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Frame-based Gaussian beam shooting simulation of

back-scattered fields in the presence of a building

E.A. Fnaiech∗ C. Letrou† A. Ginestet‡ G. Beauquet§

Abstract — In the context of ground based Radar or
wireless communications, non line of sight situations
occuring in suburban type built environments are
particularly demanding regarding the accuracy of
field simulations. This communication presents new
developments of the frame-based Gaussian beam
shooting method to address some of the diffraction
problems encountered in the presence of buildings.

The presentation is focused on the problem of
back-scattering by the bottom and the top of a
building, which is addressed through incident beam
selection, image frame and frame redecomposition.
Numerical results obtained with this algorithm are
compared to results obtained with the Parabolic
Equation and with reference results.

1 INTRODUCTION

The Gaussian Beam Shooting (GBS) method is well
suited to 3D field simulations in multi-reflecting
contexts due the paraxial approximation of re-
flected fields, leading to tracking algorithms sim-
ilar to ray-based ones. In the millimetric range,
such “paraxial tracking” GBS algorithms were val-
idated by comparison with experimental results, in
indoor environments [1]. In urban or suburban en-
vironments however, at frequencies of conventional
communication or Radar systems, paraxial Gaus-
sian beam (GB) tracking is unable to account for
diffraction effects with reasonable accuracy. Simu-
lation of diffracted fields in the form of GB sum-
mations (“beam to beam” formulations) is thus a
bottleneck for efficient use of GBS in such contexts.

Only few recent studies have focused on this
problem, leading to different formulations, each
of them specific to the method used to discretize
the radiated and scattered fields into sets of GBs:
empirical sampling and normalisation at arrival
[2], empirical sampling in the angular domain and
frame decomposition along the edge [3], frame de-
composition and frame based truncation of fields
on obstacle surface [4]. The latter approach is used
in this work.
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Section 2 is devoted to an outline of the frame
based GBS algorithm in free space and of parax-
ial Gaussian beam tracking in the presence of re-
flecting surfaces, introducing the image frame con-
cept. Section 3 presents some elements of a specific
“beam selection” algorithm, which allows to know
which beams are incident on a given obstacle, and
recalls the principle of the frame redecomposition
algorithm used to cope with diffraction. Section 4
presents a comparison of results obtained by GBS
over a reflecting ground with Parabolic Equation
simulations and Method of Moments results.

2 FRAME BASED GAUSSIAN BEAM
SHOOTING AND PARAXIAL
TRACKING

In GBS and tracking algorithms, propagated fields
are represented as a superposition of Gaussian
beams (GB), which are launched from the emitting
antenna and transformed through successive inter-
actions with obstacles. The formulation developed
in this work is based on frame decomposition of
source fields: a planar distribution of source fields
is expressed as a weighted sum of Gaussian windows
which form a ”frame”, and radiate each in the form
of a Gaussian beam.

2.1 Frame of Gaussian windows

The frame windows Ψµ(y, z) used to describe a pla-
nar source distribution in the yOz plane are con-
structed as the product of frame windows ψy

m,n(y)
and ψz

p,q(z) in L2(R):

Ψµ(y, z) = ψy

m,n(y)ψz

p,q(z) (1)

where µ = (m,n, p, q) is a composite translation
index in Z4.
The frame windows ψy

m,n(y) are obtained by trans-
lation of a Gaussian function ψ(y) along the spatial
coordinate y and along its spectral counterpart ky:

ψy

m,n(y) = ψ(y −mȳ)eink̄yy (2)

• ȳ and k̄y are respectively the spatial and spec-
tral translation steps, m and n the spatial and
spectral translation indices.



• {ψy
m,n, (m,n) ∈ Z2} is a frame if and only

if ȳk̄y = 2πν, with ν < 1 (ν: oversampling
factor).

• the favorite choice for the translation steps is:
ȳ =
√
νL, k̄y =

√
ν(2π/L) (”balanced” frame).

The same construction is used for the frame along z,
with p, q the spatial and translation indices along z.
In the following, the Gaussian function ψ is taken
as:

ψ(y) =
(√

2/L
) 1

2
e−π( y

L )
2

(3)

2.2 Frame window radiation

Through paraxial asymptotic evaluation of plane
wave spectrum integrals, the fields radiated by the
source field distributions Ψµ(y, z) (either for y or z
component) are put in the form of paraxial Gaus-
sian beams. Let us denote Bα

µ(r) the field radiated
at point r by an α-polarized, α = y, z, frame win-
dow distribution. The paraxial expression of Bα

µ

is:

Bα
µ(r)=Bα

0

√
det Γ−1(0)

det Γ−1(xµ)
exp ik

[
xµ+ 1

2y
t
µΓ(xµ)yµ

]
(4)

with Bα
0 a vector depending on the source polariza-

tion. This expression is analog to that of a geomet-
rical optics ray along the xµ direction, with Γ the

curvature matrix and
√

detΓ−1(0)
detΓ−1(xµ)

the divergence

factor. yµ = (yµ, zµ) is the position vector of the
point r in a plane transverse to the xµ axis.

The difference between geometrical optics rays
and Gaussian beams stems from the fact that Γ is
a real matrix in the first case, a complex one in
the latter. This complex matrix accounts for the
Gaussian decay of fields with increasing distance
from the xµ axis in transverse planes. The xµ axis
is then called the beam axis.

2.3 Frame based GBS

Frames are complete sets hence any of the compo-
nents Eα, α = y, z of a source electric field distri-
bution given in the xOy plane, can be expressed as
a weighted summation of the frame windows:

Eα(y, z) =
∑
µ∈Z4

AαµΨµ(y, z)

with the Aµ complex coefficients called “frame co-
efficients”. These coefficients are not unique, but
can be calculated by projecting the function on a
“dual frame” of functions [5, 6].

The field radiated by an α-polarized field distri-
bution radiating into the x > 0 half-space, is then

obtained as the following GB summation, at a point
located at r (with positive x):

E(r) =
∑
µ∈Z4

Aαµe
i(mnlyκy+pqlzκz)Bα

µ(r)

2.4 Image frame

As is well-known, if a paraxial Gaussian beam is in-
cident on a smooth reflecting surface with its “im-
pact region” entirely on the surface (no significant
field at the surface edge), its transformed field can
be expressed again in the form of a paraxial Gaus-
sian beam [7, 8].

When the reflecting surface is plane, this result
can easily be established by considering the trans-
formation of each plane wave of the incident beam
plane wave spectrum (PWS). Introducing an “im-
age plane” I, symmetric to the source plane S, with
respect to the reflexion plane P , the PWS of the re-
flected field in that plane is of the form:

ẽrI(k
r
yI , k

r
zI ) = RẽiS(kiyS , k

i
zS )

with ẽiS(kiyS , k
i
zS ) the complex vector PWS of the

incident beam in its source plane and R the reflex-
ion operator. Due to the Snell-Descartes law and
to symmetry, and with a convenient choice of the
coordinate systems (OS , ŷS , ẑS) and (OI , ŷI , ẑI) re-
spectively in the source and image planes, the com-
ponents of incident and reflected wave wavevectors
verify: kryI = kiyS , krzI = −kizS and krxI

= kixS
.

For an incident field radiated by a frame window,
ẽiS(kiyS , k

i
zS ) = f(kiyS , k

i
zS )Ψ̃µi(kiyS , k

i
zS ). Hence

the reflected PWS in the image plane is of the form
of a slowly varying vector function (in as much as
the reflexion operator has no pole in the frame win-
dow bandwidth) multiplied by the Gaussian frame

window Ψ̃µr (kryI , k
r
zI ) where µr = (m,n,−p,−q) if

µi = (m,n, p, q).
Defining a frame in the image plane with the

same frame parameters as in the source plane, the
reflected field is obtained by GBS from this plane,
each GB being weighted by the frame coefficient of
the corresponding source frame window.

3 GAUSSIAN BEAM SELECTION AND
DIFFRACTION

3.1 GB selection

Frame based GBS starts from a complete discretiza-
tion of source fields, involving a high number of
frame windows. However the spatial and spectral
localization of Gaussian frame windows, for a given
threshold value, limits the number of launched
beams which reach a region of interest.



To this end, a specific “beam selection” algo-
rithm has been developed, to identify for any source
beam whether or not it impinges on a given plane
rectangular “obstacle” or “observation area”, and
whether it is totally reflected by the obstacle, or
incident on an edge. In the latter case, the incident
beam field is “redecomposed” on a set of frame win-
dows defined in the plane of the obstacle. In this
way, the beam truncation is accounted for, similarly
to what is done in Physical Optics algorithms.

Although the GB radiated by frame windows
are general astigmatic, their fields (above a given
threshold with respect to the beam axis field mag-
nitude) are limited by ellipses with the same axes
orientation in all transverse planes. The orientation
of these axes are derived from the diagonalization
of the beam complex curvature matrix in (4) [9].
The beam limits in the principal planes, containing
these axes, are hyperbola.

Figure 1: GB impact region in the obstacle plane. The
circumscribing parallelogram is derived from the knowl-
edge of the intersection points of the four GB limiting
hyperbolas, PHx1, PHx2, PHy1, PHy2.

The “beam selection” algorithm is based on the
computation of the intersection points of these hy-
perbola with the plane containing the obstacle sur-
face, as illustrated in Fig. 1. Depending on the
number of the intersection points and their posi-
tions, either beams are eliminated (no significant
field in the plane of interest) or their region of im-
pact on the plane is identified. If this region in-
tersects the obstacle surface, the beam field is de-
composed on narrow frame windows in the region
of impact on the surface of the obstacle.

3.2 Frame redecomposition

Instead of calculating the field of all incident beams
partially impinging on the obstacle, summing them
and decomposing them on a local frame of spatially

wide windows, in order to start GBS anew from the
plane of the obstacle, a re-decomposition algorithm
has been proposed. The aim of this algorithm is to
provide more flexibility in the trade-off between ac-
curacy and computational burden. This redecom-
position algorithm consists in two steps:

1. decompose each incident beam field on a frame
of spectrally narrow windows defined in the
plane of the obstacle and sum up the frame
coefficients for all incident beams; the frame
coefficients of frame windows centered outside
of the obstacle are not computed and put to
zero, which provides the truncation effect at
the edge;

2. perform a change of frame, from the narrow
window frame to a wide window frame; the
frame coefficients on the latter are used for
GBS from the plane of the obstacle.

4 NUMERICAL TESTS

A number of test cases are designed to compare re-
sults obtained by GBS, with the Parabolic Wave
Equation (3DPWE) and with the Method of Mo-
ments (MoM) code FEKO. The source is given as
a field distribution in the xOz plane, with linear
polarization along y or z. The distribution is of the
form of a Gaussian frame window Ψµ(y, z), defined
by: L = 7.5λ, ν = 0.16, m = n = 0 (symmetry with
respect to the xOz plane), p = 6, q = 0 or q = −1.
If the xOy plane is considered as the ground, the p
index determines the height h of the source center
above the ground: h = p

√
ν L. In the following, the

frequency is taken equal to 430MHz, a classical fre-
quency used for UHF ground Radar applications.
For L = 10λ, h = 12.5m.

The first test case addresses the problem of prop-
agation above a perfectly reflecting planar ground,
in order to validate the use of an image frame.
The results presented in Figure 2 were obtained
by GBS for the horizontally polarized and tilted
source (q = −1). The frame used to decompose the
source distribution in the yOz plane was defined by
L = 10λ and ν = 0.16. These results appeared to
compare very well with 3DPWE and MoM ones. A
comparison with 3DPWE and MoM results is pre-
sented in Figure 3 along a vertical line in the xOz
plane, at a larger distance of x =1000m, for the hor-
izontally polarized non tilted source (q = 0). The
width L of the frame windows used to discretize the
source had to be increased and was taken equal to
15λ, in order to obtain again results which compare
well with the reference MoM.



Figure 2: Propagation above a perfect metal plane,
computed by GBS: horizontal field component in the
vertical xOz plane.

Figure 3: Propagation above a perfect metal plane,
computed by GBS: comparison of the horizontal field
component along the line y = 0, x = 1000m, com-
puted by GBS, Parabolic Wave Equation (3DPWE)
and Method of Moments (MoM).

A new test case is currently under study, consid-
ering the fields backscattered by the corner between
the ground and the bottom of a wall. Results will
be presented at the conference.

5 CONCLUSION

In this work, the problem of propagation mod-
elling in built environments is addressed with the
tools provided by frame decomposition and Gaus-
sian beam shooting. The combination of beam se-
lection, of image frames and of beam redecompo-
sition is proposed as a flexible tool even when ob-
stacles are not in their respective far field. Test
cases where source fields are incident on the bot-
tom or the top of a building will be presented,
with comparison between Gaussian beam shooting,
Parabolic Wave Equation and Method of Moments
results.
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