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A class of fast exact Bayesian filters

in dynamical models with jumps
Yohan Petetin, François Desbouvries

Abstract

In this paper, we focus on the statistical filtering problem in dynamical models with jumps. When a particular

application relies on physical properties which are modeled by linear and Gaussian probability density functions with

jumps, an usual method consists in approximating the optimal Bayesian estimate (in the sense of the Minimum Mean

Square Error (MMSE)) in a linear and Gaussian Jump Markov State Space System (JMSS). Practical solutions include

algorithms based on numerical approximations or based on Sequential Monte Carlo (SMC) methods. In this paper,

we propose a class of alternative methods which consists in building statistical models which share the same physical

properties of interest but in which the computation of the optimal MMSE estimate can be done at a computational

cost which is linear in the number of observations.

Index Terms

Jump Markov State Space Systems, Hidden Markov Chains, Pairwise Markov Chains, Conditional Pairwise

Markov Chains, NP-hard problems, exact Bayesian filtering.

I. I NTRODUCTION

A. Background

Let {yk}k≥0 ∈ R
p be a sequence of observations and{xk}k≥0 ∈ R

m a sequence of hidden states (as far as

notations are concerned, we do not differ random variables (r.v). and their realizations; bold letters denote vectors;

p(x), say, denotes the probability density function (pdf) of r.v. x andp(x|y), say, the conditional pdf ofx giveny).

Let x0:k = {xi}ki=0 andy0:k = {yi}ki=0. In this paper we address the Bayesian filtering problem which consists in

computing (an approximation of)p(xn|y0:n) and next in computing a moment of this pdf. In this paper we directly

focus on the recursive computation of

Φk = E(f(xk)|y0:k) =

∫

f(xk)p(xk|y0:k)dxk, (1)

wheref(x) = x or f(x) = xxT .

ComputingΦk is of interest in many applications such that single- [1] [2][3] or multi-target tracking [4], finance

[5] [2] and geology [6]. These applications are best modeledwhen in addition to{xk} and {yk}, we introduce
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a third sequence{rk}k≥0 in which rk ∈ {1, · · · ,K} is discrete and hidden, and models the regime switchings.

In this case, the underlying model is essentially describedby two pdfsfi|i−1(xi|xi−1, ri) and gi(yi|xi, ri). Pdf

fi|i−1 describes the dynamical evolution of the hidden state over time when regimeri is known, andgi models

how the observationyi is produced from statexi under regimeri. From now on, we will say that pdfsfi|i−1 and

gi characterize the physical properties of the problem at handsince they should be chosen in accordance with the

considered application.

One should still specify the joint probability model for{xk,yk, rk}k≥0. A popular model which is directly built

from the pdfs of interestfi|i−1 andgi is the so-called JMSS, i.e. a model where the joint pdf of(x0:k,y0:k, r0:k)

reads

p1(x0:k,y0:k, r0:k) = p1(r0)

k∏

i=1

p1(ri|ri−1)

︸ ︷︷ ︸

p1(r0:k)

p1(x0|r0)
k∏

i=1

fi|i−1(xi|xi−1, ri)

︸ ︷︷ ︸

p1(x0:k|r0:k)

n∏

i=0

gi(yi|xi, ri)

︸ ︷︷ ︸

p1(y0:k|x0:k,r0:k)

. (2)

This model is popular because it directly takes into accountthe physical properties of interest, and it reduces to

the well known Hidden Markov Chain (HMC) model when the jumpsr0:k are fixed. Note that in this model, we

assume that the jumps are a Markov chain (MC).

Unfortunately, computingΦk in a JMSS model is impossible in the general case, i.e. whenfi|i−1 and gi are

arbitrary functions, and is still NP-hard in the linear and Gaussian case [7], i.e. when functionsfi|i−1 andgi satisfy

fi|i−1(xi|xi−1, ri) = N (xi;Fi(ri)xi−1;Qi(ri)), (3)

gi(yi|xi, ri) = N (yi;Hi(ri)xi;Ri(ri)) (4)

(N (x;m;P) is the Gaussian pdf with meanm and covariance matrixP taken at pointx). From now on we focus

on the linear and Gaussian case, since even in this case approximations are necessary. A number of suboptimal

methods for computingΦk in linear and Gaussian JMSS have been proposed so far. First,based on the observation

thatp1(xk|y0:k) is a Gaussian Mixture (GM) which grows exponentially with time, numerical approximations such

as pruning and merging have been studied [7] [8]. A second class of approximations is given by the Interacting

Multiple Model (IMM) [9] [10] [11]; roughly speaking, a bankof Kalman Filters (KF) are used for each moderk

and their outputs are combined according to the parameters of the model and to the available observations. Finally,

a more recent class of methods is based on the use of Monte Carlo samples and Particle Filtering (PF) [1] [12]

[13] [14]. A set of weighted random samples{ri0:k, w
i
k}

N
i=1 approximatesp1(r0:k|y0:k), while p1(x0:k|r0:k, y0:k)

is a Gaussian pdf computable via KF, which leads to the following approximation of the pdf ofx0:k giveny0:k:

p1(x0:k|y0:k)≈
N∑

i=1

wk(r
i
0:k)N (x0:k;m(ri0:k);P(ri0:k)). (5)

Monte Carlo methods have suitable asymptotical convergence properties [15] [5] [16] but may require a serious

computational cost, since at least a KF is computed for each particle (one has to computem(ri0:k) andP(ri0:k)),

and for the computation of weights{wk(r
i
0:k)}

N
i=1.
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B. Contributions of this paper

Let us now turn to the contents of this paper. We assume that a particular set of physical linear and Gaussian

properties is given, i.e. we are givenp1(rk|rk−1), fk|k−1(xk|xk−1, rk) andgk(yk|xk, rk). We want to build a class

of statistical modelsp2(x0:k,y0:k, r0:k) which also conveniently take into account these physical properties (in a

sense to be specified below), but in whichΦk can now be computed exactly and efficiently.

More precisely, our problem can be formulated as follows. Assume that (3) and (4) efficiently model some

practical problem of interest. Then we look for a joint pdfp2(x0:n,y0:n, r0:n) such that:

1) p2(xi|xi−1, ri) = fi|i−1(xi| xi−1, ri);

2) p2(yi|xi, ri) = gi(yi|xi, ri); and

3) Φk can be computed exactly (without resorting to any numericalor Monte Carlo approximations), with a

computational cost linear in the number of observations.

By contrast with the methods recalled in§I-A, we no longer try to approximate the computation ofΦk in the JMSS

modelp1(.), but rather compute it exactly in a class of different statistical modelsp2(.) which however share with

p1(.) the same physical properties.

Let us now describe the methodology that we use to build such apdf p2(.), in which exact computing will be

possible. We use a two-step procedure. First, we fix the jumpsr0:k and thus only consider processz0:k = (x0:k,y0:k).

When the jumps are fixed, JMSS models reduce to classical HMC models, described by pdf

p1(z0:k) = p1(x0)

k∏

i=1

fi|i−1(xi|xi−1)

︸ ︷︷ ︸

p1(x0:k)

k∏

i=0

gi(yi|xi)

︸ ︷︷ ︸

p1(y0:k|x0:k)

; (6)

since model (6) is moreover linear and Gaussian,Φk can be computed exactly via the KF. Adapting the objectives

above, our first goal is to compute a class of statistical models p2(z0:k) (not necessarily HMC ones) in which the

practical physical propertiesfi|i−1(xi|xi−1) and gi(yi|xi) would be kept, i.e. i)p2(xi|xi−1) = fi|i−1(xi|xi−1),

ii) p2(yi|xi) = gi(yi|xi), and iii) the computation ofΦk in (1) would remain possible. Our construction is built

on Pairwise Markov Chains (PMC) models [17] [18], which are more general statistical models than HMC ones.

Next, in the particular class of PMC models obtained, we reintroduce the jumps and so we obtain a class of

conditional linear and Gaussian PMC models which satisfy the physical properties of interestfi|i−1(xi|xi−1, ri)

and gi(yi|xi, ri). Among these models, we discuss on those in which{p2(rk|y0:k),E(xk|y0:k, rk)}Krk=1 can be

computed recursively;Φk will eventually be computed as

Φk =
∑

rk

p2(rk|y0:k)E(xk|y0:k, rk). (7)

Finally, it happens that the algorithm we propose computesΦk at a linear computational cost in the number of

observations. Thus, it can be used as an alternative to the classical solutions recalled in§I-A.

The paper is organized as follows. In section II, we first dropthe jumps and build a particular class of linear

and Gaussian PMC models which keeps the physical propertiesof interest. Next in section III, we reintroduce the

jumps and we address the sequential filtering problem in suchdynamical models. So we start by generalizing linear

November 2, 2018 DRAFT
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and Gaussian JMSS to a class of conditional linear and Gaussian PMC models which keep the physical properties

of interest. Among this new class of models, described by twoparameters, we look for those in whichΦk can

be computed exactly. Finally, in section IV, we illustrate our methodology step by step on a practical example

and we perform simulations. Our method is compared to classical approximating techniques such as the Sampling

Importance Resampling (SIR) algorithm [1] and IMM algorithms [9]. We end the paper with a Conclusion.

II. A CLASS OF PHYSICALLY CONSTRAINEDPMC MODELS

In this section we drop the dependencies in the jump process{rk}k≥0. So we start from physical properties

fi|i−1(xi|xi−1) and gi(yi|xi), which in turn define the HMC modelp1(.) in (6), in whichΦk can be computed

exactly via KF sincefi|i−1 and gi are Gaussian. Our aim here is to embedp1(.) into a broader class of models

{p2,θ}θ∈Θ (i.e., p1 = p2,Θ0 for someΘ0), which all share the physical properties of the root modelp1 (i.e.,

p2,θ(xi|xi−1) = fi|i−1(xi|xi−1) and p2,θ(yi|xi) = gi(yi|xi) for all θ), and in whichΦk can still be computed

exactly whateverθ. Such models are described in section II-B, and are indeed particular PMC models, which we

briefly recall in section II-A. The interest of family{p2,θ}θ∈Θ will become clear in section III, when we will

reintroduce the jumps.

A. A brief review of PMC models

In the HMC model (6), it is well known that{xk}k≥0 is an MC, and that givenx0:k, observations{yi} are

independent withp1(yi|x0:k) = p1(yi|xi) = gi(yi|xi). On the other hand, a PMC model is a model in which the

pair {zk = (xk,yk)}k≥0 is assumed to be an MC, i.e. a model which satisfies

p2(xi,yi|x0:i−1,y0:i−1) = p2i|i−1(xi,yi|xi−1,yi−1) (8)

= p2(xi|zi−1)p
2(yi|xi−1:i,yi−1) (9)

Therefore, in a PMC model, pdf of(x0:k,y0:k) reads

p2(x0:k,y0:k) = p2(x0,y0)

k∏

i=1

pi|i−1(xi,yi|xi−1,yi−1). (10)

One can check easily that the HMC model is indeed one particular PMC, because from (6),p1(xi,yi|x0:i−1,

y0:i−1) = fi|i−1(xi|xi−1) gi(yi|xi). So (8) is satisfied, and moreover the two factors in (9) respectively reduce to

p1(xi|xi−1,yi−1) = fi|i−1(xi|xi−1), (11)

p1(yi|xi,xi−1,yi−1) = gi(yi|xi). (12)

Now in a general PMC model (8) is satisfied, butp2(xi|xi−1,yi−1) may depend on bothxi−1 and yi−1, and

p2(yi|xi,xi−1,yi−1) may depend onxi, xi−1 and yi−1. One can show that in a PMC model,{xk}k≥0 is no

longer necessary an MC, and givenx0:k, observationsyi can be dependent [19].

November 2, 2018 DRAFT
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As an illustration let us consider the classical state-space system

xk = Fkxk−1 + uk, (13)

yk = Hkxk + vk, (14)

in which {uk ∼ N (.; 0;Qk)}k≥1 and{vk ∼ N (.; 0;Rk)}k≥0 (in this paper, we assume that all covariance matrices

are positive definite) are independent and independent of r.v. x0 ∼ N (.;m0;P0). We assume thatFk is invertible

for all k. Model (13)-(14) is a Gaussian HMC model with

p1(xk|xk−1) = fk|k−1(xk|xk−1) = N (xk;Fkxk−1;Qk), (15)

p1(yk|xk) = gk(yk|xk) = N (yk;Hkxk;Rk), (16)

and as such is a particular PMC model, in which the initial andtransition pdfs of MC{(xk,yk)}k≥0 read

p1(z0) = N



z0;




m0

H0m0



 ;




P0 (H0P0)

T

H0P0 R0 +H0P0H
T
0







 , (17)

p1k|k−1(zk|zk−1) = N



zk;




Fk 0

HkFk 0



 zk−1;




Qk (HkQk)

T

HkQk Rk +HkQkH
T
k







 . (18)

This linear and Gaussian HMC model (13)-(14) (or equivalently (17)-(18)) appears as a particular model of the

class of linear and Gaussian PMC models defined by:

p2(z0) = N (z0;m
′
0;P

′
0), (19)

p2k|k−1(zk|zk−1) = N










zk;




F1

k F2
k

H1
k H2

k





︸ ︷︷ ︸

Bk

zk−1;




Σ11

k Σ21
k

T

Σ21
k Σ22

k





︸ ︷︷ ︸

Σk










. (20)

Finally, let us recall that in linear and Gaussian HMC models(17)-(18),Φk in (1) can be computed via the KF,

and that KF is still available in linear and Gaussian PMC ones[20, eqs. (13.56) and (13.57)] [21].

B. A class of physically constrained PMC models

Remember that HMC models enable to model many practical problems via functionsfk|k−1(xk|xk−1) and

gk(yk|xk), but due to their statistical structure (6)Φk cannot be computed exactly when we reintroduce the jumps.

Thus, our objective is to derive a class of models in which thephysical properties are the same but in which the

statistical structure may lead to the exact computation ofΦk. To that end, we first derive a class of linear and

Gaussian PMC models in which the physical properties are equivalent to those of a given linear and Gaussian

HMC model (15)-(16), but in which the statistical structureis more general.
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In a general PMC (20), the transition state and the likelihood pdfs read

p2(xk|xk−1) =

∫
p2(z0)

∏k

i=1 p
2
i|i−1(zi|zi−1)dx0:k−2y0:k

∫
p2(z0)

∏k−1
i=1 p2

i|i−1(zi|zi−1)dx0:k−2,kdy0:k

, (21)

p2(yk|xk) =

∫
p2(z0)

∏k

i=1 p
2
i|i−1(zi|zi−1)dx0:k−1y0:k−1

∫
p2(z0)

∏k

i=1 p
2
i|i−1(zi|zi−1)dx0:k−1y0:k

, (22)

but remember thatp2(xk|xk−1) can be different fromp2(xk|x0:k−1) andp2(yk|xk) does not necessary correspond

to p2(yk|y0:k−1,x0:k). Given (15)-(16), we now build a class of PMC modelsp2,θ such that for allθ, p2,θ(x0),

p2,θ(xk|xk−1) andp2,θ(yk|xk) coincide withp1(x0), fk|k−1(xk|xk−1) andgk(yk|xk), respectively, and such that

transitionp2,θ
k|k−1(zk|zk−1) does not necessary depend on the parameters of initial pdfp2(z0). We have the following

result (a proof can be found in [22, Appendix B]).

Proposition 1 Let us consider a set of pdfsp1(x0) = N (x0;m0;P0), and fk|k−1 and gk given by(15)-(16), for

all k. Then the class of linear and Gaussian PMC modelsp2,θ(x0:k,y0:k) which satisfy the constraints

p2,θ(x0) = p1(x0), (23)

p2,θ(xk|xk−1) = fk|k−1(xk|xk−1), (24)

p2,θ(yk|xk) = gk(yk|xk), (25)

and such thatp2,θ
k|k−1(xk,yk|xk−1,yk−1) does not depend on parameterm0, is described by the following equations:

p2,θ(z0) = N



z0;




m0

H0m0



 ;




P0 (H0P0)

T

H0P0 R0 +H0P0H
T
0







 , (26)

p2,θ
k|k−1(zk|zk−1) = N (zk;Bkzk−1;Σk), (27)

where matricesBk andΣk are defined by

Bk =




Fk − F2

kHk−1 F2
k

HkFk −H2
kHk−1 H2

k



 , (28)

Σk =




Σ11

k (Σ21
k )T

Σ21
k Σ22

k



 , (29)

Σ11
k = Qk − F2

kRk−1(F
2
k)

T , (30)

Σ21
k = HkQk −H2

kRk−1(F
2
k)

T , (31)

Σ22
k = Rk−H2

kRk−1(H
2
k)

T +HkQk(Hk)
T , (32)

and where parametersθ = {(F2
k,H

2
k)}k≥1 can be arbitrarily chosen, providedΣk is a positive definite covariance

matrix for all k.
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C. Discussion and invariance properties

Let us now discuss the properties of the constrained PMC models {p2,θ}θ∈Θ described by Proposition 1.

Proposition 2 Let us setH2
k = HkF

2
k. From Lemma 2 (see Appendix A),p2(yk|xk−1,xk,yk) reduces togk(yk|xk).

If in additionF2
k = 0m×p, p2(xk|xk−1,yk−1) reduces tofk|k−1(xk|xk−1) and in this case the PMC model reduces

to the classical HMC model(17)-(18) (i.e., p1 = p2,θ0 with θ0 = {(F2
k = 0m×p,H

2
k = 0p×p)}k≥1).

We now turn to invariance properties of family{p2,θ}θ∈Θ (proofs can be found in Appendix B).

Proposition 3 Pdf p2,θ(xk,yk|xk−1) does not depend onθ: for all θ,

p2,θ(xk,yk|xk−1) = p1(xk,yk|xk−1) (33)

= fk|k−1(xk|xk−1)gk(yk|xk). (34)

However, note that in an HMCp1(xk,yk|xk−1) = p1(xk, yk|xk−1,yk−1), while in generalp2,θ(xk, yk|xk−1,

yk−1) is different fromp2,θ(xk, yk|xk−1).

From Proposition 3 we already know thatp2,θ(yk|xk,xk−1) = p2,θ(yk|xk) = gk(yk|xk). But indeed

Proposition 4 p2,θ(yk|x0:k) and p2,θ(x0:k) do not depend onθ: for all θ,

p2,θ(yk|x0:k) = p1(yk|xk) = gk(yk|xk), (35)

p2,θ(x0:k) = p1(x0)

k∏

i=1

fi|i−1(xi|xi−1). (36)

Let us finally come to the global structure ofp2,θ(x0:k,y0:k). From (36), whatever the model (i.e. whatever parameter

θ), {xk}k≥0 is an MC with given pdfp1. Sop2,θ(x0:k,y0:k) only differs throughp2,θ(y0:k|y0:k), which in a PMC

model reads:

p2,θ(y0:k|x0:k) = p2,θ(y0|x0:k)

n∏

i=1

p2,θ(yi|yi−1,xi−1:k). (37)

However, some simplifications occur in particular cases. From Proposition 2, ifH2
k = HkF

2
k, p2,θ(yi|yi−1,xi−1:k)

reduces top2,θ(yi|xi:i+1). On the other hand, ifF2
k = 0, p2,θ(yi|yi−1,xi−1:k) reduces top2,θ(yi|yi−1,xi−1:i). Of

course, if we set bothH2
k = HkF

2
k andF2

k = 0, thenp2,θ(yi|yi−1,xi−1:k) reduces top2,Φ0(yi|xi) = gi(yi|xi),

and (37) to the conditional pdfp1(y0:k|x0:k) of the HMC model (6).

III. A N EXACT FILTERING ALGORITHM IN CONSTRAINED CONDITIONAL PMC MODELS

In the previous section, the jumpsr0:k were omitted. So let us now reintroducer0:k in the PMC model (10),

which leads to conditional PMC models that we will describe in this section. Thus, we will show that the physical

properties described byfi|i−1(xi|xi−1, ri) and gi(yi|xi, ri) can be kept in a particular class of conditional PMC

models. Among the models which belong to this class, we will extract those for which the computation ofΦk is

possible, and we will discuss on the consequences.
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A. Conditional PMC models

Let us now consider the PMC model (10) in which we add a dependency in a discrete MC{rk}k≥0, which

affects processz0:k [23] [24] [25]. Pdf p2(z0:k, r0:k) of (z0:k, r0:k) = (x0:k,y0:k, r0:k) reads

p2(z0:k, r0:k) = p2(r0)

k∏

i=1

p2(ri|ri−1)p
2(z0|r0)

k∏

i=1

p2i|i−1(zi|zi−1, ri−1:i). (38)

Note that the above conditional PMC models extend the classical JMSS (2) and that contrary to a classical JMSS

(2), givenzi−1, ri−1 andri, zi can also depend onri−1. Because we consider linear and Gaussian models in this

paper, we assume that the general form ofp2
k|k−1(zk|zk−1, rk−1:k) reads (notationF1

k(.), say, is shorthand for

F1
k(rk−1:k))

p2k|k−1(zk|zk−1, rk−1:k) = N



zk;




F1

k(.) F2
k(.)

H1
k(.) H2

k(.)



 zk−1;




Σ11

k (.) Σ21
k (.)

T

Σ21
k (.) Σ22

k (.)







 ; (39)

note that the particular settingF1
k(rk−1:k) = Fk(rk), F2

k(rk−1:k) = 0, H1
k(rk−1:k) = Hk(rk), H2

k(rk−1:k) = 0,

Σ11
k (rk−1:k) = Qk(rk), Σ21

k (rk−1:k)
T
= Hk(rk)Qk(rk) andΣ22

k (rk−1:k) = Rk(rk) + Hk(rk)Qk(rk)Hk(rk)
T

corresponds to the linear and Gaussian JMSS (2). Among models which satisfy (38)-(39), we now identify those

which satisfy the following constraints:

• {rk}k≥0 is an MC with transitionsp2,θ(rk|rk−1) = p1(rk|rk−1);

• Given r0:k, p2,θ(xk|xk−1, r0:k) = fk|k−1(xk|xk−1, rk) andp2,θ(yk|xk, r0:k) = gk(yk|xk, rk).

By adapting the proof of Proposition 1, we have the followingproposition.

Proposition 5 Let us consider a set of pdfs of interestp1(x0|r0) = N (x0;m0(r0);P0(r0)), andfk|k−1(xk|xk−1, rk)

and gk(yk|xk, rk) given by(3)-(4) for all k. Then the linear and Gaussian conditional PMC models which satisfy

p2,θ(rk|rk−1) = p1(rk|rk−1), (40)

p2,θ(xk|xk−1, r0:k) = fk|k−1(xk|xk−1, rk), (41)

p2,θ(yk|xk, r0:k) = gk(yk|xk, rk), (42)

are described by the following equations:

p2,θ(rk|rk−1) = p1(rk|rk−1), (43)

p2,θ(z0|r0) = p1(x0|r0)g0(y0|x0, r0), (44)

p2,θ
k|k−1(zk|zk−1, rk−1:k) = N (zk;Bk(.)zk−1;Σk(.)), (45)

where matricesBk(rk−1:k) andΣk(rk−1:k) are defined by

Bk(rk−1:k) =




Fk(rk)− F2

k(rk−1:k)Hk−1(rk−1) F2
k(rk−1:k)

Hk(rk)Fk(rk)−H2
k(rk−1:k)Hk−1(rk−1) H2

k(rk−1:k)



 , (46)

Σk(rk−1:k) =




Σ11

k (rk−1:k) Σ21
k (rk−1:k)

T

Σ21
k (rk−1:k) Σ22

k (rk−1:k)



 , (47)
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Σ11
k (rk−1:k) = Qk(rk)− F2

k(rk−1:k)Rk−1(rk−1)F
2
k(rk−1:k)

T
, (48)

Σ21
k (rk−1:k) = Hk(rk)Qk(rk)−H2

k(rk−1:k)Rk−1(rk−1)F
2
k(rk−1:k)

T
, (49)

Σ22
k (rk−1:k) = Rk(rk)−H2

k(rk−1:k)Rk−1(rk−1)H
2
k(rk−1:k)

T
+Hk(rk)Qk(rk)Hk(rk)

T , (50)

and whereF2
k(rk−1:k) and H2

k(rk−1:k) can be arbitrarily chosen, providedΣk(rk−1:k) is a positive definite

covariance matrix for allk.

Remark 1 Of course, the particular settingF2
k(rk−1:k) = 0, H2

k(rk−1:k) = 0 coincides with the linear and

Gaussian JMSS model (2) which satisfies (3)-(4).

The invariance properties of the models of Proposition 5 areillustrated with the following proposition and extend

those of Propositions 2, 3 and 4.

Proposition 6 In models of Proposition 5,p2,θ(zk|xk−1, rk−1:k) = p1(zk|xk−1, rk) and pdfp2,θ(x0:k, r0:k) does

not depend onθ: for all θ,

p2,θ(x0:k, r0:k) = p1(x0:k, r0:k) = p1(r0)

k∏

i=1

p1(ri|ri−1)p
1(x0|r0)

k∏

i=1

fi|i−1(xi|xi−1, ri); (51)

The difference with classical JMSS provides from pdfp2,θ(y0:k|x0:k, r0:k) which now reads

p2,θ(y0:k|x0:k, r0:k) = p2,θ(y0|x0:k, r0:k)

k∏

i=1

p2,θ(yi|xi−1:k,yi−1, ri−1:k). (52)

B. Exact Filtering in a subclass of constrained conditionallinear and Gaussian PMC models

1) Preliminary result: The problem we address now is the computation ofΦk in the class of constrained

conditional linear and Gaussian PMC models of Proposition 5. Of course, the exact computation ofΦk in (1)

is not possible in all models of Proposition 5; otherwise, itwould be also possible in the linear and Gaussian

JMSSp1(z0:k, r0:k) sincep1(.) is a particular model out of this class (see Remark 1). However, we show that for

a particular setting ofH2
k(rk−1:k) in (46), the computation ofΦk at a linear computational cost becomes possible.

In a general conditional linear and Gaussian PMC model (38)-(39), we have this preliminary result (a proof is

given in Appendix C) when givenzk−1 andrk−1:k, yk does not depend onxk−1, i.e. whenp(yk|zk−1, rk−1:k) =

p(yk|yk−1, rk−1:k):

Proposition 7 Let a conditional linear and Gaussian PMC model which satisfies

p2(zk|zk−1, rk−1:k) = p2(yk|yk−1, rk−1:k)p
2(xk|zk−1,yk, rk−1:k), (53)

p2(xk|zk−1,yk, rk−1:k) = N (xk;Ck(rk−1:k)xk−1 +Dk(rk−1:k,yk−1:k);Σ
x
k(rk−1:k)). (54)
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Thenp2(rk|y0:k), E(xk|y0:k, rk) andE(xkx
T
k |y0:k, rk) can be computed recursively via

p2(rk|y0:k) ∝
∑

rk−1

p2(rk|rk−1)p
2(yk|yk−1, rk−1:k)p

2(rk−1|y0:k−1), (55)

E(xk|y0:k, rk)=
∑

rk−1

p2(rk−1|rk,y0:k)(Ck(rk−1:k)E(xk−1|y0:k−1, rk−1)+Dk(rk−1:k,yk−1:k)), (56)

E(xkx
T
k |y0:k, rk)=

∑

rk−1

p2(rk−1|rk,y0:k)×
(
Σx

k(rk−1:k)

+Ck(rk−1:k)E(xk−1x
T
k−1|y0:k−1, rk−1)Ck(rk−1:k)

T

+Dk(rk−1:k,yk−1:k)(E(xk−1|y0:k−1, rk−1))
TCk(rk−1:k)

T

+Ck(rk−1:k)E(xk−1|y0:k−1, rk−1)Dk(rk−1:k,yk−1:k)
T

+Dk(rk−1:k,yk−1:k)Dk(rk−1:k,yk−1:k)
T
)
, (57)

p2(rk−1|rk,y0:k) ∝ p2(rk|rk−1)p
2(yk|yk−1, rk−1:k)p

2(rk−1|y0:k−1). (58)

The computation ofΦk is deduced fromΦk =
∑

rk
p2(rk|y0:k) E(f(xk)|y0:k, rk). Remark that the computational

cost involved in the computation ofΦk is no longer exponential, but is indeed linear in time and only requires

sums onrk−1 andrk, at timek.

2) Application to the physically constrained PMC models with jumps: Now we turn back to the class of models

of Proposition 5 and we look for those which satisfy constraint (53). In this class of models,p2,θ(yk|zk−1, rk−1:k)

depends onxk−1 via its mean which reads
(
Hk(rk)Fk(rk)−H2

k(rk−1:k)Hk−1(rk−1)
)
xk−1 +H2

k(rk−1:k)yk−1;

so p2,θ(yk|zk−1, rk−1:k) does not depend onxk−1 (and so the exact computation ofΦk is possible according to

Proposition 7) if one can findH2
k(rk−1:k) which satisfies

Hk(rk)Fk(rk)−H2
k(rk−1:k)Hk−1(rk−1) = 0. (59)

The expression ofp2,θ(xk|zk−1, yk, rk−1:k) is deduced from that ofp2,θ(zk|zk−1, rk−1:k) in (45) (see Lemma 2

in Appendix A), and we have the following corollary.

Corollary 1 Let a constrained conditional linear and Gaussian PMC modelof Proposition 5 which satisfies(59).

Then the exact computation ofΦk is possible by using Proposition 7 with

Ck(rk−1:k) = Fk(rk)− F2
k(rk−1:k)Hk−1(rk−1), (60)

Dk(rk−1:k,yk−1:k) = F2
k(rk−1:k)yk + (Σ21

k (rk−1:k))
T × (Σ22

k (rk−1:k))
−1(yk −H2

k(rk−1:k)yk−1), (61)

Σx
k(rk−1:k) = Σ11

k (rk−1:k)− (Σ21
k (rk−1:k))

T (Σ22
k (rk−1:k))

−1Σ21
k (rk−1:k), (62)

p2(yk|yk−1, rk−1:k) = N (yk;H
2
k(rk−1:k)yk−1;Σ

22
k (rk−1:k)). (63)

3) Summary: Let us summarize the discussion. Thus far, we have proposed aclass of stochastic models

p2,θ(z0:k, r0:k) which satisfy the constraintsp2,θ(rk|rk−1) = p1(rk|rk−1), p2,θ(xk|xk−1, rk) = fk|k−1(xk|xk−1, rk)

and p2,θ(yk|xk, rk) = gk(yk|xk, rk) and in whichΦk can be computed exactly (no Monte Carlo nor numerical
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approximations are needed) and at a computational cost which is linear in the number of observations. This

algorithm can be applied whenever a problem is essentially described by the physical linear and Gaussian properties

fk|k−1(xk|xk−1, rk) andgk(yk|xk, rk). So let physical properties (3)-(4) parametrized byFk(rk), Hk(rk), Qk(rk)

andRk(rk). The goal is to computeE(f(xk)|y0:k) recursively viap2,θ(rk|y0:k) andE(f(xk)|y0:k, rk). The algo-

rithm is as follows. At timek−1, we havep(rk−1|y0:k−1), E(xk−1|y0:k−1, rk−1) andE(xk−1x
T
k−1|y0:k−1, rk−1);

for rk−1:k ∈ {1, · · · ,K} × {1, · · · ,K},

S.1 Deduce the class of linear and Gaussian PMC models parametrized byF2
k(rk−1:k), H2

k(rk−1:k) using Propo-

sition 5;

S.2 ChooseH2
k(rk−1:k) such thatHk(rk)Fk(rk)−H2

k(rk−1:k)Hk−1(rk−1) = 0;

S.3 Compute matricesCk(rk−1:k), Dk(rk−1:k) andΣx
k(rk−1:k) using (60)-(62);

S.4 Computep2,θ(rk|y0:k), E(xk|y0:k, rk) andE(xkx
T
k |y0:k, rk) via (55)-(58).

Finally, computeE(f(xk)|y0:k) =
∑

rk
p2,θ(rk|y0:k) E(f(xk)|y0:k, rk).

C. A particular application: approximateΦk in a linear and Gaussian JMMS

Until now, we have proposed a class of exact filtering algorithms when the problem involves given physical

properties of interest. Now, remember that the linear and Gaussian JMSSp1(.) shares those physical properties

with the class of modelsp2,θ(.) in which the optimal Bayesian estimate can be computed. So the approximation of

Φk in a linear and Gaussian JMSS via our exact filtering algorithm arises naturally at this point. So in this section

let us assume that the data indeed follow a linear and Gaussian JMSS (2)-(4). Since our algorithm is parametrized

by F2
k(rk−1:k), it remains to chooseF2

k(rk−1:k) which best fits the original model.

In a linear and Gaussian JMSS,F2
k(rk−1:k) = 0 andH2

k(rk−1:k) = 0. However,F2
k(rk−1:k) = 0 should not be

our choice here, as we now see, because in our models,H2
k(rk−1:k) is different of0 from constraint (59). The idea

is to tuneF2
k(rk−1:k) such that constraint (59) is balanced. More precisely, we look for F2

k(rk−1:k) such that the

Kullback-Leibler Divergence (KLD) betweenp2,θ(z0:k, r0:k), which satisfies (59), andp1(z0:k, r0:k) is minimum.

We have the following result (a proof is given in Appendix D).

Proposition 8 Let p1(.) be the linear and Gaussian JMSS model andp2,θ(.) be the class of models of Proposition

5 which satisfy condition(59). ParametersF2
k(rk−1:k) which minimize the KLD betweenp2,θ(z0:k, r0:k) and

p1(z0:k, r0:k) are given by

F
2,opt
k (rk−1:k) = Qk(rk)Hk(rk)

T
[
Rk(rk) +Hk(rk)Qk(rk)Hk(rk)

T
]−1

H2
k(rk−1:k). (64)

Remember however that these particular parameters should be used when the goal is to approximate the computation

of the optimal estimatorΦk in (1) in a linear and Gaussian JMSS. For more general models (for which our filtering

technique can be still used), these parameters do not guarantee the best performances, as we will see in the

Simulations section.
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IV. PERFORMANCEANALYSIS AND SIMULATIONS

In this section, we start by describing step by step our methodology and we validate our discussions: we first

generate data from a given HMC model and we estimate the hidden data with a filter based on a PMC model out of

the class described by Proposition 1 which satisfies conditions (59) and (64) when jumps are fixed. We compare the

performance of this approximation with the optimal KF. Next, we compare our new approximate filtering solution

for linear and Gaussian JMSS with the IMM algorithm and the PF. When simulations are involved, we generate,

for a given model,P = 200 sets of data of lengthT = 100.

A. A step by step illustration

Let us describe our methodology step by step on the popular scalar model with jumps, (p = m = 1) (see e.g.

[6][26] and references therein):

fk|k−1(xk|xk−1, rk) = N (xk; a(rk)xk−1;Q(rk)), (65)

gk(yk|xk, rk) = N (xk; b(rk)xk;R(rk)), (66)

where|a(rk)| ≤ 1 and{rk}k≥0 is a given MC with transition probabilitiesp1(rk|rk−1). First, we omit the jumps

and we consider the underlying model described by the two following pdfs:

fk|k−1(xk|xk−1) = N (xk; axk−1;Q), (67)

gk(yk|xk) = N (yk; bxk;R), (68)

where|a| ≤ 1. Next, remember that we need to deduce the associated class of linear and Gaussian PMC models

which satisfy the same physical properties (67)-(68). Theyare described by two parametersF 2
k = c andH2

k = d,

which gives a class of PMC models described by the following transition according to Proposition 1:

p2,θ(zk|zk−1) = N
(
zk;




a− bc c

ab− db d



 zk−1;




Q− c2R bQ− cdR

bQ− cdR R(1− d2) + b2Q




)
. (69)

According to (59), we look for parameterd such thatab− db = 0, so from now on we setd = a.

Next, if the goal is to approximate the HMC model deduced from(67)-(68), the parameterc which minimizes

the KLD betweenp2,θ
k|k−1(zk|zk−1) and p1

k|k−1(zk|zk−1), is c = abQ
R+b2Q

, from (64); so among all PMC models

(69), we choose

p2,θ
k|k−1(zk|zk−1) = N

(
zk;




a− ab2Q

R+b2Q
abQ

R+b2Q

0 a



 zk−1;




Q− a2b2Q2R

(R+b2Q)2 bQ− a2bQR
R+b2Q

bQ− a2bQR
R+b2Q

R(1− a2) + b2Q




)
. (70)

It is easy to check that the covariance matrix ofp2,θ
k|k−1(zk|zk−1) is positive definite, whatever−1 ≤ a ≤ 1, b,

Q andR. It is now interesting to compare the KLD betweenp2,θ
k|k−1 and p1

k|k−1 which reduces to that between

p2,θ(yk|yk−1) and p1(yk|xk−1) since we have chosen the optimal parameterc (see the proof of Proposition 8).
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Remember that in HMC (67)-(68),p1(yk|xk−1) = N (yk; abxk−1; b
2Q + R) and in PMC (70),p2,θ(yk|yk−1) =

N (yk; ayk−1;R(1−a2)+b2Q); using classical results on the KLD between two Gaussians (see e.g. [27]), we have

DKL(p
2,θ(yk|yk−1), p

1(yk|xk−1)) = 0.5×

[

−
a2R

R+ b2Q
+
a2(yk−1 − bxk−1)

2

R+ b2Q
−ln(

R+ b2Q− a2R

R+ b2Q
)

]

, (71)

which depends on r.vyk−1 andxk−1 via (yk−1 − bxk−1)
2. However, in such modelsE((yk−1 − bxk−1)

2) = R, so

E(DKL(p
2,θ(yk|yk−1), p

1(yk|xk−1))) = −0.5ln(1−
a2(R/Q)

R/Q+ b2
). (72)

It is an increasing function of ratioR/Q, so whenR/Q is small, i.e. the process noise is large compared to the

observation one, then PMC model (70) is close to the originalHMC model deduced from (67)-(68), so estimating

the hidden data from (70) (although they follow (67)-(68)) should not have a serious impact.

We generate data from the HMC model deduced from (67)-(68) where we seta = b = R = 1. We compute a

KF for PMC [21] based on model (70) and the KF for classical model (67)-(68), which of course is optimal for

this model in the sense that is minimizes the MSE. We notex̂k,p,1 (resp.x̂k,p,2) the estimator based on the original

HMC model (resp.based on the PMC model) for thep-th simulation at timek. For each estimate, we compute the

averaged MSE over time:

J i =
1

T

T∑

k=1

[

1

P

P∑

p=1

(x̂k,p,i − xk,p)
2

]

(73)

wherexk,p is the true state for thep-th realization at timek. We also compute the mean of the KLD (72) between

p1k|k−1 and p2,θ
k|k−1. In Figure 1, we display the KLD betweenp1k|k−1 and p2,θ

k|k−1 and the relative averaged MSE

(RMSE) (J 1 − J 2)/J 2 againstQ. As expected, the RMSE decreases whenDKL(p
2,θ
k|k−1, p

1
k|k−1) decreases, i.e.

whenQ increases. Particularly interesting, values of RMSE are below 0.10 whenQ ≥ 4 and for high values of

Q (Q = 10), they are close to0.03. It means that approximating the original HMC model with a PMC one of

Proposition 1 in whichH2
k andF 2

k respectively satisfy (59) and (64) does not differ to the optimal method as long

asQ is not too small.

B. Performance Analysis on jumps Scenario

We now consider two scenarios with jumps. We compute our solution of paragraph III-B (̂xk,p,1), a PF based on

the SIR algorithm with the importance distributionp1(rk|rk−1) (it only requires one KF per particle) withN = 100

particles [1] (̂xk,p,2), an IMM algorithm [9] (̂xk,p,3) and a KF (̂xk,p,Kalm) which uses the true jumps and which

is our benchmark solution. We compute the MSE between the estimates and the estimator based on the KF which

uses the true jumps:

MSEi(k) =
1

P

P∑

p=1

(x̂k,p,i − x̂k,p,Kalm)
2. (74)

November 2, 2018 DRAFT



14

0 5 10 153 71 2 4 6 8 99 120.5
0

0.5

1

1.5

2

2.5

Process Noise Q

K
LD

 a
nd

 r
el

at
iv

e 
av

er
ag

ed
 M

S
E

 

 

RMSE

D
KL

(p2
k|k−1

,p1
k|k−1

)

Fig. 1. RMSE between a classical KF based on (65)-(66) and a PMC-KF based on (70) (blue circle) and KLD between transitionsof the

HMC model based on (65)-(66) and model (70) (black dotted line). WhenQ increases, both RMSE and DKL decrease; the estimates based on

model (70) are very close to the optimal ones.

1) Scalar model with jumps:We go on with model (65)-(66) whererk ∈ {1, 2, 3}, ak(rk) = [1,−0.9, 0.9],

b = 1, Q(rk) = [3, 10, 10] andR = 1. The transition probabilities are defined byp1(rk|rk−1) = 0.8 if rk = rk−1

and p1(rk|rk−1) = 0.1 if rk 6= rk−1. Data are generated from the JMSS (2). A typical scenario is displayed in

Fig. 2(a). Remember from the previous paragraph that our newapproximation filtering technique is based on the

conditional linear and Gaussian PMC model

p2,θ
k|k−1(zk|zk−1, rk−1:k)=N (zk;Bk(rk−1:k)zk−1;Σ(rk−1:k)), (75)

Bk(rk−1:k)=




a(rk)−

a(rk)b
2Q(rk)

R+b2Q(rk)
a(rk)bQ(rk)

R(rk)+b2Q(rk)

0 a(rk)



 , (76)

Σ(rk−1:k) =




Q(rk)−

a(rk)
2b2Q(rk)

2R

(R+b2Q(rk))2
bQ(rk)−

a(rk)
2bQ(rk)R

R+b2Q(rk)

bQ(rk)−
a(rk)

2bQ(rk)R
R+b2Q(rk)

R(1− a(rk)
2) + b2Q(rk)



. (77)

MSEs of the different estimates are displayed in Fig 2(b) andare normalized w.r.t. that of our approximated solution.

Particularly interesting, we see that our algorithm outperforms the IMM estimate and slightly improves (in mean)

the PF. However, remember that our technique is not based on Monte Carlo samples and is more interesting from

a computational point of view. In order to illustrate this difference, we have computed the ratio of the averaged

computational time used by the PF and our solution which is approximately equal to15: our solution is thus much

faster than SMC methods.

Remark 2 If we increase the number of particles, the performances of the PF are improved and are identical to

those of our exact filtering technique. Thus, it may be interesting to average the efficiencyEff(k) = 1
MSE(k)E(C(k))

over time whereC(k) is the CPU time to compute the estimate. The efficiency of our algorithm does not depend

on the number of particles and is8.5× 104 while for the PF the efficiency decreases when the number of particles
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Fig. 2. (a) - Example of scenario of model (65)-(66) and restoration with a conditional PMC model of the Proposition 5 which satisfies (59) and

(64). True states (red dotted line), estimates based on our new approximation (black circles) and observations (blue crosses). (b) - Normalized

MSE of our algorithm (black line), PF (red circles) and IMM (blue squares) estimates.

increases and varies between5× 103 for 100 particles and0.1× 103 for 1000 particles.

2) Target Tracking:We now consider a target tracking scenario:

fk|k−1(xk|xk−1, rk) = N (xk;Fk(rk)xk−1;Qk(rk)), (78)

gk(yk|xk, rk) = N (xk;Hkxk;Rk), (79)

where

Fk(r) =











1 sin(ωrT )
ωr

0 − 1−cos(ωrT )
ωr

0 cos(ωrT ) 0 − sin(ωrT )

0 1−cos(ωrT )
ωr

1 sin(ωrT )
ωr

0 sin(ωrT ) 0 cos(ωrT )











,

Qk(r) = σ2
v(r)











T 3

3
T 2

2 0 0

T 2

2 T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2 T











,

Hk = I4 andRk = I4. We setT = 2, rk ∈ {1, 2, 3} represents the behavior of the target: straight, left turn and

right turn. So we setwr = [0, 6π/180,−6π/180] andσv(r) = [7, 10, 10] and the transition probabilities are defined

by p1(rk|rk−1) = 0.8 if rk = rk−1 andp1(rk|rk−1) = 0.1 if rk 6= rk−1.

a) JMSS case:we first generate the data according to a linear and Gaussian JMSS which satisfies (78)-(79).

A typical run of this manoeuvring scenario is displayed in Fig. 3(a). The parameters of our conditional linear and
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Gaussian PMC model used to apply the exact filtering technique relies on the class of models of Proposition 5

whereH2
k(rk−1:k) satisfies (59) (soH2

k(rk−1:k) = Fk(rk)) andF2
k(rk−1:k) satisfies (64). Normalized MSE are

displayed in Fig. 3(b). The solution that we have proposed outperforms the IMM estimate and presents similar

performances with the PF; however, the execution time of ouralgorithm is still fifteen times faster than that of the

PF.

We have also averaged the MSE (w.r.t. the KF) over time and we get 0.0058 for our solution,0.0059 for the PF

and0.0074 for the IMM.
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Fig. 3. (a) - Example of a manoeuvring tracking scenario; data are generated according to model (78)-(79). (b) - Normalized MSE of our

algorithm (black line), PF (red circles) and IMM (blue squares) estimates.

b) General case:in all these simulations, we have considered unfavorable cases in the sense that we have

generated data from linear and Gaussian JMSS. However, datamay follow a more general statistical model with

the same physical properties, such as model of the class described by Proposition 5. However, the classical PF and

IMM rely on the JMSS structure while our solution is valid fora large class of models sinceF2
k(rk−1:k) can be

arbitrary. Let us now generate data according to a conditional PMC model of the class described by Proposition 5

with F
2,true
k (rk−1:k) = 0.7Fk(rk) andH2,true

k (rk−1:k) = 0.9Hk(rk). We compute estimates using the same PF and

IMM algorithm that above and we compute our solution withF2
k(rk−1:k) = 0.8Fk(rk) andH2

k(rk−1:k) satisfies

(59). Remark that settingF2
k(rk−1:k) = F

2,true
k (rk−1:k) may not be optimal becauseH2

k(rk−1:k) 6= H
2,true
k (rk−1:k)

and it was actually experimented that this choice forF2
k(rk−1:k) gives better results. The benchmark solution is no

longer the KF since data no longer follow a JMSS model; our reference solution is now the KF for PMC models

[21], which uses true jumps. In Fig. IV-B2b we display a realization of the scenario. As we see, the target keeps

the physical properties of the scenario (straight, left turn and right turn) although its trajectory is not generated

from a classical linear and Gaussian JMSS model. However, inFig. 4(b) we display the normalized MSE and we

see that classical solutions are not adapted at all when we consider more statistical complex scenarios.
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Fig. 4. (a) - Example of a manoeuvring tracking scenario where data are now generated from a conditional linear and Gaussian PMC

model withF
2,true

k
(rk−1:k) = 0.7Fk(rk) andH

2,true

k
(rk−1:k) = 0.9Hk(rk). Physical properties of scenario of Fig. 3(a) are kept. (b) -

Normalized MSE of our algorithm (black line), PF (red squares) and IMM (blue stars) estimates. Classical solutions are no longer adapted for

such models while our approximation remains valid. This is because our algorithm offers the possibility to adjust parameterF2

k
(rk−1:k).

V. CONCLUSION

In this paper, we proposed a new filtering technique for dynamical models with jumps. Starting from a given set

of physical properties we derived a class of conditional linear and Gaussian PMC models which share those physical

properties, and in whichΦk can be computed exactly in a computational cost linear in thenumber of observations.

Moreover this technique can be used as an approximation of the MMSE estimate in the JMSS model. We finally

validated our approximation technique on simulations. Ourtechnique provides results which are comparable to

those given by the classical solutions, but at a lower computational cost, when the data is produced by a JMSS

model; and which are better adapted in other cases.

APPENDIX A

CONDITIONING IN RANDOM GAUSSIAN VECTORS

We recall in this section two classical results on Gaussian pdf which are used in our derivations [28].

Lemma 1 Let ζ ∈ IRp, η ∈ IRq, Q (resp.P) be ap × p (resp.q × q) positive definite matrix (other vectors and

matrices are of appropriate dimensions), then
∫

N (ζ;Fη+d;Q)N (η;m;P)dη=N (ζ;Fm+d;Q+FPFT ), (80)

Lemma 2 Let ζ ∈ IRp, η ∈ IRq, Pζ (resp.Pη) be ap× p (resp.q × q) positive definite matrix andPζ,η a p× q

matrix. Let us assume that pdf of(ζ, η) is a Gaussian,

p(ζ, η) = N (ζ, η;




mζ

mη



 ;




Pζ Pζ,η

Pζ,ηT Pη



). (81)
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Then

p(ζ, η) = N (η;mη;Pη)N (ζ; m̃ζ(η); P̃ζ), (82)

m̃ζ(η) = mζ +Pζ,η(Pη)−1(η −mη), (83)

P̃ζ = Pζ −Pζ,η(Pη)−1Pζ,ηT . (84)

APPENDIX B

PROOF OFPROPOSITIONS2 TO 4

We begin with (33). Letp2,θ(xk,yk|xk−1,yk−1) be the transition pdf of a PMC model of Proposition 1. We

have

p2,θ(xk,yk|xk−1) =

∫

p2,θ(yk−1|xk−1)
︸ ︷︷ ︸

gk−1(yk−1|xk−1)

p2,θ
k|k−1(xk,yk|yk−1,xk−1)dyk−1.

Now gk−1(yk−1|xk−1) = N (yk−1;Hk−1xk−1; Rk−1) and p2,θ
k|k−1(xk,yk|yk−1,xk−1) is a Gaussian given by

parameters (28)-(32). Using Lemma 1, we get (33). We now prove (35) by induction. So let us assume that

p2,θ(yk−1|x0:k−1) = p2,θ(yk−1|xk−1) = gk−1(yk−1|xk−1) (85)

((85) is true at timek = 1). Since(x0:k,y0:k) is a PMC, we get successively

p2,θ(xk,yk|x0:k−1)
PMC
=

∫

p2,θ
k|k−1(zk|zk−1,yk−1)p

2(yk−1|x0:k−1)dyk−1

(85)
= p2,θ(zk|xk−1)

(33)
= fk|k−1(xk|xk−1)gk(yk|xk). (86)

From (86) we get

p2,θ(xk|x0:k−1) = fk|k−1(xk|xk−1), (87)

and consequentlyp2,θ(yk|x0:k) = gk(yk|xk), which is nothing but (85) at timek, which proves (35). Now since

(85) is true (87) holds too, whence (36). It remains to prove (37). LetN stand for numerator. Since{(xk,yk)}n≥0 is

a MC, p2(yi|y0:i−1,x0:k) =
p2(y0:i,x0:k)∫
p2(y0:i,x0:k)dyi

= p2(xi:k,yi|xi−1,yi−1)p
2(x0:i−1,y0:i−1)∫

Ndyi
= p2(yi|yi−1,xi−1:k), whence

(37).

APPENDIX C

PROOF OFPROPOSITIONIII-B

The results is based on the filtering technique in [29]. We consider a conditional linear and Gaussian PMC model

which satisfies (53)-(54) and the goal is to computep2(rk|y0:k) from p2(rk−1|y0:k−1) andE(xk|y0:k, rk) from

E(xk−1|y0:k−1, rk−1). In this particular conditional PMC model,(y0:k−1, r0:k−1) is a MC [29], so

p2(yk, rk|y0:k−1, rk−1) = p2(yk, rk|yk−1, rk−1), (88)

= p2(rk|rk−1)p
2(yk|yk−1, rk−1:k) (89)
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Consequently,

p2(rk|y0:k) ∝
∑

rk−1

p2(rk−1|y0:k−1)p
2(yk, rk|yk−1, rk−1). (90)

Next,

E(xk|y0:k, rk) =
∑

rk−1

p2(rk−1|y0:k, rk)×

∫ [∫

xkp
2(xk|xk−1,y0:k, rk−1:k)dxk

]

︸ ︷︷ ︸

E(xk|xk−1,y0:k,rk−1:k)

p2(xk−1|y0:k, rk−1:k)dxk−1, (91)

Let us now compute the quantities involved in (91) From (88),we have

p2(rk−1|y0:k, rk) ∝ p(rk−1|y0:k−1)p(yk, rk|yk−1, rk−1). (92)

Because(x0:k,y0:k, r0:k) is a MC,

p2(xk|xk−1,y0:k, rk−1:k) = p2(xk|xk−1,yk−1,yk, rk−1:k), (93)

so from (54) we deduce

E(xk|xk−1,y0:k, rk−1:k) = Ck(rk−1:k)xk−1 +Dk(rk−1:k,yk−1:k) (94)

Next, in this particular conditional PMC model,

p2(xk−1|y0:k, rk−1:k) = p2(xk−1|y0:k−1, rk−1). (95)

Finally, plugging (92),(94) and (95) in (91), we get (56). The proof for the computation ofE(xkx
T
k |y0:k, rk) is

similar.

APPENDIX D

PROOF OFPROPOSITION8

Let us consider the class of conditionl linear and Gaussian PMC models of Proposition 5 which satisfy (59). We

compute the KLDDKL(p
2,θ(z0:k, r0:k), p

1(z0:k, r0:k)) which can be rewritten

DKL(p
2,θ(z0:k, r0:k), p

1(z0:k, r0:k)) =
∑

r0:k

p1(r0:k)DKL(p
2,θ(z0:k|r0:k), p

1(z0:k|r0:k)) (96)

becausep1(r0:k) = p2,θ(r0:k) (see Proposition 6).p1(r0:k) does not depend on{F2
k(rk−1:k)}k≥1, so we focus on

DKL(p
2,θ(z0:k|r0:k), p1(z0:k|r0:k)). Using Markovian properties, we have

DKL(p
2,θ(z0:k|r0:k), p

1(z0:k|r0:k))=
k∑

j=1

∫

p2,θ(zj−1|r0:j−1)×

DKL(p
2,θ
j|j−1(zj |zj−1, rj−1:j), p

1
j|j−1(zj |zj−1, rj−1:j))dzj−1, (97)
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where, according to Propositions 5 and 6,p2,θ(zj−1|r0:j−1) = p1(zj−1|r0:j−1) and so does not depend on

F2
j(rj−1:j). So we just minimizeDKL(p2,θ

j|j−1(zj |zj−1, rj−1:j), p
1
j|j−1(zj |zj−1, rj−1:j)). We have

p2,θ(yj |yj−1, rj−1:j) = N (yj ;H
2
j(rj−1:j)yj−1;Rj(rj)−H2

j(rj−1:j)Rj−1(rj−1)H
2
j(rj−1:j)

T

+Hj(rj)Qj(rj)Hj(rj)
T ), (98)

p2,θ(xj |zj−1,yj , rj−1:j) = N (xj ;m
xj

j ;P
xj

j ), (99)

m
xj

j =(Fj(rj)−F2
j(rj−1:j)Hj−1(rj−1))xj−1+F

2
j(rj−1:j)yj−1+

+ (Σ21
j (rj−1:j))

T(Σ22
j (rj−1:j))

−1(yj−H
2
j(rj−1:j)yj−1), (100)

P
xj

j = Σ11
j (rj−1:j)− (Σ21

j (rj−1:j))
T (Σ22

j (rj−1:j))
−1Σ21

j (rj−1:j), (101)

whereΣ11
j (rj−1:j), Σ21

j (rj−1:j) andΣ22
j (rj−1:j) are defined in (48)-(50). Next, the KLD betweenp2,θ

j|j−1(zj |zj−1,

rj−1:j) andp1j|j−1(zj |zj−1, rj−1:j) writes as

DKL(p
2,θ
j|j−1, p

1
j|j−1) =

∫

p2,θ
j|j−1(zj |zj−1, rj−1:j) log

(
p2,θ
j|j−1(zj |zj−1, rj−1:j)

p1
j|j−1(zj |zj−1), rj−1:j

)

dzj , (102)

= DKL(p
2,θ(yj |yj−1, rj−1:j), p

1(yj |xj−1, rj)) +

∫

p2,θ(yj |yj−1, rj−1:j)×

DKL(p
2,θ(xj |zj−1,yj , rj−1:j), p

1(xj |xj−1,yj , rj−1:j))dyj (103)

and is minimum whenp2,θ(xj |zj−1,yj , rj−1:j) = p1(xj |xj−1,yj , rj) (from (98), p2,θ(yj |yj−1, rj−1:j) does not

depend onF2
j(rj−1:j)). From Proposition 6, we know that

p2,θ(xj |xj−1,yj , rj−1:j) = p1(xj |xj−1,yj , rj−1:j)

soDKL(p
2,θ
j|j−1(zj |zj−1, rj−1:j), p

1
j|j−1(zj |zj−1, rj−1:j)) is minimum whenp2(xj |zj−1,yj , rj−1:j) does not depend

on yj−1. From (100), classical calculus lead to

F2
j(rj−1:j) = Qj(rj)Hj(rj)

T
[
Rj(rj) +Hj(rj)Qj(rj)Hj(rj)

T
]−1

H2
j(rj−1:j). (104)
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