
HAL Id: hal-01262444
https://hal.science/hal-01262444v2

Preprint submitted on 12 Feb 2016 (v2), last revised 9 May 2017 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Enforcement of (Timed) Properties with
Uncontrollable Events

Matthieu Renard, Yliès Falcone, Antoine Rollet, Thierry Jéron, Hervé
Marchand

To cite this version:
Matthieu Renard, Yliès Falcone, Antoine Rollet, Thierry Jéron, Hervé Marchand. Optimal Enforce-
ment of (Timed) Properties with Uncontrollable Events. 2016. �hal-01262444v2�

https://hal.science/hal-01262444v2
https://hal.archives-ouvertes.fr

Optimal Enforcement of (Timed) Properties
with Uncontrollable Events

Matthieu Renard1, Yliès Falcone2, and Antoine Rollet1

1 LaBRI, Bordeaux INP, Bordeaux, France, First.Last@labri.fr
2 Univ. Grenoble Alpes, Inria, LIG, F-38000 Grenoble, France, ylies.falcone@imag.fr

Abstract. This paper deals with runtime enforcement of untimed and timed properties with
uncontrollable events. Runtime enforcement consists in defining and using mechanisms that
modify the executions of a running system to ensure their correctness with respect to a desired
property. We introduce a framework that takes as input any regular (timed) property described
by a deterministic automaton over an alphabet of events, with some of these events being
uncontrollable. An uncontrollable event cannot be delayed nor intercepted by an enforcement
mechanism. Enforcement mechanisms should satisfy important properties, namely soundness,
compliance, and optimality - meaning that enforcement mechanisms should output as soon as
possible correct executions that are as close as possible to the input execution. We define the
conditions for a property to be enforceable with uncontrollable events. Moreover, we synthesise
sound, compliant, and optimal descriptions of runtime enforcement mechanisms at two levels
of abstraction to facilitate their design and implementation.

1 Introduction

Runtime verification is a powerful technique which aims at checking the conformance of the exe-
cutions of a system under scrutiny w.r.t. some specification. It consists in running a mechanism that
assigns verdicts to a sequence of events produced by the instrumented system w.r.t. a property for-
malising the specification. This paper focuses on runtime enforcement (cf. [17,10,9,2]) which goes
beyond pure verification at runtime and studies how to react to a violation of specifications. In run-
time enforcement, an enforcement mechanism (EM) takes a (possibly incorrect) execution sequence
as input, and outputs a new sequence. Enforcement mechanisms should be sound and transparent,
meaning that the output should satisfy the property under consideration and should be as close as
possible to the input. When dealing with timed properties, EMs can act as delayers over the input
sequence of events [14,12,13]. That is, whenever possible, EMs buffer input events for some time
and then release them in such a way that the output sequence of events satisfies the property. The
general scheme is given in Fig. 1.

Motivations. In this paper, we focus on enforcement of properties with uncontrollable events. In-
troducing uncontrollable events is a step towards more realistic runtime enforcement. As a matter
of fact, uncontrollable events naturally occur in many applications scenarios where the EM has no
control over certain input events. For instance, certain events from the environment may be out of
the scope of the mechanism at hand. This situation arises for instance in avionic systems where a
command of the pilot has consequences on a specific component. In this critical domain, it is usual
to add control mechanisms in specific points of the architecture in order to verify that nothing wrong
happens. Some events may only be observed by these mechanisms in order to decide if a situation
is abnormal, but they cannot be acted upon, meaning that they are uncontrollable. For instance, the
“spoiler activation”3 command triggered by the pilot is sent by the panel to a control flight system,

3 The spoiler is a device used to reduce the lift of an aircraft.

S
σ

E
E(σ)

ϕ

Fig. 1: Schematic description of an enforcement mechanism E, modifying the execution σ of the
system S to E(σ), so that it satisfies the property ϕ.

and this leads finally to a specific event on the spoilers. Placing an EM directly on the spoiler per-
mits to prevent it from incoherent events by blocking them, according to the pilot commands. These
commands are out of the scope of the EM, i.e. observable but uncontrollable. In the timed setting,
uncontrollable events may be urgent messages that cannot be delayed by an enforcement mecha-
nism. Similarly, when a data-dependency exists between two events (e.g., between a write event that
displays a value obtained from a previous read event), the first read event is somehow uncontrollable
as it cannot be delayed by the enforcement mechanism without preventing the write event to occur
in the monitored program.

Challenges. Considering uncontrollable events in the timed setting induces new challenges. Indeed,
enforcement mechanisms may now receive events that cannot be buffered and have to be released
immediately in output. Since they influence the satisfaction of the property under scrutiny, the delays
between controllable events stored in memory have to be recomputed upon the reception of each
uncontrollable event. Moreover, it is necessary to prevent the system from reaching a bad state upon
reception of any sequence of uncontrollable events. Then the occurrence of such events has to be
anticipated, meaning that all possible sequences of uncontrollable events have to be considered by
the enforcement mechanism. It turns out that a property may not be enforceable because of certain
input sequences. Intuitively, enforceability issues arise because some sequences of uncontrollable
events that lead the property to be violated cannot be avoided. Thus, new enforcement strategies are
necessary for both untimed and timed properties.

Contributions. We introduce a framework for enforcement monitoring for regular untimed and
timed properties with uncontrollable events. Considering properties described with automata, we
present enforcement mechanisms at two levels of abstraction. The synthesised enforcement mecha-
nisms are sound, compliant and optimal. When considering uncontrollable events, it turns out that
the usual notion of transparency has to be weakened. As we shall see, the initial order between
uncontrollable and controllable events can change in output, contrary to what is prescribed by trans-
parency. Thus, we replace transparency with a new notion, namely compliance, prescribing that the
order of controllable events is maintained while uncontrollable events are output as soon as they are
received. We define a property to be enforceable with uncontrollable events when it is possible to
obtain a sound and compliant enforcement mechanism for any input sequence. In the timed setting,
the executions are associated with dates from which the property is enforceable.

This paper is a revised and extended version of [15] in which optimality of the enforcement
mechanism has been added. Some definitions have been simplified and examples added. All the
proofs of soundness, compliance, optimality and equivalence between the different descriptions of
the enforcement mechanism are provided.

Outline. Section 2 introduces preliminaries and notations. Sections 3 and 4 present the enforce-
ment framework with uncontrollable events in the untimed and timed settings, respectively, where
enforcement mechanisms are defined at two levels of abstraction. Section 5 discusses related work.
Section 6 presents conclusions and perspectives.

2 Preliminaries and Notation

Untimed notions. An alphabet is a finite set of symbols. A word over an alphabet Σ is a sequence
overΣ. The set of finite words overΣ is denotedΣ∗. The length of a finite word w is noted |w|, and
the empty word is noted ε. Σ+ stands for Σ∗ \ {ε}. A language over Σ is any subset L ⊆ Σ∗. The
concatenation of two words w and w′ is noted w.w′ (the dot is omitted when clear from the context).
A word w′ is a prefix of a word w, noted w′ 4 w if there exists a word w′′ such that w = w′.w′′.
The word w′′ is called the residual of w after reading the prefix w′, noted w′′ = w′

−1
.w. Note

that w′.w′′ = w′.w′
−1
.w = w. These definitions are extended to languages in the natural way. A

language L ⊆ Σ∗ is extension-closed if for any words w ∈ L and w′ ∈ Σ∗, w.w′ ∈ L. Given a
word w and an integer i such that 1 ≤ i ≤ |w|, we note w(i) the i-th element of w. Given a tuple
e = (e1, e2, . . . , en) of size n, for an integer i such that 1 ≤ i ≤ n, we note Πi the projection on
the i-th coordinate, i.e. Πi(e) = ei. Given a word w ∈ Σ∗ and Σ′ ⊆ Σ, we define the restriction
of w to Σ′, noted w|Σ′ , as the word w′ ∈ Σ′

∗ whose letters are the letters of w belonging to Σ′

in the same order. Formally, ε|Σ′ = ε and ∀σ ∈ Σ∗,∀a ∈ Σ, (w.a)|Σ′ = w|Σ′ .a if a ∈ Σ′, and
(w.a)|Σ′ = w|Σ′ otherwise.

2

Automata. An automaton is a tuple 〈Q, q0, Σ,−→, F 〉, where Q is the set of states, q0 ∈ Q is the
initial state, Σ is the alphabet, −→ ⊆ Q × Σ × Q is the transition relation and F ⊆ Q is the
set of accepting states. Whenever there exists (q, a, q′) ∈ −→, we note it q a−→ q′. Relation −→ is
extended to words σ ∈ Σ∗ by noting q σ.a−−→ q′ whenever there exists q′′ such that q σ−→ q′′ and
q′′

a−→ q′. Moreover, for any q ∈ Q, q ε−→ q always holds. An automaton A = 〈Q, q0, Σ,−→, F 〉
is deterministic if ∀q ∈ Q,∀a ∈ Σ, (q

a−→ q′ ∧ q a−→ q′′) =⇒ q′ = q′′. A is complete if
∀q ∈ Q,∀a ∈ Σ,∃q′ ∈ Q, q

a−→ q′. A word w is accepted by A if there exists q ∈ F such that
q0

w−→ q. The language (i.e. set of all words) accepted by A is noted L(A). A property is a language
over an alphabet Σ. A regular property is a language accepted by an automaton. In the sequel, we
shall assume that a property ϕ is represented by a deterministic and complete automaton Aϕ.

Timed languages. Let R≥0 be the set of non-negative real numbers, and Σ a finite alphabet of
actions. An event is a pair (t, a) ∈ R≥0 × Σ. We define date(t, a) = t and act(t, a) = a the
projections of events on dates and actions respectively. A timed word overΣ is a word over R≥0×Σ
whose real parts are ascending, i.e. σ is a timed word if σ ∈ (R≥0 × Σ)∗ and ∀i ∈ [1; |σ| −
1],date(w(i)) ≤ date(w(i + 1)). tw(Σ) denotes the set of timed words over Σ. For a timed word
σ = (t1, a1).(t2, a2) . . . (tn, an) and an integer i such that 1 ≤ i ≤ |σ|, ti is the time elapsed before
action ai occurs. We naturally extend the notions of prefix and residual to timed words. We note
time(σ) = date(σ(|σ|)) for σ 6= ε, and time(ε) = 0. We define the observation of σ at time t as the
timed word obs(σ, t) = max4({σ′ | σ′ 4 σ∧time(σ′) ≤ t}), corresponding to the word that would
be observed at date t if events were received at the date they are associated with. We also define the
remainder of the observation of σ at time t as nobs(σ, t) = (obs(σ, t))−1.σ, which corresponds to
the events that are to be received after date t. The untimed projection of σ is ΠΣ(σ) = a1.a2 . . . an,
it is the sequence of actions of σ with dates ignored. σ delayed by t ∈ R≥0 is the word noted σ +t t
such that t is added to all dates: σ +t t = (t1 + t, a1).(t2 + t, a2) . . . (t|σ| + t, a|σ|). Similarly, we
define σ−tt, when t1 ≥ t, to be the word (t1−t, a1).(t2−t, a2) . . . (t|σ|−t, a|σ|). We also extend the
definition of the restriction of σ to Σ′ ⊆ Σ to timed words, such that ε|Σ′ = ε, and for σ ∈ tw(Σ)
and (t, a) such that σ.(t, a) ∈ tw(Σ), (σ.(t, a))|Σ′ = σ|Σ′ .(t, a) if a ∈ Σ′, and (σ.(t, a))|Σ′ = σ|Σ′

otherwise. A timed language is any subset of tw(Σ). The notion of extension-closed languages is
naturally extended to timed languages. We also extend the notion of extension-closed languages to
sets of elements composed of a timed word and a date: a set S ⊆ tw(Σ)× R≥0 is timed-extension-
closed if for any (σ, t) ∈ S, for all w ∈ tw(Σ) such that σ.w ∈ tw(Σ), for all t′ ≥ t, (σ.w, t′) ∈ S.
Moreover, we define an order on timed words: we say that σ′ is a delayed prefix of σ, noted σ 4d σ′,
whenever ΠΣ(σ

′) 4 ΠΣ(σ) and ∀i ∈ [1; |σ′|−1],date(σ(i)) ≤ date(σ′(i)). Note that the order is
not the same in the different constraints: ΠΣ(σ

′) is a prefix of ΠΣ(σ), but dates in σ′ exceed dates
in σ. We also define a lexical order ≤lex on timed words with identical untimed projections, such
that ε ≤lex ε, and for two words σ and σ′ such that ΠΣ(σ) = ΠΣ(σ

′), and two events (t, a) and
(t′, a), (t′, a).σ′ ≤lex (t, a).σ if t′ < t ∨ (t = t′ ∧ σ′ ≤lex σ).

Consider for example the timed word σ = (1, a).(2, b).(3, c).(4, a) over the alphabet Σ =
{a, b, c}. Then, ΠΣ(σ) = a.b.c.a, obs(σ, 3) = (1, a).(2, b).(3, c), nobs(σ, 3) = (4, a), and if
Σ′ = {b, c}, σ|Σ′ = (2, b) . (3, c), and for instance σ 4d (1, a) . (2, b) . (4, c), and σ ≤lex

(1, a).(3, b).(3, c).(3, a). Moreover, if w = (1, a).(2, b), then w−1.σ = (3, c).(4, a).

Timed automata. Let X = {X1, X2, . . . , Xn} be a finite set of clocks. A clock valuation is a
function ν from X to R≥0. The set of clock valuations for the set of clocks X is noted V(X),
i.e., V(X) = {ν | ν : X → R≥0}. We consider the following operations on valuations: for any
valuation ν, ν + δ is the valuation assigning ν(Xi) + δ to every clock Xi ∈ X; for any subset
X ′ ⊆ X , ν[X ′ ← 0] is the valuation assigning 0 to each clock in X ′, and ν(Xi) to any other
clock Xi not in X ′. G(X) denotes the set of guards consisting of boolean combinations of simple
constraints of the form Xi ./ c with Xi ∈ X , c ∈ N, and ./∈ {<,≤,=,≥, >}. Given g ∈ G(X)
and a valuation ν, we write ν |= g when for every simple constraintXi ./ c in g, ν(Xi) ./ c ≡ true .

Definition 1 (Timed automaton [1]). A timed automaton (TA) is a tuple A = 〈L, l0, X, Σ, ∆,G〉,
such that L is a set of locations, l0 ∈ L is the initial location, X is a set of clocks, Σ is a finite set
of events, ∆ ⊆ L×G(X)×Σ × 2X ×L is the transition relation, and G ⊆ L is a set of accepting
locations. A transition (l, g, a,X ′, l′) ∈ ∆ is a transition from l to l′, labelled with event a, with
guard defined by g, and with the clocks in X ′ to be reset.

3

q0 q1

q3

q2
Auth

Auth
LockOff
Write

LockOn

Auth
LockOn

LockOff

Write
LockOn
LockOff

Write

Σ

Fig. 2: Property ϕex modelling writes on a shared storage device

The semantics of a timed automaton A is a timed transition system JAK = 〈Q, q0, Γ, →, FG〉
where Q = L × V(X) is the (infinite) set of states, q0 = (l0, ν0) is the initial state, with ν0 =
ν[X ← 0], FG = G × V(X) is the set of accepting states, Γ = R≥0 × Σ is the set of transition
labels, each one composed of a delay and an action. The transition relation → ⊆ Q × Γ × Q is

a set of transitions of the form (l, ν)
(δ,a)−−−→ (l′, ν′) with ν′ = (ν + δ)[Y ← 0] whenever there is a

transition (l, g, a, Y, l′) ∈ ∆ such that ν + δ |= g, for δ ≥ 0.

A timed automaton A = 〈L, l0, X,Σ,∆,G〉 is deterministic if for any (l, g1, a, Y1, l
′
1) and

(l, g2, a, Y2, l
′
2) in ∆, g1 ∧ g2 is unsatisfiable, meaning that only one transition can be fired at any

time.A is complete if for any l ∈ L and any a ∈ Σ, the disjunction of the guards of all the transitions
leaving l and labelled by a is valid (i.e., it evaluates to true for any clock valuation). An example of
timed automaton is given in Fig. 8.

A run ρ from q ∈ Q is a valid sequence of transitions in JAK starting from q, of the form

ρ = q
(δ1,a1)−−−−→ q1

(δ2,a2)−−−−→ q2 . . .
(δn,an)−−−−−→ qn. The set of runs from q0 is noted Run(A) and

RunFG
(A) denotes the subset of runs accepted by A, i.e. ending in a state in FG. The trace of

the run ρ previously defined is the timed word (t1, a1).(t2, a2) . . . (tn, an), with, for 1 ≤ i ≤ n,
ti =

∑i
k=1 δk. Thus, given the trace σ = (t1, a1).(t2, a2) . . . (tn, an) of a run ρ from a state q ∈ Q

to q′ ∈ Q, we can define w = (δ1, a1).(δ2, a2) . . . (δn, an), with δ1 = t1, and ∀i ∈ [2;n], δi =

ti − ti−1, and then q w−→ q′. To ease the notation, we will only consider traces and note q σ−→ q′

whenever q w−→ q′ for the previously defined w. Note that to concatenate two traces σ1 and σ2, it is
needed to delay σ2: the concatenation σ of σ1 and σ2 is the trace defined as σ = σ1.(σ2+ttime(σ1)).
Thus, if q σ1−→ q′

σ2−→ q′′, then q σ−→ q′′.

Timed properties. A regular timed property is a timed language ϕ ⊆ tw(Σ) that is accepted by a
timed automaton. For a timed word σ, we say that σ satisfies ϕ, noted σ |= ϕ whenever σ ∈ ϕ. We
only consider regular timed properties whose associated automaton is complete and deterministic.

Given a deterministic automaton A such that Q is the set of states of JAK and −→ its transition
relation, and a word σ, for q ∈ Q, we note q after σ = q′, where q′ is such that q σ−→ q′. Since A
is deterministic, there exists only one such q′. We note Reach(σ) = q0 after σ. These definitions
are valid both in the untimed and timed cases. For the timed cases, we also allow to add an extra
parameter to after and Reach, that represents an observation time. Then, for q ∈ Q, t ∈ R≥0,
and σ ∈ tw(Σ), q after (σ, t) = (l, ν + t − time(obs(σ, t))), where (l, ν) = q after (obs(σ, t)),
and Reach(σ, t) = q0 after (σ, t). We extend these definitions to languages: if L is a language,
q after L =

⋃
σ∈L q after σ and Reach(L) = q0 after L.

3 Enforcement Monitoring of Untimed Properties

In this section, ϕ is a regular property defined by a complete and deterministic automaton Aϕ =
〈Q, q0, Σ,−→, F 〉. Recall that the general scheme of an enforcement mechanism (EM) is given in
Fig. 1, where S represents the running system, σ its execution,E the enforcement mechanism, ϕ the
property to enforce, and E(σ) the output of the enforcement mechanism, which should satisfy ϕ.

4

We consider uncontrollable events in the set Σu ⊆ Σ. These events cannot be modified by an
EM, i.e. they cannot be suppressed nor buffered, so they must be output by the EM whenever they are
received. Let us note Σc = Σ \Σu the set of controllable events, which are on the scope of the EM.
An EM can decide to buffer them to delay their emission, but it cannot suppress them (nevertheless, it
can delay them endlessly, keeping their order unchanged).4 Thus, an EM may interleave controllable
and uncontrollable events.

3.1 Enforcement Functions and their Requirements

In the sequel, we consider an alphabet of actions Σ. An enforcement function is a description of the
input/output behaviour of an EM. Formally, we define enforcement functions as follows:

Definition 2 (Enforcement function). An enforcement function is a function E : Σ∗ → Σ∗, that
is increasing on Σ∗ (w.r.t 4).

An enforcement function is a function that modifies an execution, and that cannot remove events it
has already output.

In the sequel, we define the requirement on an EM and express them on enforcement functions.
As stated previously, the usual purpose of an EM is to ensure that the executions of a running
system satisfy a property, thus its enforcement function has to be sound, meaning that its output
always satisfies the property:

Definition 3 (Soundness). An enforcement function E : Σ∗ → Σ∗ is sound with respect to ϕ in an
extension-closed set S ⊆ Σ∗ if ∀σ ∈ S,E(σ) |= ϕ.

Since there are some uncontrollable events that are only observable by the enforcement mechanism,
receiving uncontrollable events could lead to the property not being satisfied by the output of the
enforcement mechanism. Even more, some uncontrollable sequences could lead to a state of the
property that would be a non-accepting sink state, meaning that the property would then be unsatis-
fiable by the enforcement mechanism. This is why, in Definition 3, soundness is not defined for all
words in Σ∗, but in a subset S, since it might happen that it is impossible to ensure it from the initial
state. This set S needs to be extension-closed to ensure that the property is always satisfied once it
has been. If it were not extension-closed, soundness would only mean that the property is sometimes
satisfied (in particular, the identity function would be sound in ϕ).

The usual notion of transparency in enforcement monitoring (cf. [17,10]) states that the out-
put of an enforcement function is the longest prefix of the input satisfying the property. The name
“transparency” stems from the fact that correct executions are left unchanged. However, because of
uncontrollable events, events may be released in a different order from the one they are received.
Therefore, transparency can not be ensured, and we define the weaker notion of compliance.

Definition 4 (Compliance). E is compliant w.r.t. Σu and Σc, noted
compliant(E,Σu, Σc), if ∀σ ∈ Σ∗, E(σ)|Σc

4 σ|Σc
∧ E(σ)|Σu

= σ|Σu
∧ ∀u ∈ Σu, E(σ).u 4

E(σ.u).

Intuitively, compliance states that the EM does not change the order of the controllable events and
emits uncontrollable events immediately upon their reception, possibly followed by stored control-
lable events. When clear from the context, the partition is not mentioned: E is said to be compliant,
and we note it compliant(E).

We say that a property ϕ is enforceable whenever there exists a compliant function that is sound
with respect to ϕ.

In addition, an enforcement mechanism should be optimal in the sense that its output sequences
should be maximal while preserving soundness and compliance. In the same way we defined sound-
ness in an extension-closed set, we define optimality as follows:

Definition 5 (Optimality). An enforcement function E : Σ∗ → Σ∗ is optimal in an extension-
closed set S ⊆ Σ∗ if:

∀E′ : Σ∗ → Σ∗,∀σ ∈ S, ∀a ∈ Σ,
(compliant(E′) ∧ E′(σ) = E(σ) ∧ |E′(σ.a)| > |E(σ.a)|) =⇒ (∃σu ∈ Σ∗u, E′(σ.a.σu) 6|= ϕ).

4 This choice appeared to us as the most realistic one. Extending the notions presented in this section in order
to handle enforcement mechanisms with suppression is rather simple.

5

Intuitively, optimality states that if there exists a compliant enforcement function that outputs a
longer word than an optimal enforcement function, then there must exist a sequence of uncontrol-
lable events that would lead the output of that enforcement function to violate ϕ. This would imply
that this enforcement function is not sound because of σ.a.σu. Thus, an enforcement function that
outputs a longer word than an optimal enforcement function can not be sound and compliant. Since
it is not always possible to satisfy the property from the beginning, this condition is restrained to an
extension-closed subset of Σ∗, as in Definition 3.

Example 1. We consider a simple shared storage device. After Authentication, a user can write a
value only if the storage is unlocked. (Un)locking the device is decided by another entity, meaning
that it is not controllable by the user. Property ϕex (see Fig. 2) formalises the above requirement. ϕex

is not enforceable if the uncontrollable alphabet is {LockOn,LockOff,Auth} 5 since reading the
word LockOn from q0 leads to q3, which is not an accepting state. However, the existence of such a
word does not imply that it is impossible to enforce ϕex for some other input words. If word Auth
is read, then state q1 is reached, and from this state, it is possible to enforce ϕex by emitting Write
only when in state q1.

3.2 Synthesising Enforcement Functions

Example 1 shows that some input words cannot be corrected by the EM, because of uncontrollable
events. Nevertheless, since it may happen that the received events lead to a state from which it is
possible to ensure that ϕ will be satisfied, it would then be possible to define a subset ofΣ∗ in which
an enforcement function would be sound. To define this set, we first define the predicate Safe which,
given a state q and a sequence of controllable events σ, indicates whether it is always possible to
reach an accepting state from q with σ, whatever uncontrollable events are received.

Definition 6 (Safe). Given a state qi ∈ Q, and a word σ0 ∈ Σ∗c , we define predicate Safe(qi, σ0)
as:

Safe(qi, σ0) = Safeint(qi, σ0, ∅),

where:
Safeint(q, ε, P) = (q afterΣ∗u) ⊆ F, and,
for σ ∈ Σ∗ \ {ε},
Safeint(q, σ, P) = ((q, σ) ∈ P ∧ {q′ ∈ Q | (q′, σ) ∈ P} ⊆ F)∨

((q, σ) 6∈ P ∧ ∀u ∈ Σu,
(∃w ∈ Σ∗, w 4 σ ∧ (q after (u.w)) ∈ F∧
Safeint(q after u.w,w

−1.σ, P ∪ {(q, σ)}))),
for any P ⊆ Q×Σ∗.

Intuitively, Safe(q, σ) indicates whether it is always possible to eventually reach an accepting state
from q, and using only controllable events from σ, in the same order, whatever uncontrollable events
are received. The third parameter, P , allows to define Safe(q, σ) properly, since there could be some
loops in the inductive definition, meaning that the definition of Safe(q, σ) could depend on itself.
P allows to avoid these loops, by simply ignoring recursive calls whenever a loop is detected. It is
the set of arguments of all the calls of Safe that are in the call stack when this call is made. Safeint
is correctly defined whenever σ = ε. If σ 6= ε, then recursive calls are made, that could lead to a
loop. A loop occurs when the computation of Safeint(q, σ, P) tries to compute Safeint(q, σ, P ′), for
some subsets P and P ′ of Q×Σ∗. If this happens, then on the call to Safeint(q, σ, P

′), (q, σ) ∈ P ′,
because the call to Safeint(q, σ, P

′) is a recursive call made by Safeint(q, σ, P), thus P ∪{(q, σ)} ⊆
P ′. It follows that Safeint(q, σ, P ′) is well defined, meaning that Safeint(q, σ, P) is well defined too.
Thus, since σ is finite, Safeint(q, σ, P) is correctly defined for all q ∈ Q and P ⊆ Q × Σ∗. This
means that Safe(qi, σ0) is correctly defined for all qi ∈ Q and all σ0 ∈ Σ∗c .

For q ∈ Q and σ ∈ Σ∗c , we say that σ is safe to emit from q, or that q is safe with σ whenever
Safe(q, σ) holds.

Now we define the functional behaviour of the enforcement mechanism.

Definition 7 (Functions storeϕ, Eϕ). 6 Function storeϕ : Σ∗ → Σ∗ ×Σ∗ is defined as follows:

5 Uncontrollable events are emphasised in italics.
6 Eϕ and storeϕ depend on Σu and Σc, but we did not add them in order to lighten the notations.

6

– storeϕ(ε) = (ε, ε);
– for σ ∈ Σ∗ and a ∈ Σ, let (σs, σc) = storeϕ(σ), then:

storeϕ(σ.a) =

{
(σs.a.σ

′
s, σ
′
c) if a ∈ Σu

(σs.σ
′′
s , σ

′′
c) if a ∈ Σc

, where:

κϕ(σ1, σ2) = max4({w 4 σ2 | σ1.w |= ϕ ∧ Safe(Reach(σ1.w), w
−1.σ2)} ∪ {ε}),

σ′s = κϕ(σs.a, σc),
σ′c = σ′s

−1
.σc,

σ′′s = κϕ(σs, σc.a),
σ′′c = σ′′s

−1
.(σc.a).

The enforcement function Eϕ : Σ∗ → Σ∗ is s.t. for σ ∈ Σ∗, Eϕ(σ) = Π1(storeϕ(σ)).

σ
E

σc

σs

Fig. 3: Enforcement function

Fig. 3 gives a scheme of the behaviour of the enforcement function. Intuitively, σs is the word
that can be released as output, whereas σc is the buffer containing the events that are already
read/received, but cannot be released as output yet because they lead to an unsafe state from which
it would be possible to violate the property reading only uncontrollable events.

Upon receiving a new event a, it is output if it belongs to Σu, followed by the longest prefix of
σc that satisfies ϕ and is safe to be emitted. If the new action is controllable, it is added to σc, and
then the longest prefix of this new buffer that satisfies ϕ and is safe is emitted, if it exists. In both
cases, κϕ is used to compute the longest word that can be output, i.e. that satisfies ϕ and is safe.

As seen in example 1, some properties are not enforceable, but receiving some events may lead
to a state from which it is possible to enforce. Therefore, it is possible to define a set of words, called
Pre(ϕ), such that Eϕ is sound in Pre(ϕ):

Definition 8 (Pre). Pre(ϕ) = {w ∈ Σ∗ | ∃w′ 4 w,∃σ ∈ Σ∗, w′|Σu
4 σ ∧ w′|Σu

= σ|Σu
∧ σ|Σc

4

w′|Σc
∧ σ |= ϕ ∧ Safe(Reach(σ), (σ|Σc

)−1.w′|Σc
)}.

Intuitively, Pre(ϕ) is the set of words for which Eϕ would be sound. Since this set should be
extension-closed, it looks for a prefix of the word that satisfy the expected constraint, so that ev-
ery extension of this word would have the same prefix satisfying the constraint, and thus would
also be in Pre(ϕ). In Eϕ, using Safe ensures that once the set E = {w 4 σ2 | σ1.w |= ϕ ∧
Safe(Reach(σ1.w), w

−1.σ2)} is not empty, then it will never be afterwards, whatever events are
received. Thus, Pre(ϕ) is the set of input words such that the output of Eϕ would belong to this set.
Therefore, Pre(ϕ) considers words σ that are possible outputs of Eϕ for input w′. Since Eϕ outputs
only uncontrollable events until E is reached, Pre(ϕ) only considers σ as an extension of the uncon-
trollable events of w′. The conditions w′|Σu

= σ|Σu
and σΣc

4 w′|Σc
are there to consider words that

could be output being compliant. The last conditions σ |= ϕ and Safe(Reach(σ), (σ|Σc
)−1.w′|Σc

)
ensure that E is not empty, meaning that the output of Eϕ is then sound.

Example 2. Considering the property ϕex as shown in Fig. 2, with the uncontrollable alphabetΣu =
{Auth,LockOff,LockOn}, Pre(ϕex) = Write∗.Auth.Σ∗. Indeed, from the initial state q0, if
an uncontrollable event, say LockOff, is received, then q3 is reached, which is a non-accepting
sink state, and thus is not a safe state. In order to reach a safe state (i.e. q1 or q2), it is necessary to
read Auth. Once Auth is read, q1 is reached, and from there, all uncontrollable events lead to either
q1 or q2. The same holds true from q2. Thus, it is possible to stay in the accepting states q1 and q2,
by delaying Write events when in q2 until a LockOff event is received. Consequently, q1 and q2
are safe states, and thus Pre(ϕex) = Write∗.Auth.Σ∗, since Write events can be buffered while
in state q0 until event Auth is received, leading to q1.

7

Eϕ as defined in Definition 7 is an enforcement function that is sound with respect to ϕ in Pre(ϕ),
compliant with respect to Σu and Σc, and optimal in Pre(ϕ).

Proposition 1. Eϕ as defined in Definition 7 is an enforcement function.

Sketch of proof. Here, we have to show that for all σ and σ′ in Σ∗, Eϕ(σ) 4 Eϕ(σ.σ
′). Following

the definition of storeϕ, this holds if σ′ ∈ Σ (i.e. σ′ is a word of size 1). Since 4 is an order, it
follows that the proposition holds for all σ′ ∈ Σ′.

Proposition 2. Eϕ is sound with respect to ϕ in Pre(ϕ), as per Definition 3.

Sketch of proof. We have to show that if σ ∈ Pre(ϕ), then Eϕ(σ) |= ϕ. The proof is again made by
induction on σ. In the induction step, considering a ∈ Σ, we distinguish three different cases:

1. σ.a 6∈ Pre(ϕ). Then there is nothing to do,
2. σ.a ∈ Pre(ϕ), but σ 6∈ Pre(ϕ). Then it is the moment Pre(ϕ) is reached (since it is extension-

closed, all extensions of σ will be in it afterwards), and we prove that the proposition holds
considering the definition of Pre(ϕ),

3. σ ∈ Pre(ϕ) (and thus, σ.a ∈ Pre(ϕ) since it is extension-closed). Then, we prove that the
proposition holds, based on the definition of storeϕ, and more precisely on the definition of
Safe, that ensures that there always exists a compliant output that satisfies ϕ.

Proposition 3. Eϕ is compliant, as per Definition 4.

Sketch of proof. The proof is made by induction on σ. Considering σ ∈ Σ∗ and a ∈ Σ, all that
needs to be done is considering the differents values of storeϕ(σ.a), (σ.a)|Σu

, and (σ.a)|Σc
when

a ∈ Σc and a ∈ Σu. This proof is then straightforward.

Remark 1. Notice that for some properties, blocking all controllable events may still satisfy sound-
ness and compliance. Consider for instance the property represented in Fig. 4, where c is a con-
trollable event, and u an uncontrollable event. Then, outputting only the events u and buffering all
the c events allows to stay in state q0, which is accepting and safe for every word in c∗. This means
that an enforcement mechanism which blocks all controllable events would be sound and compliant.
Nevertheless, if two controllable events c are received, they can be output to reach state q2, which is
also accepting and safe for all possible sequences. Then it is possible to release more events. There-
fore, an enforcement mechanism that would output two c events when they are received would be
“better” than the first one blocking them all, in the sense that its output would be longer.

q0 q1 q2

u

c

u

c

u, c

Fig. 4: Property that can be enforced by blocking all controllable events c, thus outputting only the
uncontrollable ones u .

For any given input σ, Eϕ(σ) is the longest possible word that ensures soundness and com-
pliance, that is controllable events are blocked only when necessary. Thus, Eϕ is also optimal in
Pre(ϕ):

Proposition 4. Eϕ is optimal in Pre(ϕ), as per Definition 5.

8

Sketch of proof. The proof is made by induction on σ ∈ Σ∗. Once σ ∈ Pre(ϕ), we know that
Eϕ(σ) |= ϕ since Eϕ is sound in Pre(ϕ). Eϕ is optimal because in storeϕ, κϕ outputs the longest
possible word. If a longer word would be output, then either the output would not satisfy ϕ, or it
would lead to a state that is not safe with the controllable events from the input that have not been
output, meaning that there would exist an uncontrollable word leading to a non accepting state. Thus,
outputting a longer word would mean that the function is not sound. This means that Eϕ is optimal
in Pre(ϕ), since it outputs the longest word that allows to be both sound and compliant.

Example 3. Considering the property ϕex defined in Fig. 2, we illustrate in Fig. 5 the enforcement
mechanism by showing the evolution of σs and σc with input σ = Auth.LockOn.Write.LockOff.

σ σs σc

ε ε ε
Auth Auth ε
Auth.LockOn Auth.LockOn ε
Auth.LockOn.Write Auth.LockOn Write
Auth.LockOn.Write.LockOff Auth.LockOn.LockOff.Write ε

Fig. 5: Example of the evolution of σ, σs, and σc, with input Auth.LockOn.Write.LockOff

3.3 Enforcement Monitors

Enforcement monitors are operational descriptions of enforcement mechanisms. We give a represen-
tation of an enforcement mechanism as a input/output transition system whose output is the output
of the enforcement function defined in Section 3.2. The purpose of defining enforcement monitors
is to ease the implementation of enforcement mechanisms, since this is a closer representation of a
real enforcement mechanism.

Definition 9 (Enforcement monitor). An enforcement monitor E for ϕ is a transition system
〈CE , cE0 , Γ E , ↪→E〉 such that:

– CE = Q×Σ∗ is the set of configurations.
– cE0 = 〈q0, ε〉 is the initial configuration.
– Γ E = Σ∗ × {dump(.),pass-uncont(.), store-cont(.)} × Σ∗ is the alphabet, where the first,

second, and third members are an input sequence, an enforcement operation, and an output
sequence, respectively.

– ↪→E ⊆ CE × Γ E × CE is the transition relation, defined as the smallest relation obtained by
applying the following rules in order (where w/ ./ /w′ stands for (w, ./, w′) ∈ Γ E):
• Dump: 〈q, σ.σc〉 ↪

ε/ dump(σ)/σ−−−−−−−−−→E 〈q′, σc〉, where σ 6= ε and q′ = q after σ, with q′ ∈
F ∧ Safe(q′, σc),

• Pass-uncont: 〈q, σc〉 ↪
a/ pass-uncont(a)/a−−−−−−−−−−−−→E 〈q′, σc〉, with a ∈ Σu and q′ = q after a,

• Store-cont: 〈q, σc〉 ↪
a/ store-cont(a)/ε−−−−−−−−−−−→E 〈q, σc.a〉.

In E , a configuration c = 〈q, σ〉 represents the current state of the enforcement mechanism. The
state q is the one reached so far in Aϕ with all the monitor has output. The word of controllable
events σ represents the buffer of the monitor, i.e. the controllable events of the input that it has not
output yet. Rule dump outputs a prefix of the word in memory (the buffer) whenever it is possible
to ensure soundness afterwards. Rule pass-uncont releases an uncontrollable event as soon as it is
received. Rule store-cont simply adds a controllable event at the end of the buffer. Compared to
Section 3.2, the second member of the configuration represents buffer σc in the definition of storeϕ,
whereas σs is here represented by state q which is the first member of the configuration, such that
q = Reach(σs).

Proposition 5. The output of the enforcement monitor E for input σ is Eϕ(σ).

In proposition 5, the output of the enforcement monitor is the concatenation of all the outputs of
the word labelling the path followed when reading σ. A more formal definition is given in the proof
of this proposition, in appendix A.1.

9

Sketch of proof. This is made by induction on the input σ ∈ Σ∗. We just consider the rules that can
be applied when receiving a new event. If the event is controllable, then rule store-cont() can be
applied, possibly followed by rule dump(). If the event is uncontrollable, then rule pass-uncont()
can be applied, again possibly followed by rule dump(). Since rule dump() applies only when
reaching an accepting state that is safe with the controllable events in the buffer, it corresponds
exactly to the computation of κϕ in the definition of storeϕ, and that explains why the outputs of E
and Eϕ are the same.

Remark 2. Enforcement monitors as per Definition 9 are somewhat similar to the ones in [9], except
that we choose to explicitly keep the memory as part of the configuration and get uniform definitions
in the untimed and timed settings (see Section 4). Hence, enforcement monitors as per Definition 9
can also equivalently be defined using a finite-state machine as in [9].

4 Enforcement Monitoring of Timed Properties

In this section, we extend the framework presented in Section 3 to enforce timed properties. Enforce-
ment mechanisms and their properties need to be redefined to fit with timed properties. Enforcement
functions need an extra parameter representing the date at which the output is observed. Soundness
needed to be weaken so that, at any time instant, the property is allowed not to hold, provided that it
will hold in the future.

Considering uncontrollable events with timed properties raises several difficulties. First, as is the
case in the untimed case, the order of events might be modified. Thus, previous definitions of trans-
parency ([14]), stating that the output of an enforcement function will eventually be a delayed prefix
of the input, can not be used in this situation. Moreover, when delaying some events to have the prop-
erty satisfied in the future, one must consider the fact that some uncontrollable events could occur at
any moment (and cannot be delayed). Finally, some properties become not enforceable because of
uncontrollable events, meaning that for these properties it is impossible to obtain a sound enforce-
ment mechanisms, as shown in example 4. Note that soundness could have stayed unchanged, but
with the strong definition from the untimed case, where the output of the enforcement mechanism
must always satisfy the property, less properties could be enforced. Weakening soundness allows to
enforce more properties, and to let enforcement mechanisms produce longer outputs.

In this section, ϕ is a timed property defined by a timed automaton Aϕ = 〈L, l0, X, Σ,∆,G〉
with semantics JAϕK = 〈Q, q0, Γ,−→, FG〉.

Example 4 (Non enforceable property). Consider the property defined by the automaton in Fig. 6
with alphabet Σ = {a, b}. If all actions are controllable (Σu = ∅), the property is enforceable
because an enforcement mechanism just needs to delay events until clock x exceeds 2. Otherwise,
the property is not enforceable. For instance, if Σu = {a}, word (1, a) cannot be corrected.

q1 q2
a,b,
x ≥ 2

a,b

Fig. 6: A timed property enforceable only if Σu = ∅.

4.1 Enforcement Functions and their Properties

In this section, we adapt the definitions of enforcement functions, soundness, and compliance to fit
with timed properties.

An enforcement function takes a timed word and the current time as input, and outputs a timed
word:

10

Definition 10 (Enforcement Function). Given an alphabet of actions Σ, an enforcement function
is a function E : tw(Σ)× R≥0 → tw(Σ) such that:

∀σ ∈ tw(Σ),∀t ∈ R≥0,∀t′ ≥ t,
(E(σ, t) 4 E(σ, t′))∧
(σ.(t, a) ∈ tw(Σ) =⇒ E(σ, t) 4 E(σ.(t, a), t)).

The requirements in Definition 10 correspond to physical constraints. They state that an enforcement
function must not remove something it has already output. The two conditions correspond to letting
time elapse and reading a new event, respectively. In both cases, the new output must be an extension
of what has been output so far.

Soundness states that the output of an enforcement function should eventually satisfy the given
property:

Definition 11 (Soundness). An enforcement functionE is sound w.r.t. ϕ in a timed-extension-closed
set S ⊆ tw(Σ)×R≥0 if for all (σ, t) ∈ S, there exists t′ ≥ t such that for all t′′ ≥ t′, E(σ, t′′) |= ϕ.

As in the untimed setting, soundness is not defined for all words in tw(Σ), but in a set of words, this
time associated with dates. This is again because the enforcement mechanism might not be able to
ensure soundness from the beginning, because of bad uncontrollable sequences. In the definition of
soundness, the set S needs to be timed-extension-closed in order to ensure that the property remains
satisfied once the enforcement mechanism starts to operate. An enforcement function is sound in a
timed-extension-closed set S if for any (σ, t) in S, the value of the enforcement function with input
σ from date t satisfies the property in the future.

Compliance states that uncontrollable events should be emitted instantaneously upon reception,
and that controllable events can be delayed, but their order must remain unchanged:

Definition 12 (Compliance). Given an enforcement function E defined on an alphabet Σ, we say
that E is compliant with respect to Σu and Σc, noted compliant(E,Σu, Σc), if ∀σ ∈ tw(Σ),∀t ∈
R≥0, E(σ, t)|Σu

= σ|Σu
∧ σ|Σc

4d E(σ, t)|Σc
.

Compliance is similar to the one in the untimed setting except that the controllable events can be
delayed. However, their order must not be modified by the enforcement mechanism, i.e. when con-
sidering the projections on controllable events, the output should be a delayed prefix of the input.
Regarding uncontrollable events, any uncontrollable event is released immediately when received,
i.e. when considering the projections on uncontrollable events, the output should be equal to the
input.

We say that a property is enforceable whenever there exists a sound and compliant enforcement
function for this property.

For a compliant enforcement function E : tw(Σ) × R≥0 → tw(Σ), and a timed word σ ∈
tw(Σ), we note E(σ) the value of E with input σ at infinite time. More formally, E(σ) = E(σ, t),
where t ∈ R≥0 is such that for all t′ ≥ t, E(σ, t′) = E(σ, t). Since σ is finite, and E is compliant,
the output of E with input word σ is finite, thus such a t must exist.

As in the untimed setting, we define a notion of optimality in a set:

Definition 13 (Optimality). We say that an enforcement functionE : tw(Σ)×R≥0 → tw(Σ) that
is compliant with respect toΣc andΣu is optimal in a timed-extension-closed set S ⊆ tw(Σ)×R≥0
if for all enforcement function E′ : tw(Σ) × R≥0 → tw(Σ), for all σ ∈ tw(Σ), for all (t, a) such
that σ.(t, a) ∈ tw(Σ),

compliant(E′, Σu, Σc) ∧ (σ, t) ∈ S ∧ (E′(σ, t) = E(σ, t) ∧ E′(σ.(t, a)) ≺d E(σ.(t, a))
=⇒ (∃σu ∈ tw(Σu), E

′(σ.(t, a).σu) 6|= ϕ).

Optimality states that outputting a lower word (w.r.t 4d) than the output of an optimal enforce-
ment function leads to either compliance or soundness not being guaranteed. This holds from the
point where the input begins to belong to the set in which the function is optimal, and since it is
timed-extension-closed, the input will belong to this set ever after. In Definition 13, E is an optimal
enforcement function, and E′ is another compliant enforcement function, that we consider having
a smaller output (w.r.t 4d) than E for some input word σ.(t, a). Then since E is optimal, E′ is not
sound, meaning that there exists a word of uncontrollable events such that the output of E′ after
receiving it does not eventually satisfy ϕ.

11

In order to enforce ϕ, it is necessary to know if it is always possible to compute a timed word
with the events of the buffer, even when receiving some uncontrollable events, that leads to an
accepting state from the current one. Thus, we define the predicate Safe which, given a state of
the semantics and a sequence of controllable events, corresponding to the buffer, indicates if it is
possible to compute a timed word leading to an accepting state, whatever uncontrollable events are
received:

Definition 14 (Safe). Given a state qi of JAϕK, and a sequence of controllable events σ0 ∈ Σ∗c , we
define the predicate Safe(qi, σ0) as:

Safe(qi, σ0) = Safeint(qi, σ0, ∅),

where:

Safeint(q, ε, P) = (q after tw(Σu)) ⊆ FG
and, for σ ∈ Σ∗c \ {ε},
Safeint(q, σ, P) = ((q, σ) ∈ P ∧ {q′ ∈ Q | (q′, σ) ∈ P} ⊆ FG)∨

((q, σ) 6∈ P ∧ ∀u ∈ Σu,∃w ∈ tw(Σ), ΠΣ(w) 4 σ ∧ ∀t ∈ R≥0,
(q after ((0, u).w, t)) ∈ FG∧
Safeint(q after ((0, u).w, t), ΠΣ(obs(w, t))

−1.σ, P ∪ {(q, σ)}))

Intuitively, Safe(qi, σ0) indicates whether it is always possible to reach an accepting state from
qi with controllable events taken from σ0, in the same order, whatever uncontrollable events are
received. The last parameter of Safeint, P , as in the untimed case, is used to avoid loops, that would
make Safe undefined for some parameters (since they could depend on themselves). If σ = ε,
Safeint(q, ε, P) is defined for all q ∈ Q, and for all P ⊆ Q×Σ∗c . If σ 6= ε, then loops could occur if
w = ε and thus if a state reached after an uncontrollable word leads to some state already reached.
Therefore, this state would be in P , associated with the same σ, since w = ε, meaning that the
second parameter does not change in the recursive call. Thus, since this pair (q, σ) would be in P ,
the computation would end, its value depending on the acceptance of all the states reached in the
loop. Thus, Safe is defined for all q ∈ Q and for all σ ∈ Σ∗c . Moreover, considering regions instead
of symbolic states, the size of the set of states is bounded by the number of regions (see [1]), and
since the second parameter is always a prefix of σ in recursive calls, the size of P would be bounded
by the length of σ times the number of regions. Since the size of P strictly increases in recursive
calls, and having the pair composed of the first two parameters in P is sufficient to terminate the
computation, the computation of Safe(q, σ) must terminate for all q ∈ Q and for all σ ∈ tw(Σ).

Unlike in the untimed case, some delay between two consecutive events may be necessary to
satisfy the property, thus it is possible for an uncontrollable event to happen while waiting for the
duration of the delay. If this happens, the enforcement mechanism needs to compute again the dates
for the events it has not output yet in order to reach FG if possible. Safe is used to ensure that FG
is always reachable with the events that have not been output yet even if some uncontrollable events
occur.

Thus, it is now possible to use Safe to define an enforcement function for ϕ, denoted as Eϕ:

Definition 15 (storeϕ, Eϕ). Let storeϕ be the function : tw(Σ)× R≥0 → tw(Σ)× tw(Σc)×Σ∗c
defined inductively by:
∀t ∈ R≥0, storeϕ(ε, t) = (ε, ε, ε),
and for σ ∈ tw(Σ), (t′, a) such that σ.(t′, a) ∈ tw(Σ), and t ≥ t′, if (σs, σb, σc) = storeϕ(σ, t

′),
then

storeϕ(σ.(t
′, a), t) =

{
(σs.(t

′, a). obs(σ′b, t), σ
′
b, σ
′
c) if a ∈ Σu

(σs. obs(σ
′′
b , t), σ

′′
b , σ

′′
c) if a ∈ Σc

12

with:

E(q, σ1) = {w ∈ tw(Σ) | ΠΣ(w) 4 σ1 ∧ (q after w) ∈ FG∧
∀t′′ ∈ R≥0,Safe(q after (w, t′′), ΠΣ(obs(w, t

′′))−1.σ1)},
κϕ(q, σ1) = min

lex
(max

4
(E(q, σ1) ∪ {ε}))

buffer c = ΠΣ(nobs(σb, t
′)).σc

t1 =
min({t′′ ∈ R≥0 | t′′ ≥ t′∧
E(Reach(σs.(t

′, a), t′′), buffer c) 6= ∅} ∪ {+∞}),
σ′b = κϕ(Reach(σs.(t

′, a),min({t, t1})), buffer c) +t min({t, t1}),
σ′c = ΠΣ(σ

′
b)
−1.buffer c,

t2 =
min({t′′ ∈ R≥0 | t′′ ≥ t′∧
E(Reach(σs, t

′′), buffer c.a) 6= ∅} ∪ {+∞}),
σ′′b = κϕ(Reach(σs,min({t, t2})), buffer c.a) +t min({t, t2}),
σ′′c = ΠΣ(σ

′′
b)
−1.(buffer c.a).

For σ ∈ tw(Σ), and t ∈ R≥0, we define Eϕ(σ, t) = (Π1(storeϕ(obs(σ, t), t))).

In the definition of storeϕ, E is the set of words that can be emitted safely. storeϕ takes a timed
word σ as input, and a date t, and outputs three words: σs, σb, and σc. σs is the output of the
enforcement monitor at time t. σb is the timed word, composed of controllable events, that is to be
output after the last event of the input, if no uncontrollable event is received. σc is the untimed word
composed of the remaining controllable actions of the buffer. When time elapses, after the last event
of the input, σs is modified to output the events of σb when the dates are reached. Since letting time
elapse can disable some transitions, it is possible to reach a safe state without emitting any event,
and thus σb can change at this moment, changing from ε to a safe word. This change of σb when
letting time elapse can only happen once, since E will not be empty anymore once it has become
non-empty. t1 and t2 are used on this purpose, they represent the time at which E becomes non-
empty. Words are thus calculated from this point whenever E has become non-empty, to ensure that
what has already been output is not modified. If E is still empty, then min({t, t1}) (or min({t, t2}),
depending on whether a ∈ Σc or a ∈ Σu) equals to t, meaning that σb = ε. Most of the time, t1, or
t2 is equalled to t′, it is not the case only when E was still empty at time t′, but if E was not empty at
date t′, then t1 (or t2) is equalled to t′. σc contains the controllable actions of the input that have not
been output and do not belong to σb. It is used to compute the new value of σb when possible. When
receiving a new event in the input, it is output in σs if it is an uncontrollable event, or the action is
added to the buffer if it is a controllable one. Then, σb is computed again, from the new state reached
if it was an uncontrollable event, or with the new buffer if it was controllable. Note that t1 and t2
may not exist, depending on whether the time constraint on an edge is strict or not. In this case, one
should consider the infimum instead of the minimum, and consider t′′ ∈ R≥0 \ {0} in the definition
of E, so that the behaviour would be as desired.

As mentioned previously, an enforcement mechanism may not be sound from the beginning of
an execution, but some uncontrollable events may lead to a state from which it becomes possible to
be sound. Whenever σb is safe, then it will always be, meaning that the output of Eϕ will eventually
reach a state in FG, i.e. it will eventually satisfy ϕ. Thus, Eϕ eventually satisfies ϕ as soon as σb is
safe from the state reached so far. This leads to the definition of Pre(ϕ, t), which is the set of timed
words for which Eϕ ensures soundness at time t. For σ ∈ tw(Σ), if (σs, σb, σc) = storeϕ(σ, t),
then σ is in Pre(ϕ, t) if and only if σb is safe from state Reach(σs). If σb is safe from Reach(σs),
then the output of storeϕ will be safe afterwards, thus Pre(ϕ, t) is extension-closed. To define
Pre(ϕ, t), we first define E1(σ, t), which is the set of words that could be output by Eϕ with input
σ at date t in the case where only uncontrollable events were output previously (Eϕ would output
the minimum w.r.t. 4d). Then, Pre(ϕ, t) is used to define Pre(ϕ), which is the set in which Eϕ is
sound:

Definition 16. Pre(ϕ)

Pre(ϕ) = {(σ, t) | σ ∈ Pre(ϕ, t)},

13

where, for σ ∈ tw(Σ) and t ∈ R≥0:

E1(σ, t) =
{w ∈ tw(Σ) | σ|Σu

4 w ∧ σ|Σu
= w|Σu

∧ σ|Σc
4d w|Σc

∧
(w|Σc

6= ε =⇒ date(w|Σc
(1)) ≥ t) ∧ Reach(w) ∈ FG ∧ ∀t′ ≥ t,

Safe(Reach(w, t′), ΠΣ(obs(w|Σc
, t′))−1.ΠΣ(σ|Σc

))}
Pre(ϕ, t) = {σ ∈ tw(Σ) | ∃t′ ≤ t,E1(obs(σ, t

′), t′) 6= ∅}

Note that Pre(ϕ) is timed-extension-closed, meaning that once Eϕ is sound, it will always be in
the future.

In Definition 16, E1(σ, t) is the set of words that can be output safely by our enforcement func-
tion, with input σ, and after time t. Considering that the output of our enforcement function was only
the uncontrollable events so far, if E1(σ, t) is not empty, this means that the enforcement function
becomes sound with input σ from time t, since there is a word that is safe to emit. Thus, Pre(ϕ, t)
is the set of inputs for which Eϕ is sound after date t, and then Eϕ is sound for any input in Pre(ϕ)
after its associated date.

Proposition 6. Eϕ as defined in Definition 15 is an enforcement function.

Sketch of proof. We have to show that for all σ ∈ tw(Σ), for all t ∈ R≥0 and t′ ≥ t, Eϕ(σ, t) 4
Eϕ(σ, t

′), and for all (t′′, a) such that σ.(t′′, a) ∈ tw(Σ), if t ≤ t′′, then Eϕ(σ, t) 4 Eϕ(σ.(t
′′, a), t′).

To prove this, we first show that Eϕ(σ, t) 4 Eϕ(σ, t
′). Considering (t′′, a) such that σ.(t′′, a) ∈

tw(Σ), we distinguish different cases according to the values of t′′ compared to t and t′:

1. t′′ ≤ t. Then, in the definition of storeϕ, t1 (or t2, if a is controllable) has the same value in
storeϕ(σ, t) and storeϕ(σ.(t

′′, a), t′). Then, comparing t to t1 (or t2), either storeϕ(σ.(t′′, a), t)
= ε if t < t1, and then storeϕ(σ.(t

′′, a), t) 4 storeϕ(σ.(t
′′, a), t′), or t ≥ t1, and then there

exists σs and σb such that storeϕ(σ.(t′′, a), t) = σs. obs(σb, t) and storeϕ(σ.(t
′′, a), t′) =

σs. obs(σb, t
′), meaning that storeϕ(σ.(t′′, a), t) 4 storeϕ(σ.(t

′′, a), t′),
2. t′′ ≥ t′. Then the proposition holds because in the definition of Eϕ, only the observation of

the input word at the given time is considered, meaning that Eϕ(σ.(t′′, a), t) = Eϕ(σ, t) and
Eϕ(σ.(t

′′, a), t′) = Eϕ(σ, t
′). The induction hypothesis then makes it,

3. t < t′′ < t′. Then, Eϕ(σ.(t′′, a), t) = Eϕ(σ, t), and Eϕ(σ.(t
′′, a), t′) = Π1(storeϕ(σ.(t

′′, a), t′)),
meaning that, looking at the definition of storeϕ, Eϕ(σ.(t′′, a), t) 4 Eϕ(σ.(t

′′, a), t′).

Thus, Eϕ(σ, t) 4 Eϕ(σ, t
′). Then, what remains to show is that if t ≤ t′′, then Eϕ(σ, t) 4

Eϕ(σ.(t
′′, a), t′). Then, there are only two possibilities:

1. t′ < t′′. Then, obs(σ.(t′′, a), t′) = obs(σ, t′), thus Eϕ(σ.(t′′, a), t′) = Eϕ(σ, t
′), thus Eϕ(σ, t) 4

Eϕ(σ, t
′) = Eϕ(σ.(t

′′, a), t′).
2. t′ ≥ t′′. Then, obs(σ.(t′′, a), t′) = σ.(t′′, a), and considering the definition of storeϕ(σ.(t′′, a),
t′), Eϕ(σ, t′′) 4 storeϕ(σ.(t

′′, a), t′) = Eϕ(σ.(t
′′, a), t′). Thus, Eϕ(σ, t) 4 Eϕ(σ, t

′′) 4
Eϕ(σ.(t

′′, a), t′′) 4 Eϕ(σ.(t
′′, a), t′).

Proposition 7. Eϕ is sound with respect to ϕ in Pre(ϕ).

Sketch of proof. As in the untimed setting, the proof is made by induction on the input σ ∈ tw(Σ).
Similarly to the untimed setting, considering σ ∈ tw(Σ), t ∈ R≥0, and (t′, a) such that σ.(t′, a) ∈
tw(Σ), there are three possibilities:

1. (σ.(t′, a), t) 6∈ Pre(ϕ). Then, the proposition holds.
2. (σ.(t′, a), t) ∈ Pre(ϕ), but (σ, t′) 6∈ Pre(ϕ). Then, this is when the input reaches Pre(ϕ).

Considering the definition of Pre(ϕ), we then prove that it is possible to emit a word with the
controllable events seen so far, leading to an accepting state which is safe with the remaining
controllable events.

3. (σ, t′) ∈ Pre(ϕ) (and thus (σ.(t′, a), t) too). Then, we prove again that there exists a controllable
word made with the events which have not been output yet leading to an accepting state that is
safe with the remaining controllable events, but this time considering the definition of Safe.

Proposition 8. Eϕ is compliant.

14

Sketch of proof. As in the untimed setting, this is proved by induction on the input σ, considering
the different cases where the new event is controllable or uncontrollable. The only difference with
the untimed setting is that one should pay attention to dates on top of actions.

Proposition 9. Eϕ is optimal in Pre(ϕ).

Sketch of proof. This proof is made by induction on the input σ. Whenever σ ∈ Pre(ϕ), since Eϕ
is sound in Pre(ϕ), then Eϕ(σ) is the minimal word (w.r.t. 4d) that satisfies ϕ and is safe to output.
It is minimal because in the definition of storeϕ, κϕ returns the longest word with lower delays
(for lexicographic order), which corresponds to the minimum with respect to 4d. Thus, outputting
a lower word (w.r.t. 4d) would lead either to not satisfy the property, or to not being safe. As in
the untimed setting, not being safe means not being sound. Thus, Eϕ is optimal in Pre(ϕ), since it
outputs the minimal word w.r.t. 4d that allows to be sound and compliant.

4.2 Enforcement Monitors

As in the untimed setting, we give here an operational description of an enforcement mechanism
whose output is exactly the output of Eϕ, as defined in Definition 15.

Definition 17. An enforcement monitor E for ϕ is a transition system 〈CE , cE0 , Γ E , ↪→E〉 such that:

– CE = tw(Σ)×Σ∗c ×Q× R≥0 × {>,⊥} is the set of configurations
– cE0 = 〈ε, ε, q0, 0,⊥〉 ∈ CE is the initial configuration
– Γ E = ((R≥0×Σ)∪{ε})×Op × ((R≥0×Σ)∪{ε}) is the alphabet, composed of an optional

input, an operation and an optional output.
The set of operations is {compute(.),dump(.),pass-uncont(.), store-cont(.),delay(.)}.
Whenever (σ, ./, σ′) ∈ Γ E , it will be noted σ/ ./ /σ′.

– ↪→E is the transition relation defined as the smallest relation obtained by applying the following
rules given by their priority order:

• Compute: 〈ε, σc, q, t,⊥〉 ↪
ε/ compute()/ε−−−−−−−−−→E 〈σ′b, σ′c, q, t,>〉, if E(q, σc) 6= ∅, with σ′b =

κϕ(q, σc) +tt, and σ′c = ΠΣ(σ
′
b)
−1.σc,

• Dump: 〈(tb, a).σb, σc, q, tb,>〉 ↪
ε/ dump(tb,a)/(tb,a)−−−−−−−−−−−−−→E 〈σb, σc, q′, tb,>〉, with q′ =

q after (0, a),

• Pass-uncont: 〈σb, σc, q, t, b〉 ↪
(t,a)/ pass-uncont(t,a)/(t,a)−−−−−−−−−−−−−−−−−−→E 〈ε,ΠΣ(σb).σc, q

′, t,⊥〉, with q′ =
q after (0, a),

• Store-cont: 〈σb, σc, q, t, b〉 ↪
(t,c)/ store-cont((t,c))/ε−−−−−−−−−−−−−−−→E 〈ε,ΠΣ(σb).σc.c, q, t,⊥〉,

• Delay: 〈σb, σc, (l, v), t, b〉 ↪
ε/ delay(δ)/ε−−−−−−−−→E 〈σb, σc, (l, v + δ), t+ δ, b〉.

In a configuration 〈σb, σc, q, t, b〉, σb is the word to be output as time elapses; σc is the sequence of
controllable actions from the input that are not used in σb; q is the state of the semantics reached
after reading what has already been output; t is the current time instant, i.e., the time elapsed since
the beginning of the run; and b indicates whether σb and σc should be computed (due to the reception
of a new event for example).

Sequence σb corresponds to nobs(σb, t) from the definition of storeϕ, whereas σc is the same as
in the definition of storeϕ. The state q represents σs, such that q = Reach(σs, t).

Proposition 10. The output of E for input σ is Eϕ(σ).

As in the untimed setting, in proposition 10, the output of the enforcement monitor is the con-
catenation of the outputs of the word labelling the path followed by the enforcement monitor when
reading σ. Again, a more formal definition is given in the proof of this proposition, in appendix A.2.

15

Sketch of proof. This proof is done by induction on σ. When receiving a new event, rule store-cont()
can be applied if it is controllable, or rule pass-uncont() if it is uncontrollable. Doing so, the last
member of the configuration is set to ⊥, meaning that the word to be emitted can be computed. If
the input is in Pre(ϕ), then rule compute() can be applied, and then the second member of the
configuration will have the same value as the second member of storeϕ, and the same goes for the
third members. Then, rule delay() can be applied, to reach the date of the first event in the second
member of the current configuration, and then rule dump() can be applied to output it. This process
can be repeated until the desired date is reached. Thus, when a date t is reached, what has been
emitted since the last rule store-cont() or pass-uncont() is obs(σb, t), where σb was computed by
rule compute() as second member. Considering the definition of storeϕ, it follows that the output
of E with input σ at date t is Eϕ(σ, t).

4.3 Example

Consider Fig. 8, representing a property modelling the use of some shared writable device. We can
get the status of a lock through the uncontrollable events LockOn and LockOff indicating that the
lock has been locked by someone else, and that it is unlocked, respectively. The uncontrollable event
Auth is sent by the device to authorise writings. Once the Auth event is received, we are able to
send the controllable event Write after having waited a little bit for synchronisation. Each time the
lock is taken and released, we must also wait before issuing a new Write order. The sets of events
are : Σc = {Write} and Σu = {Auth, LockOff, LockOn}.

Now, let’s follow the output of the storeϕ function through time with the word σ = (1,Auth) .
(2,LockOn).(4,Write).(5,LockOff).(6,LockOn).(7,Write).(8,LockOff) as input: let
(σs, σb, σc) = storeϕ(obs(σ, t), t). Then the values taken by σs, σb and σc through time are given
in Fig. 7. To calculate them, notice that for all valuation ν : {x} → R≥0, Safe((l1, ν), ε) and
Safe((l2, ν), ε) hold, and so do Safe((l1, ν),Write) and Safe((l2, ν),Write), because whatever
uncontrollable events we consider, it will be possible to delay the Write event so that the current
state remains in FG.

t σs σb σc

1 (1,Auth) ε ε
2 (1,Auth).(2,LockOn) ε ε
4 (1,Auth).(2,LockOn) ε Write
5 (1,Auth).(2,LockOn).(5,LockOff) (7,Write) ε
6 (1,Auth).(2,LockOn).(5,LockOff).

(6,LockOn)
ε Write

7 (1,Auth).(2,LockOn).(5,LockOff).
(6,LockOn)

ε Write . Write

8 (1,Auth).(2,LockOn).(5,LockOff).
(6,LockOn).(8,LockOff)

(10,Write).(10,Write) ε

10 (1,Auth).(2,LockOn).(5,LockOff).
(6,LockOn).(8,LockOff).(10,Write).
(10,Write)

ε ε

Fig. 7: Table showing the values of (σs, σb, σc) = storeϕ((1,Auth). (2,LockOn). (4,Write).
(5,LockOff). (6,LockOn). (7,Write). (8,LockOff)) through time.

We can also follow the execution of an enforcement monitor enforcing the property in Fig. 8,
watching the evolution of the configurations as semantic rules are applied. In a configuration, the
input is on the right, the output on the left, and the middle is the current configuration of the en-
forcement monitor. The variable t defines the global time of the execution. Fig. 9 shows the execu-
tion of the enforcement monitor with input (1,Auth). (2,LockOn). (4,Write). (5,LockOff).
(6,LockOn). (7,Write).(8,LockOff)). In Fig. 9, valuations are represented as integers, giving
the value of the only clock x of the property, LockOff is abbreviated as off, LockOn as on, and
Write as w. First column depicts the dates of events, then red text is the current output (σs) of the
enforcement mechanism, blue text shows the evolution of σb and green text depicts the remaining

16

l0 l1

l3

l2
Auth

Auth,
LockOff x B 0,
Write x ≥ 2

LockOn

Auth
LockOn

LockOff
x B 0

Write
LockOn
LockOff

Write
x < 2

Write

Σ

Fig. 8: Property modelling writes on a shared storage device

input word at this date. We can observe that the final output is the same as the one of the enforcement
function : (1,Auth).(2,on).(5,off).(6,on).(8,off).(10,w).(10,w)

5 Related Work

Runtime enforcement was pioneered by the work of Schneider with security automata [17], a run-
time mechanism for enforcing safety properties. In this work monitors are able to stop the execution
of the system once a deviation of the property has been detected. Later, Ligatti et al. proposed edit-
automata, a more powerful model of enforcement monitors able to introduce and suppress events
from the execution. Later, more general models were proposed where the monitors can be synthe-
sised from regular properties [9]. More recently, Bloem et al. [4] presented a framework to synthe-
sise enforcement monitors for reactive systems, called as shields, from a set of safety properties. A
shield acts instantaneously and cannot buffer actions. Whenever a property violation is unavoidable,
the shield allows to deviate from the property for k consecutive steps (as in [5]). Whenever a second
violation occurs within k steps, then the shield enters into a fail-safe mode, where it ensures only
correctness. Another recent approach by Dolzehnko et al [8] introduces Mandatory Result Automata
(MRAs). MRAs extend edit-automata by refining the input-output relationship of an enforcement
mechanism and thus allowing a more precise description of the enforcement abilities of an en-
forcement mechanism in concrete application scenarios. All the previously mentioned approaches
considered untimed specifications, and do not consider uncontrollable events.

In the timed setting, several monitoring tools for timed specifications have been proposed. RT-
Mac [16] permits to verify at runtime timeliness and reliability correctness. LARVA [6,7] takes as
input safety properties expressed with DATEs (Dynamic Automata with Times and Events), a timed
model similar to timed automata.

In previous work, we introduced runtime enforcement for timed properties [14] specified by
timed automata [1]. We proposed a model of enforcement monitors that work as delayers, that is,
mechanisms that are able to delay the input sequence of timed events to correct it. While [14] pro-
posed synthesis techniques only for safety and co-safety properties, we then generalised the frame-
work to synthesise an enforcement monitor for any regular timed property [12,13]. In [11], we con-
sidered parametric timed properties, that is timed properties with data-events containing information
from the execution of the monitored system.

Basin et al. [3] introduced uncontrollable events for security automata [17]. The approach in [3]
allows to enforce safety properties where some of the events in the specification are uncontrollable.
More recently, they proposed a more general approach [2] related to enforcement of security poli-
cies with controllable and uncontrollable events. They presented several complexity results and how
to synthesise enforcement mechanisms. In case of violation of the property, the system stops the
execution. They handle discrete time, and clock ticks are considered as uncontrollable events. In our
approach, we consider dense time using the expressiveness of timed automata, any regular proper-
ties, and our monitor are more flexible since they block the system only when delaying events cannot
prevent violating the property, thus offering the possibility to correct many violations.

17

t = 0 ε/(ε, ε, (l0, 0), 0,⊥)/(1,Auth).(2,on).(4,w).(5,off).(6,on).(7,w).(8,off)
↓ delay(1)

t = 1 ε/(ε, ε, (l0, 1), 1,⊥)/(1,Auth).(2,on).(4,w).(5,off).(6,on).(7,w).(8,off)
↓ pass-uncont((1,Auth))

t = 1 (1,Auth)/(ε, ε, (l1, 1), 1,⊥)/(2,on).(4,w).(5,off).(6,on).(7,w).(8,off)
↓ compute()

t = 1 (1,Auth)/(ε, ε, (l1, 1), 1,>)/(2,on).(4,w).(5,off).(6,on).(7,w).(8,off)
↓ delay(1)

t = 2 (1,Auth)/(ε, ε, (l1, 2), 2,>)/(2,on).(4,w).(5,off).(6,on).(7,w).(8,off)
↓ pass-uncont((2,on))

t = 2 (1,Auth).(2,on)/(ε, ε, (l2, 2), 2,⊥)/(4,w).(5,off).(6,on).(7,w).(8,off)
↓ compute()

t = 2 (1,Auth).(2,on)/(ε, ε, (l2, 2), 2,>)/(4,w).(5,off).(6,on).(7,w).(8,off)
↓ delay(2)

t = 4 (1,Auth).(2,on)/(ε, ε, (l2, 4), 4,>)/(4,w).(5,off).(6,on).(7,w).(8,off)
↓ store-cont((4,w))

t = 4 (1,Auth).(2,on)/(ε, (4,w), (l2, 4), 4,⊥)/(5,off).(6,on).(7,w).(8,off)
↓ compute()

t = 4 (1,Auth).(2,on)/(ε, (4,w), (l2, 4), 4,>)/(5,off).(6,on).(7,w).(8,off)
↓ delay(1)

t = 5 (1,Auth).(2,on)/(ε, (4,w), (l2, 5), 5,>)/(5,off).(6,on).(7,w).(8,off)
↓ pass-uncont((5,off))

t = 5 (1,Auth).(2,on).(5,off)/(ε, (7,w), (l1, 0), 5,⊥)/(6,on).(7,w).(8,off)
↓ compute()

t = 5 (1,Auth).(2,on).(5,off)/((7,w), ε, (l1, 0), 5,>)/(6,on).(7,w).(8,off)
↓ delay(1)

t = 6 (1,Auth).(2,on).(5,off)/((7,w), ε, (l1, 1), 6,>)/(6,on).(7,w).(8,off)
↓ pass-uncont((6,on))

t = 6 (1,Auth).(2,on).(5,off).(6,on)/(ε, (7,w), (l2, 1), 6,⊥)/(7,w).(8,off)
↓ compute()

t = 6 (1,Auth).(2,on).(5,off).(6,on)/(ε, (7,w), (l2, 1), 6,>)/(7,w).(8,off)
↓ delay(1)

t = 7 (1,Auth).(2,on).(5,off).(6,on)/(ε, (7,w), (l2, 2), 7,>)/(7,w).(8,off)
↓ store-cont((7,w))

t = 7 (1,Auth).(2,on).(5,off).(6,on)/(ε, (7,w).(7,w), (l2, 2), 7,⊥)/(8,off)
↓ compute()

t = 7 (1,Auth).(2,on).(5,off).(6,on)/(ε, (7,w).(7,w), (l2, 2), 7,>)/(8,off)
↓ delay(1)

t = 8 (1,Auth).(2,on).(5,off).(6,on)/(ε, (7,w).(7,w), (l2, 3), 8,>)/(8,off)
↓ pass-uncont((8,off))

t = 8 (1,Auth).(2,on).(5,off).(6,on).(8,off)/(ε, (10,w).(10,w), (l1, 0), 8,⊥)/ε
↓ compute()

t = 8 (1,Auth).(2,on).(5,off).(6,on).(8,off)/((10,w).(10,w), ε, (l1, 0), 8,>)/ε
↓ delay(2)

t = 10 (1,Auth).(2,on).(5,off).(6,on).(8,off)/((10,w).(10,w), ε, (l1, 2), 10,>)/ε
↓ dump((10,w))

t = 10 (1,Auth).(2,on).(5,off).(6,on).(8,off).(10,w)/((10,w), ε, (l1, 2), 10,>)/ε
↓ dump((10,w))

t = 10 (1,Auth).(2,on).(5,off).(6,on).(8,off).(10,w).(10,w)/(ε, ε, (l1, 2), 10,>)/ε

Fig. 9: Execution of an enforcement monitor with input (1,Auth). (2,LockOn). (4,Write).
(5,LockOff). (6,LockOn). (7,Write). (8,LockOff))

18

6 Conclusion and Future Work

This paper extends previous works on enforcement with the use of uncontrollable events, which are
only observable by an enforcement device. We present a framework for enforcement monitoring for
both untimed and timed regular properties, described with (timed) automata. We provide a func-
tional and an operational description of the enforcement mechanism, and show their equivalence.
Adding uncontrollable events leads to the necessity of changing the order between controllable and
uncontrollable events, which requires some existing notions to be adapted. Therefore, we replace
transparency with compliance to take this into account, and then give enforcement devices, i.e. en-
forcement functions and enforcement monitors, for regular properties and regular timed properties.
Because not every property can be enforced, we also give a condition, depending on the property
and the input word, indicating whether the enforcement device is sound with respect to the prop-
erty under scrutiny or not. The enforcement devices output all the uncontrollable events received,
and store the controllable ones, until soundness can be guaranteed. Then, they output events only
when they can ensure that soundness will be satisfied. The proposed enforcement mechanism is
sound, compliant and optimal. One possible extension of this work could be to take some risks,
outputting events even if some uncontrollable events could lead to a bad state, and introducing for
example some probabilities. Implementing the given enforcement devices for the untimed setting
is pretty straightforward, whereas implementation in the timed setting needs more attention due to
computing in timed models. This is currently in progress.

References

1. Alur, R., Dill, D.: The theory of timed automata. In: de Bakker, J., Huizing, C., de Roever, W., Rozenberg,
G. (eds.) Real-Time: Theory in Practice, Lecture Notes in Computer Science, vol. 600, pp. 45–73. Springer
Berlin Heidelberg (1992)

2. Basin, D., Jugé, V., Klaedtke, F., Zălinescu, E.: Enforceable security policies revisited. ACM Trans. Inf.
Syst. Secur. 16(1), 3:1–3:26 (Jun 2013), http://doi.acm.org/10.1145/2487222.2487225

3. Basin, D., Klaedtke, F., Zalinescu, E.: Algorithms for monitoring real-time properties. In: Khurshid, S.,
Sen, K. (eds.) Proceedings of the 2nd International Conference on Runtime Verification (RV 2011). Lecture
Notes in Computer Science, vol. 7186, pp. 260–275. Springer-Verlag (2011)

4. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis: - runtime enforcement for reactive
systems. In: Tools and Algorithms for the Construction and Analysis of Systems - 21st International Con-
ference, TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. pp. 533–548 (2015)

5. Charafeddine, H., El-Harake, K., Falcone, Y., Jaber, M.: Runtime enforcement for component-based sys-
tems. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, 2015. pp. 1789–1796
(2015)

6. Colombo, C., Pace, G.J., Schneider, G.: LARVA — safer monitoring of real-time Java programs (tool
paper). In: Hung, D.V., Krishnan, P. (eds.) Proceedings of the 7th IEEE International Conference on
Software Engineering and Formal Methods (SEFM 2009). pp. 33–37. IEEE Computer Society (2009),
http://dx.doi.org/10.1109/SEFM.2009.13

7. Colombo, C., Pace, G.J., Schneider, G.: Safe runtime verification of real-time properties. In: Ouaknine, J.,
Vaandrager, F.W. (eds.) Proceedings of the 7th International Conference on Formal Modeling and Anal-
ysis of Timed Systems (FORMATS 2009). Lecture Notes in Computer Science, vol. 5813, pp. 103–117.
Springer (2009)

8. Dolzhenko, E., Ligatti, J., Reddy, S.: Modeling runtime enforcement with mandatory results automata.
International Journal of Information Security 14(1), 47–60 (Feb 2015), http://dx.doi.org/10.1007/s10207-
014-0239-8

9. Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement monitors: composition, synthesis,
and enforcement abilities. Formal Methods in System Design 38(3), 223–262 (2011)

10. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM Trans. Inf. Syst. Secur.
12(3), 19:1–19:41 (Jan 2009)

11. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Runtime enforcement of parametric timed proper-
ties with practical applications. In: Lesage, J., Faure, J., Cury, J.E.R., Lennartson, B. (eds.) 12th Inter-
national Workshop on Discrete Event Systems, WODES 2014, Cachan, France, May 14-16, 2014. pp.
420–427. International Federation of Automatic Control (2014), http://dx.doi.org/10.3182/20140514-3-
FR-4046.00041

19

12. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Runtime enforcement of regular timed proper-
ties. In: Cho, Y., Shin, S.Y., Kim, S., Hung, C., Hong, J. (eds.) Symposium on Applied Comput-
ing, SAC 2014, Gyeongju, Republic of Korea - March 24 - 28, 2014. pp. 1279–1286. ACM (2014),
http://dl.acm.org/citation.cfm?id=2554850

13. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena-Timo, O.: Runtime enforcement of
timed properties revisited. Formal Methods in System Design 45(3), 381–422 (2014)

14. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena-Timo, O.L.: Runtime enforcement
of timed properties. In: Qadeer, S., Tasiran, S. (eds.) Runtime Verification, Third International Conference,
RV 2012, Istanbul, Turkey, September 25-28, 2012, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 7687, pp. 229–244. Springer (2012)

15. Renard, M., Falcone, Y., Rollet, A., Pinisetty, S., Jéron, T., Marchand, H.: Enforcement of (timed) prop-
erties with uncontrollable events. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) Theoretical Aspects of
Computing - ICTAC 2015. Lecture Notes in Computer Science, vol. 9399, pp. 542–560. Springer Interna-
tional Publishing (2015)

16. Sammapun, U., Lee, I., Sokolsky, O.: RT-MaC: Runtime monitoring and checking of quantitative and
probabilistic properties. 2013 IEEE 19th International Conference on Embedded and Real-Time Comput-
ing Systems and Applications 0, 147–153 (2005)

17. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–50 (Feb 2000)

20

A Proofs

A.1 Proofs for the Untimed Setting

In all this section, we will use the notations from Section 3, meaning that ϕ is a property whose
associated automaton is Aϕ = 〈Q, q0, Σ,−→, F 〉. In some proofs, we also use notations from Defi-
nition 7.

Proposition 1. Eϕ as defined in Definition 7 is an enforcement function.

Proof. Let us consider σ ∈ Σ∗, and σ′ ∈ Σ∗. If σ′ = ε, then Eϕ(σ) = Eϕ(σ.σ
′) 4 Eϕ(σ.σ

′).
Otherwise, let (σs, σc) = storeϕ(σ), a = σ′(1), and (σt, σd) = storeϕ(σ.a). Then, if a ∈ Σu,
σt = σs.a.σ

′
s, where σ′s is defined in Definition 7, meaning that σs 4 σt. If a ∈ Σc, then σt =

σs.σ
′′
s , where σ′′s is defined in Definition 7, thus again, σs 4 σt. In both cases, Eϕ(σ) = σs 4 σt =

Eϕ(σ.a). Since the order 4 is transitive, this means that Eϕ(σ) 4 Eϕ(σ.a) 4 Eϕ(σ.a.σ
′(2)) 4

. . . 4 Eϕ(σ.σ
′). Thus Eϕ is an enforcement function. ut

Lemma 1. For q ∈ Q, σ ∈ Σ∗c , u ∈ Σu, and w 4 σ,
(Safeint(q, σ, ∅) ∧ Safeint(q after (u.w), w

−1.σ, {(q, σ)})) =⇒ Safeint(q after (u.w), w
−1.σ, ∅).

Proof. Let us consider q ∈ Q, σ ∈ Σ∗c , u ∈ Σu, and w 4 σ such that Safeint(q, σ, ∅) and
Safeint(q after (u.w), w

−1.σ, {(q, σ)}) hold.

– Case 1: w 6= ε. Then, w−1.σ 6= σ, thus for all inductive calls in the computation of
Safeint(q after (u.w), w

−1.σ, {(q, σ)}), there exists q′ ∈ Q, σ′ ∈ Σ∗c , and Q′ ⊆ Q such that
the inductive call is Safeint(q′, σ′, {(q, σ)} ∪Q′), with σ′ ≺ σ. Since σ′ ≺ σ, (q′, σ′) 6= (q, σ),
meaning that the condition (q′, σ′) ∈ {(q, σ)} ∪ Q′ is equivalent to (q′, σ′) ∈ Q′. Thus, the
inductive call is equivalent to Safeint(q

′, σ′, Q′) It follows that Safeint(q after (u.w), w−1.σ, ∅)
holds, since Safeint(q after (u.w), w

−1.σ, {(q, σ)}) holds, and whether (q, σ) belongs to the
third parameter or not does not change the value.

– Case 2: w = ε. Then, Safeint(q, σ, ∅) and Safeint(q after u, σ, {(q, σ)}) hold. Let us sup-
pose that Safeint(q after u, σ, ∅) does not hold. Then, there exists u′ ∈ Σu such that for all
w′ 4 σ, Safeint(qafter(u.u′.w′), w′−1.σ, {(qafteru, σ)}) does not hold. Now, considering that
Safeint(q after u, σ, {(q, σ)}) holds, and u′ ∈ Σu, this means that there exists w1 4 σ such that
Safeint(q after (u.u

′.w1), w
−1
1 .σ, {(q, σ), (q after u, σ)}) holds. Following the same reasoning

as in the first case, if w1 6= ε, then Safeint(q after (u.u
′.w1), w

−1
1 .σ, {(q, σ), (q after u, σ)}) is

equivalent to Safeint(q after (u.u
′.w1), w

−1
1 .σ, ∅), and also to Safeint(q after (u.u

′.w1), w
−1
1 .σ,

{(q after u, σ)}). This is absurd because Safeint(q after (u.u′.w1), w
−1
1 .σ, {(q after u, σ)})

does not hold. This means that w1 = ε. Thus, Safeint(q after (u.u′), σ, {(q, σ), (q after u, σ)})
holds. Repeating this process, we can find σu ∈ Σ∗u such that Safeint(q after σu, σ,Q′) does
not hold, and q after σu ∈ Q′, with Q′ = {(q′, σ) | ∃σ′u 4 σu, q

′ = q after σ′u}. Since
q afterσu ∈ Q′, and Safeint(q afterσu, σ,Q

′) does not hold, this means that there exists qb ∈ Q
such that (qb, σ) ∈ Q′ and qb 6∈ F . If (q, σ) 6∈ Q′, then Safeint(q after u, σ, {(q, σ)}) is equiv-
alent to Safeint(q after u, σ, ∅), which is absurd. Thus, (q, σ) ∈ Q′, so let σu1 4 σu be such
that q after σu1 = q. Then, considering that Safeint(q after u, σ, {(q, σ)}) holds, this means
that Safeint(q, σ, {q, σ} ∪ Q1) holds, with Q1 = {(q′, σ) | ∃σ′u 4 σu1, q

′ = q after σ′u}.
Thus, for all q′ such that (q′, σ) ∈ Q1, q′ ∈ F . Since we supposed that Safeint(q, σ, ∅) holds,
it follows that Safeint(q after σu2, σ,Q2) holds, with σu2 = σ−1u1 .σu, and Q2 = {(q′, σ) |
∃σ′u 4 σu2, q

′ = q after σ′u} (following the same reasoning as before, we can show that
w = ε). If q after σu2 = q after σu ∈ Q2, then for all (q′, σ) ∈ Q2, q′ ∈ F since
Safeint(q afterσu2, σ,Q2) holds. Since Q′ = Q1 ∪Q2, it is absurd, thus Safeint(q afteru, σ, ∅)
holds. Otherwise, q afterσu ∈ Q1 (because q afterσu ∈ Q′). Then, there exists σu3 4 σu2 such
that qafterσu3 = qafterσu. Let us consider σu4 as the smallest word satisfying σu4 4 σ−1u3 .σu2,
and (q after σu.σu4, σ) ∈ Q2 ∪Q3, with Q3 = {(q′, σ) | ∃σ′u 4 σ−1u3 .σu2, q

′ = q after σu.σ
′
u}.

σu4 must exist because q after σu.(σ
−1
u3 .σu2) = q ∈ Q2, thus σ−1u3 .σu2 satisfies the prop-

erty. Then, Safeint(q after σu.σu4, σ,Q2 ∪ Q4) holds, with Q4 = {(q′, σ) | ∃σ′u 4 σu4, q
′ =

qafterσu.σ
′
u}, and qafterσu.σu4 ∈ Q2∪Q4. This means that for all (q′, σ) ∈ Q2∪Q4, q′ ∈ F .

Thus, for all (q′, σ) ∈ Q2, q′ ∈ F . This means that for all (q′, σ) ∈ Q1 ∪ Q2 = Q′, q′ ∈ F ,
which is absurd, meaning that Safeint(q after u, σ, ∅) must hold.

21

In all cases, Safeint(q after (u.w), w−1.σ, ∅) holds. Thus:
(Safeint(q, σ, ∅) ∧ Safeint(q after (u.w), w

−1.σ, {(q, σ)})) =⇒ Safeint(q after (u.w), w
−1.σ, ∅).

ut

Proposition 2. Eϕ is sound with respect to ϕ in Pre(ϕ), as per Definition 3.

Proof. Let P(σ) be the predicate: “σ ∈ Pre(ϕ) =⇒ ((Eϕ(σ) |= ϕ)∧((σs, σb) = storeϕ(σ)) =⇒
Safe(Reach(σs), σb))”. Let us prove that ∀σ ∈ Σ∗,P(σ) holds.

– Induction basis: Eϕ(ε) = ε. If ε ∈ Pre(ϕ), then, following the definition of Pre(ϕ), ε |= ϕ and
Safe(Reach(ε), ε). Since storeϕ(ε) = (ε, ε), this means that P(ε) holds.

– Induction step: Suppose now that, for some σ ∈ Σ∗, P(σ) holds. Let us consider a ∈ Σ. Let us
prove that P(σ.a) holds. Let us consider (σs, σb) = storeϕ(σ), and (σt, σc) = storeϕ(σ.a).
• Case 1: (σ.a) 6∈ Pre(ϕ). Then P(σ.a) holds.
• Case 2: (σ.a) ∈ Pre(ϕ) ∧ σ 6∈ Pre(ϕ). Then, there exists σ′ ∈ Σ∗, (σ.a)|Σu

4 σ′ ∧
(σ.a)|Σu

= σ′|Σu
∧ σ′|Σc

4 (σ.a)|Σc
∧ σ′ |= ϕ ∧ Safe(Reach(σ′), (σ′|Σc

)−1.σ|Σc
). Since

σ 6∈ Pre(ϕ), σs = σ|Σu
, thus σt < σ|Σu

, and σb = σ|Σc
.

∗ If a ∈ Σu, then (σ.a)|Σu
= σs.a, and (σ.a)|Σc

= σ|Σc
= σb, thus ((σ.a)|Σu

)−1.σ′ ∈
{w 4 σb | σs.a.w |= ϕ ∧ Safe(Reach(σs.a.w), w

−1.σb)}. Thus, following the con-
struction of σt, Eϕ(σ.a) = σt |= ϕ ∧ Safe(Reach(σt), σc). This means that P(σ.a)
holds.
∗ If a ∈ Σc, then (σ.a)|Σu

= σ|Σu
= σs, and (σ.a)|Σc

= σ|Σc
.a = σb.a. Thus,

((σ.a)|Σu
)−1.σ′ ∈ {w 4 σb.a | σs.w |= ϕ ∧ Safe(Reach(σs.w), w

−1.(σb.a))}. Thus,
following the definition of σt, σt = Eϕ(σ.a) |= ϕ and Safe(Reach(σt), σc) holds. This
means that P(σ.a) holds.

• Case 3: σ ∈ Pre(ϕ) (and then (σ.a) ∈ Pre(ϕ) since Pre(ϕ) is extension-closed). More-
over, since P(σ) holds, Safe(Reach(σs), σb) holds.
∗ If a ∈ Σu, then, since Safe(Reach(σs), σb) holds, there exists w 4 σb such that
Safeint(Reach(σs.a.w), w

−1.σb, {(Reach(σs), σb)}) holds, and Reach(σs.a.w) ∈ F .
By induction hypothesis, Safeint(Reach(σs), σb, ∅) holds. Following lemma 1, since
a ∈ Σu, this means that Safeint(Reach(σs.a.w), w

−1.σb, ∅) holds, i.e.
Safe(Reach(σs.a.w), w

−1.σb) holds. Thus, w ∈ E = {w′ 4 σb | σs.a.w′ |= ϕ ∧
Safe(Reach(σs.a.w

′), σb)}. . Since E 6= ∅, σ′s from Definition 7 is in E . This means
that Eϕ(σ.a) = σt = σs.a.σ

′
s |= ϕ, and that Safe(Reach(σt), σc) holds, since σc = σb.

Thus, P(σ.a) holds.
∗ If a ∈ Σc, then, by induction hypothesis, σs |= ϕ, and Safe(Reach(σs), σb) holds.

Thus, Safe(Reach(σs), σb.a) also holds. Thus, ε ∈ E2 = {w′ 4 σb.a | σs.w′ |=
ϕ ∧ Safe(Reach(σs.w

′), w′−1.σb.a)}. Since E2 6= ∅, this means that σ′′s as defined
in Definition 7 is in E2. It follows that Eϕ(σ.a) = σt = σs.σ

′′
s |= ϕ, and that

Safe(Reach(σs.σ
′′
s), σ

′′
s
−1
.σb) = Safe(Reach(σt), σc) holds. Thus, P(σ.a) holds.

In all cases, P(σ.a) holds. Thus, P(σ) =⇒ P(σ.a).

By induction on σ, ∀σ ∈ Σ∗, (σ ∈ Pre(ϕ)) =⇒ (Eϕ(σ) |= ϕ∧ (((σs, σb) = storeϕ(σ)) =⇒
Safe(Reach(σs), σb). In particular, for all σ ∈ Σ∗, (σ ∈ Pre(ϕ)) =⇒ (Eϕ(σ) |= ϕ). This means
that Eϕ is sound with respect to ϕ in Pre(ϕ). ut

Proposition 3. Eϕ is compliant, as per Definition 4.

Proof. For σ ∈ Σ∗, let P(σ) be the predicate: “((σs, σc) = storeϕ(σ)) =⇒ (σs|Σc
.σc = σ|Σc

∧
σs|Σu

= σ|Σu
)”. Let us prove that for all σ ∈ Σ∗, P(σ) holds.

– Induction basis: storeϕ(ε) = (ε, ε), and ε|Σc
= ε|Σc

.ε, and ε|Σu
= ε|Σu

. Thus P(ε) holds.
– Induction step: Let us suppose that for σ ∈ Σ∗, P(σ) holds. Let us consider (σs, σc) =
storeϕ(σ), a ∈ Σ, and (σt, σd) = storeϕ(σ.a). Let us prove that P(σ.a) holds.
• Case 1: a ∈ Σu. Then, σt = σs.a.σ

′
s, where σ′s is defined in Definition 7, and σt.σd =

σs.a.σc. Therefore, σt|Σc
.σd = (σt.σd)|Σc

, since σd ∈ Σ∗c . Thus, σt|Σc
.σd = σs|Σc

.σc.
Since P(σ) holds, σt|Σc

.σd = σ|Σc
= (σ.a)|Σc

.
Moreover, since σ′s ∈ Σ∗c , σt|Σu

= σs|Σu
.a. Since P(σ) holds, this means that σt|Σu

=
σ|Σu

.a = (σ.a)|Σu
.

Thus P(σ.a) holds.

22

• Case 2: a ∈ Σc. Then σt = σs.σ
′′
s , where σ′′s is defined in Definition 7, and σt.σd =

σs.σc.a. Therefore, σt|Σc
.σd = (σt.σd)|Σc

= (σs.σc.a)|Σc
= σs|Σc

.σc.a. Since P(σ)
holds, this means that σt|Σc

.σd = σΣc
.a = (σ.a)|Σc

.
Moreover, since σ′′s ∈ Σ∗c , σt|Σu

= σs|Σu
. Since P(σ) holds, this means that σt|Σu

=
σ|Σu

= (σ.a)|Σu
.

Thus P(σ.a) holds.
In both cases, P(σ.a) holds.
Thus, for all σ ∈ Σ∗, for all a ∈ Σ, P(σ) =⇒ P(σ.a).

By induction on σ, for all σ ∈ Σ∗, ((σs, σc) = storeϕ(σ)) =⇒ (σs|Σc
.σc = σ|Σc

∧ σs|Σu
=

σ|Σu
).

Moreover, if σ ∈ Σ∗, u ∈ Σu, (σs, σc) = storeϕ(σ), and (σt, σd) = storeϕ(σ.u), then σt =
σs.u.σ

′
s, where σ′s is defined in Definition 7. Thus σs.u 4 σt, and since σs = Eϕ(σ), and σt =

Eϕ(σ.u), it follows that Eϕ(σ).u 4 Eϕ(σ.u).
Thus, for all σ ∈ Σ∗, Eϕ(σ)|Σc

4 σ|Σc
∧ Eϕ(σ)|Σu

= σ|Σu
∧ ∀u ∈ Σu,Eϕ(σ).u 4 Eϕ(σ.u),

meaning that Eϕ is compliant. ut

Proposition 4. Eϕ is optimal in Pre(ϕ), as per Definition 5.

Proof. Let E be an enforcement function such that compliant(E,Σc, Σu), and let σ ∈ Pre(ϕ) and
a ∈ Σ be such that E(σ) = Eϕ(σ) ∧ |E(σ.a)| > |Eϕ(σ)|. Let us consider (σs, σc) = storeϕ(σ).

– Case 1: a ∈ Σu. Then, since E is compliant, and E(σ) = Eϕ(σ) = σs, there exists σ′s1 4
σc such that E(σ.a) = E(σ).a.σ′s1 = σs.a.σ

′
s1. Moreover, there exists σ′s 4 σc such that

Eϕ(σ.a) = Eϕ(σ).a.σ
′
s = σs.a.σ

′
s. Since |E(σ.a)| > |Eϕ(σ.a)|, |σ′s1| > |σ′s|. Considering that

σ′s = max4(S ∪ {ε}), with S = {w 4 σb | σs.a.w |= ϕ ∧ Safe(Reach(σs.a.w), w
−1.σc)}, it

follows that σ′s1 6∈ S. This means that either σs.a.σ′s1 = E(σ.a) 6|= ϕ, or Safe(Reach(σs.a.σ′s1),
σ′s1
−1
.σc) does not hold. If σs.a.σs1 6|= ϕ, then ε ∈ Σ∗u is such that Eϕ(σ.a.ε) 6|= ϕ. Otherwise,

Safe(Reach(Eϕ(σ).a.σ
′
s1), σ

′
s1
−1
.σc) does not hold. Then, following the definition of Safe and

Safeint, this means that there exists u1 ∈ Σu such that for all w 4 σ′−1s1 .σb,
Safeint(Reach(σs.a.σ

′
s1.u1.w), w

−1.(σ′−1s1 .σb), {(Reach(σs.a.σs1), σ′−1s1 .σb)}) does not hold,
or Reach(σs.a.σ

′
s1.u1.w) 6∈ F . Then, let us consider E(σ.a.u1). Since E is compliant, and

u1 ∈ Σu, there exists σ′s2 4 σ′−1s1 .σb such that E(σ.a.u1) = σs.a.σ
′
s1.u1.σ

′
s2. Thus, either

Reach(E(σ.a.u1)) 6∈ F , meaning that u1 ∈ Σ∗u is such that E(σ.a.u1) 6|= ϕ, or
Safeint(Reach(σs.a.σ

′
s1.u1.σ

′
s2), σ

′−1
s2 .(σ′−1s1 .σb), {(Reach(σs.a.σ′s1), σ′−1s1 .σb)}) does not hold.

Then, this can be iterated, constructing a word σu ∈ Σ∗u such that Reach(E(σ.a.σu)) 6∈ F ,
or such that there exists σ′sn 4 σb such that Safeint(Reach(E(σ.a.σu)), σ

′−1
sn .σb, Q

′) does
not hold, where Q′ = {(q, σ′) ∈ Q × Σ∗c | ∃σ′′u 4 σu, q = Reach(E(σ.a.σ′′u)) ∧ σ′ =
(E(σ.a.σ′′u)|Σc

)−1.σ|Σc
}, with (Reach(E(σ.a.σu)), σ

′−1
sn .σb) ∈ Q′, or σ′−1sn .σb = ε. If

σ′−1sn .σb = ε, then since Safeint(Reach(E(σ.a.σu)), ε, Q
′) does not hold, there exists σ′u ∈ Σ∗u

such that Reach(E(σ.a.σu)) after σ
′
u 6∈ F . Since E is compliant, and E(σ.a.σu)|Σc

= σ|Σc

(since σ′−1sn .σb = ε), then E(σ.a.σu.σ
′
u) = E(σ.a.σu).σ

′
u 6∈ F , meaning that E(σ.a.σu.σ

′
u) 6|=

ϕ. Otherwise, Reach(E(σ.a.σu)) ∈ Q′, and since Safeint(Reach(E(σ.a.σu)), σ
′−1
sn .σb, Q

′)
does not hold, this means that there exists (q, σ′−1sn .σb) ∈ Q′ such that q 6∈ F . Since
(q, σ′−1sn .σb) ∈ Q′, there exists σ′u 4 σu such that Reach(E(σ.a.σ′u)) = q. Thus,
Reach(σ.a.σ′u) 6∈ F , meaning that σ′u ∈ Σ∗u is such that E(σ.a.σ′u) 6|= ϕ.
Thus, in call cases, there exists σu ∈ Σ∗u such that E(σ.a.σu) 6|= ϕ.

– Case 2: a ∈ Σc. The proof is the same as in the case where a ∈ Σu, but with S = {w 4 σb.a |
σs.w |= ϕ ∧ Safe(Reach(σs.w), w

−1.(σb.a))}, and replacing occurrences of “σs.a” by “σs”,
and occurrences of “σb” by “σb.a”.

Thus, if E is an enforcement function such that there exists σ ∈ Pre(ϕ), and a ∈ Σ so that
compliant(E,Σu, Σc) ∧ E(σ) = Eϕ(σ) ∧ |E(σ.a)| > |Eϕ(σ.a)|, then there exists σu ∈ Σ∗u such
that E(σ.a.σu) 6|= ϕ.

This means that Eϕ is optimal in Pre(ϕ). ut

Proposition 5. The output of the enforcement monitor E for input σ is Eϕ(σ).

23

Proof. Let us introduce some notation for this proof: for a word w ∈ Γ E∗, we note input(w) =
Π1(w(1)).Π1(w(2)) . . . Π1(w(|w|)), the word obtained by concatenating the first members (the
inputs) of w. In a similar way, we note output(w) = Π3(w(1)).Π3(w(2)) . . . Π3(w(|w|)), the
word obtained by concatenating all the third members (outputs) ofw. Since all configurations are not
reachable from cE0 , for w ∈ Γ E∗, we note Reach(w) = c whenever cE0 ↪

w−→E c, and Reach(w) = ⊥
if such a c does not exist. We also define the Rules function as follows:

Rules :

{
Σ∗ → Γ E∗

σ 7→ max4({w ∈ Γ E∗ | input(w) = σ ∧ Reach(w) 6= ⊥})

For a word σ ∈ Σ∗, Rules(σ) is the trace of the longest valid run in E , i.e. the sequence of all
the rules that can be applied with input σ. We then extend the definition of output to words in Σ∗:
for σ ∈ Σ∗, output(σ) = output(Rules(σ)). We also note ε the empty word of Σ∗, and εE the
empty word of Γ E∗.

For σ ∈ Σ∗, let P(σ) be the predicate: “Eϕ(σ) = output(σ) ∧ ((σs, σc) = storeϕ(σ) ∧
Reach(Rules(σ)) = 〈q, σEc 〉) =⇒ (q = Reach(σs) ∧ σc = σEc)”.

Let us prove that for all σ ∈ Σ∗, P(σ) holds.

– Induction basis: Eϕ(ε) = ε = output(ε). Moreover, storeϕ(ε) = (ε, ε), and Reach(εE) = cE0 .
Therefore, as cE0 = 〈q0, ε〉, P(ε) holds, because Reach(ε) = q0.

– Induction step: Let us suppose now that for some σ ∈ Σ∗, P(σ) holds. Let us consider (σs, σc) =
storeϕ(σ), q = Reach(σs), a ∈ Σ, and (σt, σd) = storeϕ(σ.a). Let us prove that P(σ.a) holds.
Since P(σ) holds, Reach(Rules(w)) = 〈q, σc〉 and σs = output(σ).
• Case 1: a ∈ Σu. Then, considering σ′s as defined in Definition 7, σt = σs.a.σ

′
s. More-

over, a ∈ Σu, thus rule pass-uncont can be applied: let us consider q′ = q after a.

Then 〈q, σc〉 ↪
a/ pass-uncont(a)/a−−−−−−−−−−−−→E 〈q′, σc〉. If σ′s 6= ε, then σt = σs.a.σ

′
s |= ϕ, and

if q′′ = Reach(σt), then Safe(q′′, σ′s
−1
.σc) holds, meaning that rule dump(σ′s) can be

applied, leading to 〈q′, σc〉 after ε/ dump(σ′s)/σ
′
s = 〈q′′, σ′s

−1
.σc〉 = 〈Reach(σt), σd〉.

Moreover, output(σ.a) = output(σ).a.σ′s. Since P(σ) holds, output(σ) = σs, thus
output(σ.a) = σs.a.σ

′
s = σt. Thus, if σ′s 6= ε, P(σ.a) holds. Otherwise, σ′s = ε, and

then it is impossible to apply dump rule, because it is impossible to reach a safe state
with a prefix of σc that is not ε. Thus, output(σ.a) = output(σ).a = σs.a = σt, and
Reach(Rules(σ.a)) = 〈q′, σc〉, with q′ = Reach(σt), and σd = σc. Thus, P(σ.a) holds.
Thus, if a ∈ Σu, P(σ.a) holds.
• Case 2: a ∈ Σc. Then, considering σ′′s as defined in Definition 7, σt = σs.σ

′′
s . Since a ∈ Σc,

it is possible to apply the store-cont rule, and 〈q, σc〉 after a/ store-cont(a)/ε = 〈q, σc.a〉.
Then, if σ′′s 6= ε, q′ = q after σ′′s is such that q′ ∈ F ∧ Safe(q′, σ′′s

−1
.(σc.a)), meaning that

rule dump(σ′′s) can be applied. Let us consider 〈q′, σ′′s
−1
.(σc.a)〉 =

〈q, σc.a〉 after ε/dump(σ′′s)/σ
′′
s . Then, q′ = Reach(σt), and σ′′s

−1
.(σc.a) = σd. More-

over, output(σ.a) = output(σ).σ′′s = σs.σ
′′
s = σt. Thus, if σ′′s 6= ε, P(σ.a) holds.

Otherwise, σ′′s = ε, and no rule can be applied anymore, thus Reach(Rules(σ.a)) =
〈q, σc.a〉, where q = Reach(σt), and σc.a = σ′′−1s .(σc.a) = σd, and output(σ.a) =
output(σ) = σs = σt. Thus, if σ′′s = ε, P(σ.a) holds. Thus, if a ∈ Σc, P(σ.a) holds.

This means that P(σ) =⇒ P(σ.a).

Thus, by induction on σ, for all σ ∈ Σ∗, P(σ) holds. In particular, for all σ ∈ Σ∗, Eϕ(σ) =
output(σ). ut

A.2 Proofs for the Timed Setting

Proposition 6. Eϕ as defined in Definition 15 is an enforcement function.

Proof. For σ ∈ tw(Σ), let P(σ) be the predicate: “∀t ∈ R≥0,∀t′ ≥ t,Eϕ(σ, t) 4 Eϕ(σ, t
′)”. Let

us show by induction that for all σ ∈ tw(Σ), P(σ) holds.

– Induction basis: σ = ε. Then, let us consider t ∈ R≥0, and t′ ≥ t. Then, Eϕ(ε, t) = ε 4 ε =
Eϕ(ε, t

′). Thus, P(ε) holds.

24

– Induction step: let us suppose that, for σ ∈ tw(Σ), P(σ) holds. Let us consider (t′′, a) such that
σ.(t′′, a) ∈ tw(Σ), t ∈ R≥0, and t′ ≥ t.
• If t ≥ t′′, then let us consider (σs, σb, σc) = storeϕ(σ, t

′′), (σt1, σd1, σe1) =
storeϕ(σ.(t

′′, a), t), and (σt2, σd2, σe2) = storeϕ(σ.(t
′′, a), t′). Then, Eϕ(σ.(t′′, a), t) =

σt1 and Eϕ(σ.(t
′′, a), t′) = σt2.

∗ If a ∈ Σu, then considering t1 as defined in Definition 15, t1 = min({t0 ∈ R≥0 | t0 ≥
t′′ ∧ E(Reach(σs.(t

′′, a), t0), ΠΣ(nobs(σb, t
′′)).σc) 6= ∅}). Then, σd1 =

minlex(max4(E(Reach(σs.(t
′′, a),min({t, t1})), ΠΣ(nobs(σb, t

′′)).σc)∪{ε}))+t t
′,

and σd2 = minlex(max4(E(Reach(σs.(t
′′, a),min({t′, t1})), ΠΣ(nobs(σb, t

′′)).σc)∪
{ε})) +t t

′.
· Case 1: t ≥ t1. Since t′ ≥ t, then t′ ≥ t1, thus min({t′, t1}) = min({t, t1}) = t1,

thus σd1 = σd2. It follows that:
σt1 = σs.(t

′′, a). obs(σd1, t) 4 σs.(t
′′, a). obs(σd1, t

′) = σs.(t
′′, a). obs(σd2, t

′) =
σt2.
· Case 2: t < t1. Then, min({t, t1}) = t. Since t < t1, by definition of t1, this

means that E(Reach(σs.(t′′, a), t), ΠΣ(nobs(σb, t
′′)).σc) = ∅, and thus σd1 = ε.

Since σd1 = ε, σt1 = σs.(t
′′, a) 4 σs.(t

′′, a). obs(σd2, t
′) = σt2.

Thus, if t′ ≥ t ≥ t′′ and a ∈ Σu, P(σ) =⇒ Eϕ(σ.(t
′′, a), t) 4 Eϕ(σ.(t

′′, a), t′).
∗ Otherwise, a ∈ Σc, and then considering t2 as defined in Definition 15, t2 = min({t0 ∈
R≥0 | t0 ≥ t′′ ∧ E(Reach(σs, t0), ΠΣ(nobs(σb, t

′′)).σc.a) 6= ∅}). Then, σd1 =
minlex(max4(E(Reach(σs, min({t, t2})), ΠΣ(nobs(σb, t

′′)) . σc . a) ∪ {ε}))+t

time(σs), and:
σd2 = minlex(max4(E(Reach(σs,min({t′, t2})), ΠΣ(nobs(σb, t

′′)).σc.a)∪{ε}))+t

time(σs).
· Case 1: t ≥ t2. Since t′ ≥ t, t′ ≥ t2, meaning that min({t, t2}) = min({t′, t2}) =
t2, and thus σd1 = σd2. It follows that σt1 = σs. obs(σd1, t)) 4 σs. obs(σd1, t

′) =
σs. obs(σd2, t

′) = σt2.
· Case 2: t < t2. Then, E(Reach(σs,min({t, t2})), ΠΣ(nobs(σb, t

′′)).σc.a) = ∅,
meaning that σd1 = ε. Thus, σt1 = σs 4 σs. obs(σd2, t

′) = σt2.
Thus, if t′ ≥ t ≥ t′′ and a ∈ Σc, P(σ) =⇒ Eϕ(σ.(t

′′, a), t) 4 Eϕ(σ.(t
′′, a), t′).

Therefore, if t′ ≥ t ≥ t′′, for all a ∈ Σ, P(σ) =⇒ Eϕ(σ.(t
′′, a), t) 4 Eϕ(σ.(t

′′, a), t′).
• If t′ < t′′, then t < t′′, and obs(σ.(t′′, a), t) = obs(σ, t), and obs(σ.(t′′, a), t′) = obs(σ, t′).

Thus, Eϕ(σ.(t′′, a), t) = storeϕ(obs(σ.(t
′′, a), t), t) = storeϕ(obs(σ, t), t) = Eϕ(σ, t),

and Eϕ(σ.(t
′′, a), t′) = storeϕ(obs(σ.(t

′′, a), t′), t′) = storeϕ(obs(σ, t
′), t′) = Eϕ(σ, t

′).
Since P(σ) holds, then Eϕ(σ.(t

′′, a), t) = Eϕ(σ, t) 4 Eϕ(σ, t
′) = Eϕ(σ.(t

′′, a), t′).
• If t < t′′ ≤ t′, then obs(σ.(t′′, a), t) = obs(σ, t). Since P(σ) holds, then Eϕ(σ, t) 4
Eϕ(σ, t

′′). Let (σs, σb, σc) = storeϕ(σ, t
′′), and (σt, σd, σe) = storeϕ(σ.(t

′′, a), t′). Then,
σt = σs.(t

′′, a). obs(σe, t
′) if a ∈ Σu, and σt = σs. obs(σe, t

′) if a ∈ Σc. In both
cases, σs 4 σt. This means that Eϕ(σ, t′′) 4 Eϕ(σ.(t

′′, a), t′). Thus, Eϕ(σ.(t′′, a), t) =
Eϕ(σ, t) 4 Eϕ(σ, t

′′) 4 Eϕ(σ.(t
′′, a), t′).

Thus, if t < t′′ ≤ t′, then P(σ) =⇒ Eϕ(σ.(t
′′, a), t) 4 Eϕ(σ.(t

′′, a), t′).
Consequently, in all cases, if t ≤ t′, then P(σ) =⇒ Eϕ(σ.(t

′′, a), t) 4 Eϕ(σ.(t
′′, a), t′).

Finally, P(σ) =⇒ P(σ.(t′′, a)).

By induction, for all σ ∈ tw(Σ), P(σ) holds. Thus, for all σ ∈ tw(Σ), for all t ∈ R≥0, for all
t′ ≥ t, Eϕ(σ, t) 4 Eϕ(σ, t

′).

Now, let us consider σ ∈ tw(Σ), and (t, a) such that σ.(t, a) ∈ tw(Σ). Then, if (σs, σb, σc) =
storeϕ(σ, t), and (σt, σd, σe) = storeϕ(σ.(t, a), t), then either σt = σs.(t, a).σ

′
s, or σt = σs.σ

′′
s ,

whether a is controllable or uncontrollable respectively, where σ′s and σ′′s are defined in Defini-
tion 15. In both cases, σs 4 σt. Thus, Eϕ(σ, t) = Π1(storeϕ(obs(σ, t), t)) = σs 4 σt =
Π1(storeϕ(obs(σ.(t, a), t))) = Eϕ(σ.(t, a), t). This holds because, since σ.(t, a) ∈ tw(Σ), time(σ) ≤
t, thus obs(σ, t) = σ.

Thus, for all σ ∈ tw(Σ), for all t ∈ R≥0 and t′ ≥ t, Eϕ(σ, t) 4 Eϕ(σ, t
′) and Eϕ(σ, t) 4

Eϕ(σ.(t, a), t).
This means that Eϕ is an enforcement function. ut

25

Lemma 2. ∀t ∈ R≥0,∀σ ∈ tw(Σ), (σ 6∈ Pre(ϕ, t) ∧ (σs, σb, σc) = storeϕ(σ, t)) =⇒ (σs =
σ|Σu

∧ σb = ε ∧ σc = ΠΣ(σ|Σc
)).

Proof. For σ ∈ tw(Σ), let P(σ) be the predicate “∀t ≥ time(σ), (σ 6∈ Pre(ϕ, t) ∧ (σs, σb, σc) =
storeϕ(σ, t)) =⇒ (σs = σ|Σu

∧ σb = ε∧ σc = ΠΣ(σ|Σc
))”. Let us prove by induction that for all

σ ∈ tw(Σ), P(σ) holds.

– Induction basis: for σ = ε, let us consider t ∈ R≥0. Then, storeϕ(ε, t) = (ε, ε, ε). Considering
that ε ∈ tw(Σu), and ε = ΠΣ(ε|Σc

), P(ε) trivially holds (whether ε ∈ P(ϕ, t) or not).
– Induction step: suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (t′, a) such that
σ.(t′, a) ∈ tw(Σ), and t ≥ t′. Let us also consider (σs, σb, σc) = storeϕ(σ, t

′) and (σt, σd, σe) =
storeϕ(σ.(t

′, a), t). Then, if σ.(t′, a) ∈ Pre(ϕ, t), P(σ.(t′, a)) trivially holds. Thus, let us sup-
pose that σ.(t′, a) 6∈ Pre(ϕ, t). Since σ 4 σ.(t′, a) and t ≥ t′, it follows that σ 6∈ Pre(ϕ, t′). By
induction hypothesis, this means that σs ∈ tw(Σu), σb = ε, and σc = ΠΣ(σ|Σc

). Then, since
σ.(t′, a) 6∈ Pre(ϕ, t), E1(σ.(t

′, a), t) = ∅, where E1 is defined in Definition 16. Then, following
the definition of E1:

E1(σ.(t
′, a), t) =

{w ∈ tw(Σ) | (σ.(t′, a))|Σu
4 w∧

(σ.(t′, a))|Σu
= w|Σu

∧ (σ.(t′, a))|Σc
4d w|Σc

∧
Reach(w) ∈ FG∧
(w|Σc

6= ε =⇒ date(w|Σc
(1)) ≥ t)∧

∀t′′ ≥ t,Safe(Reach(w, t′′), ΠΣ(obs(w, t
′′))−1.ΠΣ(σ|Σc

))}.

(1)

• Case 1: a ∈ Σu. Then, considering that (σ.(t′, a))|Σu
= σ|Σu

.(t′, a), (σ.(t′, a))|Σc
= σ|Σc

,
and replacing by σs, σb, and σc when possible, (1) becomes:

E1(σ.(t
′, a), t) =

{w ∈ tw(Σ) | σs.(t′, a) 4 w ∧ w|Σu
= σs.(t

′, a)∧
ΠΣ(w|Σc

) 4 ΠΣ(nobs(σb, t
′)).σc∧

Reach(w) ∈ FG ∧ (w|Σc
6= ε =⇒ date(w|Σc

(1)) ≥ t) ∧ ∀t′′ ≥ t,
Safe(Reach(w, t′′), ΠΣ(obs(w|Σc

, t′′))−1.(ΠΣ(nobs(σb, t
′)).σc))}.

Now, E1(σ.(t
′, a), t) = ∅, and since t ≥ t′, this means that the set

((σs.(t
′, a))−1.E1(σ.(t

′, a), t))−t t, is empty too, thus:

{w ∈ tw(Σ) | ΠΣ(w) 4 ΠΣ(nobs(σb, t
′)).σc∧

(Reach(σs.(t
′, a), t) after w) ∈ FG ∧ ∀t′′ ∈ R≥0,

Safe(Reach(σs.(t
′, a), t) after (w, t′′), ΠΣ(obs(w, t

′′))−1.(ΠΣ(nobs(σb, t
′)).σc))}

= ∅.

This means that E(Reach(σs.(t′, a), t), ΠΣ(nobs(σb, t
′)).σc) = ∅, where E is defined in

Definition 15. Thus, σd = ε. It follows that σt = σs.(t
′, a). obs(σd, t) = σs.(t

′, a) =
(σ.(t′, a))|Σu

, and σe = ΠΣ((σ.(t
′, a))|Σc

).
Thus, P(σ.(t′, a)) holds when a ∈ Σu.
• Case 2: a ∈ Σc. Then, (σ.(t′, a))|Σu

= σ|Σu
, and (σ.(t′, a))|Σc

= σ|Σc
.(t′, a). In a similar

way than previously, (1) becomes:

E1(σ.(t
′, a), t) =

{w ∈ tw(σ) | σs 4 w ∧ w|Σu
= σs∧

ΠΣ(w|Σc
) 4 ΠΣ(nobs(σb, t

′)).σc.a∧
Reach(w) ∈ FG ∧ (w|Σc

6= ε =⇒ date(w|Σc
(1)) ≥ t) ∧ ∀t′′ ≥ t,

Safe(Reach(w, t′′), ΠΣ(obs(w|Σc
, t′′))−1.(ΠΣ(nobs(σb, t

′)).σc.a))}.

Then, again, since E1(σ.(t
′, a), t) = ∅, the set (σ−1s .E1(σ.(t

′, a), t))−t t is empty too:

{w ∈ twΣ) | ΠΣ(w) 4 ΠΣ(nobs(σb, t
′)).σc.a∧

Reach(σs, t) after w ∈ FG ∧ ∀t′′ ∈ R≥0,
Safe(Reach(σs, t) after (w, t

′′), ΠΣ(obs(w, t
′′))−1.(ΠΣ(nobs(σb, t

′)).σc.a))}
= ∅.

Thus, E(Reach(σs, t), ΠΣ(nobs(σb, t
′)).σc.a) = ∅. This means that σd = ε, thus σt =

σs. obs(σd, t) = σs = σ|Σu
= (σ.(t′, a))|Σu

, and σe = ΠΣ(σ|Σc
).a = ΠΣ((σ.(t

′, a))|Σc
).

It follows that P(σ.(t′, a)) holds.
Thus, P(σ) =⇒ P(σ.(t′, a)).

26

By induction, for all σ ∈ tw(Σ), P(σ) holds. Thus, for all σ ∈ tw(Σ), for all t ∈ R≥0, if
(σs, σb, σc) = storeϕ(σ, t) and (σ, t) 6∈ Pre(ϕ), then σs = σ|Σu

, σb = ε, and σc = ΠΣ(σ|Σc
). ut

Lemma 3. For q ∈ Q, σ ∈ Σ∗c , u ∈ Σu, w ∈ tw(Σ):
(Safeint(q, σ, ∅) ∧ ∀t ∈ R≥0,Safeint(q after ((0, u).w, t), ΠΣ(obs(w, t))

−1.σ, {(q, σ)}))
=⇒ ∀t ∈ R≥0,Safeint(q after ((0, u).w, t), ΠΣ(obs(w, t))

−1.σ, ∅).

Proof. The proof is the same as the one for lemma 1. The only difference is that it is necessary to
consider the value of q after ((0, u).w) at each possible date. ut

Proposition 7. Eϕ is sound with respect to ϕ in Pre(ϕ).

Proof. Notation from Definition 15 is to be used in this proof:

E(q, σ1) = {w ∈ tw(Σ) | ΠΣ(w) 4 σ1 ∧ (q after w) ∈ FG∧
∀t′′ ∈ R≥0,Safe(q after (w, t′′), ΠΣ(obs(w, t

′′))−1.σ1)},
κϕ(q, σ1) = min

lex
(max

4
(E(q, σ1) ∪ {ε}))

buffer c = ΠΣ(nobs(σb, t
′)).σc

t1 =
min({t′′ ∈ R≥0 | t′′ ≥ t′∧
E(Reach(σs.(t

′, a), t′′), buffer c) 6= ∅} ∪ {+∞}),
σ′b = κϕ(Reach(σs.(t

′, a),min({t, t1})), buffer c) +t min({t, t1}),
σ′c = ΠΣ(σ

′
b)
−1.buffer c,

t2 =
min({t′′ ∈ R≥0 | t′′ ≥ t′∧
E(Reach(σs, t

′′), buffer c.a) 6= ∅} ∪ {+∞}),
σ′′b = κϕ(Reach(σs,min({t, t2})), buffer c.a) +t min({t, t2}),
σ′′c = ΠΣ(σ

′′
b)
−1.(buffer c.a).

For σ ∈ tw(Σ), and t ≥ time(σ), let P(σ, t) be the predicate “(σ ∈ Pre(ϕ, t) ∧ (σs, σb, σc) =
storeϕ(σ, t)) =⇒ (Eϕ(σ) |= ϕ ∧ nobs(σb, t) −t t ∈ E(Reach(σs, t), ΠΣ(nobs(σb, t)).σc)). Let
also P(σ) be the predicate: “∀t ≥ time(σ),P(σ, t) holds”. Let us show that for all σ ∈ tw(Σ),
P(σ) holds.

– Induction basis: for σ = ε, let us consider t ∈ R≥0.
• Case 1: ε 6∈ Pre(ϕ, t). Then, P(ε) trivially holds.
• Case 2: ε ∈ Pre(ϕ, t). Then, there exists t′ ≤ t such that E1(obs(ε, t

′), t′) 6= ∅, meaning
that E1(ε, t

′) 6= ∅. Thus, following the definition of E1(ε, t
′), Reach(ε) ∈ FG, and for all

t′′ ≥ t′, Safe(Reach(ε, t′′), ε) holds. Since Eϕ(ε) = ε, and Reach(ε) ∈ FG, Eϕ(ε) |= ϕ.
Moreover, ε satisfiesΠΣ(ε) 4 ε∧(Reach(ε)afterε) ∈ FG∧∀t′′ ≥ t′,Safe(Reach(ε, t′′), ε),
meaning that ε ∈ E(Reach(ε, t′), ε). Since t ≥ t′, ε ∈ E(Reach(ε, t), ε). Moreover,
storeϕ(ε, t) = (ε, ε, ε), thus P(ε, t) holds.

Thus, in both cases, P(ε) holds.
– Induction step: suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (t′, a) such that
σ.(t′, a) ∈ tw(Σ), and t ≥ t′ = time(σ.(t′, a)). Let us also consider (σs, σb, σc) = storeϕ(σ, t

′)
and (σt, σd, σe) = storeϕ(σ.(t

′, a), t).
• Case 1: σ.(t′, a) 6∈ Pre(ϕ, t). Then, P(σ.(t′, a), t) trivially holds.
• Case 2: σ.(t′, a) ∈ Pre(ϕ, t) ∧ σ 6∈ Pre(ϕ, t′). Then, σ 6∈ Pre(ϕ, t′), thus, following

lemma 2, σs = σ|Σu
, and σb = ε. Since σ.(t′, a) ∈ Pre(ϕ, t), and σ 6∈ Pre(ϕ, t′), there

exists t′′ ∈ R≥0 such that t′ ≤ t′′ ≤ t ∧ E1(obs(σ.(t
′, a), t′′), t′′) 6= ∅. Since t′′ > t′ =

time(σ.(t′, a)), then obs(σ.(t′, a), t′′) = σ.(t′, a). This means that E1(σ.(t
′, a), t′′) 6= ∅.

Thus, let us consider w ∈ E1(σ.(t
′, a), t′′). Then, w satisfies:

(σ.(t′, a))|Σu
4 w ∧ (σ.(t′, a))|Σu

= w|Σu
∧

(σ.(t′, a))|Σc
4d w|Σc

∧
Reach(w) ∈ FG∧
(w|Σc

6= ε =⇒ date(w|Σc
(1)) ≥ t′′)∧

∀t0 ≥ t′′,
Safe(Reach(w, t0), ΠΣ(obs(w|Σc

, t0))
−1.ΠΣ((σ.(t

′, a))|Σc
)).

27

Let us consider wb = ((σ.(t′, a))−1|Σu
.w)−t t

′′). Then, wb satisfies:

ΠΣ(wb) 4 ΠΣ((σ.(t
′, a))|Σc

)∧
Reach((σ.(t′, a))|Σu

, t′′) after wb ∈ FG∧
∀t0 ∈ R≥0,
Safe(Reach((σ.(t′, a))|Σu

, t′′) after (wb, t0), ΠΣ(obs(wb, t0))
−1.ΠΣ((σ.(t

′, a))|Σc
)).

∗ If a ∈ Σu, then considering that (σ.(t′, a))|Σu
= σ|Σu

.(t′, a) = σs.(t
′, a), σb = ε, and

thus σc = ΠΣ(σ|Σc
), this means that wb satisfies:

ΠΣ(wb) 4 ΠΣ(σb).σc∧
(Reach(σs.(t

′, a), t′′) after wb) ∈ FG∧
∀t0 ∈ R≥0,
Safe(Reach(σs.(t

′, a), t′′) after (wb, t0), ΠΣ(obs(wb, t0))
−1.(ΠΣ(σb).σc)).

Thus, wb ∈ E(Reach(σs.(t
′, a), t′′), ΠΣ(σb).σc).

Since E(Reach(σs.(t
′, a), t′′), ΠΣ(σb).σc) 6= ∅, and t′′ ≤ t, this means that t1 ≤

t′′ ≤ t, thus σd−t t1 ∈ E(Reach(σs.(t
′, a), t1), ΠΣ(σb).σc). Thus, nobs(σd, t)−t t ∈

E(Reach(σs . (t
′, a) . obs(σd, t), t), ΠΣ(obs(σd, t))

−1 . (ΠΣ(σb) . σc)). Moreover,
ΠΣ(σb).σc = σ|Σc

, thus ΠΣ(obs(σd, t))
−1.(ΠΣ(σb).σc) = ΠΣ(nobs(σd, t)).σe,

meaning that nobs(σd, t) −t t ∈ E(Reach(σt, t), ΠΣ(nobs(σd, t)) . σe). Thus,
P(σ.(t′, a), t) holds.

∗ Otherwise, a ∈ Σc. Then, (σ.(t′, a))|Σu
= σ|Σu

= σs, σb = ε, and σc =
ΠΣ((σ.(t

′, a))|Σc
) = ΠΣ(σ|Σc

).a. Therefore, wb satisfies:

ΠΣ(wb) 4 ΠΣ(σb).σc.a∧
(Reach(σs, t

′′) after wb) ∈ FG∧
∀t0 ∈ R≥0,Safe(Reach(σs, t′′) after (wb, t0), ΠΣ(obs(wb, t0))

−1.(ΠΣ(σb).σc.a)).

This means that wb ∈ E(Reach(σs, t
′′), ΠΣ(σb).σc.a).

Thus, E(Reach(σs, t′′), ΠΣ(σb).σc.a) 6= ∅, meaning that t2 ≤ t′′ ≤ t, thus σd −t t2 ∈
E(Reach(σs, t2), ΠΣ(σb) . σc . a). It follows that nobs(σd, t) −t t ∈
E(Reach(σs . obs(σd, t), t), ΠΣ(obs(σd, t))−1 . (ΠΣ(σb) . σc . a)). Moreover,
ΠΣ(σb).σc.a = ΠΣ((σ.(t

′, a))|Σc
) = ΠΣ(σd).σe.

Thus, ΠΣ(obs(σd))
−1.(ΠΣ(σb).σc.a) = ΠΣ(nobs(σd, t)).σe. Thus, nobs(σd, t) −t

t ∈ E(Reach(σt, t), ΠΣ(nobs(σd, t)).σe). This means that P(σ.(t′, a), t) holds.
Thus, if σ.(t′, a) ∈ Pre(ϕ, t) ∧ σ 6∈ Pre(ϕ, t′), P(σ, t) =⇒ P(σ.(t′, a), t).

• Case 3: σ.(t′, a) ∈ Pre(ϕ, t) and σ ∈ Pre(ϕ, t′). Then, let us considerwb = nobs(σb, t
′)−t

t′. By induction hypothesis, since σ ∈ Pre(ϕ, t′), Eϕ(σ) |= ϕ ∧ wb ∈ E(Reach(σs, t
′),

ΠΣ(nobs(σb, t
′)).σc) holds.

∗ If a ∈ Σu, then since wb ∈ E(Reach(σs, t
′), ΠΣ(nobs(σb, t

′)).σc),
Safe(Reach(σs, t

′), ΠΣ(nobs(σb, t
′)).σc) holds. Following the definition of Safe, this

means that Safeint(Reach(σs, t′), ΠΣ(nobs(σb, t
′)).σc, ∅) holds. Considering the def-

inition of Safeint, since a ∈ Σu, there exists w ∈ tw(Σ) such that:

ΠΣ(w) 4 ΠΣ(nobs(σb, t
′)).σc∧

∀t′′ ∈ R≥0,
Safeint(Reach(σs, t

′) after ((0, a).w, t′′),
ΠΣ(obs(w, t

′′))−1.(ΠΣ(nobs(σb, t
′)).σc),

{(Reach(σs, t′), ΠΣ(nobs(σb, t
′)).σc)}).

Thus, w is such that:

Safeint(Reach(σs, t
′), ΠΣ(nobs(σb, t

′)).σc, ∅) ∧ ∀t′′ ∈ R≥0,
Safeint(Reach(σs, t

′) after ((0, a).w, t′′), ΠΣ(obs(w, t
′′))−1.(ΠΣ(nobs(σb, t

′)).σc),
{(Reach(σs, t′), ΠΣ(nobs(σb, t

′)).σc}))

holds. Thus, following lemma 3, for all t′′ ∈ R≥0,

Safeint(Reach(σs, t
′)after((0, a).w, t′′), ΠΣ(obs(w, t

′′))−1.(ΠΣ(nobs(σb, t
′)).σc), ∅)

28

holds. Hence, w satisfies:

ΠΣ(w) 4 ΠΣ(nobs(σb), t
′).σc∧

(Reach(σs.(t
′, a)) after w) ∈ FG∧

∀t′′ ∈ R≥0,
Safeint(Reach(σs.(t

′, a)) after (w, t′′), ΠΣ(obs(w, t
′′))−1.(ΠΣ(nobs(σb, t

′)).σc, ∅))

Thus, w ∈ E(Reach(σs.(t
′, a)), ΠΣ(nobs(σb, t

′)).σc). Thus, E(Reach(σs.(t′, a), t′),
ΠΣ(nobs(σb, t

′))) 6= ∅. This means that t1 = t′, thus min({t, t1}) = t1 = t′, and
σd−tt

′ ∈ E(Reach(σs.(t
′, a)), ΠΣ(nobs(σb, t

′)).σc). This implies that Eϕ(σ.(t′, a)) =
σs.(t

′, a).σd ∈ FG, meaning that Eϕ(σ.(t′, a)) |= ϕ. Moreover, wd = nobs(σd, t)−t t
satisfies:

ΠΣ(wd) 4 ΠΣ(nobs(σd, t)).σe∧
Reach(σs.(t

′, a). obs(σd, t)) after (wd) ∈ FG∧
∀t′′ ∈ R≥0,
Safe(Reach(σs.(t

′, a). obs(σd, t), t) after (wd, t
′′),

ΠΣ(obs(wd, t
′′))−1.(ΠΣ(nobs(σd, t)).σe)).

Thus, considering that σt = σs.(t
′, a). obs(σd, t), it follows that wd ∈ E(Reach(σt, t),

ΠΣ(nobs(σd, t)).σe). This means that P(σ.(t′, a), t) holds.
∗ Otherwise, a ∈ Σc. Since wb ∈ E(Reach(σs, t

′), ΠΣ(nobs(σb, t
′)) . σc), and

ΠΣ(nobs(σb, t
′)).σc 4 ΠΣ(nobs(σb, t

′)).σc.a, it follows that wb ∈ E(Reach(σs, t
′),

ΠΣ(nobs(σb, t
′)).σc.a). This means that t2 = t′, thus σd −t t

′ ∈ E(Reach(σs, t
′),

ΠΣ(nobs(σb, t
′)).σc.a). It follows that nobs(σd, t)−t t ∈ E(Reach(σs. obs(σd, t), t),

ΠΣ(nobs(σd, t)).σe). Since σt = σs. obs(σd, t), nobs(σd, t) −t t ∈ E(Reach(σt, t),
ΠΣ(nobs(σd, t)).σe). Thus, P(σ.(t′, a), t) holds.

Thus, in all cases, for all t ≥ t′,P(σ) =⇒ P(σ.(t′, a), t). This means that P(σ) =⇒
∀t ≥ t′,P(σ.(t′, a), t). Thus, P(σ) =⇒ P(σ.(t′, a)).

By induction, for all σ ∈ tw(Σ), P(σ) holds. In particular, for all (σ, t) ∈ Pre(ϕ),Eϕ(σ) |= ϕ.
This means that Eϕ is sound in Pre(ϕ).

ut

Proposition 8. Eϕ is compliant.

Proof. For σ ∈ tw(Σ), let P(σ) be the predicate: “∀t ≥ time(σ), (σs, σb, σc) = storeϕ(σ, t) =⇒
σs|Σu

= σ|Σu
∧ ΠΣ(σs|Σc

.nobs(σb, t)).σc = ΠΣ(σ|Σc
) ∧ σs|Σc

4d σ|Σc
”. Let us prove by

induction that for all σ ∈ tw(Σ),P(σ) holds.

– Induction basis: for σ = ε. storeϕ(ε) = (ε, ε, ε), and ε|Σc
= ε|Σu

= ΠΣ(ε) = ε. Thus, P(ε)
trivially holds.

– Induction step: suppose now that for some σ ∈ tw(Σ),P(σ) holds. Let us consider (t′, a)
such that σ.(t′, a) ∈ tw(Σ), t ≥ time(σ), (σs, σb, σc) = storeϕ(σ, t

′), and (σt, σd, σe) =
storeϕ(σ.(t

′, a), t). Then, by induction hypothesis, σs|Σu
= σ|Σu

, ΠΣ(σs|Σc
.σb).σc =

ΠΣ(σ|Σc
), and σs|Σc

4d σ|Σc
.

• Case 1: a ∈ Σu. By construction, σd satisfies ΠΣ(σd) 4 ΠΣ(nobs(σb, t
′)).σc and σd 6=

ε =⇒ date(σd(1)) ≥ t′.
∗ Projection on Σu.

Since a ∈ Σu, σt|Σu
= (σs.(t

′, a). obs(σd, t))|Σu
. σd ∈ tw(Σc), thus σt|Σu

=
σs|Σu

.(t′, a) = σ|Σu
.(t′, a) = (σ.(t′, a))|Σu

.
∗ Projection on Σc.
ΠΣ(σt|Σc

. nobs(σd, t)) . σe = ΠΣ((σs . (t
′, a) . obs(σd, t))|Σc

. nobs(σd, t)) . σe =
ΠΣ(σs|Σc

. σd) . σe = ΠΣ(σs|Σc
) . ΠΣ(σd) . σe. By construction, ΠΣ(σd) . σe =

ΠΣ(nobs(σb, t
′)).σc. Thus, ΠΣ(σt|Σc

.σd).σe = ΠΣ(σs|Σc
).ΠΣ(nobs(σb, t

′)).σc =
ΠΣ(σs|Σc

.nobs(σb, t
′)).σc = ΠΣ(σ|Σc

) = ΠΣ((σ.(t
′, a))|Σc

). Moreover, σt ∈
tw(Σ), and since σt = σs.(t

′, a). obs(σd, t), it follows that for all i ∈ [1; | obs(σd, t)|],
date(σd(i)) ≥ t′ . Since σs|Σc

4d σ|Σc
, for all i ∈ [1; |σs|Σc

|], date(σs|Σc
(i)) ≥

date(σ|Σc
(i)). Thus, for all i ∈ [1; |σt|Σc

|], date(σt|Σc
(i)) ≥ date(σ|Σc

(i)). Since
ΠΣ(σt|Σc

.σd).σe = ΠΣ(σ|Σc
), ΠΣ(σt|Σc

) 4 ΠΣ(σ|Σc
). Thus σt|Σc

4d σ|Σc
=

(σ.(t′, a))|Σc
.

29

This means that if a ∈ Σu, P(σ.(t′, a)) holds.
• Case 2: a ∈ Σc. By construction, σd satisfies ΠΣ(σd) 4 ΠΣ(σb).σc.a, and σd 6= ε =⇒
date(σd(1)) ≥ t′.
∗ Projection on Σu.
σt|Σu

= (σs . obs(σd, t))|Σu
. Since σd ∈ tw(Σc), σt|Σu

= σs|Σu
= σ|Σu

=
(σ.(t′, a))|Σu

.
∗ Projection on Σc.
ΠΣ(σt|Σc

. nobs(σd, t)) . σe = ΠΣ((σs . obs(σd, t))|Σc
. nobs(σd, t)) . σe =

ΠΣ(σs|Σc
. σd) . σe = ΠΣ(σs|Σc

) . ΠΣ(σd) . σe. By construction, ΠΣ(σd).σe =
ΠΣ(nobs(σb, t

′)).σc.a. Thus,ΠΣ(σt|Σc
.σd).σe = ΠΣ(σs|Σc

).ΠΣ(nobs(σb, t
′)).σc.a =

ΠΣ(σs|Σc
.nobs(σb, t

′)).σc.a = ΠΣ(σ|Σc
).a = ΠΣ((σ.(t

′, a))|Σc
). Moreover, con-

sidering t2 as defined in Definition 15, t2 ≥ t′, and t ≥ t′, thus min({t, t2}) ≥ t′, which
means that since there existswd ∈ tw(Σ) such that σd = wd+tmin({t, t2}), if σd 6= ε,
then date(σd(1)) ≥ t′. Thus, for all i ∈ [1; |σd|], date(σd(i)) ≥ t′ = time(σ.(t′, a)).
This still holds if σd = ε, because then [1; |σd|] = ∅. Since σs|Σc

4d σ|Σc
, for

all i ∈ [1; |σs|Σc
|], date(σs|Σc

(i)) ≥ date(σ|Σc
(i)). Thus, for all i ∈ [1; |σt|Σc

|],
date(σt|Σc

(i)) ≥ date((σ . (t′, a))|Σc
(i)). Since ΠΣ(σt|Σc

. nobs(σd, t)) . σe =
ΠΣ((σ.(t

′, a))|Σc
), ΠΣ(σt|Σc

) 4 ΠΣ((σ.(t
′, a))|Σc

). Thus σt|Σc
4d (σ.(t′, a))|Σc

.
Thus if a ∈ Σc, P(σ.(t, a)) holds.

Thus P(σ) =⇒ P(σ.(t, a)).

By induction, for all σ ∈ tw(Σ), for all t ≥ time(σ), (σs, σb, σc) = storeϕ(σ, t) =⇒ σs|Σu
=

σ|Σu
∧ΠΣ(σs|Σc

.nobs(σb, t)).σc = ΠΣ(σ|Σc
) ∧ σs|Σc

4d σs|Σc
.

Thus Eϕ is compliant.

Proposition 9. Eϕ is optimal in Pre(ϕ).

Proof. Let us consider E′ : tw(Σ) × R≥0 → tw(Σ), that is compliant with respect to Σc and
Σu. Let us also consider σ ∈ tw(Σ), (t′, a) such that σ.(t′, a) ∈ tw(Σ). Suppose now that
(σ, t′) ∈ Pre(ϕ), E′(σ, t′) = Eϕ(σ, t

′), and that E′(σ.(t′, a)) ≺d Eϕ(σ.(t
′, a)). Let us con-

sider (σs, σb, σc) = storeϕ(σ, t
′), and (σt, σd, σe) = storeϕ(σ.(t

′, a), t), where t is such that
σt = Eϕ(σ.(t

′, a)).
Then, considering proof of soundness, since (σ, t′) ∈ Pre(ϕ), nobs(σb, t′) −t t

′ ∈
E(Reach(σs, t

′), ΠΣ(nobs(σb, t
′)).σc).

– If a ∈ Σu, this means that σd −t t
′ ∈ E(Reach(σs.(t

′, a)), ΠΣ(nobs(σb, t
′)).σc). Thus,

σd −t t
′ = minlex(max4(E(Reach(σs.(t

′, a)), ΠΣ(nobs(σb, t
′)).σc))). E′ is compliant with

respect to Σc and Σu, thus, since Eϕ(σ, t
′) = E′(σ, t′), there exists σd2 ∈ tw(Σ) such that

E′(σ.(t′, a)) = σs.(t
′, a).σd2. Since E′(σ.(t′, a)) ≺d Eϕ(σ.(t

′, a)), then σd2 ≺d σd, thus
wd2 = σd2 −t t

′ ≺d σd −t t
′, meaning that wd2 6∈ E(Reach(σs.(t

′, a)), ΠΣ(nobs(σb, t
′)).σc).

SinceE′ is compliant,ΠΣ(wd2) 4 ΠΣ(nobs(σb, t
′)).σc = ΠΣ(σs|Σc

)−1.ΠΣ(σ|Σc
). Thus, ei-

ther Reach(σs . (t
′, a)) after wd2 6∈ FG, or there exists t′′ ∈ R≥0 such that

Safe(Reach(σs.(t
′a)) after (wd2, t

′′), ΠΣ(obs(wd2, t
′′))−1.(ΠΣ(nobs(σb, t

′)).σc)) does not
hold.
• Case 1: Reach(σs.(t′, a))afterwd2 6∈ FG. Then,E′(σ.(t′, a)) = σs.(t

′, a).σd2 6|= ϕ. Thus,
ε ∈ tw(Σu) is such that E′(σ.(t′, a).ε) 6|= ϕ.

• Case 2: there exists t′′ ∈ R≥0 such that Safe(Reach(σs . (t
′, a)) after (wd2, t

′′),
ΠΣ(obs(wd2, t

′′))−1.(ΠΣ(nobs(σb, t
′)).σc)) does not hold. Considering the definition of

Safe:
∗ if ΠΣ(obs(wd2, t

′′))−1 . (ΠΣ(nobs(σb, t
′)) . σc) = ε, then Reach(σs . (t

′, a)) after
(wd2, t

′′) after tw(Σu) 6⊆ FG. This means that there exists σu ∈ tw(Σu) such that
Reach(σs . (t

′, a) . σd2, t′′) after σu 6∈ FG. Since ΠΣ(obs(wd2, t′′))−1.
(ΠΣ(nobs(σb, t

′)).σc) = ε, this means that obs(wd2, t′′) = wd2 (because it has the
maximal length wd2 can have). Thus, Reach(σs . (t

′, a) . wd2, t′′) after σu =
Reach(σs.(t

′, a).wd2.(σu +t t
′′)) 6∈ FG. Since σu ∈ tw(Σu), E′ is compliant, and

date((σu+t t
′′)(1)) ≥ time(σs.(t

′, a).wd2), it follows that E′(σ.(t′, a).(σu+t t
′′)) =

σs.(t
′, a).wd2.(σu +t t

′′) 6|= ϕ.

30

∗ Otherwise, there exists u ∈ Σu such that for all w ∈ tw(Σ), if ΠΣ(w) 4
(ΠΣ(obs(wd2, t

′′))−1.(ΠΣ(nobs(σb, t
′)).σc)), then there exists t3 ∈ R≥0 such that

Safeint(Reach(σs . (t′, a)) after (wd2, t′′) after ((0, u) . w, t3),
ΠΣ(obs(wd2, t

′′))−1.(ΠΣ(nobs(σb, t
′)).σc)) does not hold. Let us consider such an

action u ∈ Σu. Then, there exists σd3 ∈ tw(Σ) such that E′(σ.(t′, a).(t′′, u)) =
σs.(t

′, a). obs(σd2, t
′′).(t′′, u).σd3, and there exists t3 ∈ R≥0 such that

Safe(Reach(σs . (t
′, a) . obs(σd2, t′′) . (t′′, u) . σd3, t3), ΠΣ(obs(σd2, t′′) .

obs(σd3, t3))
−1 . (ΠΣ(nobs(σb, t

′)) . σc)) does not hold. If obs(σd2, t
′′) = ε, then

we can obtain a new uncontrollable event (t4, u′), that we concatenate to the input and
such that the output of E′ is still not safe. Iterating this process, if no controllable event
is emitted by E′ when adding these uncontrollable events to the input, then the condi-
tion “(q, σ) ∈ Q′” from Definition 14 is satisfied at some point, but since the output
is not safe, it means that the condition “{q′ ∈ Q | (q′, σ) ∈ Q′} ⊆ FG}” is not sat-
isfied. Thus, there is some q′ ∈ Q′ such that q 6∈ FG. Since q′ ∈ Q′, it means that
there exists σu ∈ tw(Σu), and tn ∈ R≥0 such that Reach(E′(σ.(t′, a).σu, tn)) 6∈ FG.
Since no controllable event is emitted by E′ with input σ.(t′, a).σu, this means that
E′(σ.(t′, a).σu) 6|= ϕ (because q = (l, v) ∈ FG iff l ∈ F , it does not depend on
time). Otherwise, E′ emits controllable events, and then there are less of them that it
can emit in the next step, and since the output is still not safe, we end up in either the
second parameter of Safeint being ε, or the first ones belonging to the third. As shown
previously, in both cases, there exists an uncontrollable word σu ∈ tw(Σu) such that
E′(σ.(t′, a).σu) 6|= ϕ.

Thus, if a ∈ Σu, there exists σu ∈ tw(Σu) such that E′(σ.(t′, a).σu) 6|= ϕ.
– If a ∈ Σc, then since (σ, t′) ∈ Pre(ϕ), σd −t t

′ ∈ E(Reach(σs, t
′), ΠΣ(nobs(σb, t

′)).σc.a).
Then, using the same reasoning as when a ∈ Σu, the output of E′ must not be safe, and thus
there must exist σu ∈ tw(Σu) such that E′(σ.(t′, a).σu) 6|= ϕ.

This means that whenever E′(σ) = Eϕ(σ) ∧ E′(σ.(t′, a)) ≺d Eϕ(σ.(t
′, a)), then there exists

σu ∈ Σu such that E′(σ.(t′, a).σu) 6|= ϕ. Thus, Eϕ is optimal.

Proposition 10. The output of E for input σ is Eϕ(σ).

Proof. In this proof, we use some notation from Section 4.2:

– CE = tw(Σ)×Σ∗c ×Q× R≥0 × {>,⊥} is the set of configurations,
– cE0 = 〈ε, ε, q0, 0,⊥〉 ∈ CE is the initial configuration,
– Γ E = ((R≥0×Σ)∪ {ε})×Op × ((R≥0×Σ)∪ {ε}) is the alphabet, composed of an optional

input, an operation and an optional output,
– The set of operations, to be applied in the given order, is:
{compute ,dump ,pass-uncont , store-cont ,delay }.

Let us also introduce some specific notation. For a sequence of rules w ∈ Γ E∗, we note input(w) =
Π1(w(1)).Π1(w(2)) . . . Π1(w(|w|)) the concatenation of all inputs from w. In the same way, we
define output(w) = Π3(w(1)).Π3(w(2)) . . . Π3(w(|w|)) the concatenation of all outputs from
w. Since all configurations are not reachable from cE0 , for a word w ∈ Γ E∗, we will say that
Reach(w) = c if cE0 ↪

w−→E c, or Reach(w) = ⊥ if such a c does not exist. Let us also define
function Rules which, given a timed word and a date, returns the longest sequence of rules that
can be applied with the given word as input at the given date:

Rules :

{
tw(Σ)× R≥0 → Γ E

(σ, t) 7→ max4({w ∈ Γ E | input(w) = σ ∧ Reach(w) 6= ⊥ ∧Π4(c) = t})

Since time is not discrete, the rule delay can be applied an infinite number of times by slicing time.
Thus, we consider that the rule delay is always applied a minimum number of times, i.e., when two
rules delay are consecutive, they are merged into one rule delay, whose parameter is the sum of the
parameters of the two rules. The runs obtained are equivalent, but it allows to consider the maximum
(for prefix order) of the set used in the definition of Rules.

We then extend output to timed words with a date: for σ ∈ tw(Σ), and a date t, output(σ, t) =
output(Rules(σ, t)).

31

For σ ∈ tw(Σ) and t ∈ R≥0, let P(σ, t) be the predicate: “Eϕ(σ, t) = output(σ, t) ∧
(((σs, σb, σc) = storeϕ(obs(σ, t), t) ∧ 〈σEb , σEc , qE , t, b〉 = Reach(Rules(σ, t))) =⇒ σEb =
nobs(σb, t) ∧ σEc = σc ∧ qE = Reach(σs, t) ∧ (b = > =⇒ E(qE , σEc) 6= ∅))”. Let P(σ) be
the predicate “∀t ∈ R≥0,P(σ, t) holds”. Let us then prove that for all σ ∈ tw(Σ),P(σ) holds.

– Induction basis: For σ = ε, let us consider t ∈ R≥0. Then, storeϕ(ε, t) = (ε, ε, ε), and
Reach(ε, t) = 〈l0, v0 + t〉. On the other hand, the only rules that can be applied are delay,
and possibly compute, since there is not any input, nor any element to dump. Thus, Rules(ε, t)
= ε/ delay(t)/ε, or there exists t′ ≥ t such that Rules(ε, t) = ε/ delay(t′)/ε . ε/ compute()/ε .
ε/delay(t − t′)/ε. Let us consider c = Reach(Rules(ε, t)). Then, c = 〈ε, ε, 〈l0, v0 + t〉, t, b〉.
If rule compute appears in Rules(ε, t), then b = >, meaning that E(q0 after (ε, t′), ε) 6= ∅, and
thus that E(q0 after (ε, t), ε) 6= ∅ since t ≥ t′. Otherwise b = ⊥. All the other values remain
unchanged between the two cases. In both cases, output(Rules(ε, t)) = ε = Eϕ(ε, t). Thus,
P(ε) holds.

– Induction step: Let us suppose now that for some σ ∈ tw(Σ), P(σ) holds. Let us consider
(t′, a) ∈ R≥0 ×Σ such that σ.(t′, a) ∈ tw(Σ). Let us then prove that P(σ.(t′, a)) holds. Let us
consider t ∈ R≥0, c = 〈σEb , σEc , qE , t, b〉 = Reach(Rules(σ, t′)), (σs, σb, σc) = storeϕ(σ, t

′),
and (σt, σd, σe) = storeϕ(obs(σ.(t

′, a), t), t). If t < t′, then obs(σ.(t′, a), t) = obs(σ, t), and
since P(σ) holds, P(σ.(t′, a), t) trivially holds. Thus, in the following, we will consider that
t ≥ t′, so that storeϕ(obs(σ.(t′, a), t), t) = storeϕ(σ.(t

′, a), t):
• If a ∈ Σu, rule pass-uncont can be applied. Let us consider c′ = c after
((t′, a)/pass-uncont((t′, a))/(t′, a)). Then, c′ = 〈ε,ΠΣ(σ

E
b).σ

E
c , q
′, t′,⊥〉, with q′ =

qE after (0, a). Then, if t ≥ tE1 , where tE1 = min({t′′ | t′′ ≥ t′ ∧ E(q′ after (ε, t′′ −
t′), ΠΣ(σ

E
b).σ

E
c) 6= ∅}), then rule delay(tE1 −t′) can be applied, followed by rule compute.

Since qE = Reach(σs, t
′), σEb = nobs(σb, t

′), and σEc = σc (by induction hypothesis),
then E(q′ after (ε, t′′− t′), ΠΣ(σ

E
b).σ

E
c) = E(Reach(σs.(t

′, a), t′′), ΠΣ(nobs(σb, t
′)).σc),

thus tE1 = t1, where t1 is defined in Definition 15. Thus, c′ after ((ε/ delay(tE1 − t′)/ε) .
(ε/ compute /ε)) = 〈σEd , σEe , q′ after (ε, t1 − t′), t1,>〉, with σEd = κϕ(q

′ after (ε, t1 −
t′), ΠΣ(σ

E
b).σ

E
c) +t t1 = κϕ(Reach(σs.(t

′, a), t1), ΠΣ(σb).σc) +t t1 = σd, and thus
σEe = σe. Then, rules delay and dump can be applied until date t is reached. In the end,
Reach(Rules(σ.(t′, a), t)) = c′ after w, where w is composed of an alternation of rules
delay and dump, thus Reach(Rules(σ.(t′, a), t)) = 〈nobs(σEd , t), σEe , q′after(obs(σEd , t)−t

t′, t−t′), t,>〉 = 〈nobs(σd, t), σe,Reach(σt, t), t,>〉. Then, output(Rules(σ.(t′, a), t)) =
output(Rules(σ, t′)).(t′, a). obs(σEd , t) = σs.(t

′, a). obs(σd, t) = σt. Thus, if t ≥ t1,
P(σ.(t′, a), t) holds. Otherwise, t < t1, and then rule dump cannot be applied, since
Π5(c

′) = ⊥, and rule compute also cannot be applied. Thus, the only rule that can be ap-
plied is delay, so that Reach(Rules(σ.(t′, a), t)) = 〈ε,ΠΣ(σ

E
b).σ

E
c , q
′after(ε, t−t′), t′,⊥〉.

Since t < t1, this means that σd = ε, and σe = ΠΣ(σb) . σc. Thus, output(Rules(σ .
(t′, a), t)) = output(Rules(σ, t′)).(t′, a) = σs.(t

′, a) = σt, and σEd = σd, and σEe = σe.
This means that P(σ.(t′, a), t) holds when t < t1. Thus, if a ∈ Σu, then P(σ.(t′, a), t)
holds for all t ≥ t′.
• Otherwise, a ∈ Σc. Then, rule store-cont can be applied. Let us consider c′ = c after
((t′, a)/ store-cont(a)/ε). Then, c′ = 〈ε,ΠΣ(σ

E
b).σ

E
c .a, q

E , t′,⊥〉. Let us consider tE2 =
min({t′′ ∈ R≥0 | t′′ ≥ t′ ∧E(qE after (ε, t′′− t′), ΠΣ(σ

E
b).σ

E
c .a) 6= ∅}). Since E(qE after

(ε, t′′ − t′), ΠΣ(σ
E
b).σ

E
c .a) = E(Reach(σs, t

′′), ΠΣ(nobs(σb, t
′)).σc.a), it follows that

tE2 = t2 as defined in Definition 15. If t ≥ tE2 = t2, then rule delay(t2 − t′) can be ap-
plied, followed by rule compute. Then, c′after((ε/ delay(t2−t′)/ε).(ε/ compute()/ε)) =
〈σEd , σEe , qafter(ε, t2−t′), t2,>〉, where σEd = κϕ(qafter(ε, t2−t′), ΠΣ(σ

E
b).σ

E
c .a)+tt2 =

κϕ(Reach(σs, t2), ΠΣ(σb).σc.a) +t t2 = σd. Then, σEe = σe. Then, an alternation of rules
delay and dump can be applied until date t is reached. This leads to
Reach(Rules(σ . (t′, a), t)) = 〈nobs(σEd , t), σEe , q after (obs(σEd , t), t), t, >〉 =
〈nobs(σd, t), σe, Reach(σt, t), t, >〉. Moreover, output(Rules(σ . (t′, a), t)) =
output(σ, t′). obs(σd, t) = σs. obs(σd, t) = Eϕ(σ.(t

′, a), t). Thus, if t ≥ t2, P(σ.(t′, a), t)
holds. Otherwise, t < t2, meaning that σEd = ε = σd, and σEe = ΠΣ(σ

E
b).σ

E
c .a =

ΠΣ(nobs(σb, t
′)) . σc . a = σe, and output(σ . (t′, a), t) = output(σ, t′) = σs =

Eϕ(σ.(t
′, a), t). Thus, P(σ.(t′, a), t) holds.

Thus, P(σ) =⇒ P(σ.(t, a)).

32

Thus, by induction, for all σ ∈ tw(Σ),P(σ) holds. In particular, for all σ ∈ tw(Σ), and for all
t ∈ R≥0, output(σ, t) = Eϕ(σ, t), meaning that the output of the enforcement monitor E with input
σ at time t is exactly the output of function Eϕ with the same input and the same date.

33

