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A class of fast exact Bayesian filters

In dynamical models with jumps

Yohan Petetin, Francois Desbouvries

Abstract

In this paper, we focus on the statistical filtering problemdynamical models with jumps. When a particular
application relies on physical properties which are madidlg linear and Gaussian probability density functions with
jumps, an usual method consists in approximating the opBagesian estimate (in the sense of the Minimum Mean
Square Error (MMSE)) in a linear and Gaussian Jump MarkoteSpace System (JMSS). Practical solutions include
algorithms based on numerical approximations or based gune®¢ial Monte Carlo (SMC) methods. In this paper,
we propose a class of alternative methods which consistsildithg statistical models which share the same physical
properties of interest but in which the computation of théiropl MMSE estimate can be done at a computational
cost which is linear in the number of observations.

Index Terms

Jump Markov State Space Systems, Hidden Markov ChainswiBairMarkov Chains, Conditional Pairwise
Markov Chains, NP-hard problems, exact Bayesian filtering.

I. INTRODUCTION
A. Background

Let {y,}x>0 € R? be a sequence of observations and. },>0 € R™ a sequence of hidden states (as far as
notations are concerned, we do not differ random variabsles @nd their realizations; bold letters denote vectors;
p(x), say, denotes the probability density function (pdf) of x\andp(x|y), say, the conditional pdf at giveny).

Let xo., = {x;}_, andyo.x = {yi}%_,. In this paper we address the Bayesian filtering problem kvbansists in
computing (an approximation of)x, |yo.») and next in computing a moment of this pdf. In this paper wedly

focus on the recursive computation of

By, = B(f (i) you) = / £ (o )p (i youe )l )

where f(x) = x or f(x) = xx”.
Computing®;, is of interest in many applications such that single- [1][B]or multi-target tracking([4], finance

[5] [2] and geology [[6]. These applications are best modelseén in addition to{x;} and {y:}, we introduce

Yohan Petetin and Francgois Desbouvries are with Minescdetelnstitute, Telecom SudParis, CITI Department, 9 ruer@hdourier, 91011
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a third sequencéry }r>0 in which r;, € {1,---, K} is discrete and hidden, and models the regime switchings.
In this case, the underlying model is essentially descritmedwo pdfs f;;_1 (xi|x;—1,7;) and g;(yi|x;,r;). Pdf
fiji—1 describes the dynamical evolution of the hidden state dwee when regime-; is known, andg; models
how the observatioly; is produced from state; under regime;. From now on, we will say that pdfg;;_; and
g; Characterize the physical properties of the problem at lsmek they should be chosen in accordance with the
considered application.

One should still specify the joint probability model ok, yx, 7% }x>0. A popular model which is directly built

from the pdfs of interesf;;_; andg; is the so-called JMSS, i.e. a model where the joint pdfsafs, yo.x, ro:x)

reads
k k n
Pl(Xo;k, Yoik To:k) = PI(TO) le(ri|7“i—1)171(xo|7°o) H fijio1(xilxi—1,73) Hgi(Yilxia ri) - (2)
i=1 i=1 i=0
p*(ro:x) P! (%0:k|r0:k) P (Yo:k|X0:k:T0:k)

This model is popular because it directly takes into accdh@tphysical properties of interest, and it reduces to
the well known Hidden Markov Chain (HMC) model when the jumps. are fixed. Note that in this model, we
assume that the jumps are a Markov chain (MC).

Unfortunately, computingp,. in a JMSS model is impossible in the general case, i.e. when,; andg; are

arbitrary functions, and is still NP-hard in the linear anduSsian case|[7], i.e. when functiofig_; andg; satisfy

fifim1 (%ilxi1,m3) = N (x5 Fi(ri)xi—1; Qi(r4)), )
gi(}’i|xi, 7’1‘) = N(}’i; Hi(ri)xi§ Rz‘(ﬁ)) 4)

(N (x;m; P) is the Gaussian pdf with mean and covariance matri® taken at pointk). From now on we focus
on the linear and Gaussian case, since even in this casexapptmns are necessary. A number of suboptimal
methods for computin@,, in linear and Gaussian JMSS have been proposed so far. asstd on the observation
thatp' (xx|yo.x) is @ Gaussian Mixture (GM) which grows exponentially witméi, numerical approximations such
as pruning and merging have been studled [7] [8]. A seconssatd approximations is given by the Interacting
Multiple Model (IMM) [9] [LO] [L1]; roughly speaking, a ban&f Kalman Filters (KF) are used for each mode
and their outputs are combined according to the parametene anodel and to the available observations. Finally,
a more recent class of methods is based on the use of Monte €ariples and Particle Filtering (PE) [1]]12]
[13] [14]. A set of weighted random sampl¢s) ,,wi}Y , approximate®' (ro.x|yo.x), while p'(xo.x|ro:x, Yo:k)

is a Gaussian pdf computable via KF, which leads to the fotigwapproximation of the pdf okg.;. givenyg.x:

H(xo:k[yo:x) Zwk 100 )N (%o m(r(,, ) P(rhu))- ®)

Monte Carlo methods have suitable asymptotical conve@noperties([15][[5][[16] but may require a serious
computational cost, since at least a KF is computed for eacticfe (one has to computa(r) ;) and P(r{ ,)),

and for the computation of weightguy (r} )} ;.
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B. Contributions of this paper

Let us now turn to the contents of this paper. We assume thattacylar set of physical linear and Gaussian
properties is given, i.e. we are giveh(ry|ry_1), Jrjkh—1 (X [Xr—1,7) andgx (v [xx, 7). We want to build a class
of statistical model$?(xo.x, yo:x, To:x) Which also conveniently take into account these physicaperties (in a
sense to be specified below), but in whi®lh can now be computed exactly and efficiently.

More precisely, our problem can be formulated as followssukse that[(8) and{4) efficiently model some
practical problem of interest. Then we look for a joint péfxo.,., yo.n, ro.n) Such that:

1) p?(xilxi1,75) = fijim1 (%] Xiz1,74);

2) p*(yilxi,ri) = gi(yilxi,r:); and

3) @&, can be computed exactly (without resorting to any numericaMonte Carlo approximations), with a

computational cost linear in the number of observations.
By contrast with the methods recalled§RA] we no longer try to approximate the computationdgf in the JIMSS
modelp!(.), but rather compute it exactly in a class of different st modelsp?(.) which however share with
p!(.) the same physical properties.

Let us now describe the methodology that we use to build sugtif@?(.), in which exact computing will be
possible. We use a two-step procedure. First, we fix the jumpand thus only consider proce&s, = (Xo.k, Yo:k )-

When the jumps are fixed, JIMSS models reduce to classical HM@els, described by pdf

k k
p*(z0:) = p' (o) H fiji—1(xilxi-1) H 9i(yilxi); (6)
=1 i=0
P! (%0:%) P! (Yo:x[*%o0:%)

since model[{() is moreover linear and Gaussibp,can be computed exactly via the KF. Adapting the objectives
above, our first goal is to compute a class of statistical nsogfdz.;,) (not necessarily HMC ones) in which the
practical physical propertieg;; 1 (x;[x;—1) and g;(y;|x;) would be kept, i.e. i)p?(x;|x;i—1) = fiji—1(Xi|xi—1),
i) p?(yi|xi) = gi(y:|x;), and iii) the computation ofo; in (I) would remain possible. Our construction is built
on Pairwise Markov Chains (PMC) models [17][18], which arerengeneral statistical models than HMC ones.
Next, in the particular class of PMC models obtained, wetreduce the jumps and so we obtain a class of
conditional linear and Gaussian PMC models which satiséy ghysical properties of interegt); _; (x;|x;—1,7;)
and g;(y;|xi, ;). Among these models, we discuss on those in Wl{‘mﬁrk|y0;k),E(xk|y0:k,rk)}fizl can be
computed recursivelyd,. will eventually be computed as
O = p*(rilyon) E(Xk|Yok: k). )
T

Finally, it happens that the algorithm we propose compdigsat a linear computational cost in the number of
observations. Thus, it can be used as an alternative to dssicél solutions recalled #l-Al

The paper is organized as follows. In sectidn Il, we first difeg jumps and build a particular class of linear
and Gaussian PMC models which keeps the physical propeftieserest. Next in sectiolll, we reintroduce the

jumps and we address the sequential filtering problem in dyolmical models. So we start by generalizing linear
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and Gaussian JMSS to a class of conditional linear and Gaug3ViC models which keep the physical properties
of interest. Among this new class of models, described by pamameters, we look for those in whidhy, can

be computed exactly. Finally, in sectiénllV, we illustrater anethodology step by step on a practical example
and we perform simulations. Our method is compared to dakapproximating techniques such as the Sampling

Importance Resampling (SIR) algorithini [1] and IMM algonith [9]. We end the paper with a Conclusion.

II. A CLASS OF PHYSICALLY CONSTRAINEDPMC MODELS

In this section we drop the dependencies in the jump pro¢ess.>o. So we start from physical properties
fii—1(x4|x;—1) and g;(y;|x;), which in turn define the HMC model'(.) in (@), in which ®; can be computed
exactly via KF sincef;;_; andg; are Gaussian. Our aim here is to embed.) into a broader class of models
{p*%}pco (ie., p' = p>©° for someO,), which all share the physical properties of the root magfel(i.e.,
PP (xilxi—1) = fijim1(x|xi—1) and p*?(yi|x;) = gi(ys|x;) for all 6), and in which®;, can still be computed
exactly whatever). Such models are described in secfionlll-B, and are indedéplar PMC models, which we
briefly recall in sectiori . IA. The interest of familyp??}yco will become clear in sectiohlll, when we will

reintroduce the jumps.

A. A brief review of PMC models
In the HMC model [(B), it is well known thafxy}i>0 is an MC, and that givexy.,, observationsy;} are
independent withp! (y;|xo.x) = p*(yilx;) = gi(y:|x:). On the other hand, a PMC model is a model in which the

pair{z; = (xx,yx) }x>0 iS assumed to be an MC, i.e. a model which satisfies
pQ(XiaYi|XO:i—17YO:i—1) = p?\i_l(xiaYilxi—laYi—l) (8)
= pP(xilzio)p* (yil%i-1:,¥i-1) (9)

Therefore, in a PMC model, pdf d&ko.x, yo.x) reads
k

P (Xo:k, Youk) = p* (%0, ¥0) Hpi|i—1 (X, yilXi-1,¥i-1)- (10)
i=1

One can check easily that the HMC model is indeed one paatid®MC, because fronil(6n!(x;,y:|x0:i_1,
Yo:i-1) = fiji—1(Xi|xi—1) gi(y:i|x:). So [8) is satisfied, and moreover the two factorg in (9) retbpay reduce to
pl(xilxic1,yic1) = fiio1(xa]xio1), (11)

pl(}’i|xi7xi717}’ifl) = gi(yilxi). (12)

Now in a general PMC model](8) is satisfied, ipft(x;|x;_1,y;—1) may depend on botk; ; andy,_;, and
p?(yilxi,xi—1,yi—1) may depend orx;, x;,—; andy;_;. One can show that in a PMC modék x>0 is no

longer necessary an MC, and givep, observations,; can be dependerit [19].
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As an illustration let us consider the classical state-sp/stem
X = Fexp—1 + g, (13)
yi = Hpxp + vi, (14)

in which {u, ~ N (;;0; Qx)}r>1 and{vy ~ N(;;0; Ri)}x>0 (in this paper, we assume that all covariance matrices
are positive definite) are independent and independent.atd.~ N (.; mo; Py). We assume thdfy, is invertible
for all k. Model (I13)-{1%) is a Gaussian HMC model with

P (Xklxk-1) = fipp—1 (Xnlxk—1) = N (xi; Frxi—1; Qi) (15)
P (yrlxk) = gr(yrlxk) = N (yr; Hixp; Ri), (16)
and as such is a particular PMC model, in which the initial &ladsition pdfs of MC{(x, yx)}x>0 read

mg Py (HoPo)T

p'(20) = N | 20; ; : (17)
Hoymg HoPy Ry + Hopng
[ Fe 0 Q Q)T
Pije—1(Zr|zE—1) = N | 24; Zh-1; AR (18)
|(HiFr 0 H.Qr Ri+HpQrH

This linear and Gaussian HMC mod€&l(1B)4(14) (or equivdye(d7)-(18)) appears as a particular model of the

class of linear and Gaussian PMC models defined by:

p*(20) = N (z0; m; Py), (19)
F, F? I
Pi|k,1(zk|zk—1) =N |z L ) Zg—1; 91 99 . (20)
Hk Hk Ek Ek
—_———
Bk Ek

Finally, let us recall that in linear and Gaussian HMC mod@lg)-(18), ®, in (1) can be computed via the KF,
and that KF is still available in linear and Gaussian PMC 0265 egs. (13.56) and (13.57)] [21].

B. A class of physically constrained PMC models

Remember that HMC models enable to model many practicallgmub via functionsfy;— (xx|xx—1) and
g (yr|xx), but due to their statistical structuiid (&), cannot be computed exactly when we reintroduce the jumps.
Thus, our objective is to derive a class of models in whichghegsical properties are the same but in which the
statistical structure may lead to the exact computatio® pf To that end, we first derive a class of linear and
Gaussian PMC models in which the physical properties arévalgmt to those of a given linear and Gaussian

HMC model [I5)4(I56), but in which the statistical structisemore general.
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In a general PMCL(20), the transition state and the likelthpdfs read

k
S p*(20) [1i=y ;1 (ZilZim1)dX0—2¥0:k

- ) (22)
IPQ(ZO) H?:ll p?u_l(Zi|zi71)dxo:k72,kd}’0:k

P?(Xk[xXp—1) =

P (20) T, PRi—1(2ilZi—1)dXo:—1Y0—1

, (22)
fp2(zo) Hf:l p?”,l(zi|zi—1)dxo:k—1}’0:k

PP (ylxe) =

but remember that? (x|x_1) can be different fronp?(xy|xo.x_1) andp?(yx|xx) does not necessary correspond
to p?(y|yo:x—1, Xo.x ). Given [I5){(16), we now build a class of PMC modgfs? such that for alld, p??(xo),
p*? (xi|xx—1) andp®? (yy |xi) coincide withp! (xo), frjx—1(Xk|xk—1) andgx(yx|xx), respectively, and such that
transitionpi"lifl(zk|zk,1) does not necessary depend on the parameters of initiaPpef). We have the following

result (a proof can be found in_[22, Appendix B]).

Proposition 1 Let us consider a set of pdfs (xo) = N(xo; mo; P), and fy,_; and g, given by(I5)-(18), for

all k. Then the class of linear and Gaussian PMC mog#él$(xq.., yo.x) Which satisfy the constraints

p*’(x0) = p'(x0), (23)
P (xklxk—1) = frppo1(xklxp-1), (24)
PP (yelxe) = gr(yelxk), (25)

and such tha{oi"z_l (xk, Yk |Xk—1,¥r—1) does not depend on parametay, is described by the following equations:

mg Po (HOPO)T
p>%(20) = N | zo; ; ’ 29
Hom, HoPy Ry + HOPOH(T;
p?\iq(ZHZkﬂ) = N(zk; Brzg—1; i), @0

where matriceB,;, and 3, are defined by

[ F, - F2H,_ F2
B,=|  CMMUTRD (28)
\H,F), - HiH,, H}
—211 221 T
5, — |7 (=) (29)
D >
il = Qp — F2R,_ (F2)T, (30)
o' =HyQ — HiRy—1(F})", (31)
2 =Ry —HiRy_1 (H)T +H,Qr(Hy) T, (32)

and where parametes= {(F?,H?)},>1 can be arbitrarily chosen, provideR, is a positive definite covariance

matrix for all &.
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C. Discussion and invariance properties

Let us now discuss the properties of the constrained PMC ad@é?},co described by Propositidd 1.

Proposition 2 Let us seH? = H;F%. From LemmaR (see Appentlix AJ(yx|xx—1, Xk, yx) reduces tay (yx |xx ).
If in addition F? = 0,,,xp, p*(xk|Xk—1,yx—1) reduces t0fxk—1(Xx |[xx—1) and in this case the PMC model reduces
to the classical HMC modefl7)-(I8) (i.e., p' = p*% with 6y = {(F2 = 0.nxp, H2 = 0px;) i>1)-

We now turn to invariance properties of famify®?}4co (proofs can be found in Appendix B).

Proposition 3 Pdf p>?(xy, yx|xx_1) does not depend ofx for all 6,

2,0
p

(Xk, Yk|XK-1) = pl (Xk, Yr|Xr-1) (33)
= fk\k—l(Xk|xkfl)gk(}’k|xk)- (34)

However, note that in an HM@! (xx, yx|xx_1) = p'(Xk, Yr|Xr_1,yx_1), While in generalp®®(x., yi|xr_1,

yr—1) is different fromp?? (xy, y|xr_1)-

From Propositio13 we already know thet? (y|xx, xx—1) = p>? (yx[%xx) = gr(yx|xx). But indeed

Proposition 4 p*?(yx|xo.x) and p*>?(xq.x) do not depend o#: for all 6,

PP (ylxon) = p(yrlxe) = gu(yelxe), (35)
k

P’ (x0) = pl(XO)Hfi\i—l(xﬂxifl)- (36)
i=1

Let us finally come to the global structure @’ (xo.x, yo.x ). From [36), whatever the model (i.e. whatever parameter
0), {xx }x>0 is an MC with given pdfp'. Sop>?(xo.,yo.x) only differs throughp?*? (yo.x [yo.x), which in a PMC

model reads:

n

ok xo:k) = > (yolxox) [ [ 0™ (vilyio1, xi-18). (37)
i=1

>

However, some simplifications occur in particular casesnFPropositiofi 2, if1? = H,F2, p>%(y;|yi—1,Xi—1:%)
reduces t@??(y;|x;.;i+1). On the other hand, FZ = 0, p?%(y;|yi—1, Xi—1.1) reduces t@?®(y;|yi—1, Xi—1.;). Of
course, if we set both? = H,F? andF; = 0, thenp®® (y;|y;_1,xi—1.x) reduces t@*® (y;|x;) = gi(yilx:),
and [37) to the conditional pdf! (yo.x|xo.x) of the HMC model[(B).

IIl. AN EXACT FILTERING ALGORITHM IN CONSTRAINED CONDITIONAL PMC MODELS

In the previous section, the jumps., were omitted. So let us now reintroduegy in the PMC model[(10),
which leads to conditional PMC models that we will describehis section. Thus, we will show that the physical
properties described by ;1 (xi|x;—1,7:) and g;(y:|x;,r;) can be kept in a particular class of conditional PMC
models. Among the models which belong to this class, we wiliaet those for which the computation &f; is

possible, and we will discuss on the consequences.
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A. Conditional PMC models

Let us now consider the PMC modé&l{10) in which we add a depmyde a discrete MC{r}1>0, which

affects processo.;, [23] [24] [25]. Pdf p?(zo:x, ro:x) Of (zo:k, To:k) = (Xo:k, Youk, Fo:k) reads

k k
p2(Z0:k, o) = p2(7’0) Hp2(7’z'|7’i71)p2(zo|7"0) Hp?\ifl(zﬂzz‘fl, 1) (38)
i=1

=1
Note that the above conditional PMC models extend the dak§MSS[(R) and that contrary to a classical IMSS

(@), givenz;_1, r;_1 andr;, z; can also depend or;_;. Because we consider linear and Gaussian models in this

paper, we assume that the general forﬁpglﬁcil(zﬂzk_l, rip—1.;) reads (notatiorF,lg(.), say, is shorthand for
B 3"

Fl(rp—1.x))
; (39)
=00 20

note that the particular settinB,, (ry—1.x) = Fr(rx), Fa(rr—1.6) = 0, Hi(rs—1.6) = Hi(rg), Hi(rp—1.4) = 0,
St (rro1k) = Qu(ry), T (rkfl:k)T = Hi(rs)Qr(rr) and 222 (rp—1.) = Ri(ri) + Hy (1) Qu (ri) Hy (1) T
corresponds to the linear and Gaussian JM3S (2). Among medsdth satisfy [(3B)E(39), we now identify those

Zp—1;

Fi.() Fi()

pz|k—1(zk|zk717rk71:k):./\/' ZL; 1(
H;. () Hi()

which satisfy the following constraints:
e {ri}r>0 is an MC with transition®?? (ry.|ri—1) = p' (r|re—1);
o Givenro, p*? (Xklxk—1,T0:6) = frpp—1 Xk [Xk—1,7%) andp®? (yi|xx, vo:x) = gr (Vi Xk, 7).

By adapting the proof of Propositidd 1, we have the followprgposition.

Proposition 5 Let us consider a set of pdfs of interpStxo|ro) = N (xo; mo(r0); Po(r0)), and fix—1(xk [Xk—1, %)

and gx (yx|xx, ) given by@)-(@) for all k. Then the linear and Gaussian conditional PMC models whatfsfy

P (rilri—1) = p'(rlre—1), (40)
pQ’G(Xk|Xk71,r0:k) = fk\k—l(xkb(kfla k), (41)
P> (yelxi,ror) = gu(yexe, ), (42)

are described by the following equations:

P> (rlri—1) = ' (relre—1), (43)
p2’9(Z0|T0) :pl(X0|To)90(YO|X0,7’0), (44)
Pi]i_l(zﬂzk—hrk—l;k) = N(zk; Br()zr-1; 2k(.)), (45)

where matriceBy(ry—1.,) and X (rip_1.) are defined by

By (re 1) [ Fi(ri) — Fi(ri—10)Hp—1(re—1) F2(ri—1.) , (46)
_Hk(m)Fk(m) —Hi(rr—1.6)Hr—1(rk—1) H(rp—1.x)

—Ell(rkflzk) 221(rk71:k)T
Sr(rp—1x) = :1 k22 , (47)
R (rp—1:k) B2 (Ce—1:%)
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S (rho1k) = Qulre) — Fi(rk—l:k)Rk—l(Tk—l)Fﬁ(rk—l:k)T, (48)
S (- 1) = Hy(re) Qu(re) — Hi(rk—l:k)Rk—l(Tk—l)Fi(rk—l:k)Ty (49)
2 (rpo1n) = Rk(rk)_Hi(rkfl:k)kal(kal)Hz(rkfl:k)T‘FHk(Tk)Qk(Tk)Hk("’k)T, (50)

and whereF? (ry_1.;) and H?(ry_1.,) can be arbitrarily chosen, provide&y(ry_1.;) is a positive definite

covariance matrix for allk.

Remark 1 Of course, the particular settinB7(rx—1.x) = 0, Hi(rx_1.x) = O coincides with the linear and

Gaussian JMSS modéll(2) which satisfigs [3)-(4).

The invariance properties of the models of Proposiftibn Silarstrated with the following proposition and extend
those of Propositiorls 2] 3 and 4.

Proposition 6 In models of Propositionl 3> (zx |xx_1, rx_1.x) = p' (z&|Xx_1, r) and pdfp>?(x¢.x, ro.;) does
not depend or: for all 4,
k k
P*° (Xouks 0:k) = p' (Ko, To:k) = p'(ro) [ [ 0" (rilri1)p (xolro) T firim (xilxi—1, 70); (51)
=1 =1
The difference with classical IMSS provides from @df(yo.x|%o.x, ro.x) Which now reads

k

P> (youk X0k r0:6) = > (yolXouk, ro) [ [ 7 (vilxim1ms yim 1, vim1k). (52)
i=1

B. Exact Filtering in a subclass of constrained conditioiaéar and Gaussian PMC models

1) Preliminary result: The problem we address now is the computation®@f in the class of constrained
conditional linear and Gaussian PMC models of Propositiot©6 course, the exact computation @f, in (I)
is not possible in all models of Propositioh 5; otherwisewiuld be also possible in the linear and Gaussian
IMSSp!(zo.x,ro.x) Sincep!(.) is a particular model out of this class (see Renidrk 1). Howeve show that for
a particular setting oH3 (rj_1.x) in (@6), the computation ob;, at a linear computational cost becomes possible.
In a general conditional linear and Gaussian PMC maddél (38); we have this preliminary result (a proof is
given in AppendiX_C) when givem;_, andrj_1.x, yx does not depend ogy_1, i.e. whenp(y|zx—1,rr—1.1) =

P(Yr|yr—1,Tr-1:%)
Proposition 7 Let a conditional linear and Gaussian PMC model which satssfi

P (Zk|Zr—1,Th—1:%) = D*(¥E|YE—1, Th1:6)D° (X |Zh—1, Vi, Thm1:k ) (53)

P (%% |Zh—1, Vs Th1:k) = N (%3 Cro (P 1:1)Xk—1 + Di(Tho1k, Yi—1:%); 23 (Ch1:1))- (54)
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Thenp?(ri|yox), E(Xk|yo:x, 7) and E(xxx? |yo.x, 7%) can be computed recursively via

P2 (rlyor) Z P2 (rilre—)p* (Velyr—1, te—10)D” (re—1 [Your—1), (55)
Tk—1

E(xk|yo:r, ) = ZPQ(kaﬂTk, Y0 ) (Cr(Th—1:0) E(Xk—1[york—1, 7k—1) + D (T 1:85 Yr—1:8)), (56)
Th—1

E(x) |yok, i) = »_0° (rk-1lre, your) X (ZF(rr—1:4)

Tk—1

+ Cr(rr—1:)E(xb- 1341 [Yo:k—1, 76 -1) Cr(Th-16)

+ Dy (b1, Y1) EXp—1|¥0:6—1, T%—1)) T Cr(r—1:6) "

+ Cr(rh—1:)E(Xp—1[York—1, "k—1) Dk (Tr— 18, Yi1:6) -

+ D (th—1:k Y- 1:6) D (Th— 1k, Yeo1:6) ") (57)

P2 (Ti—1|mk, Yo ) o< P2 (rk|7k—1)P (Y Y k—15 Phe1:0)P> (Th—1 | Y 01— 1) (58)

The computation ofd, is deduced fromp, = Zm p?(ryo.x) E(f(xk)|yo.x, 7). Remark that the computational
cost involved in the computation @b, is no longer exponential, but is indeed linear in time andyaelquires
sums onr,_; andr, at timek.

2) Application to the physically constrained PMC modelshwjitmps: Now we turn back to the class of models
of Propositior. 5 and we look for those which satisfy constrf&3). In this class of model$?? (yx|zr_1,Te_1.%)
depends orx_1 via its mean which readHy, (r)Fj (re) — HE (vp—1:0)Hp—1(ri—1)) Xp—1 + Hi (Th—1:0) Y1,
s0 p??(yi|z1—1,rx_1.1) does not depend or;_; (and so the exact computation &f, is possible according to
PropositiorT) if one can fin#1? (rx_1.;) which satisfies

Hy, (1) Fr(re) — Hi (vp—1.6)Hg—1(r5—1) = 0. (59)

The expression 0% (xy|zx_1, Y&, rx—1.) iS deduced from that 95> (zx|zx_1, 1) in (@5) (see Lemma]2

in Appendix[A), and we have the following corollary.

Corollary 1 Let a constrained conditional linear and Gaussian PMC manfePropositio b which satisfie®9).

Then the exact computation @, is possible by using Propositidd 7 with
Cr(rk—1:) = Fr(ri) — Fr(rp—1:0)Hp—1(re—1), (60)
Dy (tr—1k Yi-1:6) = Fr(tom1)ye + (Z3 (trem1))” X (S22 (ro—12)) " (v& — Hp(th—1)yr—1),  (61)
Erre-1k) = Bt rorn) — (BF (th-1) T (B2 (0rm 1)) T B (k1) (62)
PP (Yklyr—1:Te—1:6) = N(yr: HE(Ch—1:0)Yk—15 23 (Po—1:1))- (63)

3) Summary: Let us summarize the discussion. Thus far, we have proposeldsa of stochastic models
p?%(20.1, To.x) Which satisfy the constraingg:? (74 |rr_1) = p*(ri|re—1), P> (%k [Xk—1,7%) = Jrph—1 (Xk|Xk—1,7%)

and p>?(yi|xx, 1) = gr(yr|Xx, %) and in which®, can be computed exactly (no Monte Carlo nor numerical
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approximations are needed) and at a computational costhwikidinear in the number of observations. This

algorithm can be applied whenever a problem is essentiabgribed by the physical linear and Gaussian properties

Jujk—1(Xx|[xr—1,7%) andge (yx|xx, 7). So let physical propertiesl(d)3(4) parametrizediyy(ry.), Hy (rr), Qr (k)

andRy (7). The goal is to comput(f(xx)|yo.x) recursively viap?? (ri.|yo.x) andE(f (xx)|yox, x). The algo-

rithm is as follows. At timek — 1, we havep(ri_1]yo:k—1), E(xk—1[yo:k—1,7%—1) aNdE(xp—1X7 | [y0:k—1,Tk—1);

for rp—1.,€{1,--- K} x{1,--- K},

S.1 Deduce the class of linear and Gaussian PMC models paraetbtoyF? (ry_1.;), H3 (ry—1.x) using Propo-
sition[3;

S.2 ChooseHj3 (ri_1.;) such thatHy (ry)Fy(ry) — Hi (rp—1.6)Hig—1(rp—1) = 0;

S.3 Compute matrice€y, (rx—1:x), Di(rr—1:x) and X% (re—1.%) using [60){(6R);

S.4 Computep®? (ri|yo:x), E(xk|yo:k, ) andE(xxx7 [yo.x, %) Via (53)-[58).

Finally, computeE(f (xx)|yo:x) = >, p*°(rrlyo:x) E(f (xx)|Youk )

C. A particular application: approximat®;, in a linear and Gaussian JIMMS

Until now, we have proposed a class of exact filtering alpang when the problem involves given physical
properties of interest. Now, remember that the linear andsGian JMSS$!(.) shares those physical properties
with the class of modelg??(.) in which the optimal Bayesian estimate can be computed. Sayjproximation of
®, in a linear and Gaussian JMSS via our exact filtering algoritlrises naturally at this point. So in this section
let us assume that the data indeed follow a linear and GaudM&S [2){(#). Since our algorithm is parametrized
by F2(rx_1.x), it remains to choos&% (rx_1.x) Which best fits the original model.

In a linear and Gaussian JMSB; (ri_1.;) = 0 andH3 (rj_1.x) = 0. However,F? (r;_1.x) = 0 should not be
our choice here, as we now see, because in our moHgla;;. 1.5, is different of0 from constraint[(59). The idea
is to tuneF? (ry_1.;) such that constrainE(59) is balanced. More precisely, vo& for F? (r;_;.;) such that the
Kullback-Leibler Divergence (KLD) betweep??(zg.x, ro.x), which satisfies[(39), ang' (zo.x,ro.x) is minimum.

We have the following result (a proof is given in Appenfik D).

Proposition 8 Letp!(.) be the linear and Gaussian JMSS model afd(.) be the class of models of Proposition
which satisfy conditior(59). ParametersF?(rx_1.x) Which minimize the KLD betweep??(zo.;,ro.x) and

p*(zo.x, ro:) are given by
Fzﬂopt(rkflzk) = Qi (re)Hy(ri)" [Ri(re) + Hk(Tk)Qk(’l’k)Hk(Tk)T} ! H(rg_1.%). (64)

Remember however that these particular parameters sheulddal when the goal is to approximate the computation
of the optimal estimato®,, in (@) in a linear and Gaussian JMSS. For more general moftelsvhich our filtering
technique can be still used), these parameters do not geardime best performances, as we will see in the

Simulations section.
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IV. PERFORMANCEANALYSIS AND SIMULATIONS

In this section, we start by describing step by step our ntitogy and we validate our discussions: we first
generate data from a given HMC model and we estimate the hidd& with a filter based on a PMC model out of
the class described by Propositldn 1 which satisfies camdit{59) and{64) when jumps are fixed. We compare the
performance of this approximation with the optimal KF. Nexe compare our new approximate filtering solution
for linear and Gaussian JMSS with the IMM algorithm and the WhRen simulations are involved, we generate,

for a given model,P = 200 sets of data of lengtii” = 100.

A. A step by step illustration

Let us describe our methodology step by step on the popuddarsmodel with jumps,{ = m = 1) (see e.g.

[6][26] and references therein):

frepp—1 (@rl|zr—1,71) = N (285 a(re)ze—1: Q(rr)), (65)
9k (rlz, i) = N (@e; b(re)zr; R(ry)), (66)
where|a(rg)| <1 and{ry}r>o is a given MC with transition probabilities! (ry|r,—1). First, we omit the jumps
and we consider the underlying model described by the twioviiahg pdfs:
frpp—1(@plzr—1) = N(zk; azp—1; Q), (67)
gk (yrlrr) = N(yr; bar; R), (68)
wherela| < 1. Next, remember that we need to deduce the associated d¢ltisgar and Gaussian PMC models

which satisfy the same physical propertiesl (67)-(68). Taeydescribed by two parametedrs = ¢ and H? = d,

which gives a class of PMC models described by the follownagsition according to Propositidn 1:

a—bec ¢ — R bQ — cdR
] ~[Q @ ) (69)

pQ’G(Zk|Zk71) = N(Zk; z
ab—db d bQ — cdR R(l—d2)+b2Q

According to [59), we look for parametdrsuch thatab — db = 0, so from now on we sef = a.
Next, if the goal is to approximate the HMC model deduced fr@)-@) the parameter which minimizes
the KLD betweermi"z_l(zﬂzk_l) andp,ﬁ‘k,l(ZkIqu), isc = from (64); so among all PMC models

(69), we choose

R+b2Q '

a— ab’Q  _abQ Q- a®’Q’R bQ — & 2bQR
2 2 2 2 2
pi"z,l(zklzk—l) _ N(zk; RF’Q  RFPQ |, . (R:z;g}; RFo2Q ] ) (70)
0 a bQ yEwSTe R(1 —a?) +b%Q
It is easy to check that the covariance matriXpéﬂ_l(zk|zk,1) is positive definite, whatever1 < a < 1, b,
@ and R. It is now interesting to compare the KLD betwe;aﬁi1 and p}dk_l which reduces to that between

p>? (yr|yx—1) and p!(yx|zr_1) since we have chosen the optimal parametésee the proof of Propositidd 8).
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Remember that in HMCL(®7)-68n" (yx|vx—1) = N (yx; abxi_1;b°Q + R) and in PMC [70),p* (yx|yr—_1) =
N (yr; ayr—1; R(1—a?) +b%Q); using classical results on the KLD between two Gaussiaees €s3.[[217]), we have

2 2 2 2 2
2.0 1 B B a‘R a®(yg—1 — bxg—_1) B R+b°Q —a*R
Dxr(p™" (k|yr—1), P (Y|Tk-1)) = 0.5 % R0 R120 In( RT 020 ). (71)
which depends on r.y,_; andx,_; via (yx_1 — bzk_1)?. However, in such modeB((yx_1 — brx_1)?) = R, SO
2
2,0 1 _ _a (R/Q)
E(DkrL (™" (Yk|yk—1),p (Yklrp-1))) = —0.5In(1 7R/Q+b2)' (72)

It is an increasing function of rati®/Q, so whenR/(Q is small, i.e. the process noise is large compared to the
observation one, then PMC modE[{70) is close to the origitMlC model deduced froni (67)-(68), so estimating
the hidden data froni (T0) (although they follow(67)}J(6&)psld not have a serious impact.

We generate data from the HMC model deduced frbm (©7)-(6&revive seta = b = R = 1. We compute a
KF for PMC [21] based on mode[ (¥0) and the KF for classical eid@4)-[68), which of course is optimal for
this model in the sense that is minimizes the MSE. We dgtg: (resp.iy p 2) the estimator based on the original
HMC model (resp.based on the PMC model) for thth simulation at timet. For each estimate, we compute the

averaged MSE over time:
T P

o1 1 .
J' = T Z P Z(xk,p,i — xpp)? (73)

k=1L~ p=1
wherez;, ,, is the true state for thg-th realization at time:. We also compute the mean of the KLID]72) between
lec|k—1 andpi’li_l. In Figure[1, we display the KLD betweqaj;lk_1 andpi’li_1 and the relative averaged MSE
(RMSE) (7! — J?)/J? againstQ. As expected, the RMSE decreases WM(pi"Zil,p}dk_l) decreases, i.e.
when @Q increases. Particularly interesting, values of RMSE alevio®.10 when @ > 4 and for high values of

Q (Q = 10), they are close t®.03. It means that approximating the original HMC model with a ®Mne of
Propositior ]l in whichH? and F? respectively satisfy((89) anf(64) does not differ to theropt method as long

as( is not too small.

B. Performance Analysis on jumps Scenario

We now consider two scenarios with jumps. We compute outtisolwf paragraph1ll-B £ ,1), a PF based on
the SIR algorithm with the importance distributiph(r|r_1) (it only requires one KF per particle) with = 100
particles [1] € p,2), an IMM algorithm [9] @ p.3) and a KF § p kam) Which uses the true jumps and which
is our benchmark solution. We compute the MSE between theatsts and the estimator based on the KF which
uses the true jumps:

, 1 &
MSE'(k) = > (Ekpi — ErpKaim)’- (74)

p=1
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N
a

" —
7 —-RMSE
= Dy (P P
8 2 KL k|k=1""k[k-17|
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Fig. 1. RMSE between a classical KF based [od (E5)-(66) and €-RM based on[{40) (blue circle) and KLD between transitiofithe
HMC model based ol (65)-(66) and modell(70) (black dotted)liVhen( increases, both RMSE and DKL decrease; the estimates based o

model [70) are very close to the optimal ones.

1) Scalar model with jumpsWe go on with model[{85)-(66) where, € {1,2,3}, ax(rx) = [1,—0.9,0.9],
b=1, Q(rx) = [3,10,10] and R = 1. The transition probabilities are defined pY(ry|rr_1) = 0.8 if r, = 741
and p*(rg|rr—1) = 0.1 if r,, # rp_1. Data are generated from the JMS3 (2). A typical scenaridsiglayed in
Fig.[2(@). Remember from the previous paragraph that our aggwoximation filtering technique is based on the

conditional linear and Gaussian PMC model

pi"z,l(zklzk—l,I‘k—l:k)zf\/(zk; B (rr—1:%)2Z6—1; B(Th—1:1)), (75)
a(ri)b?Q(ry) a(ri)bQ(rk)
Bk(rkfl;k): Q(Tk) - R-:ib2Q(rk§ R(Tk);+b2Q(kT‘k) , (76)
0 a(ry)
a(ri)?6?Q(ri)° R a(ry)?bQ(ri) R
S(roge) =| M) T G b0 = Rt |, (77)
bQ(ri) — Ry R(1 - a(r)?) +0*Q(re)

MSEs of the different estimates are displayed in[Fig]2(b)amechormalized w.r.t. that of our approximated solution.
Particularly interesting, we see that our algorithm ouigens the IMM estimate and slightly improves (in mean)

the PF. However, remember that our technique is not basedameVvCarlo samples and is more interesting from
a computational point of view. In order to illustrate thidfelience, we have computed the ratio of the averaged
computational time used by the PF and our solution which p@pmately equal td5: our solution is thus much

faster than SMC methods.

Remark 2 If we increase the number of particles, the performances®fftF are improved and are identical to

1
MSE(R)E(C (k)

over time whereC'(k) is the CPU time to compute the estimate. The efficiency of ¢gwriéhm does not depend

those of our exact filtering technique. Thus, it may be irstting to average the efficien®ff (k) =

on the number of particles and 8s5 x 10* while for the PF the efficiency decreases when the number it |es
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15/ o Approximated conditional PMC estimates 2.57 75
“True hidden states — Exact filtering in p~~(.)
101 | + Observations ~-PF in p()
% 3 w 2+ 1
& %) = |MM in p(.)
=
B 15
N
©
£
S 1r
Z
0.5n
100 0 20 40 60 80 100
Time

(@) (b)

Fig. 2. (a) - Example of scenario of model16B)4(66) and resion with a conditional PMC model of the Proposit[dn 5 whiatisfies[(59) and
(64). True states (red dotted line), estimates based on emrapproximation (black circles) and observations (blusses). (b) - Normalized
MSE of our algorithm (black line), PF (red circles) and IMMub squares) estimates.

increases and varies betwegx 102 for 100 particles and).1 x 102 for 1000 particles.

2) Target Tracking:We now consider a target tracking scenario:

klk—1\XEk|Xk—1,Tk) = Xk Y e\Tk)Xk—15 RETE) ),
Sre—1(xk] ) =N (xx; F(rr) Qk(rk)) (78)
gk (Yr|xk, e) = N (xx; Hixp; Ri), (79)
where
1 sin(w,T) 0 — 1—cos(w,T)
0 cos(w,T) 0 —sin(w,T)
Fk(,r) - 1 T . [
0 —cos(w,T) 1 sin(w, T
0 sin(w,T) 0 cos(w,T)
A
5 5 0 0
T2
= T 0 0
Qk(?") = Ug (7‘) 2 T3 2|
0 0 5 5
o o Z T

H, =1, andR; = I,. We setT = 2, r, € {1,2,3} represents the behavior of the target: straight, left turd a
right turn. So we setv, = [0, 67/180, —67/180] ando, (r) = [7, 10, 10] and the transition probabilities are defined
by p(rg|ri—1) = 0.8 if i, = rp—1 andp! (rg|ri—1) = 0.1 if rp # r6_1.

a) JMSS casewe first generate the data according to a linear and Gaussi&® dvhich satisfied (78)-(79).

A typical run of this manoeuvring scenario is displayed ig.[B(@). The parameters of our conditional linear and
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Gaussian PMC model used to apply the exact filtering tecteniglies on the class of models of Propositidn 5
where Hj (rj,_1.;) satisfies[(B0) (sd?(rx—1.x) = Fi(rx)) andF2(r,_1.;) satisfies[(64). Normalized MSE are
displayed in Fig[ 3(B). The solution that we have proposegberforms the IMM estimate and presents similar
performances with the PF; however, the execution time ofabgmrithm is still fifteen times faster than that of the
PF.

We have also averaged the MSE (w.r.t. the KF) over time and et€.§058 for our solution,0.0059 for the PF
and0.0074 for the IMM.

2.5¢
o Approximated conditional PMC estimates| — Exact filtering in pz,e(.)
150001 —True states | - PFin pl(_)
’ s —=IMM in p*()
- 10000 (LII)J 15
=
©
5000¢ 8 1p
T :
E
o | | 2 051
-5000 0 5000 10000 15000 0 20 40 60 80 100
Py Time

(@ (b)

Fig. 3. (a) - Example of a manoeuvring tracking scenarioadat generated according to modell (T8}(79). (b) - NormdliISE of our
algorithm (black line), PF (red circles) and IMM (blue sogmr estimates.

b) General case:in all these simulations, we have considered unfavorabdex@ the sense that we have
generated data from linear and Gaussian JMSS. Howeverntmgafollow a more general statistical model with
the same physical properties, such as model of the classiloEddy Propositiofi]5. However, the classical PF and
IMM rely on the JMSS structure while our solution is valid farlarge class of models sin&};(rk,lck) can be
arbitrary. Let us now generate data according to a conditiBMC model of the class described by Propositibn 5
with B2 (ry_1..) = 0.7F () andH; " (r_1.5) = 0.9H,,(r1,). We compute estimates using the same PF and
IMM algorithm that above and we compute our solution WA (ry_1.5) = 0.8F(ry) and HZ (ry_1.;) satisfies
(59). Remark that setting? (rj,_1.) = F3"™"(r_1.;,) may not be optimal becaud®? (rj,_1.) # Hy " (rx_1.1)
and it was actually experimented that this choiceB’@(rk_l:k) gives better results. The benchmark solution is no
longer the KF since data no longer follow a JMSS model; ouveragfce solution is now the KF for PMC models
[21], which uses true jumps. In Fig. TV-BRb we display a reafion of the scenario. As we see, the target keeps
the physical properties of the scenario (straight, lefbhtand right turn) although its trajectory is not generated
from a classical linear and Gaussian JMSS model. Howevétigr{4(b) we display the normalized MSE and we

see that classical solutions are not adapted at all when wsidsr more statistical complex scenarios.
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6000/ o Approximated conditional PMC Estimates — Exact filtering in p2,6(_)
—True states L .1
4000f " 15 ~"PFinp7()
%) -o-|MM in p*()
2000t =
o § 10t
s S
£
-2000 S sl
-4000
- ‘ 0 : ‘ ‘ : ‘
5000 0 5000 0 20 40 60 80 100

(@) (b)

Fig. 4. (a) - Example of a manoeuvring tracking scenario whasmta are now generated from a conditional linear and Gaus3MC
model with Fi’““c(rk,lzk) = 0.7F(r%) and Hi’”“c(rk,lzk) = 0.9H(r). Physical properties of scenario of Fig. 3(a) are kept. (b) -
Normalized MSE of our algorithm (black line), PF (red sqsarand IMM (blue stars) estimates. Classical solutions aréonger adapted for

such models while our approximation remains valid. Thisasause our algorithm offers the possibility to adjust pmmrFi (rp—1:k)-

V. CONCLUSION

In this paper, we proposed a new filtering technique for dyinahmodels with jumps. Starting from a given set
of physical properties we derived a class of conditionaldinand Gaussian PMC models which share those physical
properties, and in whicl®;, can be computed exactly in a computational cost linear imtiraber of observations.
Moreover this technique can be used as an approximationeoMMSE estimate in the JMSS model. We finally
validated our approximation technique on simulations. @aehnique provides results which are comparable to
those given by the classical solutions, but at a lower coatjrtal cost, when the data is produced by a JMSS

model; and which are better adapted in other cases.

APPENDIXA

CONDITIONING IN RANDOM GAUSSIAN VECTORS

We recall in this section two classical results on Gauss@fnwhich are used in our derivations |28].

Lemma l Let¢ € IRP, n € IRY, Q (resp.P) be ap x p (resp.q x q) positive definite matrix (other vectors and

matrices are of appropriate dimensions), then

/N(C;Fn+d;Q)N(n;m;P)dn:N(C;Fm+d;Q+FPFT). (80)

Lemma 2 Let ¢ € R?, n € R?, P¢ (resp.P") be ap x p (resp.q x q) positive definite matrix an#®<"” a p x ¢

matrix. Let us assume that pdf @f, ) is a Gaussian,

mS P< PSS

p(¢,n) = N(Cm; ol [ pen”  po

). (81)
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Then
p(¢,n) = N(n;m"; PN (¢ (n); PO), (82)
m(n) = m® +P<"(P") " (n — m"), (83)
P¢ = P¢ — pén(py—ipéa’ (84)
APPENDIXB

PROOF oFPROPOSITIONSZ TOM]
We begin with [3B). Letp*?(x, yx|xx_1,yx_1) be the transition pdf of a PMC model of Propositidn 1. We
have
pzﬁ(xka}’kb{kfl) = /p2’0(}’kfl|xk71)piiz,l(xkvka’kflyxkfl)d}’kfl-
Now gr—1(yr—1|xk—1) = N(yr—1; Hp_1xx—1; Rx—1) and pz]z,l(xk,}’kb’k—l,xkq) is a Gaussian given by

parameterd (28]-(32). Using Leminh 1, we def (33). We nowe88) by induction. So let us assume that
P*? (Ye—1/x%0k-1) = P*? (Yem1[Xk—1) = gr—1(Yr—1[Xk-1) (85)

(@8) is true at timek = 1). Since(x¢.x,yo:x) iS @ PMC, we get successively

P> (x5, i Xo-1) =0 pi"z_l(zﬂzk—l,Yk—l)p2(}’k—1|Xo:k—1)d}’k—1
D)
D fugp Gorlba 1) g (7). (86)
From [86) we get
P (xkXok-1) = frpp—1 (Kklxr-1), (87)

and consequently®? (yx|xo.x) = gx(yx|x%), which is nothing but[{85) at timé, which proves[(35). Now since
(83) is true[(8F) holds too, whende(36). It remains to pr@#.(LetV stand for numerator. Sindéxy, yx)}n>o0 IS

2 i 2'--1’1’77«;72 2i—1,Y0:i—
a MC, p*(yilyo:i—1,Xo:k) = fpg(g,y(f:,’:;:k)ziyi o Il lfN(li)fi e e p*(yilyi-1,%i—1.£), whence
@D).
APPENDIXC

ProOOF oFProOPOSITIONITT-B]

The results is based on the filtering technique ir [29]. Weser a conditional linear and Gaussian PMC model
which satisfies[(83):(54) and the goal is to comppitéry|yo.x) from p2(rx_1|yoe.x—1) and E(xx|yo.x, ) from

E(xk-1|yo:k—1,7k—1). In this particular conditional PMC modely.x—1,ro.x—1) is @ MC [29], so

P2 (Vhs TR Y0k—1, Th—1) = P (Vb TR|Yhe1, 1), (88)

= p?(ri|rk—1)P* (Y |Y k-1, Th—1:%) (89)
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Consequently,

PA(relyor) o D PP (k-1 |Yoik—1)P? (Yo TV k-1, TR 1)- (90)

Trk—1

Next,

E(xk[yo:m, k) = Z P (ri—1]Yo:k, T) X

Tk—1

/ |:/ka2(xk|xk—lay0:kark—l:k)dxk] P (Xk—1]Y0:ks Th—1:8 )Xk -1, (91)

E(Xk|Xk—1,Y0:k:Tk—1:k)

Let us now compute the quantities involved [(n](91) Fréml (8®), have
P (ri—11Y0:ks k) ¢ P(ri—1[Y0:k—1)P(Yis Tk Y k—15 Th1)- (92)
Becausexg.k, Yok, ro:x) iS @ MC,
P (Xk [ Xk—1, Y0ihs Th—1:k) = P (Xk|Xk—1, Yk—1, Vs Th—1:k), (93)
so from [54) we deduce
E(xk[%Xk—1, Yok, Th—1:k) = Cr(Ch—1:%)Xk—1 + Dr(Th1:k, Yi—1:%) (94)
Next, in this particular conditional PMC model,
pQ(kalb’O:karkfl:k) :pz(xkflb’O:kfl,"’kfl)- (95)
Finally, plugging [92)[(94) and(95) in(P1), we gé&t156).€Throof for the computation o (xxx? |yo:, %) iS

similar.

APPENDIXD

PROOF OFPROPOSITIONE

Let us consider the class of conditionl linear and GaussMg hodels of Propositioh]l5 which satisfy {59). We
compute the KLDDxr, (p*% (zo.x, ro:x ), p* (Zo:k, To:x)) Which can be rewritten
Dxr. (p*? (zo:k, Yo:x ), P* (Zo:k, Yok ) ZP ro.x) Dt (p*? (zo.k|vo:1 ), P (Zo:k [To:k)) (96)
ro:k
because! (ro.;,) = p*%(ro.;) (see Propositiof]6)p! (ro.;;) does not depend ofF(ry_1.x)}r>1, SO we focus on

Dkr.(p*?(2o.x|v0:1), P (Zo:1|ro:1)). Using Markovian properties, we have
k
DKL(pZe(ZO:kh'O:k)apl(ZO:k|r0:k)):Z/p279(zj71|r0:j71)x
j=1

2,0
Dk (pj‘j,l (zj]zj-1, rjflcj)apgl‘\j—l (zj]zj-1,1j-1:))dz;1, (97)
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where, according to Propositiof$ 5 aﬁblﬁ;e(zj,ﬂr@j,l) = p'(zj_1|ro,j—1) and so does not depend on

F?(I‘j_l;j). So we jUSt minimizd)KL(p?"‘?_l(zj|zj_1,r‘j_l;j),p}‘jfl(zj|zj_1,rj_l;j)). We have

T
PP (yilyio1rio1g) = Ny HE (o 15)y; - Ry () — HE (rjo 1) Ry (rj 1) HG (xj-15)
+ H;(r;)Qy(ry ) Hy (ry) "), (98)
P>’ (Xj1zj-1,¥5,15-1:5) = N(xj;m}7; P}7), (99)

m’=(F(r;) —F3(r;j 15 H; 1 (rj-1))%; 1 4F7 (rj-15)y;-1+
+ (251(rj—ltj))T(E§2(rj—lzj))_l(Yj_H?(rj—I:j)Yj—l)a (100)

P =X (1 1) — (87 (rj-15) T (52 (rj-15)) ' 25 (x5 -1), (101)

J

whereX}! (r;_1.5), 33 (rj_1,;) andX3(r;_y.;) are defined in[(48):(50). Next, the KLD betwep;f‘\?il(zﬂzj,l,

J

I'jflzj) andp;‘jil(zﬂzj,l,rj,l:j) writes as

2,0
p,I’,_l(Zj|Zj717rj71:j)

Do) = [Pl o 22
jli—1Pjli-1 Jli—1A IR B p}lj—l(zj|zj71)’rj71:j

dz;, (102)

= Dk (P>’ (y,lyj—1,Tj-1:5). ' (¥51%j-1,75)) "’/pz’e(}’jb’jflarj*l:j)x

Dkr (P> (%5125 -1, ¥, Tj-1:5), PT (%1% -1, 5, T 1:5))dy; (103)

and is minimum when??(x;|z;-1,y;,rj-1.;) = p*(x;x;-1,y;,7;) (from (@8),p*®(y;|y;—1,rj—1.;) does not

depend orF(r;_1.;)). From Propositiofi]6, we know that

2,0(

p Xj|Xj—17Yj7rj—1:j) = pl (Xj|Xj—1,Yj, I‘j—l;j)

soDxkr, (pi"?il(zﬂzj,l, Tj1:5): Pjj_1(25]2Zj-1,Tj-1:5)) is minimum wherp?(x; |z;-1,;, r;-1,;) does not depend

ony;_;. From [100), classical calculus lead to

(1]

(2]

(3]
(4]

(5]
(6]

(7]

(8]

F3(rj_1;) = Q;(ry)H;(r))" [R;(r)) + Hj(Tj)Qj(Tj)Hj(Tj)T]_l H(r;_1;). (104)
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