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ABSTRACT

The Jump Markov state-space system (JMSS) is a well known
model for representing dynamical models with jumps. How-
ever inference in a JMSS model is NP-hard, even in the con-
ditionally linear and Gaussian case. Suboptimal solutionsin-
clude Sequential Monte Carlo (SMC) and Interacting Multi-
ple Models (IMM) methods. In this paper, we build a con-
strained Triplet Markov Chain (TMC) model which is close
to the given JMSS model, and in which moments of inter-
est can be computed exactly (without resorting to numerical
nor Monte Carlo approximations) and at a computational cost
which is linear in the number of observations. Additionnally,
a side advantage of our technique is that it can be used easily
in a partially known model context.

Index Terms— Jump Markov state-space systems, Triplet
Markov chains, Bayesian estimation, Expectation Maximiza-
tion

1. INTRODUCTION

Dynamical systems with jumps are ubiquitous in signal
processing. They are usually modeled as follows. Let
{yk}k≥0 ∈ Rp be the sequence of observations and{xk}k≥0

∈ Rm the sequence of hidden states. In many practical prob-
lems we are given the transition probability density function
(pdf) fi|i−1(xi|xi−1, ri), which locally models the evolution
of the hidden state; as well as the likelihood pdfsgi(yi|xi, ri),
which describes how observationyi is related to statexi.
Both pdfs depend on the realization of a third discrete vari-
ableri (with ri ∈ {1, · · · ,K}) which models the so-called
”jumps” or regime switchings.

It remains to model the joint pdf of variables(x0:k,y0:k, r0:k),
in whichx0:k, say, denotes{xi}

k
i=0. A popular model is the

so-called JMSS [1] [2] [3]:

p1(x0:k,y0:k, r0:k) = p1(r0)

k∏

i=1

p1(ri|ri−1)

︸ ︷︷ ︸

p1(r0:k)

×

p1(x0|r0)
k∏

i=1

fi|i−1(xi|xi−1, ri)

︸ ︷︷ ︸

p1(x0:k|r0:k)

k∏

i=0

gi(yi|xi, ri)

︸ ︷︷ ︸

p1(y0:k|x0:k,r0:k)

. (1)

In this model both the discrete process{rk}k≥0 and the
joint process{(rk,xk)}k≥0 are markovian; givenr0:k,
(xk,yk) is a Hidden Markov chain (HMC) with transition
pdfs fi|i−1(xi|xi−1, ri) and likelihood pdfsgi(yi|xi, ri);
and

p1(xi|xi−1, ri) = fi|i−1(xi|xi−1, ri), (2)

p1(yi|xi, ri) = gi(yi|xi, ri). (3)

In this paper we focus on the recursive computation of the
first and second order moments ofp(xk|y0:k),

Φk = E(f(xk)|y0:k) =

∫

f(xk)p(xk|y0:k)dxk, (4)

where f(x) = x or f(x) = xxT , in a partially known
JMSS model, i.e. in model (1) wherefi|i−1(xi|xi−1, ri) and
gi(yi|xi, ri) are known, but notp1(ri|ri−1).

Let us first assume that the model is completely known.
Even if model (1) is a simple extension of the classical HMC
model, inference in a JMSS is a difficult problem. The exact
computation ofΦk is impossible in general, and is still NP-
hard in the case where

fi|i−1(xi|xi−1, ri) = N (xi;Fi(ri)xi−1;Qi(ri)), (5)

gi(yi|xi, ri) = N (yi;Hi(ri)xi;Ri(ri)) (6)

(N (x;m;P) denotes the Gaussian pdf with meanm and co-
variance matrixP taken at pointx). So computingΦk re-
quires suboptimal approximation techniques, even in the lin-
ear and Gaussian case. Available methods include the IMM



[4] [5] [6] which runs several Kalman filters (KF), the out-
puts of which are combined according to the parameters of
the model and to the available observations. On the other
hand, SMC techniques are powerful methods to approachΦk

[7] [8] [9] [10]. In this last set of methods, a set of weighted
random samples{ri0:k, w

i
k}

N
i=1 approximatesp1(r0:k|y0:k),

while givenr0:k, p1(x0:k|r0:k, y0:k) is a Gaussian pdf com-
putable via KF, which leads to the following approximation
of p1(x0:k|y0:k):

p1(x0:k|y0:k)≈
N∑

i=1

wk(r
i
0:k)N (x0:k;mk(r

i
0:k);Pk(r

i
0:k)).

(7)

Let us finally briefly discuss the case wherep1(rk|rk−1)
is not available. In that case the Expectation-Maximization
(EM) algorithm can only be implemented approximately (as
is done in [11]) because this algorithm relies on the compu-
tation of probabilitiesp1(ri−1, ri|y0:k) which, again, is NP-
hard in a JMSS model.

The contents of this paper is as follows. We do not focus
on the current approximations in the JMSS (1), (5)-(6). We
rather propose a class of statistical modelsp2(x0:k,y0:k, r0:k)
which are ”close enough” top1(x0:k,y0:k, r0:k), and which
satisfies the following properties:

i) the unknown transition probability matrixp2(rk|rk−1)
can be estimated via the EM algorithm;

ii) once p2(rk|rk−1) is known or estimated,Φk in (4)
can be computed exactly (i.e., without resorting to any
numerical nor Monte Carlo approximations), and at a
computational cost which is linear in the number of
observations.

By ”close enough”, we indeed mean that our modelp2 should
satisfy:

iii) p2(r0:k) = p1(r0:k);

iv) p2(xk|xk−1, rk) andp2(yk|xk, rk) respectively coin-
cide with pdfsfi|i−1(xi|xi−1, ri) in (5) andgi(yi|xi, ri)
in (6);

v) p2(.)minimizes the Kullback-Leibler divergence (KLD)
with the JMSS root modelp1(.).

Let us now briefly describe our methodology. Our statis-
tical modelsp2(.) are built from TMC [12], which are models
which take into account regime switchings and which gener-
alize the JMSS model (1). It has been shown in some recent
contributions that the exact and fast computation ofΦk is pos-
sible in some TMC models [13] [14]. In this paper, we exploit
these particular TMC in order to build models which satisfy
constraints i) to v) above.

The rest of this paper is organized as follows. In section
2 we briefly recall TMC models and we particularly focus

on conditionnally linear and Gaussian ones. In section 3 we
assume that the model is completely known, and we build a
class of constrained TMC modelsp2(.) which are close to the
JMSS modelp1(.), and in whichΦk can be computed exactly
and efficiently. In section 4 we next assume that the model
is partially known, and we address parameter estimation via
the EM algorithm which, by contrast with modelp1(.), can
be directly implemented in modelp2(.). Section 5 is devoted
to simulations, and we end the paper with a conclusion.

2. TRIPLET MARKOV CHAINS

2.1. JMSS as a particular TMC

As we already recalled, in the JMSS model (1),{rk}k≥0

is a Markov chain (MC), and givenr0:k, (xk,yk) is an
HMC, i.e. givenr0:k, {xk}k≥0 is an MC and observations
{yi} are conditionnally independent withp1(yi|x0:k, r0:k) =
p1(yi|xi, ri) = gi(yi|xi, ri). On the other hand, lettk =
(xk,yk, rk). From (1) we see that the JMSS model also
satisfies

p1(ti|t0:i−1) = p1(ri|ri−1)fi|i−1(xi|xi−1, ri)gi(yi|xi, ri)

= p1(ti|ti−1) (8)

so thetriplet chain{tk = (xk,yk, rk)}k≥0 is an MC, and as
such the JMSS model is one particular TMC; by TMC, we
mean any process{tk}k≥0 such thattk is an MC, i.e. such
that the joint pdfp2(t0:k) factorizes as

p2(t0:k) = p2(t0)

k∏

i=1

p(ti|ti−1). (9)

2.2. Filtering in linear and Gaussian TMC

In this section we focus on the subclass of TMC models (9)
in which{rk}k≥0 is an MC and the transition pdf of(xk,yk)
given(xk−1,yk−1, rk−1:k) is a Gaussian, i.e. on those TMC
models which satisfy

p2(tk|tk−1) = p2(rk|rk−1)p
2(xk,yk|tk−1, rk), (10)

where

p2(xk,yk|tk−1, rk) =

N (xk,yk;Bk(rk−1:k)

[
xk−1

yk−1

]

;Σk(rk−1:k)), (11)

Bk(rk−1:k) =

[
F1

k(rk−1:k) F2
k(rk−1:k)

H1
k(rk−1:k) H2

k(rk−1:k)

]

, (12)

Σk(rk−1:k) =

[

Σ11
k (rk−1:k) Σ21

k (rk−1:k)
T

Σ21
k (rk−1:k) Σ22

k (rk−1:k)

]

. (13)

The linear and Gaussian JMMS model (1), (5)-(6) is of
course one such model; it corresponds to the particular set-
ting F1

k(rk−1:k) = Fk(rk), F2
k(rk−1:k) = 0, H1

k(rk−1:k) =



Hk(rk)Fk(rk), H2
k(rk−1:k) = 0, Σ11

k (rk−1:k) = Qk(rk),
Σ21

k (rk−1:k) = Hk(rk)Qk(rk) andΣ22
k (rk−1:k) = Rk(rk)+

Hk(rk)Qk(rk)Hk(rk)
T .

We now address the computation of momentΦk in (4) in
the class of models (10)-(13). Since the linear and Gaussian
JMMS model is one element of this class, it is clear from
section 1 above that the exact computation ofΦk will not be
possible for all models of this class. However, it has been
proved [13] [15] [14] that in the particular case where

H1
k(rk−1:k) = 0, (14)

Φk can be computed exactly at a computational cost which is
linear in the number of observations (the formulas for com-
putingΦk are not recalled here for want of space, but can be
found in [13] and [14]).

3. EXACT BAYESIAN ESTIMATION IN
CONSTRAINED TMC MODELS

In all this section we assume thatp2(rk|rk−1) is known (the
estimation problem ofp2(rk|rk−1) will be addressed in§4).
We use the result recalled in section 2.2 in order to build a
class of statistical models which all share the transition and
likelihood pdfs (5)-(6) of the linear and Gaussian JMSS, and
in which one can computeΦk exactly.

3.1. Constrained TMC models

We begin with building a set of TMC modelsp2(.) such that
conditions iii) and iv) in Section 1 hold. We have the follow-
ing result (the proof of Propositions 1 to 3 below is omitted
due to lack of space).

Proposition 1 Letp1 be given by(1), (5)-(6). The linear and
Gaussian TMC model(9)-(13) defined byp2(r0) = p1(r0),
p2(rk|rk−1) = p1(rk|rk−1), and

Bk(rk−1:k) =
[

Fk(rk)− F2
k(rk−1:k)Hk−1(rk−1) F2

k(rk−1:k)
Hk(rk)Fk(rk)−H2

k(rk−1:k)Hk−1(rk−1) H2
k(rk−1:k)

]

,

(15)

Σk(rk−1:k) =

[

Σ11
k (rk−1:k) Σ21

k (rk−1:k)
T

Σ21
k (rk−1:k) Σ22

k (rk−1:k)

]

, (16)

Σ11
k (rk−1:k)=Qk(rk)−F2

k(rk−1:k)Rk−1(rk−1)F
2
k(rk−1:k)

T

(17)

Σ21
k (rk−1:k)=Hk(rk)Qk(rk)

−H2
k(rk−1:k)Rk−1(rk−1)F

2
k(rk−1:k)

T
, (18)

Σ22
k (rk−1:k)=Rk(rk)−H2

k(rk−1:k)Rk−1(rk−1)H
2
k(rk−1:k)

T

+Hk(rk)Qk(rk)Hk(rk)
T , (19)

and where parametersF2
k(rk−1:k) and H2

k(rk−1:k) can be
arbitrarily chosen, providedΣk(rk−1:k) is a positive definite
covariance matrix for allk, satisfy the constraints

p2(r0:k) = p1(r0:k), (20)

p2(xk|xk−1, rk) = fk|k−1(xk|xk−1, rk), (21)

p2(yk|xk, rk) = gk(yk|xk, rk). (22)

Remark 1 In the particular case whereF2
k(rk−1:k) = 0 and

H2
k(rk−1:k) = 0 the model reduces to the linear and Gaus-

sian JMSS(1), (5)-(6).

3.2. Exact filtering in constrained TMC models

We now focus on the computation ofΦk in our constrained
TMC models parametrized byF2

k(rk−1:k) andH2
k(rk−1:k).

The result of [13], recalled in§2.2, enables us to propose
models in whichΦk can be computed efficiently:

Proposition 2 Let p2(.) be a constrained linear and Gaus-
sian TMC model described Proposition 1. IfH2

k(rk−1:k) sat-
isfies

Hk(rk)Fk(rk)−H2
k(rk−1:k)Hk−1(rk−1) = 0 (23)

thenp2(rk|y0:k) andE(f(xk)|y0:k, rk) can be computed ex-
actly and at a computational cost which is linear in the num-
ber of observations. FinallyΦk is computed as

Φk =
∑

rk

p(rk|y0:k)E(f(xk)|y0:k, rk). (24)

3.3. KLD minimization

Note that the exact computation ofΦk relies on the value
of H2

k(rk−1:k) but not on that ofF2
k(rk−1:k). So the set

of constrained models in whichΦk can be computed ex-
actly, described by Proposition 1 plus condition (23), remains
parametrized byF2

k(rk−1:k); among this set we now look for
pdf p2 closest top1 in KLD sense, i.e. we take into account
condition v) of section 1. We have the following result.

Proposition 3 Let p1(.) be the linear and Gaussian JMSS
model(1), (5)-(6), and letp2(.) be the class of models de-
scribed by Proposition 1, in which condition(23) holds, and
thus a set of models whereΦk can be computed exactly.
ParametersF2

k(rk−1:k) which minimize the KLD between
p2(t0:k) andp1(t0:k) are given by

F
2,opt
k (rk−1:k) = Qk(rk)Hk(rk)

T×
[
Rk(rk) +Hk(rk)Qk(rk)Hk(rk)

T
]−1

H2
k(rk−1:k). (25)



4. EM ALGORITHM IN A PARTIALLY KNOWN
CONSTRAINED TMC MODEL

Until now, we assumed that the probability transitionsp2(rk|
rk−1) = p1(rk|rk−1) of MC r0:k were known. This is not
necessarily the case in practice, so in this section we ad-
dress the estimation problem of the probability distribution
p2(rk|rk−1). It turns out that an advantage of the technique
described in section 3 is that the EM algorithm [16] can eas-
ily be implemented in modelp2(.), which is not the case in
modelp1(.), as we now recall.

So let us first assume the JMSS model (1), (5)-(6). The
EM algorithm is based on the computation of expectation

E(log(p1(t0:k))|y0:k) (26)

and on its maximization w.r.t.p1(rk| rk−1). Developing (26)
we see that we need to compute

E(log(p1(ri|ri−1)|y0:k))=
∑

ri−1:i

log(p1(ri|ri−1))p
1(ri−1:i|y0:k)

(27)
for all i, 1 ≤ i ≤ k. However, it is well known that in the
linear and Gaussian JMSS (1), (5)-(6), the computation of
p1(ri−1, ri|y0:k) is an NP-hard problem [7].

Here we propose to implement the EM algorithm, not
in p1, but in a modelp2 described by propositions 1, 2 and
3, and so which is close to modelp1. As above, we need
to compute the probabilitiesp2(ri−1:i|y0:k); however now
(23) holds, and one can show easily that under this condi-
tion p2(yk, rk|tk−1) = p2(yk, rk|yk−1, rk−1), and next that
(yk, rk) is an MC with transition

p2(yk, rk|yk−1, rk−1) = p2(rk|rk−1)p
2(yk|yk−1, rk−1:k),

in which

p2(yk|yk−1, rk−1:k) = N (yk;H
2
k(rk−1:k)yk−1;Σ

22
k (rk−1:k)),

whereH2
k(rk−1:k) satisfies (23) andΣ22

k (rk−1:k)) is defined
in (19). Consequently, the computation ofp2(ri−1, ri|y0:k),
can be performed efficiently by the algorithm described in
[14], which is an adaptation to pairwise Markov chains
(PMC) (i.e., models in which{(rk,yk)}k≥0 is an MC) of
the Forward-Backward algorithm, and the maximization of
E(log(p2(t0:k))|y0:k) as a function ofp2(rk|rk−1) can be
performed efficiently by an adaptation to PMC of the Baum-
Welch algorithm [17].

5. SIMULATIONS

In this final section we validate our technique via simulations.
We consider the linear and Gaussian JMSS (1), (5)-(6) where

Fk(r) =








1 sin(ωrT )
ωr

0 − 1−cos(ωrT )
ωr

0 cos(ωrT ) 0 − sin(ωrT )

0 1−cos(ωrT )
ωr

1 sin(ωrT )
ωr

0 sin(ωrT ) 0 cos(ωrT )








,

Qk(r) = σ2
v(r)








T 3

3
T 2

2 0 0
T 2

2 T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2 T








,

Hk = I4 andRk = I4. We setT = 2, rk ∈ {1, 2, 3}
represents the behavior of a target: straight, left turn and
right turn. So we setwr ∈ {0, 6π/180,−6π/180} and
σv(r) ∈ {7, 10, 10}. The true transition probabilities of
MC {rk} are defined byp1(rk|rk−1) = 0.8 if rk = rk−1

andp1(rk|rk−1) = 0.1 if rk 6= rk−1, and we assume them
unknown. So our goal is twofold :

1. we look for estimatingp1(rk|rk−1) via the PMC
Baum-Welch algorithm in our constrained TMC model
p2(.) which satisfies (23) and (25);

2. we computeΦk in model p2(.) and we compare our
estimate with estimates based on IMM and particle fil-
tering (PF).

5.1. Parameter estimation step

We first generate a data set of lengthK = 500 according
to the linear and Gaussian JMSS model (1), (5)-(6), and we
initialize the transition probabilities asp2(rk|rk−1) = 1/3.
We use10 iterations of the PMC Baum-Welch algorithm.
The estimated transition probability matrixπ(rk−1, rk) =
p2(rk|rk−1) is given by

π(rk−1, rk) =





0.7972 0.1012 0.1016
0.1031 0.8074 0.0895
0.1119 0.1030 0.7851



 . (28)

Remark 2 Matrix (28) is obtained from a unique set of data.
If we average the transition probability matrix overP = 100
sets of data we get

πmean(rk−1, rk) =





0.7946 0.0995 0.1059
0.0951 0.8024 0.1025
0.1020 0.1059 0.7921



 .

5.2. Computation ofΦk

Now, our modelp2(.) is completely defined. We generate
P = 200 sets of data with lengthK = 100. For each tra-
jectory p, 1 ≤ p ≤ 200, we compute the exact estimate



x̂k,p,TMC in our modelp2(.) (with transition probabilities
(28) estimated at the previous step); an estimatex̂k,p,SIR

based on the sampling importance resampling (SIR) algo-
rithm with importance distributionp1(rk|rk−1) and with
N = 150 particles [7]; an estimatêxk,p,IMM based on the
IMM algorithm [4]; and the estimatêxk,p,KF based on a
KF which uses the true jumps and which is our benchmark
solution. Note that the PF and the IMM algorithms use
the true transition probabilitiesp1(rk|rk−1). For each esti-
mate, we compute the averaged mean square error (MSE)
MSE(k) = 1

P

∑P

p=1(x̂k,p,. − x̂k,p,KF)
2.

In Fig. 1, we have displayed the averaged MSEs, normal-
ized w.r.t. our estimatêxk,p,TMC. Note that our estimator,
though computed in modelp2(.) with estimated parameters
p(rk|rk−1), performs similarly to the SIR based solution in
modelp1(.) with known parameters. However we do not use
Monte Carlo samples; as a result, our algorithm is approxi-
mately fifteen times faster than the SIR based solution as can
be seen from Fig. 2.
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Fig. 1. Ratio of the exact filtering technique in modelp2(.)
(black line), the SIR based one in modelp1(.) (red circles)
and the IMM based one in modelp1(.) (blue squares).

6. CONCLUSION

In this paper we proposed a new inference technique in a par-
tially known JMSS systemp1(.). We built a set of constrained
TMC modelsp2(.) which includep1(.), and which all share
the state transition and likelihood pdfs ofp1(.). Among this
set we identified a subclass of models in which a conditional
moment of interest can be computed exactly at a computional
cost which is linear in the number of observations, and we
identified within this set the model which minimizes the KLD
to p1(.). Finally we addressed the parameter estimation prob-
lem in the case where the pdf of the jumps is unknown. Sim-
ulations show that our inference technique with unknown pa-
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Fig. 2. Ratio of the CPU time of the exact filtering technique
in modelp2(.) to that of the SIR based one in modelp1(.).

rameters performs similarly to an SMC based solution with
known parameters but is fifteen times faster.
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