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and KTH Royal Institute of Technology

This paper discusses particle filtering in general hidden Markov
models (HMMs) and presents novel theoretical results on the long-
term stability of bootstrap-type particle filters. More specifically, we
establish that the asymptotic variance of the Monte Carlo estimates
produced by the bootstrap filter is uniformly bounded in time. On
the contrary to most previous results of this type, which in general
presuppose that the state space of the hidden state process is compact
(an assumption that is rarely satisfied in practice), our very mild
assumptions are satisfied for a large class of HMMs with possibly
noncompact state space. In addition, we derive a similar time uniform
bound on the asymptotic L

p error. Importantly, our results hold for
misspecified models; that is, we do not at all assume that the data
entering into the particle filter originate from the model governing
the dynamics of the particles or not even from an HMM.

1. Introduction. This paper deals with estimation in general hidden
Markov models (HMMs) via sequential Monte Carlo (SMC) methods (or
particle filters). More specifically, we present novel results on the numeri-
cal stability of the bootstrap particle filter that hold under very general and
easily verifiable assumptions. Before stating the results we provide some
background.

Consider an HMM (Xn, Yn)n∈N, where the Markov chain (or state se-
quence) (Xn)n∈N, taking values in some general state space (X,X ), is only
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partially observed through the sequence (Yn)n∈N of observations taking val-
ues in another general state space (Y,Y). More specifically, conditionally
on the state sequence (Xn)n∈N, the observations are assumed to be condi-
tionally independent and such that the conditional distribution of each Yn

depends on the corresponding state Xn only; see, for example, [2] and the
references therein. We denote by Q and χ the kernel and initial distribution
of (Xn)n∈N, respectively. Even though n is not necessarily a temporal index,
it will in the following be referred to as “time.”

Any kind of statistical estimation in HMMs typically involves computa-
tion of the conditional distribution of one or several hidden states given a
set of observations. Of particular interest are the filter distributions, where
the filter distribution φ̄χ〈Y n

0 〉 at time n is defined as the conditional distri-
bution of Xn given the corresponding observation history Y n

0 = (Y0, . . . , Yn)
(this will be our generic notation for vectors). The problem of computing,
recursively in n and in a single sweep of the data, the sequence of filter
distributions is referred to as optimal filtering. Of similar interest are the
predictor distributions, where the predictor distribution φχ〈Y n−1

0 〉 at time n
is defined as the conditional distribution of the state Xn given the preceding
observation history Y n−1

0 (more precise definitions of filter and predictor
distributions are given in Section 2). In this paper we focus on the compu-
tation of these distributions, which can be carried through in a recursive
fashion according to

φ̄χ〈Y n
0 〉(A) =

∫
1A(x)g〈Yn〉(x)φχ〈Y n−1

0 〉(dx)∫
g〈Yn〉(x)φχ〈Y n−1

0 〉(dx)
, A ∈X ,(1)

φχ〈Y n
0 〉(A) =

∫
Q(x,A)φ̄χ〈Y n

0 〉(dx), A ∈ X ,(2)

where g〈Yn〉 is the local likelihood of the hidden state Xn given the ob-
servation Yn. Steps (1) and (2) are typically referred to as correction and
prediction, respectively. In the correction step, the predictor φχ〈Y n−1

0 〉 is,
as the new observation Yn becomes available, weighted with the local likeli-
hood, providing the filter φ̄χ〈Y n

0 〉; in the prediction step, the filter φ̄χ〈Y n
0 〉 is

propagated through the dynamics Q of the latent Markov chain, yielding the
predictor φχ〈Y n

0 〉 at the consecutive time step. The correction and predic-
tion steps form jointly a measure-valued mapping Φ generating recursively
the predictor distribution flow according to

φχ〈yn0 〉=Φ〈Yn〉(φχ〈Y n−1
0 〉)

(we refer again to Section 2 for precise definitions).
Unless the HMM is either a linear Gaussian model or a model compris-

ing only a finite number of possible states, exact numeric computation of
the predictor distributions is in general infeasible. Thus, one is generally
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confined to using finite-dimensional approximations of these measures, and
in this paper we concentrate on the use of particle filters for this purpose.
A particle filter approximates the predictor distribution at time n by the
empirical measure φN

χ 〈Y n−1
0 〉 associated with a finite sample (ξin)

N
i=1 of par-

ticles evolving randomly and recursively in time. At each iteration of the
algorithm, the particle sample is updated through a selection step and a
mutation step, corresponding directly to correction and prediction, respec-
tively. The selection operation duplicates or eliminates particles with high
or low posterior probability, respectively, while the mutation operation dis-
seminates randomly the particles in the state space for further selection at
the next iteration. The most basic algorithm—proposed in [19] and referred
to as the bootstrap particle filter—performs selection by resampling multi-
nomially the predictive particles (ξin)

N
i=1 with probabilities proportional to

the local likelihood ωi
n = g〈Yn〉(ξin) of the particle locations; after this, the

selected particle swarm is mutated according to the dynamics Q of the la-
tent Markov chain. Here the self-normalized importance sampling estimator
φ̄N 〈Y n

0 〉 associated with the weighted particle sample (ξin, ω
i
n)

N
i=1 provides

an approximation of the filter φ̄〈Y n
0 〉. Thus, subjecting the particle sample

(ξin)
N
i=1 to selection and mutation is in the case of the bootstrap particle filter

equivalent to drawing, conditionally independently given (ξin)
N
i=1, new parti-

cles (ξin+1)
N
i=1 from the distribution Φ〈Yn〉(φN

χ 〈Y n−1
0 〉) obtained by plugging

the empirical measure φN
χ 〈Y n−1

0 〉 into the filter recursion, which we denote

(ξin+1)
N
i=1

i.i.d.∼ Φ〈Yn〉(φN
χ 〈Y n−1

0 〉)⊗N .(3)

Since the seminal paper [19], particle filters have been successfully ap-
plied to nonlinear filtering problems in many different fields; we refer to
the collection [17] for an introduction to particle filtering in general and for
miscellaneous examples of real-life applications.

The theory of particle filtering is an active field and there is a number
of available convergence results concerning, for example, Lp error bounds
and weak convergence; see the monographs [1, 5] and the references therein.
Most of these results establish the convergence, as the number of particles N
tends to infinity, of the particle filter for a fixed time step n ∈N. For infinite
time horizons, that is, when n tends to infinity, convergence is less obvious.
Indeed, each recursive update (3) of the particles (ξin)

N
i=1 is based on the

implicit assumption that the empirical measure φN
χ 〈Y n−1

0 〉 associated with

the ancestor sample approximates perfectly well the predictor φχ〈Y n−1
0 〉 at

the previous time step; however, since the ancestor sample is marred by an
error itself, one may expect that the errors induced at the different updating
steps accumulate and, consequently, that the total error propagated through
the algorithm increases with n. This would make the algorithm useless in
practice. Fortunately, it has been observed empirically by several authors
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(see, e.g., [34], Section 1.1) that the convergence of particle filters appears
to be uniform in time also for very general HMMs. Nevertheless, even though
long-term stability is essential for the applicability of particle filters, most
existing time uniform convergence results are obtained under assumptions
that are generally not met in practice. The aim of the present paper is thus
to establish the infinite time-horizon stability under mild and easy verifiable
assumptions, satisfied by most models for which the particle filter has been
found to be useful.

1.1. Previous work. The first time uniform convergence result for boot-
strap-type particle filters was obtained by Del Moral and Guionnet [7] (see
also [5] for refinements) using contraction properties of the mapping Φ. We
recall in some detail this technique. By writing

φN
χ 〈Y n

0 〉 − φχ〈Y n
0 〉= φN

χ 〈Y n
0 〉 −Φ〈Yn〉(φN

χ 〈Y n−1
0 〉)

︸ ︷︷ ︸
sampling error

+Φ〈Yn〉(φN
χ 〈Y n−1

0 〉)−Φ〈Yn〉(φχ〈Y n−1
0 〉)

︸ ︷︷ ︸
initialization error

one may decompose the error φN
χ 〈Y n

0 〉 − φχ〈Y n
0 〉 into a first error (the sam-

pling error) introduced by replacing Φ〈Yn〉(φN
χ 〈Y n−1

0 〉) by its empirical esti-

mate φN
χ 〈Y n

0 〉 and a second error (the initialization error) originating from

the discrepancy between empirical measure φN
χ 〈Y n−1

0 〉 associated with the

ancestor particles and the true predictor φχ〈Y n−1
0 〉. The sampling error is

easy to control. One may, for example, use the Marcinkiewicz–Zygmund
inequality to bound the Lp error by cN−1/2, where c ∈ R

∗
+ is a universal

constant. Exponential deviation inequalities may also be obtained. For the
initialization error, we may expect that the mapping Φ〈Yn〉 is in some sense
contracting and thus downscales the discrepancy between φN

χ 〈Y n−1
0 〉 and

φχ〈Y n−1
0 〉. This is the point where the exponential forgetting of the predic-

tor distribution becomes crucial. Assume, for instance, that there exists a
constant ρ ∈ ]0,1[ such that ‖Φ〈Y n

m〉(µ) − Φ〈Y n
m〉(ν)‖ ≤ ρn−m+1‖µ − ν‖ for

any integers 0 ≤m≤ n and any probability measures µ and ν, where ‖ · ‖
is some suitable norm on the space of probability measures and Φ〈Y n

m〉 ,
Φ〈Yn〉 ◦Φ〈Yn−1〉 ◦ · · · ◦Φ〈Ym〉. Since Φ〈Y n

m〉(µ) is the predictor distribution
φµ〈Y n

m〉 obtained when the hidden chain is initialized with the distribution
µ at time m, this means that the predictor distribution forgets the initial
distribution geometrically fast. In addition, the forgetting rate ρ is uniform
with respect to the observations. The uniformity with respect to the obser-
vations is of course the main reason why the assumptions on the model are
so stringent.
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Now, decomposing similarly also the initialization error and proceeding
recursively yields the telescoping sum

φN
χ 〈Y n

0 〉 − φχ〈Y n
0 〉

= φN
χ 〈Y n

0 〉 −Φ〈Yn〉(φN
χ 〈Y n−1

0 〉)
(4)

+
n−1∑

k=1

(Φ〈Y n
k+1〉(φN

χ 〈Y k
0 〉)−Φ〈Y n

k+1〉 ◦Φ〈Yk〉(φN
χ 〈Y k−1

0 〉))

+Φ〈Y n
1 〉(φN

χ 〈Y0〉)−Φ〈Y n
1 〉(φχ〈Y0〉).

Now each term of the sum above can be viewed as a downscaling (by a factor
ρn−k) of the sampling error between φN

χ 〈Y k
0 〉 and Φ〈Yk〉(φN

χ 〈Y k−1
0 〉) through

the contraction of Φ〈Y n
k+1〉. Denoting by δn the Lp error of φN

χ 〈Y n
0 〉 and as-

suming that the initial sample is obtained through standard importance sam-
pling, implying that δ0 ≤ cN−1/2, provides, using the contraction of Φ〈Y n

k+1〉,
the uniform Lp error bound δn ≤ cN−1/2

∑n
k=0 ρ

n−k ≤ cN−1/2(1− ρ)−1.
Even though this result is often used as a general guideline on particle fil-

ter stability, it relies nevertheless heavily on the assumption that the kernel
Q of hidden Markov chain satisfies the following strong mixing condition,
which is even more stringent than the already very strong one-step global
Doeblin condition: there exist constants ǫ+ > ǫ− > 0 and a probability mea-
sure ν on (X,X ) such that for all x ∈ X and A ∈X ,

ǫ−ν(A)≤Q(x,A)≤ ǫ+ν(A).(5)

This assumption, which in particular implies that the Markov chain is uni-
formly geometrically ergodic, restricts the applicability of the stability result
in question to models where the state space X is small. For Markov chains on
separable metric spaces, provided that the kernel is strongly Feller, condi-
tion (5) typically requires the state space to be compact. Some refinements
have been obtained in, for example, [2, 4, 5, 16, 20, 25–28, 33].

The long-term stability of particle filters is also related to the bound-
edness of the asymptotic variance. The first central limit theorem (CLT)
for bootstrap-type particle filters was derived by Del Moral and Guionnet
[6]. More specifically, it was shown that the normalized Monte Carlo er-

ror
√
N(φN

χ 〈Y n−1
0 〉h− φχ〈Y n−1

0 〉h) tends weakly, for a fixed n ∈ N
∗ and as

the particle population size N tends to infinity, to a zero mean normal-
distributed variable with variance σ2

χ〈Y n−1
0 〉(h). Here we have used the no-

tation µh ,
∫
h(x)µ(dx) to denote expectations. The original proof of the

CLT was later simplified and extended to more general particle filtering
algorithms in [3, 14, 16, 21, 24]; in Section 2 we recall in detail the ver-
sion obtained in [14] and provide an explicit expression of the asymptotic
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variance σ2
χ〈Y n−1

0 〉(h). As shown first by [7], Theorem 3.1, it is possible, us-
ing the strong mixing assumption described above, to bound uniformly also
the asymptotic variance σ2

χ〈Y n−1
0 〉(h) by similar forgetting-based arguments.

Here a key ingredient is that the particles (ξin)
N
i=1 obtained at the different

time steps become, asymptotically as N tends to infinity, statistically inde-

pendent. Consequently, the total asymptotic variance of
√
N(φN

χ 〈Y n−1
0 〉h−

φχ〈Y n−1
0 〉h) is obtained by simply summing up the asymptotic variances

of the error terms
√
N(Φ〈Y n

k+1〉(φN
χ 〈Y k

0 〉)h−Φ〈Y n
k+1〉 ◦Φ〈Yk〉(φN

χ 〈Y k−1
0 〉)h)

in the decomposition (4). Finally, applying again the contraction of the
composed mapping Φ〈Y n

m〉 yields a uniform bound on the total asymp-
totic variance in accordance with the calculation above. In [12], a similar
stability result was obtained for a particle-based version of the forward-
filtering backward-simulation algorithm (proposed in [18]); nevertheless, also
the analysis of this work relies completely on the assumption of strong mix-
ing of the latent Markov chain, which, as we already pointed out, does not
hold for most models used in practice.

A first breakthrough toward stability results for noncompact state spaces
was made in [34]. This work establishes, again for bootstrap-type particle
filters, a uniform time average convergence result of form

lim
N→∞

sup
n∈N

E

(
n−1

n∑

k=1

‖φ̄N
χ 〈Y k

0 〉 − φ̄χ〈Y k
0 〉‖BL

)
= 0,(6)

where ‖·‖BL denotes the dual bounded-Lipschitz norm. This result, obtained
as a special case of a general approximation theorem derived in the same
paper, was established under very weak assumptions on the local likelihood
(supposed to be bounded and continuous) and the Markov kernel (supposed
to be Feller). These assumptions are, together with the basic assumption that
the hidden Markov chain is positive Harris and aperiodic, satisfied for a large
class of HMMs with possibly noncompact state spaces. Nevertheless, the
proof is heavily based on the assumption that the particles evolve according
to exactly the same model dynamics as the observations entered into the
algorithm, in other words, that the model is perfectly specified. This is of
course never true in practice. In addition, the convergence result (6) does
not, in contrast to Lp bounds and CLTs, provide a rate of convergence of
the algorithm.

1.2. Approach of this paper. In this paper we return to more standard
convergence modes and reconsider the asymptotic variance and Lp error of
bootstrap particle filters. As noticed by Johansen and Doucet [21], restrict-
ing the analysis of bootstrap-type particle filters does not imply a significant
loss of generality, as the CLT for more general auxiliary particle filters [29]
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can be straightforwardly obtained by applying the bootstrap filter CLT to a
somewhat modified HMM incorporating the so-called adjustment multiplier
weights of the auxiliary particle filter into the model dynamics. Our aim
is to establish that the asymptotic variance and Lp error are stochastically
bounded in the noncompact case. Recall that a sequence (µn)n∈N of prob-
ability measures on (R,B(R)) is tight if for all ǫ > 0 there exists a compact
interval I= [−a, a]⊂ R such that µn(I

c)≤ ǫ for all n. In addition, we call a
sequence (Zn)n∈N of random variables, with Zn ∼ µn, tight if the sequence
(µn)n∈N of marginal distributions is tight. In this paper, we show that the

sequence (σ2
χ〈Y n−1

0 〉(h))n∈N∗ of asymptotic variances is tight for any station-
ary and ergodic sequence (Yn)n∈N of observations. In particular, we do not
at all assume that the observations originate from the model governing the
dynamics of the particle filter or not even from an HMM.

Our proofs are based on novel coupling techniques developed in [15] (and
going back to [23] and [11]) with the purpose of establishing the convergence
of the relative entropy for misspecified HMMs. In our analysis, the strong
mixing assumption (5) is replaced by the considerably weaker r-local Doeblin
condition (19). This assumption is, for instance, trivially satisfied (for r = 1)
if there exist a measurable set C ⊆ X, a probability measure λC on (X,X )
such that λC(C) = 1 and positive constants 0 < ǫ−

C
< ǫ+

C
such that for all

x ∈ X and all A ∈X ,
ǫ−
C
λC(A)≤Q(x,A∩ C)≤ ǫ+

C
λC(A),(7)

a condition that is easily verified for many HMMs with noncompact state
space [we emphasize, however, that assumption (19) is even weaker than (7)].

Remark 1. Finally, we remark that Del Moral and Guionnet [7] stud-
ied the stability of SMC methods within the framework of a general nor-
malized Feynman–Kac prediction model consisting of a sequence (µn)n∈N of
measures-defined recursively on a sequence (En,En)n∈N of measurable spaces
by

µn+1(A) =

∫
Gn(x)Kn(x,A)µn(dx)∫

Gn(x)µn(dx)
, A ∈ En+1,

where Gn is a positive potential function on En, and Kn is a Markov tran-
sition kernel from (En,En) to (En+1,En+1); see also [5], Section 2.3. Condi-
tionally on the observations (Yn)n∈N, the flow of predictor distributions can
obviously, by (1)–(2), be formulated as a normalized Feynman–Kac predic-
tion model by letting (En,En) ≡ (X,X ), µn ≡ φχ〈Y n−1

0 〉, Gn ≡ g〈Yn〉, and
Kn ≡ Q, n ∈ N. Imposing, as in [7], the assumption that the transition
kernels (Kn)n∈N satisfy jointly the global Doeblin condition (5) provides a
mixing rate ρ that is uniform in the observations, and any stability result
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obtained for fixed observations holds thus automatically true also when the
observations are allowed to vary randomly.

Similarly, we could in the present paper have taken directly the recur-
sion (1)–(2) as a starting point, by suppressing its connection with HMMs
and describing the same as a normalized Feynman–Kac prediction model
indexed by a stationary and ergodic sequence (Yn)n∈N of random parame-
ters. However, as the results obtained in [15], which are fundamental in our
analysis, describes the convergence of the normalized log-likelihood function
for general HMMs, a quantity whose interpretation is not equally clear in
the context of Feynman–Kac models, we have chosen to express our results
in the language of HMMs as well.

To sum up, the contribution of the present paper is twofold, since:

• we present time uniform bounds providing also the rate of convergence in
N of the particle filter for HMMs with possibly noncompact state space;

• we establish long-term stability of the particle filter also in the case of mis-
specification, that is, when the stationary law of the observations entering
the particle filter differs from that of the HMM governing the dynamics
of the particles (ξin)

N
i=1.

1.3. Outline of the paper. The paper is organized as follows. Section 2
provides the main notation and definitions. It also introduces the concepts
of HMMs and bootstrap particle filters. In Section 3 our main results are
stated together with the main layouts of the proofs. Section 4 treats some
examples, and Section 5 and Section 5.2 provide the full details of our proofs.

2. Preliminaries.

2.1. Notation. We preface the introduction of HMMs with some nota-
tion. Let (X,X ) be a measurable space, where X is a countably generated σ-
field. Denote by F(X ) [resp., F+(X )] the space of bounded (resp., bounded
and nonnegative) X/B(R)-measurable functions on X equipped with the
supremum norm ‖f‖∞ , supx∈X |f(x)|. In addition, denote by P(X ) the set
of probability measures on (X,X ). Let K :X × X → R+ be a finite kernel
on (X,X ), that is, for each x ∈ X, the mapping K(x, ·) :X ∋ A 7→K(x,A) is
a finite measure on X , and for each A ∈ X , the function K(·,A) :X ∋ x 7→
K(x,A) is X/B([0,1])-measurable. If K(x, ·) is a probability measure on
(X,X ) for all x ∈ X, then the kernel K is said to be Markov. A kernel in-
duces two integral operators, the first acting on the spaceM(X ) of σ-finite
measures on (X,X ) and the other on F(X ). More specifically, for µ ∈M(X )
and f ∈ F(X ), we define the measure

µK :X ∋ A 7→
∫

K(x,A)µ(dx)
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and the function

Kf :X ∋ x 7→
∫

f(x′)K(x,dx′).

Moreover, the composition (or product) of two kernels K and M on (X,X )
is defined as

KM :X×X ∋ (x,A) 7→
∫

M(x′,A)K(x,dx′).

2.2. Hidden Markov models. Let (X,X ) and (Y,Y) be two measurable
spaces. We specify the HMM as follows. Let Q :X×X → [0,1] and G :X×
Y → [0,1] be given Markov kernels, and let χ be a given initial distribution
on (X,X ). In this setting, define the Markov kernel

T((x, y),A),

∫ ∫
1A(x

′, y′)Q(x,dx′)G(x′,dy′),

(x, y) ∈ X× Y,A ∈X ⊗Y,
on the product space (X × Y,X ⊗ Y). Let (Xn, Yn)n∈N be the canonical
Markov chain induced by T and the initial distribution X ⊗ Y ∋ A 7→∫

1A(x, y)χ(dx)G(x,dy). The bivariate process (Xn, Yn)n∈N is what we refer
to as the HMM. We shall denote by Pχ and Eχ the probability measure
and corresponding expectation associated with the HMM on the canonical
space ((X× Y)N, (X ⊗ Y)⊗N). We assume that the observation kernel G is
nondegenerated in the sense that there exist a σ-finite measure ν on (Y,Y)
and a measurable function g :X×Y→ ]0,∞[ such that

G(x,A) =

∫
1A(y)g(x, y)ν(dy), x ∈ X,A ∈ Y.

For a given observation y ∈ Y, we let

g〈y〉 :X ∋ x 7→ g(x, y)

denote the local likelihood function of the state given the corresponding
observation y.

When operating on HMMs we are in general interested in computing
expectations of type Eχ(h(X

ℓ
k)|Y m

0 ) for integers (k, ℓ,m) ∈ N
3 with k ≤ ℓ

and functions h ∈ F(Xℓ−k+1). Of particular interest are quantities of form
Eχ(h(Xn)|Y n−1

0 ) or Eχ(h(Xn)|Y n
0 ), and the term optimal filtering refers to

problem of computing, recursively in n, such conditional distributions and
expectations as new data becomes available. For any record ymk ∈ Ym−k+1

of observations, let L〈ymk 〉 be the unnormalized kernel on (X,X ) defined by

L〈ymk 〉(xk,A),
∫
· · ·
∫

1A(xm+1)
m∏

ℓ=k

g〈yℓ〉(xℓ)Q(xℓ,dxℓ+1),

(8)
xk ∈ X,A ∈ X ,
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with the convention

L〈ymk 〉(x,A), δx(A) for k >m(9)

(where δx denotes the Dirac mass at point x). Note that the function yn−1
0 7→

χL〈yn−1
0 〉1X is exactly the density of the observations Y n−1

0 (i.e., the likeli-
hood function) with respect to ν⊗n. Also note that for any ℓ ∈ {k, . . . ,m−1},

L〈ymk 〉=L〈yℓk〉L〈ymℓ+1〉.(10)

Let φχ〈ymk 〉 be the probability measure defined by

φχ〈ymk 〉(A),
χL〈ymk 〉1A

χL〈ymk 〉1X

, A ∈X .(11)

Note that this implies that φχ〈ymk 〉= χ when k >m. Using the notation, it
can be shown (see, e.g., [2], Proposition 3.1.4) that for any h ∈ F(X ),

Eχ(h(Xn)|Y n−1
0 ) =

∫
h(x)φχ〈Y n−1

0 〉(dx),

that is, φχ〈Y n−1
0 〉 is the predictor of Xn given the observations Y n−1

0 . From
definition (11) one immediately obtains the recursion

φχ〈yn0 〉(A) =
φχ〈yn−1

0 〉L〈yn〉1A

φχ〈yn−1
0 〉L〈yn〉1X

=

∫
g〈yn〉(x)Q(x,A)φχ〈yn−1

0 〉(dx)∫
g〈yn〉(x)φχ〈yn−1

0 〉(dx)
, A ∈ X ,

which can be expressed in condensed form as

φχ〈yn0 〉=Φ〈yn〉(φχ〈yn−1
0 〉)(12)

with Φ〈yn〉 being the measure-valued transformation

Φ〈yn〉 :P(X ) ∋ µ 7→Ψ〈yn〉(µ)Q
and Ψ〈yn〉 transforms a measure µ ∈ P(X ) into the measure

Ψ〈yn〉(µ) :X ∋ A 7→
∫

1A(x)g〈yn〉(x)µ(dx)∫
g〈yn〉(x)µ(dx)

in P(X ). By introducing the filter distributions

φ̄χ〈yn0 〉,Ψ〈yn〉(φχ〈yn−1
0 〉),

satisfying, for all h ∈ F(X ),

Eχ(h(Xn)|Y n
0 ) =

∫
h(x)φχ〈Y n

0 〉(dx)

(see again [2], Proposition 3.1.4), we may express one iteration of the filter
recursion in terms of the two operations

φχ〈yn−1
0 〉

Ψ〈yn〉
−−−−→
Updating

φ̄χ〈yn0 〉
Q

−−−−−→
Prediction

φχ〈yn0 〉.
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As mentioned in the Introduction, it is in general infeasible to obtain
closed-form solutions to the recursion (12). In the following section we dis-
cuss how approximate solutions to (12) can be obtained using particle filters,
with focus set on the bootstrap particle filter proposed in [19].

2.3. The bootstrap particle filter. In the following we assume that all
random variables are defined on a common probability space (Ω,A,P). The
bootstrap particle filter updates sequentially a set of weighted simulations in
order to approximate online the flow of predictor and filter distributions. In
order to describe precisely how this is done for a given sequence (yn)n∈N of
observations, we proceed inductively and assume that we are given a sample
of X-valued random draws (ξin)

N
i=1 (the particles) such that the empirical

measure

φN
χ 〈yn−1

0 〉, 1

N

N∑

i=1

δξin

associated with these draws targets the predictor φχ〈yn−1
0 〉 in the sense that

φN
χ 〈yn−1

0 〉h=
∑N

i=1 h(ξ
i
n)/N estimates φχ〈yn−1

0 〉h for any h ∈F(X ). In order

to form a new particle sample (ξin+1)
N
i=1 approximating the predictor φχ〈yn0 〉

at the subsequent time step, we replace, in (12), the true predictor φχ〈yn−1
0 〉

by the particle estimate φN
χ 〈yn−1

0 〉, and pass the latter through the updat-
ing and prediction steps. This yields, after updating, the self-normalized
approximation

φ̄N
χ 〈yn0 〉,Ψ〈yn〉(φN

χ 〈yn−1
0 〉) =

N∑

i=1

ωi
n

ΩN
n

δξin(13)

of the filter φ̄χ〈yn0 〉, where we have introduced the importance weights ωi
n ,

g〈yn〉(ξin), i ∈ {1,2, . . . ,N} and ΩN
n ,

∑N
i=1ω

i
n. Moreover, by propagating

filter approximation (13) through prediction step one obtains the approxi-
mation

N∑

i=1

ωi
n

ΩN
n

Q(ξin, ·)(14)

of the predictor φχ〈yn0 〉. Finally, the sample (ξin+1)
N
i=1 is generated by sim-

ulating N conditionally independent draws from the mixture in (14) using
the following algorithm:

set ΩN
n ← 0

for i= 1→N do

set ωi
n← g〈yn〉(ξin)
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set ΩN
n ←ΩN

n + ωi
n

end for

for i= 1→N do

draw Iin ∼ (ωℓ
n/Ω

N
n )Nℓ=1

draw ξin+1 ∼Q(ξ
Iin
n , ·)

end for

After this, the empirical measure φN
χ 〈yn0 〉 =

∑N
i=1 δξin+1

/N is returned as

an approximation of φχ〈yn0 〉. In the scheme above, the operation ∼ means
implicitly that all draws (for different i’s) are conditionally independent.
Moreover, the operation Iin ∼ (ωℓ

n/Ω
N
n )Nℓ=1 means that each index Iin is sim-

ulated according to the discrete probability distribution generated by the
normalized importance weights (ωℓ

n/Ω
N
n )Nℓ=1. The procedure described above

is repeated recursively in order to produce particle approximations of the
predictor and filter distributions at all time steps. The algorithm is typically
initialized by drawing N i.i.d. particles (ξi0)

N
i=1 from the initial distribution

χ and letting
∑N

i=1 δξi0
/N be an estimate of χ.

As mentioned in the Introduction, the asymptotic properties, as the num-
ber N of particles tends to infinity, of the bootstrap particle filter output
are well investigated. When it concerns weak convergence, Del Moral and
Guionnet [6] established the following CLT. Define for h ∈ F(X ),

σ2
χ〈yn−1

0 〉(h),
n∑

k=0

φχ〈yk−1
0 〉

(
L〈yn−1

k 〉h− φχ〈yn−1
0 〉h×L〈yn−1

k 〉1X

φχ〈yk−1
0 〉L〈yn−1

k 〉1X

)2

.(15)

Theorem 2 [6]. For all h ∈F(X ) and all yn−1
0 ∈ Yn such that ‖g〈yℓ〉‖∞ <

∞ for all yℓ, it holds, as N →∞,

√
N(φN

χ 〈yn−1
0 〉h− φχ〈yn−1

0 〉h) D−→ σχ〈yn−1
0 〉(h)Z,(16)

where σχ〈yn−1
0 〉(h) is defined in (15), and Z is a standard normal-distributed

random variable.

The next corollary states the corresponding CLT for the particle filter.
Also this result is standard and is an immediate consequence of Theorem 2,
the fact that ΩN

n /N converges, for all yn0 ∈ Yn+1 and as N tends to infinity,
in probability to φχ〈yn−1

0 〉g〈yn〉 (see, e.g., [14], Theorem 10), and Slutsky’s
lemma. Let again σ2

χ be given by (15), and define for yn0 ∈ Yn+1 and h ∈
F(X ),

σ̄2
χ〈yn0 〉(h),

σ2
χ〈yn−1

0 〉(g〈yn〉{h− φ̄χ〈yn0 〉h})
(φχ〈yn−1

0 〉g〈yn〉)2
.(17)
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Corollary 3. For all h ∈ F(X ) and yn0 ∈ Yn+1 such that ‖g〈yℓ〉‖∞ <
∞ for all yℓ it holds, as N →∞,

√
N(φ̄N

χ 〈yn0 〉h− φ̄χ〈yn0 〉h)
D−→ σ̄χ〈yn0 〉(h)Z,(18)

where σ̄χ〈yn0 〉(h) is defined in (17) and Z is a standard normal-distributed
random variable.

When the observations (Yn)n∈N entering the particle filter are random,
the sequences (σ2

χ〈Y n−1
0 〉(h))n∈N and (σ̄2

χ〈Y n
0 〉(h))n∈N of asymptotic vari-

ances are (FY
n )n∈N-adapted stochastic processes, where (FY

n )n∈N is the nat-
ural filtration of the observation process. The aim of the next section is to
establish that these sequences are tight. Importantly, we assume in the fol-
lowing that the observations (Yn)n∈N entering the particle filter algorithm is
an arbitrary P-stationary sequence taking values in Y. The stationary pro-
cess (Yn)n∈N can be embedded into a stationary process (Yn)n∈Z with doubly
infinite time. In particular, we do not at all assume that the observations
originate from the model governing the dynamics of the particles; indeed,
in the framework we consider, we do not even assume that the observations
originate from an HMM.

3. Main results and assumptions. Before listing our main assumptions,
we recall the definition of a r-local Doeblin set.

Definition 4. Let r ∈ N
∗. A set C ∈ X is r-local Doeblin with respect

to {Q, g} if there exist positive functions ǫ−
C
:Yr→ R

+ and ǫ+
C
:Yr→ R

+, a
family {µC〈z〉; z ∈ Yr} of probability measures, and a family {ϕC〈z〉; z ∈ Yr}
of positive functions such that for all z ∈ Yr, µC〈z〉(C) = 1 and for all A ∈ X
and x ∈ C,

ǫ−
C
〈z〉ϕC〈z〉(x)µC〈z〉(A)≤ L〈z〉(x,A ∩ C)

(19)
≤ ǫ+

C
〈z〉ϕC〈z〉(x)µC〈z〉(A).

(A1) The process (Yn)n∈Z is strictly stationary and ergodic. Moreover,
there exist an integer r ∈ N

∗ and a set K ∈ Y⊗r such that the following
holds:

(i) The process (Zn)n∈Z, where Zn , Y
(n+1)r−1
nr , is ergodic and such that

P(Z0 ∈K)> 2/3.
(ii) For all η > 0 there exists an r-local Doeblin set C ∈ X such that for

all yr−1
0 ∈ K,

sup
x∈Cc

L〈yr−1
0 〉(x,X)≤ η‖L〈yr−1

0 〉(·,X)‖∞ <∞(20)
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and

inf
yr−1
0 ∈K

ǫ−
C
〈yr−1

0 〉
ǫ+
C
〈yr−1

0 〉
> 0,(21)

where the functions ǫ+
C
and ǫ−

C
are given in Definition 4.

(iii) There exists a set D ∈X such that

E

(
ln− inf

x∈D
δxL〈Y r−1

0 〉1D

)
<∞.(22)

(A2) (i) g(x, y)> 0 for all (x, y) ∈ X× Y.
(ii) E(ln+ ‖g〈Y0〉‖∞)<∞.

Remark 5. Assumption (A1)(i) is inherited from [15]. To get some ra-
tionale behind the constant 2/3 appearing in the assumption, note that the
same is in fact equivalent to 1− P(Z0 ∈ K)< 2P(Z0 ∈ K)− 1. In that case
there exist 0< γ− < γ+ such that

1− P(Z0 ∈ K)< γ− < γ+ < 2P(Z0 ∈ K)− 1,

which is equivalent to P(Z0 ∈ K) > max{1 − γ−, (1 + γ+)/2}. The latter
inequality is essential when applying [15], Proposition 5; see also the proof
of [15], Proposition 8.

Remark 6. In the case r = 1 we may replace (A1) by the simpler as-
sumption that there exists a set K ∈ Y such that the following holds:

(i) P(Y0 ∈K)> 2/3.
(ii) For all η > 0 there exists a local Doeblin set C ∈ X such that for all

y ∈ K,

sup
x∈Cc

g(x, y)≤ η‖g〈y〉‖∞ <∞.(23)

(iii) There exists a set D ∈X satisfying

inf
x∈D

Q(x,D)> 0 and E

(
ln− inf

x∈D
g(x,Y0)

)
<∞.

For the integer r ∈N∗ and the set D ∈ X given in (A1), define

M(D, r)
(24)

, {χ ∈P(X ) :E(ln− χL〈Y ℓ−1
0 〉1D)<∞ for all ℓ ∈ {0, . . . , r}}.

A simple sufficient condition can be proposed to ensure that χ ∈M(D, r).
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Proposition 7. Assume that there exist sets Du ∈X , u ∈ {0, . . . , r−1},
such that (setting Dr =D for notational convenience) for some δ > 0,

inf
x∈Du−1

Q(x,Du)≥ δ, u ∈ {1, . . . , r}(25)

and

E

(
ln− inf

x∈Du

g(x,Y0)
)
<∞, u ∈ {0, . . . , r}.(26)

Then any initial distribution χ ∈P(X ) satisfying χ(D0)> 0 belongs toM(D, r).

Remark 8. To check (26) we typically assume that for any given y ∈ Y,
g〈y〉 is continuous and that the sets Di, i ∈ {0, . . . , r− 1}, are compact. This
condition then translates into an assumption on some generalized moments
of the process (Yn)n∈Z.

Remark 9. Assume that X=R
d for some d ∈N∗ (or more generally, X

is a locally compact separable metric space) and that X is the associated
Borel σ-field. Assume in addition that for any open set O∈ X , the function
x→ Q(x,O) is lower semi-continuous on the space X. Then for any δ > 0
and any compact set D0 ∈ X , there exist compact sets Du, u ∈ {0, . . . , r−1},
satisfying (25).

We are now ready to state our main results.

3.1. Tightness of asymptotic variance.

Theorem 10. Assume (A1)–(A2). Then for all χ ∈M(D, r) and all
h ∈F(X ), the sequence (σ2

χ〈Y n−1
0 〉(h))n∈N∗ [defined in (15)] is tight.

Proof. Using definition (11) of the predictive distribution and the de-
composition (10) of the likelihood, we get for all k ∈ {0, . . . , n− 1},

φχ〈Y n−1
0 〉h=

χL〈Y n−1
0 〉h

χL〈Y n−1
0 〉1X

=
χL〈Y k−1

0 〉L〈Y n−1
k 〉h

χL〈Y k−1
0 〉L〈Y n−1

k 〉1X

.

Plugging this identity into the expression (15) of the asymptotic variance
yields

σ2
χ〈Y n−1

0 〉(h) =
n∑

k=0

∫
φχ〈Y k−1

0 〉(dx)
[∆δx,φχ〈Y

k−1
0 〉〈Y

n−1
k 〉(h,1X)

(φχ〈Y k−1
0 〉L〈Y n−1

k 〉1X)2

]2
,(27)

where for all sequences yn−1
k ∈ Yn−k, functions f and h in F(X ) and prob-

ability measures χ and χ′ in P(X ),
∆χ,χ′〈yn−1

k 〉(f,h)
(28)

, χL〈yn−1
k 〉f × χ′L〈yn−1

k 〉h− χL〈yn−1
k 〉h× χ′L〈yn−1

k 〉f.
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Using (11), we obtain for all sequences yn−1
0 ∈ Yn,

φχ〈yk−1
0 〉L〈yn−1

k 〉1X =
χL〈yn−1

0 〉1X

χL〈yk−1
0 〉1X

=

n−1∏

ℓ=k

χL〈yℓ0〉1X

χL〈yℓ−1
0 〉1X

=

n−1∏

ℓ=k

πχ〈yℓ−1
0 〉(yℓ),

where πχ〈yℓ−1
0 〉(yℓ) is the density of the conditional distribution of Yℓ given

Y ℓ−1
0 (i.e., the one-step observation predictor at time ℓ) defined by

πχ〈yℓ−1
0 〉(yℓ),

∫
φχ〈yℓ−1

0 〉(dx)g(x, yℓ).(29)

With this notation, the likelihood function χL〈yn−1
0 〉1X equals the product∏n−1

k=0 πχ〈yk−1
0 〉(yk) [where we let πχ〈y−1

0 〉(y0) denote the marginal density
of Y0].

Now, using coupling results obtained in [15] one may prove that the pre-
dictor distribution forgets its initial distribution exponentially fast under
the r-local Doeblin assumption (19). Moreover, this implies that also the
log-density of the one-step observation predictor forgets its initial distribu-
tion exponentially fast; that is, for all initial distributions χ and χ′ there
is a deterministic constant β ∈ ]0,1[ and an almost surely bounded random
variable Cχ,χ′ such that for all (k,m) ∈ N

∗ × N and almost all observation
sequences,

|lnπχ〈Y k−1
−m 〉(Yk)− lnπχ′〈Y k−1

−m 〉(Yk)| ≤Cχ,χ′βk+m.(30)

Using this, it is shown in [15], Proposition 1, that:

(i) There exists a function π :YZ− × Y→ R such that for all probability
measures χ ∈M(D, r),

lim
m→∞

πχ〈Y −1
−m〉(Y0) = π〈Y −1

−∞〉(Y0), P-a.s.

Moreover,

E(|lnπ〈Y −1
−∞〉(Y0)|)<∞.(31)

(ii) For all probability measures χ ∈M(D, r), the normalized log-likelihood
function converges according to

lim
n→∞

n−1 lnχL〈Y n−1
0 〉1X = ℓ∞, P-a.s.,(32)

where ℓ∞ is the negated relative entropy, that is, the expectation of
lnπ〈Y −1

−∞〉(Y0) under the stationary distribution, that is,

ℓ∞ , E(lnπ〈Y −1
−∞〉(Y0)).(33)
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As a first step, we bound the asymptotic variance σ2
χ〈h〉(Y n−1

0 ) [defined

in (15)] by the product of two quantities, namely σ2
χ〈Y n−1

0 〉(h) ≤ A× Bn,
where

A,

(
sup

(k,m)∈N2 : k≤m

m−1∏

ℓ=k

π〈Y ℓ−1
−∞ 〉(Yℓ)

πχ〈Y ℓ−1
0 〉(Yℓ)

)4

,(34)

Bn ,

n∑

m=0

(supx∈X |∆δx,φχ〈Y
m−1
0 〉〈Y n−1

m 〉(h,1X)|
[
∏n−1

ℓ=m π〈Y ℓ−1
−∞ 〉(Yℓ)]2

)2

.(35)

Quantity (34) can be bounded using the exponential forgetting (30) of the
one-step predictor log-density. More precisely, note that

πχ〈Y ℓ−1
−m 〉(Yℓ) =

χL〈Y ℓ
−m〉1X

χL〈Y ℓ−1
−m 〉1X

;

thus, by applying Proposition 16(ii), we conclude that there exist β ∈ ]0,1[
and a P-a.s. finite random variable Cχ such that for all n ∈N,

n∏

ℓ=k

π〈Y ℓ−1
−∞ 〉(Yℓ)

πχ〈Y ℓ−1
0 〉(Yℓ)

=

n∏

ℓ=k

∞∏

m=0

πχ〈Y ℓ−1
−m−1〉(Yℓ)

πχ〈Y ℓ−1
−m 〉(Yℓ)

≤
n∏

ℓ=k

∞∏

m=0

exp(Cχβ
ℓ+m)(36)

≤ exp(Cχ/(1− β)2)<∞, P-a.s.,

implying that A is indeed P-a.s. finite.
Consider now the second quantity (35). Since the process (Yn)n∈Z is

strictly stationary, Y n−1
0 has the same distribution as Y −1

−n for all n ∈ N
∗.

Therefore, for all n ∈N∗, the random variable Bn has the same distribution
as

B̃n ,

n∑

m=0

(supx∈X |∆δx,φχ〈Y
−m−1
−n 〉〈Y

−1
−m〉(h,1X)|

[
∏m

ℓ=1 π〈Y −ℓ−1
−∞ 〉(Y−ℓ)]2

)2

.(37)

We will show that supn∈N∗ B̃n is P-a.s. finite, which implies that the sequence

(Bn)n∈N∗ is tight. We split each term of B̃n into two factors according to

supx∈X |∆δx,φχ〈Y
−m−1
−n 〉〈Y

−1
−m〉(h,1X)|

[
∏m

ℓ=1 π〈Y −ℓ−1
−∞ 〉(Y−ℓ)]2

(38)

=

( ‖L〈Y −1
−m〉1X‖∞∏m

ℓ=1 π〈Y −ℓ−1
−∞ 〉(Y−ℓ)

)2 supx∈X |∆δx,φχ〈Y
−m−1
−n 〉〈Y

−1
−m〉(h,1X)|

‖L〈Y −1
−m〉1X‖2∞
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and consider each factor separately.
We will show that the first factor in (38) grows at most subgeometrically

fast. Indeed, note that
( ‖L〈Y −1

−m〉1X‖∞∏m
ℓ=1 π〈Y −ℓ−1

−∞ 〉(Y−ℓ)

)2

= exp(mεm),

where

εm ,
2

m

(
ln‖L〈Y −1

−m〉1X‖∞ −
m∑

ℓ=1

lnπ〈Y −ℓ−1
−∞ 〉(Y−ℓ)

)
.

According to Lemma 17, εm→ 2(ℓ∞ − ℓ∞) = 0, P-a.s., as m→∞.
The second factor in (38) is handled using Proposition 16(iii), which guar-

antees the existence of a constant β ∈ ]0,1[ and a P-a.s. random variable C
such that for all (m,n)∈ (N∗)2,

supx∈X |∆δx,φχ〈Y
−m−1
−n 〉〈Y

−1
−m〉(h,1X)|

‖L〈Y −1
−m〉1X‖2∞

≤Cβm‖h‖∞.(39)

This concludes the proof. �

Theorem 11. Assume (A1)–(A2). Then for all χ ∈M(D, r) and all
h ∈F(X ), the sequence (σ̄2

χ〈Y n
0 〉(h))n∈N∗ [defined in (17)] is tight.

Proof. Using the expression (27) of the asymptotic variance of the
predictor approximation yields for all yn0 ∈ Yn+1, as

φχ〈yn−1
0 〉g〈yn〉= πχ〈yn−1

0 〉(yn)
and

πχ〈yn−1
0 〉(yn)× φχ〈yk−1

0 〉L〈yn−1
k 〉1X = φχ〈yk−1

0 〉L〈ynk 〉1X,

the identity

σ̄2
χ〈yn0 〉(h)

=

n∑

k=0

∫
φχ〈yk−1

0 〉(dx)
[∆δx,φχ〈y

k−1
0 〉〈y

n−1
k 〉(g〈yn〉{h− φ̄χ〈yn0 〉h},1X)

φχ〈yk−1
0 〉L〈yn−1

k 〉1X × φχ〈yk−1
0 〉L〈ynk 〉1X

]2
,

where

∆δx,φχ〈y
k−1
0 〉〈y

n−1
k 〉(g〈yn〉{h− φ̄χ〈yn0 〉h},1X)

= δxL〈yn−1
k 〉(g〈yn〉{h− φ̄χ〈yn0 〉h})× φχ〈yk−1

0 〉L〈yn−1
k 〉1X(40)

− δxL〈yn−1
k 〉1X × φχ〈yk−1

0 〉L〈yn−1
k 〉(g〈yn〉{h− φ̄χ〈yn0 〉h}).
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Here the equation

φ̄χ〈yn0 〉h=
φχ〈yk−1

0 〉L〈yn−1
k 〉(g〈yn〉h)

φχ〈yk−1
0 〉L〈yn−1

k 〉g〈yn〉
(41)

implies that

φχ〈yk−1
0 〉L〈yn−1

k 〉(g〈yn〉{h− φ̄χ〈yn0 〉h})

= φχ〈yk−1
0 〉L〈yn−1

k 〉(g〈yn〉h)− φ̄χ〈yn0 〉h× φχ〈yk−1
0 〉L〈yn−1

k 〉g〈yn〉
= 0,

which implies in turn that the second term on the right-hand side of (40)
vanishes. Thus, developing also the first term and reusing the identity (41)
yields

∆δx,φχ〈y
k−1
0 〉〈y

n−1
k 〉(g〈yn〉{h− φ̄χ〈yn0 〉h},1X)

φχ〈yk−1
0 〉L〈yn−1

k 〉1X × φχ〈yk−1
0 〉L〈ynk 〉1X

=
δxL〈yn−1

k 〉(g〈yn〉h)− φ̄χ〈yn0 〉h× δxL〈yn−1
k 〉g〈yn〉

φχ〈yk−1
0 〉L〈ynk 〉1X

=
∆δx,φχ〈y

k−1
0 〉〈y

n−1
k 〉(g〈yn〉h, g〈yn〉)

φχ〈yk−1
0 〉L〈yn−1

k 〉g〈yn〉 × φχ〈yk−1
0 〉L〈ynk 〉1X

=
∆δx,φχ〈y

k−1
0 〉〈y

n−1
k 〉(g〈yn〉h, g〈yn〉)

(φχ〈yk−1
0 〉L〈ynk 〉1X)2

.

Thus, to sum up,

σ̄2
χ〈yn0 〉(h) =

n∑

k=0

∫
φχ〈yk−1

0 〉(dx)
[∆δx,φχ〈y

k−1
0 〉〈y

n−1
k 〉(g〈yn〉h, g〈yn〉)

(φχ〈yk−1
0 〉L〈ynk 〉1X)2

]2
,

providing an expression of the asymptotic variance of the particle filter that
resembles closely the corresponding expression (27) for the particle predictor.
Using this, the tightness can be established along the very same lines as
Theorem 10, and we leave the details to the interested reader. �

3.2. Tightness of the asymptotic Lp error. In the following we show that
tightness of the asymptotic variance implies tightness of the asymptotic Lp

error (when scaled with
√
N ). The asymptotic Lp error given in Theorem 12

below is obtained by establishing, for fixed time indices n, using a standard
exponential deviation inequality, uniform integrability (with respect to the
particle sample size N ) of the sequence of scaled Lp errors. After this, weak
convergence implies convergence of moments, implying in turn convergence
of the Lp error.
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Theorem 12. Assume (A2). Then, for all functions h ∈ F(X ), con-
stants p ∈R∗

+ and all initial distributions χ ∈P(X ), P-a.s.,

lim
N→∞

√
NE

1/p(|φN
χ 〈Y n−1

0 〉h− φχ〈Y n−1
0 〉h|p|Y n−1

0 )

=
√
2σχ〈Y n−1

0 〉(h)
(
Γ((p+1)/2)√

2π

)1/p

,

where Γ is the gamma function.

Proof. Recall that if (AN )N∈N∗ is a sequence of random variables such

that AN
D−→ A as N →∞ and (Ap

N )N∈N∗ is uniformly integrable for some
p > 0, then E(|A|p)<∞, limN→∞E(Ap

N ) = E(Ap) and limN→∞E(|AN |p) =
E(|A|p); see, for example, [31], Theorem A, page 14. Now set, for n ∈N

∗,

AN,χ〈Y n−1
0 〉(h),

√
N(φN

χ 〈Y n−1
0 〉h− φχ〈Y n−1

0 〉h).

Let q > p and write

sup
N∈N∗

E(|AN,χ〈Y n−1
0 〉(h)|q|Y n−1

0 )

= sup
N∈N∗

∫ ∞

0
P(|AN,χ〈Y n−1

0 〉(h)| ≥ ǫ1/q|Y n−1
0 )dǫ

= q sup
N∈N∗

∫ ∞

0
ǫq−1

P(|AN,χ〈Y n−1
0 〉(h)| ≥ ǫ|Y n−1

0 )dǫ.

Now, note that (A2)(ii) implies that ‖g〈Yn〉‖∞ is P-a.s. finite for all n ∈N.
Thus, Assumptions 1 and 2 of [12] are fulfilled, which implies, via Remark 1
in the same work (see also [13], Lemma 2.1, [8], Theorem 3.1, [10], Theorem
3.39, and [9], Lemma 4, for similar results), that there exist, for all n ∈ N

and h ∈F(X ), positive constants Bn and Cn (where only the latter depends
on h) such that for all N ∈N

∗ and all ǫ > 0,

P(|AN,χ〈Y n−1
0 〉(h)| ≥ ǫ|Y n−1

0 )≤Bn exp(−Cnǫ
2).(42)

This implies that for all n ∈N, P-a.s.,

sup
N∈N∗

E(|AN,χ〈Y n−1
0 〉(h)|q|Y n−1

0 )≤ qBn

∫ ∞

0
ǫq−1 exp(−Cnǫ

2)dǫ <∞,

which establishes, via [32], Lemma II.6.3, page 190, as q > p, that the
sequence (|AN,χ〈Y n−1

0 〉(h)|p)N∈N is uniformly integrable conditionally on

Y n−1
0 , that is,

lim
M→∞

sup
N∈N∗

E(|AN,χ〈Y n−1
0 〉(h)|p1{|AN,χ〈Y

n−1
0 〉(h)|≥M}|Y

n−1
0 ) = 0, P-a.s.
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We may now complete the proof by applying Theorem 2, which states that
conditionally on Y n−1

0 , as N →∞,

AN,χ〈Y n−1
0 〉(h) D−→ σχ〈Y n−1

0 〉(h)Z,
where Z is a standard normally distributed random variable. �

We next state the corresponding result for the particle filter approxima-
tion, which is obtained along the very same lines as Theorem 12.

Theorem 13. Assume (A2). Then, for all functions h ∈ F(X ), con-
stants p ∈R∗

+ and all initial distributions χ ∈P(X ), P-a.s.,

lim
N→∞

√
NE

1/p(|φ̄N
χ 〈Y n

0 〉h− φ̄χ〈Y n
0 〉h|p|Y n−1

0 )

=
√
2σ̄χ〈Y n−1

0 〉(h)
(
Γ((p+1)/2)√

2π

)1/p

,

where Γ is the gamma function.

4. Examples. In this section, we develop two classes of examples. In
Section 4.1 we consider the linear Gaussian state–space models, an important
model class that is used routinely in time-series analysis. Recall that in the
linear Gaussian case, closed-form solutions to the optimal filtering problem
can be obtained using the Kalman recursions. However, as an illustration,
we analyze this model class under assumptions that are very general. In
Section 4.2, we consider a significantly more general class of nonlinear state–
space models. In both these examples we will find that assumptions (A1)–
(A2) are satisfied and straightforwardly verified.

4.1. Linear Gaussian state–space models. The linear Gaussian state–
space models form an important class of HMMs. Let X= R

dx and Y = R
dy

and define state and observation sequences through the linear dynamic sys-
tem

Xk+1 =AXk +RUk,

Yk =BXk + SVk,

where (Uk, Vk)k≥0 is a sequence of i.i.d. Gaussian vectors with zero mean and
identity covariance matrix. The noise vectors are assumed to be independent
of X0. Here Uk is du-dimensional, Vk is dy-dimensional and the matrices A,
R, B and S have the appropriate dimensions. Note that we cover also the
case du < dx, for which the prior kernel Q does not admit a transition density
with respect to Lebesgue measure.
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For any n ∈ N, define the observability and controllability matrices On

and Cn by

On ,




B
BA
BA2

...
BAn−1




and Cn , [An−1R An−2R · · · R ],(43)

respectively. We assume the following.

(LGSS1) The pair (A,B) is observable, and the pair (A,R) is controllable,
that is, there exists r ∈ N such that the observability matrix Or and the
controllability matrix Cr have full rank.

(LGSS2) The measurement noise covariance matrix S has full rank.
(LGSS3) E(‖Y0‖2)<∞.

We now check assumptions (A1)–(A2). The dimension du of the state
noise vector Uk is in many situations smaller than the dimension dx of the
state vector Xk and hence RtR may be rank deficient (here t denotes the
transpose). Some additional notation is required: for any positive matrix A
and vector z of appropriate dimension, denote ‖z‖2A , tzA−1z. In addition,
define for any n ∈N,

Fn ,Dn
tDn + SntSn,(44)

where

Dn ,




0 0 · · · 0

BR
. . . 0

BAR BR
. . .

...
...

. . . 0
BAn−2R BAn−3R · · · BR



, Sn ,




S 0 · · · 0

0 S
. . .

...
...

. . .
. . . 0

0 · · · 0 S


 .

Under (LGSS2), the matrix Fn is positive definite for any n ≥ r. When
the state process is initialized at x0 ∈ X, the likelihood of the observations
yn−1
0 ∈ Yn is given by

δx0L〈yn−1
0 〉1X = (2π)−ndy det−1/2(Fn) exp(−1

2‖yn−1 −Onx0‖2Fn
),

where yn−1 ,
t[ty0,

ty1, . . . ,
tyn−1] and On is defined in (43).

We first consider (A1). Under (LGSS1), the observability matrix Or is
full rank, and we have for any compact subset K⊂ Yr,

lim
‖x0‖→∞

inf
yr−1
0 ∈K

‖yr−1 −Orx0‖Fr =∞,

showing that for all η > 0, we may choose a compact set C⊂R
dx such that

(20) is satisfied. It remains to prove that any compact set C is an r-local
Doeblin set satisfying condition (21). For any yr−1

0 ∈ Yr and x0 ∈ X, the
measure δx0L〈yr−1

0 〉 is absolutely continuous with respect to the Lebesgue
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measure on (X,X ) with Radon–Nikodym derivative ℓ〈yr−1
0 〉(x0, xr) given

(up to an irrelevant multiplicative factor) by

ℓ〈yr−1
0 〉(x0, xr)∝ det−1/2(Gr) exp

(
−1

2

∥∥∥∥
[
yr−1

xr

]
−
[
Or

Ar

]
x0

∥∥∥∥
2

Gr

)
,(45)

where the covariance matrix Gr is

Gr ,
[
Dr

Cr

]
[ tDr

tCr ] +
[
Sr
0

]
[ tSr t0 ].

The proof of (45) relies on the positivity of Gr, which requires further dis-
cussion. By construction, the matrix Gr is nonnegative. For all yr−1 ∈ Yr

and x ∈ X, the equation

[ tyr−1
tx ]Gr

[
yr−1

x

]
= ‖tDryr−1 +

tCrx‖2 + ‖tSryr−1‖2 = 0

implies that ‖tDryr−1+
tCrx‖2 = 0 and ‖tSryr−1‖2 = 0. Since the matrix Sr

has full rank, this implies that yr−1 = 0. Since also Cr has full rank [the pair
(A,R) is controllable], this implies in turn that x= 0. Therefore, the matrix
Gr is positive definite and the function

(x0, xr) 7→
∥∥∥∥
[
yr−1

xr

]
−
[
Or

Ar

]
x0

∥∥∥∥
2

Gr

is continuous for all yr−1. It is therefore bounded on any compact subset
of X2. This implies that every nonempty compact set C⊂ R

dx is an r-local
Doeblin set, with λC(·) = λLeb(·)/λLeb(C) and

ǫ−
C
(yr−1

0 ) = (λLeb(C))−1 inf
(x0,xr)∈C2

ℓ〈yr−1
0 〉(x0, xr),

ǫ+
C
(yr−1

0 ) = (λLeb(C))−1 sup
(x0,xr)∈C2

ℓ〈yr−1
0 〉(x0, xr).

Consequently, condition (21) is satisfied for any compact set K ⊆ Yr−1. It
remains to verify (A1)(iii). Under (LGSS1), the measure δx0L〈yr−1

0 〉 is ab-
solutely continuous with respect to the Lebesgue measure λLeb; therefore,
for any set D⊂R

dx ,

inf
x0∈D

δx0L〈yr−1
0 〉(D)≥ inf

(x0,xr)∈D2
ℓ〈yr−1

0 〉(x0, xr)λLeb(D).

Take D to be any compact set with positive Lebesgue measure. Now,

sup
(x0,xr)∈D2

∥∥∥∥
[
yr−1

xr

]
−
[
Or

Ar

]
x0

∥∥∥∥
2

Gr

≤ 2λmax(Gr)
{
‖yr−1‖2 +max

x∈D
‖x‖2[1 + λmax(

tOrOr +
tArAr)]

}
,
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where λmax(A) is the largest eigenvalue of A. Under (LGSS3), E(‖Y0‖2)<∞,
implying that (A1)(iii) is satisfied for any compact set.

We now consider (A2). Under (LGSS2), S has full rank, and taking the
reference measure λLeb as the Lebesgue measure on Y, g(x, y) is, for each
x ∈ X, a Gaussian density with covariance matrix StS. We therefore have

‖g〈y〉‖∞ = (2π)−dy/2 det−1/2(StS)<∞
for all y ∈ Y, which verifies (A2)(i)–(ii).

To conclude this discussion, we need to specify more explicitly the set
M(D, r) [see (24)] of possible initial distributions. Using Proposition 7, we
verify sufficient conditions (25) and (26). To check (25), we use Remark 9:
for any open subset O⊂R

dx and x ∈ X, Q(x,O) = E(1O(Ax+RU)), where
the expectation is taken with respect to the du-dimensional standard normal
distribution. Let (xn)n∈N∗ be a sequence in X converging to x. By using that
the function 1O is lower semi-continuous we obtain, via Fatou’s lemma,

lim inf
n→∞

Q(xn,O)≥ E

(
lim inf
n→∞

1O(Axn +RU)
)
≥Q(x,O),

showing that the function x 7→Q(x,O) is lower semi-continuous for any open
subset O.

Assumption (LGSS2) implies that for all (x, y) ∈ X×Y,

lng(x, y)≥−dy
2
ln(2π)− 1

2
lndet−1/2(StS)

− [λmin(S
tS)]−1(‖y‖2 + ‖Bx‖2),

where λmin(S
tS) is the minimal eigenvalue of StS. Therefore (26) is satisfied

under (LGSS3). Consequently, we may apply Theorems 10 and 11 to estab-
lish tightness of the asymptotic variances of the particle predictor and filter
approximations for any initial distribution χ ∈ P(X ) as soon as the process
(Yk)k∈Z is strictly stationary ergodic and E(‖Y0‖2)<∞.

4.2. Nonlinear state–space models. We now turn to a very general class
of nonlinear state–space models. Let X = R

d, Y = R
ℓ and X and Y be the

associated Borel σ-fields. In the following we assume that for each x ∈ X,
the probability measure Q(x, ·) has a density q(x, ·) with respect to the
Lebesgue measure λLeb on R

d. For instance, the state sequence (Xk)k∈N
could be defined through some nonlinear recursion

Xk = T (Xk−1) +Σ(Xk−1)ζk,(46)

where (ζk)k∈N∗ is an i.i.d. sequence of d-dimensional random vectors with
density ρζ with respect to the Lebesgue measure λLeb on R

d. Here T :Rd→
R
d and Σ :Rd→R

d×d are given (measurable) matrix-valued functions such
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that Σ(x) is full rank for each x ∈ X. Models of form (46), typically referred
to as vector autoregressive conditional heteroscedasticity (ARCH) models,
are often of interest in time series analysis and financial econometrics. In
this context, we let the observations (Yk)k∈N be generated through a given
measurement density g(x, y) (again with respect to the Lebesgue measure).

We now introduce the basic assumptions of this section.

(NL1) The function (x,x′) 7→ q(x,x′) on X2 is positive and continuous. In
addition, sup(x,x′)∈X2 q(x,x′)<∞.

(NL2) For any compact subset K⊂ Y,

lim
‖x‖→∞

sup
y∈K

g(x, y)

‖g〈y〉‖∞
= 0.

(NL3) For all (x, y) ∈ X×Y, g(x, y)> 0 and

E(ln+‖g〈Y0〉‖∞)<∞.

(NL4) There exists a compact subset D⊂ Y such that

E

(
ln− inf

x∈D
g(x,Y0)

)
<∞.

Under (NL1), every compact set C⊂ X=R
d with positive Lebesgue mea-

sure is 1-small and therefore local Doeblin with λC(·) = λLeb(· ∩C)/λLeb(C),
ϕC〈y0〉= λLeb(C) and

ǫ−
C
= inf

(x,x′)∈C2
q(x,x′),

ǫ+
C
= sup

(x,x′)∈C2

q(x,x′).

Under (NL1) and (NL2), conditions (23) and (21) are satisfied with r = 1.
In addition, (22) is implied by (NL1) and (NL4). Consequently, assumption
(A1) holds. Moreover, (A2) follows directly from (NL3). So, finally, under
(NL1)–(NL4) we conclude, using Proposition 7, Theorems 10 and 11, that
the asymptotic variances of the bootstrap particle predictor and filter ap-
proximations are tight for any initial distribution χ such that χ(D)> 0.

5. Proofs.

5.1. Forgetting of the initial distribution.

Lemma 14. Assume (A1)–(A2). Then for all γ > 2/3 there exist func-
tions ργ : ]0,1[ → ]0,1[ and Cγ : ]0,1[ → R+ such that for all n ∈ N and all

zn−1
0 ∈ Ynr, where r ∈N

∗ is as in (A1) and zi = y
(i+1)r−1
ir , satisfying

n−1
n−1∑

i=0

1K(zi)≥ γ,
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all functions f and h in F+(X ), all finite measures χ and χ′ inM(X ), and
all η ∈ ]0,1[,

|∆χ,χ′〈zn−1
0 〉(f,h)|

≤ ρnγ (η)(χL〈zn−1
0 〉f × χ′L〈zn−1

0 〉h+ χ′L〈zn−1
0 〉f × χL〈zn−1

0 〉h)(47)

+Cγ(η)η
n‖f‖∞‖h‖∞

n−1∏

i=0

‖L〈zi〉1X‖2∞χ(X)χ′(X),

∣∣∣∣ln
(
χL〈zn−1

0 〉h
χL〈zn−1

0 〉f

)
− ln

(
χ′L〈zn−1

0 〉h
χ′L〈zn−1

0 〉f

)∣∣∣∣

≤ (1− ργ(η))
−1(48)

×
(
2ρnγ (η) +

Cγ(η)η
n‖f‖∞‖h‖∞

∏n−1
i=0 ‖L〈zi〉1X‖∞χ(X)χ′(X)

χL〈zn−1
0 〉f × χ′L〈zn−1

0 〉h

)
,

∣∣∣∣
χL〈zn−1

0 〉h
χL〈zn−1

0 〉f
− χ′L〈zn−1

0 〉h
χ′L〈zn−1

0 〉f

∣∣∣∣

≤ ρnγ (η)

(
χL〈zn−1

0 〉h
χL〈zn−1

0 〉f
+

χ′L〈zn−1
0 〉h

χ′L〈zn−1
0 〉f

)
(49)

+
Cγ(η)η

n‖h‖∞‖f‖∞
∏n−1

i=0 ‖L〈zi〉1X‖2∞χ(X)χ′(X)

χL〈zn−1
0 〉f × χ′L〈zn−1

0 〉f
.

Proof. The proof is adapted straightforwardly from [15], Proposition 5.
�

Lemma 15. Assume (A1). Then there exists a constant κ > 0 such that
for all χ ∈M(D, r) [where M(D, r) is defined in (24)],

inf
(k,m)∈N∗×N

κ(k+m)χL〈Y k−1
−m 〉1X > 0, P-a.s.,(50)

and

inf
(k,m)∈N∗×N

κ(k+m)‖L〈Y k−1
−m 〉1X‖∞ > 0, P-a.s.(51)

Proof. To derive (50) we first establish that

lim inf
k+m→∞

(k +m)−1 lnχL〈Y k−1
−m 〉1X

(52)

≥−rE
(
ln− inf

x∈D
δxL〈Y r−1

0 〉1D

)
>−∞, P-a.s.,
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where the last inequality follows from (A1)(iii). We now establish the first
inequality in (52). Set ak,m , −k + ⌊(k +m)/r⌋r and note that −ak,m ∈
{−m, . . . ,−m+ r− 1}. Then write

lnχL〈Y k−1
−m 〉1X

≥ lnχL〈Y −ak,m
−m 〉1D +

⌊(k+m)/r⌋−1∑

i=0

ln inf
x∈D

δxL〈Y −ak,m+(i+1)r−1
−ak,m+ir 〉1D

(53)

≥−
r−1∑

i=0

ln− χL〈Y −m+i
−m 〉1D

−
⌊(k+m)/r⌋−1∑

i=0

ln− inf
x∈D

δxL〈Y −ak,m+(i+1)r−1
−ak,m+ir 〉1D.

For i ∈N, set [i]r , i−⌊i/r⌋r. With this notation, ak,m = [ak,m]r+⌊ak,m/r⌋r.
Then, since [i]r ∈ {0, . . . , r− 1},

−
⌊(k+m)/r⌋−1∑

i=0

ln− inf
x∈D

δxL〈Y −ak,m+(i+1)r−1
−ak,m+ir 〉1D

=−
⌊(k+m)/r⌋−1∑

i=0

ln− inf
x∈D

δxL〈Y −[ak,m]r+(i−⌊ak,m/r⌋+1)r−1

−[ak,m]r+(i−⌊ak,m/r⌋)r
〉1D

(54)

≥−
r−1∑

j=0

⌊(k+m)/r⌋−1∑

i=0

ln− inf
x∈D

δxL〈Y −j+(i−⌊ak,m/r⌋+1)r−1

−j+(i−⌊ak,m/r⌋)r
〉1D

=−
r−1∑

j=0

⌊(k+m)/r⌋−⌊ak,m/r⌋−1∑

ℓ=−⌊ak,m/r⌋

ln− inf
x∈D

δxL〈Y −j+(ℓ+1)r−1
−j+ℓr 〉1D,

where the last identity follows by reindexing the summation. We now plug
(54) into (53); the ergodicity of the process (Zn)n∈Z [assumption (A1)(i)]
then implies, via Lemma 18, P-a.s.,

lim inf
k+m→∞

(k+m)−1 lnχL〈Y k−1
−m 〉1X

≥
r−1∑

j=0

E

(
ln− inf

x∈D
δxL〈Y −j+r−1

−j 〉1D

)
=−rE

(
ln− inf

x∈D
δxL〈Y r−1

0 〉1D

)
,

which shows (52). Now, choose a constant κ such that

−rE
(
ln− inf

x∈D
δxL〈Y r−1

0 〉1D

)
>− lnκ >−∞.
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According to (52), there exists a P-a.s. finite N
∗-valued random variable N

such that if k+m≥N ,

lnχL〈Y r−1
0 〉1X ≥ (− lnκ)(k +m),

which implies that

inf
k+m≥N

κk+mχL〈Y r−1
0 〉1X ≥ 1.

On the other hand, assumption (A2) implies that for all (k,m) ∈ N
∗ × N,

χL〈Y r−1
0 〉1X > 0, P-a.s. This completes the proof of (50). Finally, the proof

of (51) follows by combining

‖L〈Y k−1
−m 〉1X‖∞ ≥ χL〈Y k−1

−m 〉1X

and (50). �

For all probability measures χ ∈ P(X ), all (k,m) ∈ N
∗ × N, and all se-

quences yk−m ∈ Ym+k+1, define the set

M〈yk−m〉(χ)
(55)

, {χ̃ ∈ P(X ) :‖g〈yk〉‖∞ × χ̃L〈yk−1
−m 〉1X ≥ (1/2)χL〈yk−m〉1X}

of probability measures on (X,X ) and note that this set is nonempty since
χ ∈M〈yk−m〉(χ). The choice of 1/2 in the definition of M〈yk−m〉(χ) is irrel-
evant, and this factor can be replaced by any constant strictly less than 1.

Proposition 16. Assume (A1)–(A2). Then there exists a constant β ∈
]0,1[ such that the following hold:

(i) For all probability measures χ and χ′ inM(D, r) there exists a P-a.s.
finite random variable Cχ,χ′ such that for all (k,m) ∈ N

∗ × N and all χ̃ ∈
M〈Y k

−m〉(χ),

ln

(
χ̃L〈Y k

−m〉1X

χ̃L〈Y k−1
−m 〉1X

)
− ln

(
χ′L〈Y k

−m〉1X

χ′L〈Y k−1
−m 〉1X

)
≤Cχ,χ′βk+m, P-a.s.

(ii) For all probability measures χ inM(D, r) there exists a P-a.s. finite
random variable Cχ such that for all (k,m) ∈N

∗×N,
∣∣∣∣ln
(

χL〈Y k
−m〉1X

χL〈Y k−1
−m 〉1X

)
− ln

(
χL〈Y k

−m−1〉1X

χL〈Y k−1
−m−1〉1X

)∣∣∣∣≤Cχβ
k+m, P-a.s.

(iii) There exists a P-a.s. finite random variable C such that for m ∈N∗,
all probability measures χ and χ′ in P(X ) and all h ∈F(X ),

|∆χ,χ′〈Y −1
−m〉(h,1X)|

‖L〈Y −1
−m〉1X‖2∞

≤Cβm‖h‖∞, P-a.s.
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Proof of Proposition 16(i) and (ii). Let χ̃ ∈M〈Y k
−m〉(χ). Recall

the notation Zi = Y
(i+1)r−1
ir and consider the decompositions

χL〈Y k
−m〉1X = χL〈Y −⌊m/r⌋r−1

−m 〉L〈Z⌊k/r⌋−1
−⌊m/r⌋ 〉L〈Y

k
⌊k/r⌋r〉1X,

χL〈Y k−1
−m 〉1X = χL〈Y −⌊m/r⌋r−1

−m 〉L〈Z⌊k/r⌋−1
−⌊m/r⌋

〉L〈Y k−1
⌊k/r⌋r

〉1X,

where we make use of convention (9) if necessary.
Choose γ such that 2/3 < γ < P(Z0 ∈ K), where K is defined in (A1)(i).

Assume that (k,m) ∈ N
∗ ×N are both larger than r and denote by bk,m ,

⌊k/r⌋+ ⌊m/r⌋. In addition, define the event

Ωk,m ,

{(⌊
k

r

⌋
+

⌊
m

r

⌋)−1 ⌊k/r⌋−1∑

ℓ=−⌊m/r⌋

1K(Zℓ)≥ γ

}
.

By Lemma 14 [equation (48)] it holds for all η ∈ ]0,1[, on the event Ωk,m,

(1− ργ(η))

(
ln

(
χ̃L〈Y k

−m〉1X

χ̃L〈Y k−1
−m 〉1X

)
− ln

(
χ′L〈Y k

−m〉1X

χ′L〈Y k−1
−m 〉1X

))

(a)

≤ 2ρ
bk,m
γ (η) +

Cγ(η)η
bk,m‖g〈Yk〉‖∞

∏k−1
i=−m ‖g〈Yi〉‖2∞

χ̃L〈Y k−1
−m 〉1X × χ′L〈Y k

−m〉1X

(56)

(b)

≤ 2ρ
bk,m
γ (η) +

2Cγ(η)η
bk,m

∏k
i=−m ‖g〈Yi〉‖2∞

χL〈Y k
−m〉1X× χ′L〈Y k

−m〉1X

,

where:

(a) follows from (48) and the bound δxL〈Y v
u 〉1X ≤

∏v
ℓ=u ‖g〈Yℓ〉‖∞, valid

for u≤ v, and
(b) follows from the fact that χ̃ ∈M〈Y k

−m〉(χ).
Since, under (A1)(i), the sequence (Zn)n∈Z is ergodic and P(Z0 ∈ K) > γ,
Lemma 18 implies that

P

(⋃

j≥0

⋂

(k,m)∈N∗×N

k+m≥j

Ωk,m

)
= 1.

Hence, there exists a P-a.s. finite integer-valued random variable U such
that (56) is satisfied for all (k,m) ∈N∗ ×N such that k+m≥ U .

The lower bound obtained in Lemma 15 implies that there exists a con-
stant κ > 0 such that for all probability measures χ and χ′ inM(D, r) and
all (k,m) ∈N∗ ×N, P-a.s.,

χL〈Y k
−m〉1X ≥Cχ,χ′κ−(k+m+1),

χ′L〈Y k
−m〉1X ≥Cχ,χ′κ−(k+m+1),
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where Cχ,χ′ is a P-a.s. finite constant.
By plugging these bounds into (56) and using Lemma 19 with η sufficiently

small (note that (56) is satisfied for all η ∈ ]0,1[), we conclude that there exist
a P-a.s. finite random variable Cχ,χ′ and a constant β < 1 such that for all
(k,m) ∈N∗ ×N, P-a.s.,

ln

(
χ̃L〈Y k

−m〉1X

χ̃L〈Y k−1
−m 〉1X

)
− ln

(
χ′L〈Y k

−m〉1X

χ′L〈Y k−1
−m 〉1X

)
≤Cχ,χ′βk+m,

which completes the proof of Proposition 16(i). Note that χ ∈M〈Y k
−m〉(χ)

implies that the previous relation is satisfied with χ̃= χ.
The proof of Proposition 16(ii) follows the same lines as the proof of

Proposition 16(i) and is omitted for brevity. �

Proof of Proposition 16(iii). We may assume that the function h is
nonnegative (otherwise the positive and negative parts of h can be treated
separately). As in the proof of Proposition 16(i), write

χL〈Y −1
−m〉h= χL〈Y −⌊m/r⌋r−1

−m 〉L〈Z−1
−⌊m/r⌋〉h

and define the event

Ωm ,

{⌊
m

r

⌋−1 −1∑

ℓ=−⌊m/r⌋

1K(Zℓ)≥ γ

}
.

By Lemma 14 [equation (49)] it holds, on the event Ωm,
∣∣∣∣
χL〈Y −1

−m〉h
χL〈Y −1

−m〉1X

− χ′L〈Y −1
−m〉h

χ′L〈Y −1
−m〉1X

∣∣∣∣
(57)

≤ 2‖h‖∞ρ⌊m/r⌋
γ (η) +

Cγ(η)η
⌊m/r⌋‖h‖∞

∏−1
i=−m ‖g〈Yi〉‖2∞

χL〈Y −1
−m〉1X × χ′L〈Y −1

−m〉1X

,

where we used that for u≤ v, δxL〈Y v
u 〉1X ≤

∏v
ℓ=u ‖g〈Yℓ〉‖∞. Under (A1)(i),

Birkhoff’s ergodic theorem (see, e.g., [32]) ensures that P(lim infm→∞Ωm) =
1; therefore, there exists a P-a.s. finite random variable U such that (57) is
satisfied for m≥U . Then, for m≥ U ,

|∆χ,χ′〈Y −1
−m〉(h,1X)|

‖L〈Y −1
−m〉1X‖2

=
χL〈Y −1

−m〉1X × χ′L〈Y −1
−m〉1X

‖L〈Y −1
−m〉1X‖2

∣∣∣∣
χL〈Y −1

−m〉h
χL〈Y −1

−m〉1X

− χ′L〈Y −1
−m〉h

χ′L〈Y −1
−m〉1X

∣∣∣∣(58)

≤ 2‖h‖∞ρ⌊m/r⌋
γ (η) +

Cγ(η)η
⌊m/r⌋‖h‖∞

∏−1
i=−m ‖g〈Yi〉‖2∞

‖L〈Y −1
−m〉1X‖2

,
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we have used that χL〈Y −1
−m〉1X ≤ ‖L〈Y −1

−m〉1X‖∞. By Lemma 15, equation (51),

there exist a constant κ > 0 and a P-a.s. finite random variable C such that

‖L〈Y −1
−m〉1X‖∞ ≥Cκ−m, P-a.s.

Finally, we complete the proof by inserting this bound into (58) and applying
Lemma 19 to the right-hand side of the resulting inequality. �

5.2. Convergence of the log-likelihood.

Lemma 17. Assume (A1)–(A2). Then, P-a.s.,

lim
n→∞

n−1 ln‖L〈Y n
0 〉1X‖∞ = ℓ∞,(59)

lim
n→∞

n−1 ln‖L〈Y 0
−n〉1X‖∞ = ℓ∞,(60)

lim
n→∞

n−1
n∑

k=1

lnπ〈Y −k−1
−∞ 〉(Y−k) = ℓ∞,(61)

where ℓ∞ is defined in (33).

Proof of (59). Let (αn)n∈N∗ be a nondecreasing sequence such that
limn→∞αn = 1 and for any n ∈ N

∗, αn ≥ 1/2. For all n ∈ N, choose x̃n ∈ X

such that

αn‖L〈Y n
0 〉1X‖∞ ≤ δx̃nL〈Y n

0 〉1X ≤ ‖L〈Y n
0 〉1X‖∞.(62)

Note that for all k ∈N
∗,

δx̃k−1
L〈Y k−1

0 〉1X ≥ αk−1‖L〈Y k−1
0 〉1X‖∞ ≥ αk−1δx̃k

L〈Y k−1
0 〉1X.(63)

On the other hand, for all probability measures χ ∈P(X ) it holds that

δx̃k
L〈Y k−1

0 〉1X

(a)

≥ δx̃k
L〈Y k

0 〉1X

‖g〈Yk〉‖∞
(b)

≥ αk
‖L〈Y k

0 〉1X‖∞
‖g〈Yk〉‖∞

≥ αk
χL〈Y k

0 〉1X

‖g〈Yk〉‖∞
,(64)

where (a) follows from the bound δx̃k
L〈Y k

0 〉1X ≤ ‖g〈Yk〉‖∞δx̃k
L〈Y k−1

0 〉1X

and (b) stems from the definition (62) of αn. Then

0≤ n−1(ln‖L〈Y n
0 〉1X‖∞ − lnχL〈Y n

0 〉1X)

≤−n−1 lnαn + n−1(ln(αn‖L〈Y n
0 〉1X‖∞)− lnχL〈Y n

0 〉1X)

≤−n−1 lnαn + n−1(ln δx̃nL〈Y n
0 〉1X− lnχL〈Y n

0 〉1X)(65)

=−n−1 lnαn + n−1(ln δx̃0L〈Y0〉1X − lnχL〈Y0〉1X)

+ n−1
n∑

k=1

[
ln

(
δx̃k

L〈Y k
0 〉1X

δx̃k−1
L〈Y k−1

0 〉1X

)
− ln

(
χL〈Y k

0 〉1X

χL〈Y k−1
0 〉1X

)]
.
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For each term in the sum it holds, by (63),

ln

(
δx̃k

L〈Y k
0 〉1X

δx̃k−1
L〈Y k−1

0 〉1X

)
− ln

(
χL〈Y k

0 〉1X

χL〈Y k−1
0 〉1X

)

≤− lnαk−1 + ln

(
δx̃k

L〈Y k
0 〉1X

δx̃k
L〈Y k−1

0 〉1X

)
− ln

(
χL〈Y k

0 〉1X

χL〈Y k−1
0 〉1X

)
.

For all k ∈N∗, (64) implies that

δx̃k
L〈Y k−1

0 〉1X ≥
1

2

χL〈Y k
0 〉1X

‖g〈Yk〉‖∞
,

so that δx̃k
belongs to the setM〈Y k−1

0 〉(χ) [defined in (55)]. Proposition 16(i)
then provides a constant β ∈ ]0,1[ and a P-a.s. finite random variable Cχ such
that

ln

(
δx̃k

L〈Y k
0 〉1X

δx̃k
L〈Y k−1

0 〉1X

)
− ln

(
χL〈Y k

0 〉1X

χL〈Y k−1
0 〉1X

)
≤Cχβ

k.(66)

Finally, statement (59) follows by plugging the bound (66) into (65), letting
n tend to infinity and using (32). �

Proof of (60). For all (p,n) ∈ N
2 such that p ≤ n, define Wp,n ,

ln‖L〈Y n−1
p 〉1X‖∞ and W̃p,n , ln‖L〈Y −p

−n+1〉1X‖∞. Note that these two se-

quences are subadditive in the sense that for all (p,n) ∈N2 such that p≤ n,

W0,n ≤W0,p +Wp,n,

W̃0,n ≤ W̃0,p + W̃p,n.

Finally, for all x∈D, m ∈N and ymr−1
0 ∈ Ymr , it holds that

‖L〈ymr−1
0 〉1X‖∞ ≥ δxL〈ymr−1

0 〉1X ≥
m−1∏

ℓ=0

inf
x∈D

δxL〈y(k+1)r−1
kr 〉1D.(67)

Using the stationarity of the observation process (Yk)k∈Z, we get, via as-
sumption (A1)(iii), for all m ∈N

∗,

(mr)−1
E(W0,mr)

= (mr)−1
E(W̃0,mr)≥ (mr)−1

E(ln‖L〈ymr−1
0 〉1X‖∞)(68)

≥ r−1
E(ln inf

x∈D
δxL〈y(k+1)r−1

kr 〉1D)>−∞.

The sequences (E(W0,n))n∈N∗ and (E(W̃0,n))n∈N∗ are subadditive; Fekete’s
lemma (see [30]) thus implies that the sequences (n−1

E(W0,n))n∈N∗ and
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(n−1
E(W̃0,n))n∈N∗ have limits in [−∞,∞[ and that

lim
n→∞

n−1
E(W0,n) = lim

n→∞
n−1

E(W̃0,n)

= inf
n∈N∗

n−1
E(W0,n)

= inf
n∈N∗

n−1
E(W̃0,n).

However, by (68) there exists a subsequence that is bounded away from −∞,
showing that

inf
n∈N∗

n−1
E(W0,n) = lim

n→∞
n−1

E(W0,n)>−∞,

inf
n∈N∗

n−1
E(W̃0,n) = lim

n→∞
n−1

E(W̃0,n)>−∞.

Now, by applying Kingman’s subadditive ergodic theorem (see [22]) and

using again that E(W̃0,k) = E(W0,k) under stationarity, we obtain

lim
n→∞

n−1W̃0,n = inf
n∈N∗

n−1
E(W̃0,n) = inf

n∈N∗
n−1

E(W0,n)

= lim
n→∞

n−1W0,n = ℓ∞, P-a.s.,

where the last limit follows from (59). This completes the proof of state-
ment (60). �

Proof of (61). Since E(| lnπ〈Y −1
−∞〉(Y0)|)<∞ and the process (Yk)k∈Z

is stationary and ergodic, (61) follows from Birkhoff’s ergodic theorem. �

APPENDIX: TECHNICAL LEMMAS

Lemma 18. If (Un)n∈Z is a stationary and ergodic sequence of random
variables such that E(|U0|)<∞, then

lim
k+m→∞

(k+m)−1

(
k−1∑

ℓ=−m

Uℓ

)
= E(U0), P-a.s.(69)

Proof. Denote

Ω1 ,

{
ω ∈Ω; lim

k+m→∞
(k +m)−1

(
k−1∑

ℓ=−m

Uℓ(ω)

)
= E(U0)

}
,

Ω2 ,

{
ω ∈Ω; lim

m→∞

∑−1
ℓ=−mUℓ(ω)

m
= lim

k→∞

∑k−1
ℓ=0 Uℓ(ω)

k
= E(U0)

}
.
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By Birkhoff’s ergodic theorem, P(Ω2) = 1. To obtain (69), it is thus sufficient
to show that Ωc

1∩Ω2 =∅. The proof is by contradiction. Assume Ωc
1 ∩Ω2 6=

∅, so that there exists ω ∈Ωc
1 ∩Ω2. For such ω, the fact that ω /∈Ω1 implies

that there exist a positive number ǫ(ω) > 0 and integer-valued sequences
(kn(ω))n∈N and (mn(ω))n∈N such that kn(ω)+mn(ω)≥ n and for all n≥ 0,

∣∣∣∣

∑kn(ω)−1
ℓ=−mn(ω)

Uℓ(ω)

kn(ω) +mn(ω)
−E(U0)

∣∣∣∣≥ ǫ(ω).(70)

Consider the following decomposition:

∑kn(ω)−1
ℓ=−mn(ω)

Uℓ(ω)

kn(ω) +mn(ω)
=

mn(ω)

kn(ω) +mn(ω)

∑−1
ℓ=−mn(ω)

Uℓ(ω)

mn(ω)
(71)

+
kn(ω)

kn(ω) +mn(ω)

∑kn(ω)−1
ℓ=0 Uℓ(ω)

kn(ω)
.

First, assume that (kn(ω))n∈N is bounded. Since kn(ω) +mn(ω)≥ n, it fol-
lows that mn(ω) tends to infinity, implying that

lim
n→∞

mn(ω)

kn(ω) +mn(ω)
= 1,

(72)

lim
n→∞

kn(ω)

kn(ω) +mn(ω)
= 0,

whereas
∑kn(ω)−1

ℓ=0 Uℓ(ω)/kn(ω) remains bounded. However, since ω ∈Ω2 and
limn→∞mn(ω) =∞,

lim
n→∞

∑−1
ℓ=−mn(ω)

Uℓ(ω)

mn(ω)
= E(U0),

which implies, together with (72), that

lim
n→∞

∑kn(ω)−1
ℓ=−mn(ω)

Uℓ(ω)

kn(ω) +mn(ω)
= E(U0).

This contradicts (70). Using similar arguments one proves that (mn(ω))n∈N
is unbounded as well. Hence, we have proved that neither (kn(ω))n∈N nor
(mn(ω))n∈N are bounded.

Then, by extracting a subsequence if necessary, one may assume that
limn→∞ kn(ω) = limn→∞mn(ω) =∞. Since ω ∈Ω2, this implies that

lim
n→∞

∑−1
ℓ=−mn(ω)

Uℓ(ω)

mn(ω)
= lim

n→∞

∑kn(ω)−1
ℓ=0 Uℓ(ω)

kn(ω)
= E(U0).
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Combining this with (71), we obtain that

lim
n→∞

∑kn(ω)−1
ℓ=−mn(ω)

Uℓ(ω)

kn(ω) +mn(ω)
= E(U0),

which again contradicts (70). Finally, Ωc
1 ∩Ω2 =∅, and since P(Ω2) = 1, we

finally obtain that P(Ω1) = 1. The proof is complete. �

Lemma 19. Let (Uk)k∈Z, (Vk)k∈Z and (Wk)k∈Z be stationary sequences
such that

E(ln+U0)<∞, E(ln+ V0)<∞, E(ln+W0)<∞.

Then for all η and ρ in ]0,1[ such that − lnη > E(ln+ V0) there exist a P-a.s.
finite random variable C and a constant β ∈ ]0,1[ such that for all k ∈ N

∗

and m ∈N, P-a.s.,

ρk+m + ηk+mW−m

(
k−1∏

ℓ=−m

Vℓ

)
Uk ≤Cβk+m.

Proof. See [15], Lemma 6. �
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