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Abstract A numerical method is presented for a mathematical model which describes the frictionless contact

between a viscoplastic body and an obstacle, the so-called foundation. The process is quasistatic, and the contact

is modeled with normal compliance and unilateral constraint, in such a way that the stiffness coefficient depends

on the history of the penetration. A solution algorithm is discussed and implemented. Numerical simulation results

are reported, illustrating the mechanical behavior related to the contact condition.
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1 Introduction

Contact phenomena involving deformable bodies lead to nonsmooth, nonlinear mathematical problems. Analysis

of the problems, including existence and uniqueness results, is carried out in a large number of works, see for

instance [1–4] and the references therein. Numerical analysis of the problems, including error estimation for discrete

schemes and numerical simulations, can be found in [5–9]. The state-of-the-art in the field, including applications

in engineering, could be found in the recent special issue [10].

In this paper, we provide the numerical solution of a frictionless contact problem for viscoplastic materials. It

models the quasistatic contact of a body with an obstacle made of a hard material covered with a thin layer of soft

material, in the framework of the small deformation theory. The challenging feature of the problem is mainly caused

by the forms of the constitutive law and the boundary condition on the contact surface. We describe the constitutive

law of the material by a rate-type relation of the form

σ̇ = Eε(u̇) + G(σ , ε(u)), (1.1)
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known as a viscoplastic constitutive law. Here, u represents the displacement vector, σ denotes the stress tensor,

and ε(u) is the linearized strain tensor. The symbols E and G represent an elasticity tensor and a viscoplastic

constitutive function, respectively. The dot above a variable represents the derivative of that variable with respect to

the time, i.e., ḟ = ∂ f/∂t . Constitutive laws of the form (1.1) have been used in various papers in order to model the

properties of real materials like metals, rocks, soils, and various polymers. Examples and mechanical interpretations

can be found in [11,12] and the references therein. For the contact, we assume it is frictionless and is modeled

with normal compliance and unilateral constraint. This condition was introduced in [13] and then used in a large

number of papers, see the references in [14]. Unlike the Signorini condition which expresses the requirement of

nondeformability of the obstacle, the normal compliance condition with unilateral constraint allows the penetration

of the obstacle. The latter is described by a surface property parameter, the stiffness coefficient. The novelty of the

model we consider in this paper is that the stiffness coefficient is allowed to depend on the history of the penetration.

Analysis of various quasistatic frictionless and frictional contact problems for such kind of materials was carried

out in various works, see for instance [2,4,15–18]. The book [2] deals with both the variational and numerical

analyses of the problems; there, existence and uniqueness results are presented, semi-discrete and fully discrete

schemes for various contact models are studied, error estimates are obtained, and convergence results are proved.

The book [4] describes various contact models and their variational formulations. It also provides unique solvability

results and representative proofs. For the problem considered in [17], the contact is described with the Signorini con-

dition in a form with a zero gap function; there, an evolutionary mixed variational formulation of the corresponding

contact problem is derived, and the unique solvability of the model is shown by using arguments on saddle points

theory, Lagrange multipliers, and fixed point. In contrast, in the papers [15,16], the contact is modeled with normal

compliance and unilateral constraint. There, various existence, uniqueness, and convergence results are obtained,

by using different functional methods. Also, numerical results are reported on two-dimensional test problems. The

contact model in [15,16] was extended in [18], by considering the case when the stiffness coefficient depends on

the history of the penetration. There, variational analysis of the problem, including its unique weak solvability, is

provided. The proof is based on arguments of history-dependent variational inequalities.

The current paper is devoted to the numerical solution of the contact model introduced in [18] and is structured

as follows. In Sect. 2, we first describe the mechanical problem together with the physical motivation which lead to

this contact model, and then we list the assumptions on the data, state the variational formulation of the problem,

and recall the existence and uniqueness result obtained in [18]. We complete it by recalling a particular case of

the convergence result obtained in [18], which expresses the continuous dependence of the solution with respect to

the stiffness coefficient. In Sect. 3, we describe the numerical method used to solve the problem, including details

on a related hybrid variational formulation. In Sect. 4, we present numerical simulation results on a model two-

dimensional problem, illustrating the mechanical behavior related to the contact condition, including the convergence

result in Sect. 2. Some concluding remarks are given in Sect. 5.

2 The model

In this section, we present the mathematical model of contact we are interested in, together with some results in its

analysis, obtained in [18].

The physical setting is the following. A viscoplastic body occupies, in its reference configuration, a bounded

domain � ⊂ R
d (d = 2, 3). The boundary ∂� = Ŵ of � is assumed to be Lipschitz continuous. We denote by

ν = (νi ) the unit outward normal, defined almost everywhere on Ŵ, and by x = (xi ) a typical point in � ∪ Ŵ. Here

and below, the indices i , j , k, and l run between 1 and d , and unless stated otherwise, the summation convention

over repeated indices is used. We use the symbol S
d for the space of second-order symmetric tensors on R

d ; the

inner products and norms on R
d and S

d are defined by

u · v = uivi , ‖v‖ = (v · v)1/2 ∀ u, v ∈ R
d ,

σ · τ = σi jτij, ‖τ‖ = (τ · τ )1/2 ∀ σ , τ ∈ S
d .
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The boundary Ŵ is partitioned into three disjoint measurable parts Ŵ1, Ŵ2, and Ŵ3, such that meas (Ŵ1) > 0, and

we denote that [0, T ] be the time interval of interest with some T > 0. The body is clamped on Ŵ1 × (0, T ), is

submitted to the action of body forces, and surface tractions on � × (0, T ) and Ŵ2 × (0, T ), respectively, and is in

contact with a deformable foundation on Ŵ3 × (0, T ). As a result, its mechanical state evolves, and the evolution is

governed by the following mathematical model.

Problem P Find a displacement field u : � × [0, T ] → R
d and a stress field σ : � × [0, T ] → S

d such that

σ̇ = Eε(u̇) + G(σ , ε(u)) in � × (0, T ), (2.1)

Div σ + f 0 = 0 in � × (0, T ), (2.2)

u = 0 on Ŵ1 × (0, T ), (2.3)

σν = f 2 on Ŵ2 × (0, T ), (2.4)

uν ≤ g, σν + K (ξ(uν))p(uν) ≤ 0,

(uν − g)(σν + K (ξ(uν))p(uν)) = 0

}
on Ŵ3 × (0, T ), (2.5)

στ = 0 on Ŵ3 × (0, T ), (2.6)

u(0) = u0, σ (0) = σ0 in �. (2.7)

Let us comment on the equations and boundary conditions in (2.1)–(2.7) in which, for simplicity, we do not

indicate explicitly the dependence of various functions on the variables x or t . Also, here and below we use the

index ν and τ to denote the normal and tangential components of vectors and tensors, respectively.

Equation (2.1) represents the viscoplastic constitutive law of the material, already introduced in Sect. 1. Equation

(2.2) is the equilibrium equation in which f 0 represents the density of body forces; we use it here since the process

is assumed to be quasistatic. In (2.1)–(2.2) and below, ε and Div are the deformation and the divergence operators,

respectively, defined by

ε(u) = (εi j (u)), εi j (u) =
1

2
(ui, j + u j,i ), Div σ = (σi j, j ),

where an index that follows a comma represents the partial derivative with respect to the corresponding component

of the spatial variable, e.g., ui, j = ∂ui/∂x j . Conditions (2.3) and (2.4) are the displacement and traction boundary

conditions, respectively, with f 2 being the density of surface tractions. Condition (2.6) shows that the tangential

stress on the contact surface vanishes, corresponding to a frictionless contact. In (2.7), u0 and σ0 are the initial

displacement and the initial stress field, respectively.

We turn to the contact condition (2.5). First, the penetration is limited by a maximal depth g > 0. In other words,

at any time t , the normal displacement on the contact surface uν(t) satisfies the inequality:

uν(t) ≤ g. (2.8)

Next, we assume that the normal stress has an additive decomposition of the form:

σν(t) = σ D
ν (t) + σ R

ν (t). (2.9)

The part σ D
ν (t) satisfies a normal compliance contact condition:

−σ D
ν (t) = K p(uν(t)). (2.10)

Here p is a given nonnegative function which vanishes for negative arguments, and K represents the stiffness

coefficient of the foundation. The normal compliance contact condition was used in many publications, see, e.g.,

[19–22] and references therein. The part σ R
ν (t) of the normal stress satisfies the Signorini unilateral condition:

σ R
ν (t) ≤ 0, σ R

ν (t)(uν(t) − g) = 0. (2.11)
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We combine (2.9) and (2.10) to see that

σ R
ν (t) = σν(t) + K p(uν(t)). (2.12)

Then, we substitute equality (2.12) in (2.11) and use (2.8), to obtain the condition:

uν(t) ≤ g, σν(t) + K p(uν(t)) ≤ 0, (uν(t) − g)
(
σν(t) + K p(uν(t))

)
= 0. (2.13)

This condition can be naturally interpreted as follows: the foundation is made of a hard material covered by a thin

layer of a softer material with thickness g; the soft material has an elastic behavior, i.e., it is deformable and allows

penetration; the contact with this layer is modeled with normal compliance; the hard material is perfectly rigid,

and, therefore, it does not allow penetration; the contact with this material is modeled using the Signorini contact

condition. To conclude, condition (2.13) models a foundation which has a rigid-elastic behavior: its elastic behavior

is given by the layer of the soft material, while its rigid behavior is given by the hard material.

Now, consider the more complicated situation where the stiffness coefficient can depend on the accumulation of

penetration, denoted as ξ(uν):

K = K (ξ(uν)(t)), (2.14)

where

ξ(uν)(t) =

∫ t

0

u+
ν (s) ds, t ∈ [0, T ], (2.15)

where u+
ν is the positive part of uν . Combining (2.13) and (2.14) leads to the contact condition (2.5). Note that the

dependence K = K (ξ(uν)(t)) allows us to take into account the variation of the elastic modulus of the thin layer,

as the cycles of contact and separation proceed and, therefore, it models the hardening or softening phenomenon.

Practical examples of surface hardening or softening abound in industry and various engineering settings, see, e.g.,

[23].

To proceed with a variational formulation of the contact problem P , we need some function spaces. We use the

standard notation for Sobolev and Lebesgue spaces associated to � and Ŵ. In addition, let

V =
{
u = (ui ) : ui ∈ H1(�), ui = 0 a.e. on Ŵ1

}
,

Q =
{
σ = (σi j ) : σi j = σ j i ∈ L2(�)

}
,

Q1 =
{
σ ∈ Q : Div σ ∈ L2(�)d

}
.

These are real Hilbert spaces endowed with the canonical inner products:

(u, v)V =

∫

�

ε(u) · ε(v) dx,

(σ , τ )Q =

∫

�

σ · τ dx,

(σ , τ )Q1 =

∫

�

σ · τ dx +

∫

�

Divσ · Div τ dx .

The associated norms on these spaces are denoted by ‖·‖V , ‖·‖Q , and ‖·‖Q1 , respectively. Recall that completeness

of the space (V, ‖ · ‖V ) follows from the assumption meas(Ŵ1) > 0, which allows the use of Korn’s inequality.

For an element v ∈ V , we still write v for the trace of v, and we denote by vν and vτ the normal and tangential

components of v, respectively, on Ŵ given by vν = v · ν, vτ = v − vνν. Also, for a regular stress function σ , we use

the notations σν and στ , respectively, for the normal and the tangential traces, i.e., σν = (σν) ·ν and σ τ = σν−σνν.
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For every Banach space (X, ‖ · ‖X ), we use the notation C([0, T ]; X) for the space of continuous functions

defined on [0, T ] with values on X . It is known that C([0, T ]; X) is a real Banach space with the norm:

‖v‖C([0,T ];X) = max
t∈[0,T ]

‖v(t)‖X .

Moreover, for a subset K ⊂ X , we still use the symbol C([0, T ]; K ) for the set of continuous functions defined on

[0, T ] with values in K .

In the study of the mechanical problem (2.1)–(2.7), we assume that the elasticity tensor E , the constitutive function

G, the stiffness coefficient function K , and the normal compliance function p satisfy the following conditions:

⎧
⎨
⎩

(a) E = (Ei jkl) : � × S
d → S

d .

(b) Ei jkl = Ekli j = E j ikl ∈ L∞(�), 1 ≤ i, j, k, l ≤ d.

(c) There exists mE > 0 such that Eτ · τ ≥ mE‖τ‖2 for all τ ∈ S
d , a.e. in �.

(2.16)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) G : � × S
d × S

d → S
d .

(b) There exists LG > 0 such that ‖G(x, σ1, ε1) − G(x, σ2, ε2)‖ ≤ LG (‖σ1 − σ2‖ + ‖ε1 − ε2‖)

for all σ1, σ2, ε1, ε2 ∈ S
d , a.e. x ∈ �.

(c) The mapping x �→ G(x, σ , ε) is measurable on �, for all σ , ε ∈ S
d .

(d) The mapping x �→ G(x, 0, 0) belongs to Q.

(2.17)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) K : Ŵ3 × R+ → R+.

(b) There exists L K > 0 such that |K (x, r1) − K (x, r2)| ≤ L K |r1 − r2|

for all r1, r2 ∈ R+, a.e. x ∈ Ŵ3.

(c) The mapping x �→ K (x, r) is measurable on Ŵ3, for all r ∈ R+.

(d) The mapping x �→ K (x, 0) belongs to L2(Ŵ3).

(2.18)

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a) p : Ŵ3 × R → R+.

(b) There exists L p > 0 such that |p(x, r1) − p(x, r2)| ≤ L p|r1 − r2|

for all r1, r2 ∈ R, a.e. x ∈ Ŵ3.

(c) The mapping x �→ p(x, r) is measurable on Ŵ3, for all r ∈ R.

(d) (p(x, r1) − p(x, r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ Ŵ3.

(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Ŵ3.

(2.19)

For the body forces and tractions densities, we assume

f 0 ∈ C([0, T ]; L2(�)d), f 2 ∈ C([0, T ]; L2(Ŵ2)
d). (2.20)

For the initial data, we assume

u0 ∈ V, σ0 ∈ Q. (2.21)

Next, we introduce the set of admissible displacements defined by

U =
{
v ∈ V : vν ≤ g on Ŵ3

}
. (2.22)

Moreover, we define the functions q : R → R and f : [0, T ] → V by the equalities:

q(x, s) =

∫ s

0

p(x, r) dr ∀ r ∈ R, a.e. x ∈ Ŵ3, (2.23)

(f (t), v)V =

∫

�

f0(t) · v dx +

∫

Ŵ2

f2(t) · v da ∀ v ∈ V, t ∈ [0, T ]. (2.24)
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Assume now that (u, σ ) are sufficiently regular functions which satisfy (2.1)–(2.7), and let t > 0 be given. We

integrate Eq. (2.1) and make use of the initial conditions (2.7) to obtain

σ (t) = Eε(u(t)) +

∫ t

0

G(σ (s), ε(u(s))) ds + σ0 − Eε(u0). (2.25)

Then, we use integration by parts, the equilibrium equation (2.2), the boundary conditions (2.3)–(2.6), and notation

(2.23), (2.24) to see that

(σ (t), ε(v) − ε(u(t)))Q +

∫

Ŵ3

K (ξ(uν)(t)) (q(vν(t)) − q(uν(t))) da ≥ (f (t), v − u(t))V ∀ v ∈ V . (2.26)

Finally, we note that the first inequality in (2.5) combined with the definition (2.22) implies that

u(t) ∈ U. (2.27)

We gather (2.25)–(2.27) together to obtain the following variational formulation of Problem P .

Problem PV Find a displacement field u : [0, T ] → U and a stress field σ : [0, T ] → Q such that

σ (t) = Eε(u(t)) +

∫ t

0

G(σ (s), ε(u(s))) ds + σ0 − Eε(u0), (2.28)

(σ (t), ε(v) − ε(u(t)))Q +

∫

Ŵ3

K (ξ(uν)(t)) (q(vν(t)) − q(uν(t))) da ≥ (f (t), v − u(t))V ∀ v ∈ U, (2.29)

for all t ∈ [0, T ].

The unique solvability of Problem PV is given by the following result, proved in [18].

Theorem 2.1 Assume (2.16)–(2.21). Then Problem PV has a unique solution. Moreover, the solution satisfies

u ∈ C([0, T ]; U ), σ ∈ C([0, T ]; Q1). (2.30)

We assume in what follows that (2.16)–(2.21) hold, and we denote by (u, σ ) the solution of Problem PV stated

in Theorem 2.1. For each ρ > 0, let Kρ be a perturbation of the function K which satisfies the condition (2.18)

with a positive constant L Kρ . Consider the following perturbation of Problem PV .

Problem P
ρ
V Find a displacement field uρ : [0, T ] → U and a stress field σρ : [0, T ] → Q such that

σρ(t) = Eε(uρ(t)) +

∫ t

0

G(σρ(s), ε(uρ(s))) ds + σ0 − Eε(u0), (2.31)

(σρ(t), ε(v) − ε(uρ(t)))Q +

∫

Ŵ3

Kρ(ξ(uρν)(t)) (q(vρν(t)) − q(uρν(t))) da ≥ (f (t), v − uρ(t))V ∀ v ∈ U,

(2.32)

for all t ∈ [0, T ].

It follows from Theorem 2.1 that, for each ρ > 0, Problem P
ρ
V has unique solutions: (uρ, σρ) and uρ ∈

C([0, T ]; U ), σρ ∈ C([0, T ]; Q1). In addition, we have the following result, as a consequence of Theorem 5.1 in

[18].

Corollary 2.2 Assume that there exists a function G : R+ → R+ such that

{
(a) |Kρ(r) − K (r)| ≤ G(ρ) ∀ r ∈ [0, gT ], for each ρ > 0.

(b) G(ρ) → 0 as ρ → 0.
(2.33)
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Then the solution (uρ, σρ) of Problem P
ρ
V converges to the solution (u, σ ) of Problem PV :

uρ → u in C([0, T ]; V ), σρ → σ in C([0, T ]; Q1) as ρ → 0. (2.34)

Note that Corollary 2.2 states that the weak solution of the viscoplastic contact problem P depends continuously

on the stiffness coefficient.

3 Numerical solution

In this section, we discuss the numerical solution of Problem P . To this end, we use arguments similar to those used

in [15,24,25], based on an adapted combination of the penalty method and the augmented Lagrangian method for

the numerical treatment of the specific contact condition (2.5). The starting point of our method is an alternative

variational formulation of Problem P by considering a Lagrange multiplier associated with the normal contact

stress. Then, an augmented Lagrangian method is naturally used to solve the resulting alternative hybrid variational

problem.

3.1 A hybrid variational formulation

In order to derive the hybrid variational problem, we introduce a trace space Xν = { vν |Ŵ3 : v ∈ V }. We denote

by X ′
ν the dual of Xν and let 〈·, ·〉X ′

ν ,Xν
be the duality pairing. Introduce an operator K : Xν → X ′

ν and a function

I : Xν → (−∞, +∞] by

K〈uν, vν〉X ′
ν ,Xν

=

∫

Ŵ3

K (ξ(uν))p(uν)vν da ∀ uν, vν ∈ Xν,

I(uν) =

∫

Ŵ3

IR−
(uν − g) da ∀ uν ∈ Xν,

where IR−
represents the indicator function of the set R− = (−∞, 0].

We note that, for all t ∈ (0, T ), the contact condition (2.5) is equivalent to the subdifferential inclusion:

−σν(t) ∈ ∂I(uν |Ŵ3(t)) + Kuν |Ŵ3(t) in X ′
ν, (3.1)

where ∂I denotes the subdifferential of I in the sense of the convex analysis. Inclusion (3.1) allows us to supplement

the unknowns of the problem with an additional one, the so-called Lagrange multiplier. This leads to the following

hybrid variational formulation of the contact problem P .

Problem P̃V Find a displacement field u : [0, T ] → V , a stress field σ : [0, T ] → Q and a Lagrange multiplier

λν : [0, T ] → X ′
ν such that

σ (t) = Eε(u(t)) +

∫ t

0

G(σ (s), ε(u(s))) ds + σ0 − Eε(u0), (3.2)

(σ (t), ε(v))Q − 〈λν(t), vν|Ŵ3
〉X ′

ν ,Xν
= (f (t), v)V ∀ v ∈ V, (3.3)

−λν(t) ∈ ∂I(uν |Ŵ3(t)) + Kuν |Ŵ3(t) (3.4)

for all t ∈ [0, T ].

Note that Problem P̃V represents an alternative to the variational Problem PV , and is formulated in terms of

three unknown fields.

7



3.2 Numerical approximation

To describe the numerical method for the hybrid variational Problem P̃V , we first introduce some preparatory

material. We use a finite element method for the spatial discretization of the domain � and a uniform discretization

of the time interval [0, T ]. Assume that � is a polyhedral domain, and we denote by {T h} a regular family of

triangular finite element partitions of � that are compatible with the boundary decomposition: Ŵ = Ŵ1 ∪ Ŵ2 ∪ Ŵ3.

Here and below, h represents the spatial discretization parameter. In the numerical examples presented in the

next section, we approach the space V by the finite dimensional space of continuous piecewise affine functions,

denoted V h . The space Q is approximated by the finite element space of piecewise constants, denoted Qh . For

the discretization of the Lagrange multiplier λ, we consider a discrete space Y h
ν ⊂ X ′

ν ∩ L2(Ŵ3). For the time

discretization, we use evenly spaced nodes tn = n k, 0 ≤ n ≤ N , where N > 0 is an integer and k = T
N

is the

time step size. For a continuous function v(t) with values in a function space, we write v j = v(t j ) for 0 ≤ j ≤ N .

Details about the discretization step can be found in [9,26,27].

We now describe the numerical solution of the hybrid variational Problem P̃V . The numerical treatment of the

condition (3.4) is based on a combination of the penalty method for the normal compliance contact with an adapted

augmented Lagrangian argument for the unilateral condition. To develop the Lagrangian approach, we need to

introduce additional fictitious nodes for the Lagrange multiplier in the initial mesh. The introduction of these nodes

leads to specific contact elements in relation to the geometrical discretization of the interface Ŵ3. For the numerical

examples in the next section, we consider a “node-to-rigid” contact element, which is composed of one node of Ŵ3

and one Lagrange multiplier node. Details on this construction can be found in [15,24,25,28]. Then, the numerical

approximation of Problem P̃V leads at each time step n to the solution of a system of nonlinear equations of the

form:

R(u,λ) = G̃(u) + F(u,λ) = 0, (3.5)

where the operator G̃ comes from the discretization of the elastic terms of the alternative variational Problem P̃V

and the operator F comes from the discretization of contact terms. In the nonlinear system (3.5), the unknowns are

the generalized discrete displacement field u = {ui }
N h

tot

i=1 ∈ R
d·N h

tot , and the Lagrange multiplier generalized vector

λ = {λi }
N h

Ŵ3

i=1 ∈ R
d·N h

Ŵ3 in which N h
tot and N h

Ŵ3
are the total number of nodes issued from the discretization of � and

Ŵ3, respectively. Here ui represents the value of the function uh at the i-th node of T h , and λi denotes the value of

the function λh at the i-th node of the discretized contact interface. In addition, G̃(u) ∈ R
d·N h

tot × R
d·N h

Ŵ3 represents

the generalized elastic term and is defined by G̃(u) = (G(u), 0d·N h
Ŵ3

), where 0d·N h
Ŵ3

is the zero element of R
d·N h

Ŵ3

and the term G(u) ∈ R
d·N h

tot is given by the equality:

(G(u) · v)
R

d×Nh
tot

= (σ h, ε(vh))Q − (f , vh)V ∀ v = {vi }
N h

tot

i=1, ∀ vh ∈ V h,

where σ h is related to uh by the discrete constitutive law (3.2). The contact operator F(u,λ) in equation (3.5) is

related to the contact condition, (3.4). It is defined by

(F(u,λ) · (v, γ ))
R

d·Nh
tot ×R

d·Nh
Ŵ3

=

∫

Ŵ3

(
(λh

ν + r(uh
ν − g))+ν

)
· vh da

+

∫

Ŵ3

−1

r

(
λh − (λh

ν + r(uh
ν − g))+ν

)
· γ h da

+

∫

Ŵ3

K (ξ(χ[0,g](u
h
ν )u

h
ν )p(χ[0,g](u

h
ν )u

h
ν )ν · vhda

for u, v ∈ R
d·N h

tot , λ, γ ∈ R
d·N h

Ŵ3 , uh, vh ∈ V h , and λh, γ h ∈ Y h
ν , where r is a positive penalty coefficient, and

χE represents the characteristic function of the set E . In contrast to the problem studied in [15], here we have

8



to consider the discretization of the history-dependent term ξ(χ[0,g](u
h
ν )u

h
ν ) and, to this end, we used an implicit

rectangular method by approximating ξ(r)(tn) with
∑n

i=1 k (r+)i .

The nonlinear system (3.5) is solved by a generalized Newton method. The pair ũ = (u,λ) is computed

simultaneously by using the following linearized iterative scheme:

For i = 0, . . . ,

Solve (Ki + Ti )ũi+1 = −R(ũi )

ũi+1 = ũi + ũi+1, (3.6)

until convergence.

At each Newton iteration of index i , the linear symmetric system (3.7) is solved by using a conjugate gradient

method with efficient preconditioners, in order to overcome the poor conditioning of the system matrix due to the

contact terms. For instance, we use an ILU preconditioner based on an Element-By-Element procedure, see [29]

for details. The coefficient matrix of the linear system (3.7) is the sum of an elastic stiffness matrix Ki and a contact

tangent matrix Ti . Note that Ki = DũG(u) represents the differential of the functions G with respect to the variable

ũ, and Ti ∈ ∂ũF(ũi ) represents the generalized Jacobian of F at ũi . Due to the fact that the measure of the set of

the points in which the function F is nondifferentiable is zero, Ti is reduced to a single-valued classical Jacobian

matrix. In the case of the “node-to-rigid” contact element composed of one elastic node of Ŵ3 and one contact

Lagrange multiplier node, the elementary contact tangent matrix Tec
i takes the form:

Tec
i =

(
r(M + N) M

M 1
r
(M − I)

)
.

Here I is the 2 × 2 identity matrix, N and M are 2 × 2 block matrices which are defined according to the contact

state:

N =

{
0 if uν < 0,

u+
ν ν ⊗ Du K (ξ) + K (ξ)ν ⊗ ν if 0 ≤ uν < g,

and

M =

{
0 if uν < g,

ν ⊗ ν if uν ≥ g,

where 0 is the 2 × 2 zero matrix, and u ⊗ v represents the tensor product of two vectors u and v, defined by

(u ⊗ v)l,m = ulvm in which l, m = 1, . . . , d . The global contact tangent matrix Ti is obtained by a finite element

assembly procedure from all the contact elements T
j
i , 1 ≤ j ≤ N h

Ŵ3
.

4 Numerical simulations

The aim of this section is to present some results of numerical simulations. We pay particular attention to the

mechanical interpretation of the contact condition (2.5). We complete them with two parametric studies which

illustrate the dependence of the numerical solution with respect to the stiffness coefficient and the numerical

discretization parameters.

4.1 The physical setting

A representative academic example of compression of a ball against a foundation is considered. Due to the symmetry

of the problem, we only need to consider the physical setting depicted in Fig. 1. There,

� =
{
(x1, x2) ∈ R

2 : x1 > 0, x2
1 + (x2 − 1)2 < 1

}
,

9



Fig. 1 Physical setting:

compression of a half-ball

against a foundation

Ŵ1 = {0} × [0, 2],

Ŵ2 =
{
(x1, x2) ∈ R

2 : x1 ≥ 0, x2 ≥ 1, x2
1 + (x2 − 1)2 = 1

}
,

Ŵ3 =
{
(x1, x2) ∈ R

2 : x1 ≥ 0, x2 < 1, x2
1 + (x2 − 1)2 = 1

}
.

The domain � represents the cross section of a three-dimensional deformable body subject to the action of tractions

in such a way that a plane stress hypothesis is valid. The horizontal component of the displacement field vanishes

on Ŵ1 and vertical tractions act on Ŵ2. No body forces are assumed to act on the body during the process. The body

is in frictionless contact with an obstacle on the part Ŵ3 of its boundary. For the discretization in Fig. 1, we use

30,808 elements with 128 elements containing sides on the contact boundary.

We assume that the mechanical response of the ball is purely elastic, i.e., we model the material’s behavior with

a constitutive law of the form (1.1) in which the function G vanishes. In addition, we assume that the material

is homogeneous and isotropic. We denote by E and κ the Young modulus and the Poisson ratio of the material,

respectively, and use δi j for the Kronecker symbol. Then, the elasticity tensor E is given by

(Eτ )i j =
Eκ

(1 + κ)(1 − 2κ)
(τi i )δi j +

E

1 + κ
τi j , 1 ≤ i, j ≤ 2, (4.1)

where the summation convention is used. For the numerical experiments, we use the following data:

E = 1000 N/m2, κ = 0.3,

f0 = (0, 0) N/m2, f2 = (−1000 × t, 0) N/m on Ŵ2,

p(r) = r+, K (ξ) = cν(1 + αξ)β where ξ(r)(tn) =
∑n

i=0
k (r+)i ,

cν = 100 N/m2, α = 20, β = ±1, g = 0.2 m,

T = 1.1 s, N = 11, k = 0.1.

We note that for β = 1 the function ξ �→ K (ξ) is increasing and, therefore, the stiffness coefficient increases

with the history of the penetration. This behavior models the hardening process of the foundation. In contrast, for

β = −1, the function ξ �→ K (ξ) is decreasing, and, therefore, the stiffness coefficient decreases with the history

of the penetration. This behavior models the softening process of the foundation.
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t = 0.8s

Fig. 2 Evolution of deformed meshes and contact interfaces forces in the case β = 1

4.2 Mechanical interpretation of the contact model

Our numerical simulation results are depicted in Figs. 2–7. Below we provide some comments on these results,

with emphasis on their mechanical interpretations.

First, in Fig. 2, we show the deformed meshes and the contact interface forces with β = 1, at times t = 0.2 s,

t = 0.5 s, t = 0.8 s and t = 1.1 s. In Fig. 3, we show the deformed meshes and the contact interface forces at the

same moments of time, in the case where β = −1. A comparison of these figures reveals that, at each time moment,

the penetrations obtained with β = 1 are smaller than that with β = −1. This agrees with the fact that the case

β = 1 corresponds to a hardening of the layer of thickness g whereas β = −1 corresponds to a softening of the

layer.

Note that in Fig. 2, all the contact nodes are in the state of normal compliance, since the penetration does not

reach the limit g. In contrast, in Fig. 3, a large proportion of the contact nodes is in the state of unilateral contact;

there, the complete flattening of the asperities of size g = 0.2 m is reached, due to the decreasing of the stiffness

coefficient. This behavior is confirmed in Fig. 4 in which the evolution of the stiffness coefficient is plotted at

11



t = 0.8s

Fig. 3 Evolution of deformed meshes and contact interfaces forces in the case β = −1

each time increment of the process, for both cases of history dependence. We note that the coefficient grows from

100 N/m2 to 323 N/m2 for the case β = 1, while the coefficient decreases from 100 N/m2 to 21 N/m2 for the case

β = −1.

We now compare the contact condition (2.5) with two other contact conditions, found in the literature, which

can be obtained as limit cases of (2.5). The first one is a contact condition with normal compliance and unilateral

constraint, introduced in [13] and studied in [15,16]; it can be obtained from the condition (2.5) in the case where

K is a constant, and it models the contact with an elastic-rigid foundation, without hardening or softening. The

second one is the classical normal compliance condition introduced in [22] and studied, for instance, in [19–21];

this condition models the contact with an elastic foundation; it is characterized by the fact that the penetrations are

not limited, and it can be obtained from the contact condition (2.5) in the limit g → ∞.

To perform our comparison, in the upper two graphs in Fig. 5, we plot the deformed configurations as well as

the contact interface forces corresponding to Problem PV at the final time t = 1.1 s, in the case β = 1 and β = −1.

In the lower two graphs, we plot the deformed configurations as well as the contact interface forces corresponding

12



Fig. 4 Evolution of the

history-dependent stiffness

coefficient during the time

process
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Fig. 5 Deformed mesh and contact interface forces for Problem PV at t = 1.1 s for various cases of the contact condition (2.5)
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Fig. 6 Evolution of the penetration for various cases of contact

conditions during the time process

Fig. 7 Evolution of the normal contact stress for various cases

of contact conditions during the time process

to Problem PV with α = 0, g = 0.2 m and α = 0, g = 2000 m, respectively, which correspond to the contact

condition with normal compliance and unilateral constraint and the classical normal compliance contact condition,

respectively. Observe that the penetrations obtained in the case with increasing stiffness coefficient (the case β = 1)

are smaller than the penetrations obtained in the case where the stiffness coefficient is constant (the case of normal

compliance with unilateral constraint and the case of normal compliance). The penetrations obtained in the case

with decreasing stiffness coefficient (the case β = −1) are larger than that obtained in the case where the stiffness

coefficient is constant (the case of normal compliance with unilateral constraint and the case of normal compliance).

This behavior is, again, a consequence of the hardness and softness of the foundation. It is confirmed in Fig. 6, where

the penetrations and the normal contact stresses are plotted at each time increment of the process. The magnitude

of the corresponding normal stresses related these four cases of contact conditions, at each time increment of the

process, is plotted in Fig. 7.

4.3 Parametric studies

We now proceed with two parametric studies which highlight the behavior of the numerical solution of the contact

problem with respect to the stiffness coefficient, on one hand, and illustrate the numerical convergence of the discrete

scheme, on the other hand.

First, we present numerical evidence of the convergence result given in Corollary 2.2. To this end, we consider

the discrete solution (uhk
ρ , σ hk

ρ ) of the perturbated Problem P
ρ
V constructed with the perturbed stiffness coefficient

Kρ(ξ) = ρcν(1 +αξ)β , with ρ being a small positive parameter which converges to zero. We denote by (uhk
∗ , σ hk

∗ )

the discrete solution of the contact Problem PV with K ≡ 0. Obviously, the functions Kρ and K ≡ 0 satisfy

condition (2.33); therefore, Corollary 2.2 applies. Also, note that for K ≡ 0, the contact conditions (2.5) reduce to

the classical Signorini condition in a form with the gap g, which models the contact with a perfectly rigid foundation.

We denote by P∗
V this particular form of Problem P and stress that it describes a limit situation when the layer of

soft materials disintegrates by itself and does not offer resistance to penetration.

In Fig. 8, we plot the numerical estimations of the following difference:

‖uhk
ρ − uhk

∗ ‖V + ‖σ hk
ρ − σ hk

∗ ‖Q

at the time t = 1.1 s, for various values of the parameter ρ. We change ρ from 1 to 10−6. We note that these

numerical estimations converge to zero when ρ tends to zero. This provides numerical evidence of the convergence
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Fig. 8 Numerical estimates

of at t = 1.1 s for various

values of the parameter ρ
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result (2.34). This convergence is also illustrated in Fig. 9, in which we plot the deformed configurations as well

as the contact interface forces for four values of the parameter ρ. We note that for ρ = 1, all the contact nodes are

in the state of normal compliance, while for ρ = 0.01, almost all the contact nodes are in the state of unilateral

contact with a gap g = 0.2 m.

Finally, we provide a parametric study with respect to the discretization parameters h and k in order to investigate

the numerical convergence order of the fully discrete scheme. To this end, we compute a sequence of numerical

solutions obtained by using uniform partitions of the time interval [0, T ] and quasi-uniform triangulations of the

domain �. We start with the values h = 1/4 and k = 1/4 which are successively halved. The parameter h represents

the average size of a finite element of the mesh, and k is the time step. The numerical results reported in Figs. 1, 2,

3, 4, 5, 6, and 7 correspond to h = 1/128 and k = 1/128. In addition, the numerical solution for h = 1/512 and

k = 1/512 is taken as the “true” solution u, and we presume that this discretization corresponds to a problem with

472,074 degrees of freedom and 470,252 elements. Then, we compute the numerical errors ‖u − uhk‖V at t = 1.1s

for several values of the discretization parameters h and k. The numerical results are presented in Fig. 10, where the

dependence of the error estimates on the sum h + k is plotted. We conclude from here that our numerical method

has a linear asymptotical convergence behavior with respect to the discretization parameters h and k. A rigorous

proof of this statement represents an open question which, clearly, deserves to be investigated in the future.

5 Discussion

Studies of contact problems related to modeling, mathematical analysis, numerical analysis, and numerical sim-

ulations have attracted steady attention from researchers in engineering and mathematics. This paper provides a

numerical study of a newly formulated model in contact mechanics. The model concerns frictionless contact for

viscoplastic materials. The process is quasistatic, and the contact is modeled with normal compliance and unilateral

constraint; the novelty of the model is due to the fact that the stiffness coefficient is allowed to depend on the history

of the penetration. The problem is highly nonlinear, and it is represented by a system of nonlinear, multivalued

equations. The main contribution of the paper is the introduction of an efficient numerical method to solve the

problem. Numerical results on some examples are reported to show the good performance of the method.

Further work along the lines of the subject of the paper are (a) a rigorous error analysis of the numerical

method, including convergence and error estimates; and (b) adaptive solution algorithms. These tasks are by no

means trivial, due to the form of the boundary integral term in the variational inequality of the system. To develop

adaptive solution algorithms, it is necessary to first derive a posteriori error estimate for the numerical method (cf.

[30–36] on a posteriori error analysis and adaptive solution algorithms for simpler models of elliptic or parabolic

variational inequalities). Success of the work on these two aspects will not only lead to more efficient and effective

numerical methods for solving the contact problem of this paper, but also be useful in numerically solving other

history-dependent contact problems.
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Fig. 9 Deformed mesh and contact interface forces for Problem P
ρ
V at t = 1.1 s, for various parameters of ρ

Fig. 10 Numerical error

estimates at t = 1.1 s
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