
and wherecs = 343 ms−1 is the speed of sound in air. The kinematic viscosity of
the fluidν is:

ν = c2
s

(

τ −
∆ t
2

)

(6)
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Given the limitation of low Mach number of the LBM, the main interest of the
remaining compressibility is to bring the acoustic phenomena. The LBM ability to
simulate the propagation of acoustic waves is presented in [2]. Recent developments
of the LBM acoustic behaviour are proposed in [15].

4 Results: comparisons with experiments

Parallel computations are performed by using the Palabos [11] lattice Boltzmann
code with around 50 cores of the mesocentre [8] of Aix Marseille University. The
velocity of the particles on the latticeuLB are calculated assuming that the Mach
number is conserved so thatuLB = cLB u0/cs where (u0, uLB) and (cs, cLB) are the
flow velocities and the speeds of sound respectively in the physical space and on
the lattice. The geometry is a two-dimensional channel 2.01m long, 20 mm wide,
with corrugated walls (fig.2). The wall-cavities are similar to the experiment except
the upstream and downstream edges with the radiirup = 5 mm andrdown = 1 mm.
The inlet section of this corrugated channel is connected toa tranquillizer chamber
of dimensions 170× 100 mm2 with absorbing walls. The role of this tranquillizer
chamber is to introduce a sudden change of section of the flow path leading firstly to
the flow destabilization and secondly to an approximated Dirichlet acoustic bound-
ary condition. The whole domain is meshed with a 10µ m constant step grid. The
boundary conditions on the walls are obtained by the ”bounce-back” procedure. At
the inlet of the domain, a turbulent pipe flow with a 1/7 power law velocity profile
is used. At the outlet, a constant density condition is imposed that writesρ = 1 in
the dimensionless form and insures acoustic Dirichlet boundary conditions.

Seven flow velocity cases are simulated during 1s for u j = 8.4, 13, 17, 21, 25,
29, 33 ms−1 ( j = 1, ..,7). These reference velocities are those calculated on the axis,
5 mm downstream of the corrugated channel entry. Acoustic waves effectively travel
in the corrugated channel as shown by spectral analysis of the density calculated by
the LBM. When the flow velocity increases, successive acoustic modes of the pipe
appear (fig.3). The frequencies of the acoustic modes observed on the flow simula-
tions agree with the theoretical eigenfrequencies of an open pipe: fthn = nce f f /2L
with an acceptable relative error lower than 5%. The efficient speed of sound used
for this modal identification,ce f f = 299 ms−1, has been calculated numerically by
measuring the velocity of an acoustic plane wave propagating in the corrugated
channel and agrees with the experimental value [1]. The turbulence of the velocity
field in the numerical simulation is compared atu4 = 21 ms−1 to the experiment on
fig. 4. At this velocity, a strong whistling was experimentally observed. This com-
parison is given at the position of the downstream hot-wire (19 mm upstream of the
exit). At this location, the turbulence has developed so that the downstream hot-wire
velocity spectrum fits the usualf−5/3 decay rate. For the numerical simulation, the
decay of the turbulence spectrum fits af−3 slope, that is an expected result regard-
ing the two-dimensional geometry [14]. The upstream hot-wire is mainly sensitive to
the acoustic velocity. The observed strong peaks correspond to the acoustic eigenfre-

http://www.palabos.org
https://equipex-mesocentre.univ-amu.fr/
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Fig. 3: Acoustic modes in the
corrugated pipe
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quencies of the corrugated channel. Corresponding acoustic modes are presented in
figure 3. A good agreement between experiment and simulationis obtained with the
reference velocities. Figures 5 and 6 concern acoustic (SPL) and turbulence levels
(Urms). In figure 5, one observes the main acoustic mode for each reference velocity.
In the experiment, the whistling occurs from the reference velocity 17 ms−1 with
a strong amplification of the SPL and of theUrms on the upstream hot-wire. This
threshold on SPL is not observed on the simulation results, moreover the simulated
SPL level is higher than experimental ones. The lack of radiating boundary pressure
conditions at the extremities of the pipe induces an overestimation of the internal
SPL. Nethertheless, the turbulence velocity levelsUrms are correctly predicted in
the downstream part of the corrugated channel.
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5 Conclusion - Perspectives

First 2D-computations are performed by using a LBM open source code (Palabos) to
predict whistling in a corrugated channel under flow. Results from experiments per-
formed in similar configurations are used for comparisons. Acoustic mode shapes
are correctly predicted for the reference velocities. However the acoustic levels are
overestimated due to acoustic boundary conditions that have to be improved. Per-
spectives are now to develop 3D-simulations for better prediction of turbulence and
also parametric studies on the influence of corrugation geometry on the whistling.
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