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We discuss the Giardinà-Kurchan-Peliti population dynamics method for evaluating large devi-
ations of time averaged quantities in Markov processes [Phys. Rev. Lett. 96, 120603 (2006)].
This method exhibits systematic errors which can be large in some circumstances, particularly for
systems with weak noise, or close to dynamical phase transitions. We show how these errors can
be mitigated by introducing control forces to within the algorithm. These forces are determined by
an iteration-and-feedback scheme, inspired by multicanonical methods in equilibrium sampling. We
demonstrate substantially improved results in a simple model and we discuss potential applications
to more complex systems.

PACS numbers: 05.40.-a, 05.10.-a, 05.70.Ln

Introduction.— In many physical systems, interest-
ing and important behaviour is associated with rare
events – examples include crystal nucleation, slow transi-
tions in biomolecules [1–3], rare transitions in turbulent
flows [4, 5], and extreme events in climate dynamics [6].
Many computational methods for sampling these events
have been proposed and exploited [1, 3, 5, 7–12]. One
family of methods is based around population dynam-
ics [13–18], in which several copies of a system evolve
in parallel: the copies which exhibit the rare behaviour
of interest are copied (or cloned) while other copies are
discarded. The result is that typical copies within the
population dynamics reproduce the desired rare events
in the original system. One such method has recently
been employed to characterise a particular class of rare
events [7, 8], in which time-averaged physical quantities
exhibit large deviations [19, 20] from their typical values
in the large time limit. Studies of such events have re-
vealed new and unexpected features in glass-formers [21],
biomolecules [22–24], non-equilibrium transport [25, 26]
and integrable systems [8]. In this article, we identify a
pitfall that limits the computational efficiency of the pop-
ulation dynamics method, and we show it can be mod-
ified so as to avoid this problem. The issue at stake is
the number of copies of the system that must be consid-
ered in order to obtain accurate results – if very many
copies are required then the method is difficult to apply,
especially if even a single system is complex or contains
many degrees of freedom. In some relevant cases then the
standard population dynamics method requires an expo-
nentially large population to be effective [27]. However,
the method that we propose here, which is inspired by
multicanonical methods in equilibrium systems [28, 29],
can still be effective in these cases. We argue that this
new method will provide a step-change in the complex-
ity of the systems for which large deviation computations
can be performed.

Rare event problem— The rare events that we con-
sider can take place in a variety of models. To illustrate
the method, consider a particle moving in d-dimensions,
whose position x ∈ Rd obeys a Langevin equation

ẋt = F (xt) +B(xt)ξt, (1)

where ξ is a d-dimensional Gaussian white noise of unit
variance, F (x) ∈ Rd a deterministic force, and B(x) a
d × d matrix specifying the action of the noise on the
particle [30]. We use the Itō convention [31] for stochastic
calculus throughout this paper.

We restrict to ergodic systems, and we focus on rare
events in which a time averaged quantity Λ(τ) takes
some non-typical value. Here τ is the long time period
over which the average is taken, and Λ(τ) = Λd(τ) +
Λc(τ) consists of a configurational contribution Λd(τ) =
1
τ

∫ τ
0
λd(xt)dt and a current one Λc(τ) = 1

τ

∫ τ
0
λc(xt)·dxt,

where λd,c are arbitrary functions of the particle position
x. Typical examples of Λ are entropy production [32, 33],
dynamical activity [21, 34], and particle fluxes [35].

In the limit of large τ , ergodicity of the system means
that the observable Λ(τ) is almost surely equal to its typi-
cal value Λ. Our aims are (i) to estimate the (small) prob-
ability of deviations from this value, and (ii) to generate
the rare trajectories that lead to these deviations. This is
an important problem because these non-typical trajec-
tories can exhibit interesting and unusual structures, in-
cluding misfolded proteins [23, 24], stable glass states [21]
and travelling waves in models of particle transport [25].

To achieve these aims, the standard theoretical
route [19, 32] is to introduce a biasing field h, which
controls deviations of Λ(τ) from its typical value.
Specifically, we consider an ensemble of paths X =
(xt)

τ
t=0 with (unnormalised) probability density Ph[X] =

π0(x0) exp
[
−
∫ τ

0
L(xt, ẋt)dt+ hτΛ(τ)

]
, where

L(x, ẋ) = 1
2 [ẋ− F (x)] · κ(x)−1[ẋ− F (x)] (2)
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FIG. 1. (a) Trajectories xa(t) generated by population dy-
namics at fixed total population Nc = 4 for the model system
described in the main text (ε = 1, h = 1). At certain times,
some copies of the system are removed (×) and others are
duplicated (◦). (b) Representative sample paths x̃a(t) for the
distribution Ph[X], derived from those in (a) by keeping only
trajectories surviving up to final time τ = 30.

is a Lagrangian density that describes the (unbiased)
model (1); π0(x) is the initial condition for the trajec-
tories, that can be arbitrary and which we take to be
the stationary probability distribution of the unbiased
model in the numerical examples. Also, κ = BBT where
the notation BT indicates a matrix transpose [36].

Normalised averages with respect to Ph are denoted
by 〈·〉h and we use these averages to characterise the
rare trajectories associated with deviations of Λ(τ)
from Λ, for the model in Eq. (1). We define the
scaled cumulant generating function (CGF): G(h) =
limτ→∞ τ−1 log〈eτhΛ(τ)〉0. In the limit of large τ , the
probability distribution of Λ(τ) satisfies a large deviation
principle, and can be obtained by a Legendre transfor-
mation of G(h) [19, 20]. In the same limit, for a given
deviation Λ from Λ, there exists a bias h?(Λ) for which
〈·〉h?(Λ) is equivalent to a conditional average over trajec-
tories with Λ(τ) = Λ [37].

Population dynamics method – There are several com-
putational methods that allow evaluation of averages
with respect to Ph [7, 11, 12, 38]. In the population
dynamics method [7], one considers Nc copies (or clones)
of the system. These clones evolve independently as a
function of the time t, except that (for h > 0) clones
with small Λ(t) are periodically removed from the system,
while clones with large Λ(t) are duplicated, to maintain
a constant population. The algorithm is described fully
in Supplemental Material (SM) [39]. This method biases
the system towards the rare events of interest. For suf-
ficiently large Nc (and large enough τ), the method pro-
vides accurate estimates of G(h) and it generates sample
paths consistent with the biased distribution Ph.

The operation of the method is illustrated in Fig. 1
for a one-dimensional model of a particle in a quartic
potential. Fig. 1(a) shows four copies of the system that
evolve in time, except that some trajectory segments stop
and others branch, as the cloning operates. Fig. 1(b)
shows four representative trajectories (sample paths) for
the distribution Ph[X], which have been reconstructed
from panel (a), by tracing backwards in time from the

clones that survived up to the final time τ .
Sampling errors within population dynamics – The ac-

curacy of the population dynamics is limited by issues
originating from clone multiplicity, as we now explain.
Consider the distribution

pave(x) = lim
τ→∞

〈
τ−1

∫ τ

0

δ(xt − x)dt
〉
h
, (3)

which indicates the fraction of time spent at position x,
within the biased ensemble. We also define

pend(x) = lim
τ→∞

〈δ(xτ − x)〉h , (4)

which indicates the fraction of trajectories for which the
particle’s final position is x. For the stationary state of
the dynamics (1), which corresponds to h = 0, time-
translational invariance ensures that pave = pend. How-
ever, this is not the case for biased ensembles where
h 6= 0, as illustrated in [7, 40].

The population dynamics method provides estimates
of both pave and pend. Let the position of clone a at
time t be xa(t), with a = 1 . . . Nc. Recalling Fig. 1(a),
note that the functions xa(t) are not continuous in time
and do not represent sample paths for the distribution
Ph[X]. To construct sample paths, which we denote
by x̃a(t), we trace backwards in time from the clones
that survive up to τ , as shown in Fig. 1(b). There
are still Nc paths x̃a, but these overlap, particularly
at early times. The multiplicity ma(t) of x̃a(t) is the
number of its descendants at the final time τ . With
these definitions, one arrives at statistical estimators for
distributions: pend(x) ≈ (1/Nc)

∑Nc
a=1 δ(x − xa(t)), and

pave(x) ≈ (1/Nc)
∑Nc
a=1 δ(x − x̃a(t)) in their stationary

regime [39]. These approximate equalities become exact
in the limit Nc →∞, in which the population dynamics
gives exact results.

From the estimators of pave and pend provided above,
one sees that the typical multiplicity of a clone with po-
sition x is pave(x)/pend(x). If this ratio is large, then
the population dynamics requires many clones, in or-
der to obtain accurate results. To see this, define x∗ =
arg maxx[pave(x)] as the most likely value of x, within
the distribution pave. The population dynamics requires
that the typical multiplicity of a clone with position x∗

should be of order m∗ = pave(x∗)/pend(x∗). This clearly
cannot be achieved unless Nc >∼ m∗, which provides an
estimate of the number of clones required for accurate
results. If this condition is not satisfied, the population
dynamics algorithm suffers from large systematic errors,
which cannot be eliminated by merely running the algo-
rithm several times. We also note that if typical clone
multiplicities ma are large, the number of independent
clones within the population is suppressed by a factor of
order ma, which leads to large statistical (random) errors
in the algorithm.

Controlled dynamics – To resolve this problem, we in-
troduce a “control strategy”, which modifies the original



3

model (1), in order to make the rare events of interest
more likely. (These large deviation problems have dual
representations in terms of optimal control problems [41–
45], which provide a natural interpretation of the method
presented here.) The modified model is

ẋt = F (xt) + w(xt) +B(xt)ξt, (5)

where w(x) is a controlling force which we write as
w(x) = hκλc(x) − κ∇V (x), where V acts as a poten-
tial. Then [39], averages with respect to the biased dis-
tribution Ph can be rewritten as averages with respect
to this modified dynamics, but with a bias on a different
observable Λw, which replaces Λ. That is,

Ph[X] = Pw[X]eV (xτ )−V (x0) (6)

with Pw[X] = π0(x0) exp
[
−
∫ τ

0
Lw(xt, ẋt)dt + hτΛw(τ)

]
,

where Lw is obtained by replacing F 7→ F + w in (2).
Also Λw = 1

τ

∫ τ
0
λw(xt)dt, with λw = λd + 1

h [(F +w/2) ·
κ−1w − 1

2Tr(HV κ)], where HV is a Hessian matrix with
elements (∂2V/∂xi∂xj).

Averages with respect to Pw are denoted by 〈·〉w, and
can be calculated using the population dynamics method
with the modified model (5). Physically, (6) says that
rare events for the system (1) have an alternative char-
acterisation as rare events for the controlled system (5).
More precisely, from (6), the averages 〈·〉h and 〈·〉w are
not equal, but their associated probability distributions
differ only through boundary terms at initial and final
times. For large τ , we focus on properties far from initial
and final times, in which case the averages 〈·〉h and 〈·〉w
are equivalent. This equivalence implies that pave = pwave,
where pwave is defined as in (3) but for the controlled pop-
ulation dynamics. On the other hand, the end-time dis-
tribution pwend for the controlled dynamics differs from its
uncontrolled counterpart as pwend ∝ pende−V (x), as read
from (6) [39]. Thus the control w allows pwend to be varied,
while always keeping pwave constant.

Optimal control – These results apply for any control
force w, but a (unique) optimal choice w∗ can be defined
by the condition pw

∗
ave = pw

∗
end. This choice implies that

λw(x) is independent of x [39], so that there is no cloning
or deletion of clones in the resulting population dynamics
algorithm. The optimally-controlled process [41–45] gen-
erates directly the path measure Ph, up to the corrections
given in (6) [46–50].

Iteration and feedback – Based on these results we now
introduce an iterative strategy for solving the original
rare event problem (see [12] for a similar idea). Starting
with some (non-optimal) control w, and its correspond-
ing potential V , we use population dynamics to generate
sample paths from Pw. From the definition of the opti-
mal force (pw

∗
end = pw

∗
ave) and the relations between pwend,ave

and pend,ave, we obtain

pwend(x)

pwave(x)
eV (x) = eV

∗(x) (7)
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FIG. 2. Distributions pave(x) for the simple model described
in the text, calculated (a) from the standard population dy-
namics method and (b) from the controlled population dy-
namics with iteration-and-feedback. We take ε = 1 and h = 1,
with a various different numbers of clones Nc. The exact dis-
tribution pave(x) is shown as a black line. The convergence
with respect to Nc is improved significantly by the iteration-
and-feedback method.

where V ∗ is the potential V corresponding to the opti-
mal control w∗. Since all terms on the left-hand side
of (7) can be measured from the population dynamics,
this allows an estimate of V ∗, and hence of w∗. The
population dynamics calculation is then repeated, using
this estimated w∗ as the new control w [39]. On itera-
tion of this scheme, one expects that V approaches V ∗,
so Eq. (7) means that pwend converges to pwave. Thus, in
the population dynamics, the typical clone multiplicities
ma(t) decrease as the method is iterated, improving the
sampling problems discussed above. This method, which
generates sample paths from Ph, is similar to multicanon-
ical methods such as Wang-Landau sampling [29] which
generate sample configurations from equilibrium distri-
butions.

Numerical example.—We apply this method to a model
of diffusion in a quartic potential, as introduced in Fig. 1.
That is, F (x) = −x3 and B(x) =

√
2ε, where ε is the

noise strength (or temperature). We take λc = 0 and
λd = x(x + 1). For h < 0 the distribution Ph is con-
centrated on trajectories with small values of λd, which
tend to localise near x ≈ − 1

2 . Here we focus on the case
h > 0, which leads to unusually large values of λd. Those
can be realised either for x > 0 or x < 0 but at large τ
this rare event is almost always realised by trajectories
that have x > 0, as in Fig. 1. This simple problem can
be solved exactly in the zero-noise limit [39].

To implement the iteration-and-feedback method, we
parameterise the control potential as a quartic polyno-
mial V (x) = c1x + c2x

2 + c3x
3 + c4x

4. For the first
iteration of the method we take V = 0. Fig. 2 shows es-
timates of the distribution pave obtained using the origi-
nal cloning method, compared with the results obtained
using three iterations of the control-with-feedback proce-
dure proposed here, for h = 1, ε = 1 and τ = 36000/Nc.
We decrease τ with increasing Nc so we work at fixed
computational cost [51]. Fig. 2 shows that the number of
clones required to obtain convergence to the exact result
is much reduced using the cloning-with-control method.
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FIG. 3. (a) Estimates of G̃(h̃ = 1), as ε is varied. We com-
pare results from the normal population dynamics and from
the control-with-feedback method. The analytical result for
limε→0 G̃(h̃) is shown as a dashed line. The standard method
fails at small ε but the control-with-feedback method con-
verges to the correct value. (b) Number of distinct clones

Ñc(t), comparing the standard and the controlled popula-

tion dynamics. The larger values of Ñc(t) obtained with the
control-with-feedback method lead to smaller statistical un-
certainties in the results.

In the weak-noise limit ε → 0, one can see this advan-
tage more clearly. In this limit, it is natural to consider
a rescaled cumulant generating function G̃(h̃) ≡ εG(h)
with h̃ ≡ hε [52]. Fig. 3(a) shows numerical results for
this function, as ε is reduced. The normal population
dynamics converges very poorly below a certain value of
ε. (The green vertical line shows the value ε for which
pend(x∗) ∼ e−1 [53]). However, the controlled population
dynamics does not fail at small ε because it maintains
pwend ≈ pwave [54].

Finally, we consider statistical errors. Fig. 3(b) shows
the number of distinct clone positions in the population,
Ñc(t). Again, the cloning-with-control method performs
better than the original method, in that it averages over
a larger sample of distinct positions, reducing the statis-
tical errors. The method yields the function G(h), which
specifies the probabilities of rare events; it also generates
sample paths from Ph(X). Finally, the optimal control
provides a simple physical strategy for promoting the rare
events of interest in this illustrative model system.

Outlook – We have shown that the performance of the
population dynamics algorithm for sampling large devi-
ations [7] can be improved by introducing a controlling
force w. Given the optimal choice for this force, the rare
events of interest in large deviation theory can be char-
acterised as typical trajectories of the controlled system.
In complex systems with many degrees of freedom it is
likely that the optimal w cannot be determined exactly,
but even non-optimal controls can still significantly im-
prove both the statistical and the systematic errors as-
sociated with the population dynamics method. (Note
that the results of Fig. 3 used a quartic approximation
to V which do not perfectly capture the optimal con-
trol V ∗ [39].) It is straightforward to improve existing
population dynamics codes to include this approach: we
expect that it will significantly expand the range of sys-
tems for which numerical calculations can be performed,

including open quantum systems [55, 56], or more com-
plex molecular dynamics models than those considered
so far [21, 57].
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I. POPULATION DYNAMICS METHOD

In this section, complementing the sections Population dynamics method and Sampling errors within population
dynamics in the main text, we explain the details of the population dynamics algorithm. We demonstrate that for
large numbers of clones, it converges to the correct results for the simple model discussed in the main text.

A. Algorithm

The population dynamics is a numerical technique designed to evaluate a large deviation function associated to the
cumulant generating function (CGF) of a time-averaged observable Λ(t). The algorithm is constituted of a normal
dynamics sequence, and an elimination-multiplication sequence that is performed at periodic times separated by an
interval ∆T :

1. Generate Nc initial conditions, for example, drawn from the stationary state of the original (h = 0) dynamics.

2. Repeat the following procedure M times. (m is the iteration index representing how many times the procedure
is repeated up to m.)
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(a) Perform the normal dynamics from t = m∆T to (m + 1)∆T . We denote each trajectory by xa(t) (a =
1, 2, ...., Nc). During the simulation, for each realisation, calculate

sa = exp
{
h [(t+ ∆T ) Λ(t+ ∆T )− tΛ(t)]

}
. (S1)

(b) After the simulation of the time interval ∆T , for each trajectory, define an integer number na (a =
1, 2, ..., Nc) by

na =

⌊
sa∑
b sb

Nc + η

⌋
, (S2)

where η is a random number uniformly distributed on [0,1] and b·c denotes the lower integer part. Then,
multiply or eliminate each trajectory according to this number. (E.g. na = 0 means that we kill the
trajectory a. na = 5 means that we prepare 4 other copies of the trajectory a.) If, after this operation, the
total number of trajectories is not equal to Nc, we eliminate or multiply enough copies, chosen randomly
and uniformly, in order to make the total number of trajectories to be Nc.

(c) At the same time, store the value of
∑
b sb and denote it by Sm.

(d) The new ensemble is used as the initial condition of the next time interval.

Finally, the CGF [7] and pend are evaluated as

G(h) ∼ 1

M ∆T

∑

m

logSm. (S3)

and

∫
f(x)pend(x)dx ' 1

Nc

Nc∑

a=1

f(xa(τ))), (S4)

where these formulas are directly obtained from their definitions. For the latter equality, we note that we can improve
the statistics by using the history of xa(t). More precisely, by assuming an “ergodicity property”, we replace f(xa(τ)))
by the corresponding time-average from t = 0 to t = τ : (1/τ)

∫ τ
0
f(xa(t))dt. This improved expression is

∫
f(x)pend(x)dx ' 1

τNc

Nc∑

a=1

∫ τ

0

f(xa(t))dt, (S5)

which means that pend is expressed as the time averaged value (or the stationary value) of empirical distribution of
xa(t) as announced in the section: Sampling errors within population dynamics of the main text.

B. Generating continuous sample paths for the biased dynamics

To complete the description of the population dynamics method, we describe the construction of the continuous
sample paths x̃(t) described in the main text. If we do not require full sample paths but only wish to evaluate the
biased average of an additive observable A(τ) =

∫ τ
0
a(x(t)) dt, a simple method [S1] consists in attaching a value of

the observable A to every trajectory and, at every time step, to update its value and copy/delete it together with
the trajectory. Then, an evaluation of the biased average of A is given by the average of the numerical values of A
attached to every trajectory present at final time.

To obtain full sample paths (and hence distributions such as pave) we analyse the trajectories that survive in the
population dynamics up to time τ , and reconstitute the paths backwards in time. The procedure is as follows: we
first generate the trajectories and then perform a selection of the trajectories based on the conditioning of survival
up to the final time τ . Considering the Nc copies at final time, indexed by 1 ≤ a ≤ Nc, one can follow the ancestors
of every copy. Upon every coalescence observed backwards in time (corresponding to multiplications of clones in the
original forwards simulation), one increments a counter ma(t) by the number of trajectories which have coalesced. At
the end of the procedure, the counters (ma(t))1≤a≤Nc represent, at time t, the number of descendants of a copy a at
final time τ . To avoid multiple counting, one can select at every coalescence a particular branch, and keep track of
Ñc(t) (1 ≤ Ñc(t) ≤ N) indices of independent (or distinct) trajectories instead. In these indices, by an appropriate
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reindexing, one can define the independent sequence of their multiplicities (kã(t))1≤ã≤Ñc(t) and trajectories (yã(t))

(ã = 1, 2, · · · , Ñc(t)). For example, by defining Kã =
∑ã−1
b=1 kb, one has

yã(t) ≡ x̃Kã+1(t) = · · · = x̃Kã+kã(t) (S6)

kã ≡ mKã+1 = · · · = mKã+kã (S7)

for ã = 1, 2, · · · , Ñc(t), and where the (x̃a(t))1≤a≤Nc are the trajectories used in the main text. By using these
trajectories, pave is calculated as

∫
f(x)pave(x)dx ' 1

τNc

∫ τ

0

Ñc(t)∑

ã=1

kã(t)f(yã(t))dt. (S8)

This means that pave is calculated as the time-averaged value (or the stationary value) of the empirical distribution
of x̃a, as announced in the section: Sampling errors within population dynamics of the main text [8].

C. Numerical example

To verify the accuracy of this method, we consider a particle moving in a quartic potential as described in the main
text. (That is, d = 1, F (x) = −x3, B(x) =

√
ε, λd(x) = λ(x) ≡ x2 + x, and λc(x) = 0.) We estimate pave and

pend from this method and show them in Fig.S1. In the same figure, we also plot the numerically exact distributions,
obtained by numerical solution of a modified Fokker-Planck equation (see [S2] and Section II B below). The population
dynamics converges to the exact result as Nc is increased.

We also show the (continuous) trajectories (yã(t)) (ã = 1, 2, · · · , Ñc(t)) generated with this method in Fig.S2.(b)

and the numerical evaluation of Ñc(t) in Fig.S3. We note that the independent number of copies Ñc(t) decreases as
t decreases to 0.

II. DERIVATION OF THE RATIO OF PATH PROBABILITY DENSITY (6)

In this section, complementing the sections Controlled dynamics and Optimal control in the main text, we derive
the relation between Ph[X] and Pw[X] [eq.(6) in the main text]. We show the derivation in two ways, one based on
path probability densities (stochastic differential equations) and the other on Fokker-Plank equations.

A. Derivation using path probability density

We denote by X = (x(t))0≤t≤τ the trajectories. From the definitions of Ph[X] and Pw[X], we have

Pw[X]e−hτΛw(τ)

Ph[X]e−hτΛ(τ)
= exp

[∫ τ

0

(ẋ− F ) · κ−1wdt− 1

2

∫ τ

0

w · κ−1wdt

]
(S9)

The integrand on the right-hand side is written as

(ẋ− F ) · κ−1w − 1

2
w · κ−1w = ẋ · (−∇V + hλc)−

(
F +

1

2
w

)
· κ−1w, (S10)

where we have used the expression of w(x) as given in the main text (w(x) = κ [−∇V (x) + hλc(x)]). We then consider
the integral of the first term on the right hand side:

∫ τ

0

ẋ · (−∇V ) dt. (S11)

Since the trajectory X is generated from the stochastic differential equation (5) and we use the Itō convention, the
time-derivative of V (x(t)) is given by Itō’s formula

d

dt
V = ẋ · ∇V +

1

2
Tr
[
BTHVB

]
. (S12)
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(a) pend(x) for h = −1
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(b) pend(x) for h = 1
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(c) pave(x) for h = −1
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(d) pave(x) for h = 1

FIG. S1: (a), (b) pend(x) calculated from population dynamics method. The numerically exact result is plotted as a black
line. (c), (d) pave(x) calculated from the population dynamics method, together with the numerically exact result. We set
ε = 1 for time interval τ = 30. We repeat the simulation 1200/Nc times and the result is the average of them. We can see the
convergence of the results of population dynamics to the analytical ones.

Here HV is a Hessian matrix defined as (HV )i,j = ∂V
∂xi∂xj

. From (S12), (S11) becomes

∫ τ

0

ẋ · (−∇V ) dt = −V (x(τ)) + V (x(0)) +

∫ τ

0

1

2
Tr
[
BTHVB

]
dt. (S13)

Thus, from (S9), (S10) and (S13), we get

Pw[X]e−hτΛw(τ)

Ph[X]e−hτΛ(τ)
= e−V (x(τ))+V (x(0)) exp

{∫ τ

0

[
1

2
Tr
[
BTHVB

]
+ hẋ · λc −

(
F +

w

2

)
· κ−1w

]
dt

}
(S14)

Finally, by noticing Tr
[
BTHVB

]
= Tr [HV κ] and using the definitions of Λw and Λ, the right hand side is

e−V (x(τ))+V (x(0))ehτΛ(τ)−hτΛw(τ). Hence one arrives immediately at Eq. (6) of the main text.

B. Derivation using time-evolution operator

An alternative derivation of (6) is obtained by using a ‘tilted’ generator (or master operator) for the biased ensemble
of trajectories. Let uh(x, τ) be the (unnormalised) probability density at time τ , obtained as a marginal of the path
distribution Ph. As discussed, for example, in Appendix A.2 of [S3], this distribution evolves in time according to a
generalised Feynman-Kac formula as

∂

∂τ
uh = Lh[uh], (S15)
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method
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ones from subfigure (a)

FIG. S2: (a) The trajectories generated by population dynamics method. We set d = 1, A(x) = −x3, B(x) =
√
ε, λ(x) = x2+x,

and h = ε = 1. The whole simulation time τ is 30, ∆T is set to be 0.05. The time step for solving the Langevin equation
is 0.001. The number of copies Nc is 4. We mark × when the trajectory is eliminated, and ◦ when it is multiplied. (b)
Time-reversed trajectories generated from (a): From the trajectories shown in (a), we follow the procedure described in Section
I B, and generate (b).
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FIG. S3: The number of independent trajectories Ñc(t) obtained from the time-reversed method explained in Section I B for
h = −1 (blue lines) and h = 1 (red lines). The line type corresponds to the value of thermal noise: ε = 1 (solid line) and ε = 0.1
(dashed line). We performed the population dynamics with Nc = 20, τ = 30, and estimated the number of the trajectories

Ñc(t). We repeat this measurement 60 times, and the result plotted on the figure is the average of those. We observe that

Ñc(t) decreases very rapidly as t decreases to 0, especially for h = 1 with ε = 0.1.

with

Lh[f ] ≡ LFFP[f ] + h (λd + λc · F ) f +
h2

2
(λc · κλc) f − h∇ · (κλcf) . (S16)

Here, the Fokker-Planck operator LFFP is

LFFP[f ] = −∇ · [Ff ] +
1

2

∑

i,j

∂2

∂xi∂xj
κijf, (S17)

where the superscript F on LFFP indicates that the particle feels the physical force F introduced in the main text
equation (1). Note that pend is the eigenvector (normalised as probability) of the tilted Fokker-Planck operator Lh
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associated to the eigenvalue G(h): Lh[pend] = G(h) pend. The distribution pave is obtained from the eigenvector q of
the tilted backward Fokker-Planck operator, defined as (Lh)†[q] = G(h) q, multiplied by pend: one has pave = q pend [9].

Considering now the controlled population dynamics, the analogue of uh is uw(x, τ), which evolves as ∂
∂τ u

w =
Lw[uw], with

Lw[f ] ≡ LF+w
FP [f ] + hλwf. (S18)

The relation (6) of the main text follows from a duality relation between Lh and Lw. To be precise,

Lh[f ] = eV Lw[fe−V ]. (S19)

This relation may be verified directly from (S16,S18), noting that the potential V is related to the control w via the

definition w = hκλc − κ∇V . From (S15) we note that the operator Uhτ = eτL
h

corresponds to integration forward in
time over a duration τ . Similarly Uwτ = eτL

w

, and from (S19) we have Uhτ [f ] = eV Uwτ [fe−V ]. Setting f(x) = δ(x−x0),
then uh(x, τ |x0, 0) = Uhτ [f ] is the (unnormalised) probability density at x, for a particle that was at x0 a time τ earlier.
Defining similarly uw(x, τ |x0, 0), (S19) implies

uh(x, τ |x0, 0) = eV (x)uw(x, τ |x0, 0)e−V (x0). (S20)

Hence one arrives at (6) of the main text.
This operator approach also allows to see why the control force w does not affect the intermediate-time distribution.

One notes that Lw[pwend] = G(h) pwend (the eigenvalue being G(h) as seen from (S19)) and that pwave = qw pwend where
(Lw)†[qw] = G(h) qw. The relation (S19) also provides the connection between the controlled eigenvectors and the
original ones at w = 0: one has pwend = e−V pend and qw = eV q. This implies as announced in the main text that
pwave = qw pwend = pave. The end-time distribution pwend is on the contrary affected by the control force w.

In the special case where w is given by the optimal control w∗ (that is defined as the control w satisfying the
condition pwave = pwend in the main text), one can show that the controlled system is described by the auxiliary
process [S4] (or the “driven process” [S3]), which is a Markov process whose path probability density is equivalent to
Ph in its stationary regime. (Indeed, pw

∗
ave = pw

∗
end implies qw

∗
= 1, which expresses that Lw

∗
conserves probability.)

In this case one has [S3]

e−V Lh[feV ] = LF+w∗

FP [f ] +G(h)f, (S21)

where G(h) is a constant (independent of x): this is the cumulant generating function. Comparing with (S19) one
sees that λw

∗
(x) is independent of x, from which it follows that the population dynamics in this case has no cloning

or deletion of clones (this property is true for all finite Nc: all clones have equal weights at all times).

III. AN ALGORITHM FOR POPULATION DYNAMICS WITH A FEEDBACK CONTROL

Here, in order to complement the section Iteration and feedback in the main text, we explain the algorithm of the
feedback population dynamics. As explained in the main text, the procedure is a combination of the population
dynamics and an iterative measurement of the modifying potential V (x).

1. Generate Nc initial conditions, for example, drawn from the stationary distribution of the original (unbiased)
system. V (x) is set to be 0 at the beginning.

2. Repeat the following feedback procedure R times. (r is the index representing how many times the procedure
will be performed (r = 0 · · ·R − 1)). (We denote by V r(x) the modifying potential V (x) during the r-th loop.
For example, V 0(x) = 0.)

(a) For a fixed time interval τ (which is sufficiently long compared with the correlation time of the observable
λd,c), the population dynamics is performed as explained in section I. From the result, we obtain the

trajectories (xVa (t))Nca=0 (t ∈ [0, τ ]) and also the ones that have survived on [0, τ ] (yVa (t))
Ñc(t)
a=1 (t ∈ [0, τ ])

with their multiplicity (kVa (t))
Ñc(t)
a=1 (t ∈ [0, τ ]), which are generated from the time-reversing method in

section I B.

(b) Then, we start from the final condition of xVa (t) and perform another population dynamics. This allows

us to have again the trajectories (xVa (t))Nca=0 (t ∈ [τ, 2τ ]) and also the ones that have survived at time 2τ

(yVa (t))
Ñc(t)
a=1 (t ∈ [τ, 2τ ]) with multiplicity (kVa (t))

Ñc(t)
a=1 (t ∈ [τ, 2τ ]).
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(c) Repeat this procedure M times. We finally have trajectories (xVa (t))Nca=0 (t ∈ [0,Mτ ]) and also the trajec-

tories (yVa (t))
Ñc(t)
a=1 (t ∈ [0,Mτ ]) with their multiplicity (kVa (t))

Ñc(t)
a=1 (t ∈ [0,Mτ ]).

(d) From these trajectories, we evaluate pwend(x) and pwave(x) by

pwend(x) ∼ 1

MτNc

Nc∑

a=1

∫ Mτ

0

δ(xVa (t)− x)dt. (S22)

pwave(x) ∼ 1

M(τ − tend)Nc

M−1∑

m=0

∫ (m+1)τ−tend

mτ

Ñc(t)∑

a=1

kVa (t)δ(yVa (t)− x)dt. (S23)

The reason why, in pwave(x), we set the upper bound of integration to (r+ 1)τ − tend is to avoid a transient
regime: By setting tend to be much larger than a correlation time, one can make the statistics of the result
to be better. (We note that if τ is sufficiently large, this setting is not necessary.)

(e) Finally, from these distribution functions, V r+1(x) is given as [10]

V r+1(x) = V r(x)− [log pwave(x)− log pwend(x)] , (S24)

which corresponds to (7) in the main text.

3. Go to the next loop of r with the new modifying potential V r+1(x). The initial condition is set to be the final
value of xVa (Mτ) in the previous population dynamics method.

We note that the first loop of the feedback (loop r = 0) corresponds to the normal population dynamics method.
As the number of the repetition with respect to r becomes larger, the control potential V gets close to its optimal
control form.

IV. LANGEVIN SYSTEM WITH QUARTIC POTENTIAL

In this final section, in order to complement the sections Numerical example and Outlook in the main text, we
explain the property of the system we considered there: the parameters are given by d = 1, F (x) = −x3, B(x) =

√
2ε,

λd(x) = λ(x) ≡ x+x2 and λc(x) = 0. We focus on the small-noise limit ε→ 0. Throughout this section, h corresponds

to h̃ in the main text (see below).
The main features of the limit ε→ 0 are

• The distribution pave(x) concentrates on a point xave that is a root of the polynomial

3x5 − 4hx− 2h = 0.

This function is sketched in Fig. S4. For h > 0, the concentration is at the positive root (xave > 0); for h = 0
one has xave = 0. For negative h, the point xave decreases quickly from zero and localises at xave ≈ 1

2 .

• There is a second-order dynamical phase transition at h = 0, which appears as divergence of the second derivative
of the dynamical free energy, G′′(h) (see Fig. S5, below).

• The distribution pend(x) concentrates on a point xend, with xend 6= xave in general. This leads to poor convergence
of the population dynamics method for small ε, as discussed in the main text.

• Even though the system is simple, the analytical expressions of pave and pend are not straightforward. In
particular, the perfect potential V ∗(x) corresponding to w∗(x) is not expressed exactly as the quartic polynomial
expansion used to perform a numerical evaluation of w(x) – however, as described in the main text, this does
not affect the effectiveness of the numerical procedure.

Below, relying on the Euler-Lagrange equation, we derive the analytical results of G(h), pave and pend in ε→ 0, from
which these features are obtained.
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FIG. S4: Plots of the polynomial 3x5−4hx−2h for several h. The roots of this polynomial determine the concentration points
of pave(x) for ε→ 0 in the model system considered below.

A. Euler-Lagrange equation (Instanton equation)

We consider the following finite time cumulant generating function:

Gτ,ε(h) =
ε

τ
log
〈

e(τ/ε)hΛ(τ)
〉

st
, (S25)

where 〈 〉st means the average with respect to the path with a stationary initial condition. (Hereafter, we denote this

initial distribution function by Pst(x).) The function Gε(h) ≡ limτ→∞Gτ,ε(h) corresponds to G̃(h̃) in the main text.
By taking ε→ 0, we obtain the following variational principle:

lim
ε→0

Gτ,ε(h) = −1

τ
min
x0,xτ


 min

(x(t))τt=0
x(0)=x0,x(τ)=xτ

∫ τ

0

L(ẋ(t), x(t))dt+ Ffree(x0)


 , (S26)

with the Lagrangian L(ẋ, x) defined as

L(ẋ, x) ≡ 1

4
(ẋ− F (x))

2 − hλ(x), (S27)

and also the free energy function Ffree(x0) defined as

Ffree(x0) ≡ − lim
ε→0

ε logPst(x0) =
1

4
x4

0 + const. (S28)

Then, the corresponding Euler-Lagrange equation (Hamilton equation), which is obtained from minimising this action,
is

ẋ = −x3 + 2p (S29)

ṗ = 3px2 − h(2x+ 1), (S30)

with the required initial and the final conditions as

p(0) =
∂Ffree(x)

∂x

∣∣∣∣
t=0

= x(0)3 (S31)

p(τ) = 0. (S32)

We analyse these equations numerically and analytically in [S5]. The following results are based on that study.
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B. Steady solutions

Here, we consider the steady solutions of these instantons, which is defined as the solution obtained from ẋst =
ṗst = 0 in (S29) and (S30). These conditions lead to

pst =
1

2
x3

st (S33)

and

3x5
st − 4hxst − 2h = 0. (S34)

We plot the left-hand side of (S34) as a function of x in Fig.S4 for several fixed h. The figure shows that this equation
has three solutions, when h is larger than a certain value (larger than 0).

C. Cumulant generating function

From the variational principle (S26), even in the case where there are multiple instanton solutions, the cumulant
generating function can be calculated. This is based on the observation that the instanton solution corresponding to
the minimum is time-independent [11]. More precisely, by combining this observation with the variational principle
(S26), we get

lim
ε→0

Gε(h) = max
xst

Gst(xst), (S35)

with

Gst(xst) ≡ −
1

4
x6

st + h
(
x2

st + xst

)
. (S36)

We plot the ε → 0 result, limε→0Gε(h), in Fig.S5, from which we can see that the generating function has a kink
at the origin, which is the sign of the dynamical phase transition in this system, appearing in the zero-temperature
limit [12].

- 1.0 - 0.8 - 0.6 - 0.4 - 0.2 0.0 0.2 0.4

0.0

0.1

0.2

0.3

0.4

0.5

h

lim
ϵ→

0
G
ϵ(
h)

- 1.0 - 0.8 - 0.6 - 0.4 - 0.2 0.0 0.2 0.4
- 5

0

5

10

15

20

h

lim
ϵ→

0
G
ϵ'' (
h)

FIG. S5: Generating function limε→0Gε(h) as a function of h, as obtained from (S35-S36). We can see that there is a singularity
at h = 0 representing a second-order dynamical phase transition, as illustrated on the inset by the divergence in h = 0 of the
second derivative.

D. Analytical expressions of pend(x) and pave(x) in ε→ 0

Finally, we write the explicit analytical expressions of pend(x) and pave(x) in the ε→ 0 limit. We consider the biased
(unnormalised) probability density uh introduced in the beginning of Section II B. We also consider the same function
but with fixed initial condition uh(x, τ |x0, τ). By using these function, we introduced two logarithmic functions defined
as

WF(x, t) ≡ ε log uh(x, t), (S37)
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WB(x, t) ≡ ε log

∫
uh(y, t|x, 0)dy. (S38)

From the generalised Feynman-Kac formula (S15), we obtain the time evolution equation for them as

∂

∂t
WF(x, t) = −ε ∂

∂x
F (x)− F (x)

∂

∂x
WF(x, t) + ε

(
∂

∂x

)2

WF(x, t) +

(
∂

∂x
WF(x, t)

)2

+ hλ(x). (S39)

and

∂

∂t
WB(x, t) = F (x)

∂

∂x
WB(x, t) + ε

(
∂

∂x

)2

WB(x, t) +

(
∂

∂x
WB(x, t)

)2

+ hλ(x). (S40)

These equations can be solved in ε = 0 with t large asymptotics. Indeed, by setting WF(x, t) = tG(h) + WF(x) and
WB(x, τ − t) = (τ − t)G(h) + WB(x) with G(h) ≡ limε→0Gε(h) in these expressions, we obtain the equations to
determine WF(x) and WB(x) as

∂WF(x)

∂x
=

1

2

[
F (x) + Ch(x)

√
F (x)2 − 4hλ(x)−min

y
[F (y)2 − 4hλ(y)]

]
, (S41)

and

∂WB(x)

∂x
=

1

2

[
−F (x) + Ch(x)

√
F (x)2 − 4hλ(x)−min

y
[F (y)2 − 4hλ(y)]

]
. (S42)

with

Ch(x) = 1 (x < xmin), (S43)

Ch(x) = −1 (x > xmin), (S44)

where

xmin ≡ Argminx
[
F (x)2 − 4hλ(x)

]
. (S45)

Equations (S41) and (S42) are the key result in this subsection. From them, we indeed get

pend(x) ∼ exp

[
(1/ε)

∫ x 1

2

[
F (y) + Ch(y)

√
F (y)2 − 4hλ(y)−min

z
[F (z)2 − 4hλ(z)]

]
dy

]
(S46)

and

pave(x) ∼ exp

[
(1/ε)

∫ x

Ch(y)
√
F (y)2 − 4hλ(y)−min

z
[F (z)2 − 4hλ(z)] dy

]
. (S47)

Also from the same equations, we get the most probable x in pend(x) and pave(x) with ε → 0. We denote them by
xend and xave, respectively. Then, from (S46) and (S47), we find that these values satisfy

xave = Argmaxxst
Gst(xst) (S48)

where Gst(h) is defined in (S35), and

F (xave)2

4h
= λ(xave)− λ(xend). (S49)

Since F (xave)2

4h 6= 0, xave and xend are different from each other. In other words, pave and pend concentrate on different
values of their argument in the ε→∞ limit, as announced in the main text.

For checking the validity of the obtained expressions, we numerically solve the equations (S39) and (S40) during a
sufficiently large time interval t. We set h = 1 (Fig.S6(a) and Fig.S6(c)) and h = −1 (Fig.S6(b) and Fig.S6(d)). The
different colours represent the different values of ε: yellow, blue, red lines correspond to ε = 1, 0.5, 0.1, respectively. In
the same figure, we plot the analytical lines (S41) and (S42), with Ch = 1 (for all x) (black solid line) and Ch = −1
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FIG. S6: The functions ∂WF(x, t)/∂x and ∂WB(x, t)/∂x obtained in the large t limit by solving numerically (S39) and (S40)
[coloured solid lines]. We set h = 1 ((a) and (c)) and h = −1 ((b) and (d)). The colours correspond different values of ε:
yellow, blue and red lines correspond to ε = 1, 0.5, 0.1, respectively. To illustrate the determination of the ± sign of Ch in the
analytical results (S41) and (S42), we also plot on each subfigure those results with the choice of Ch = 1 (for all x) as black
solid lines and the choice of Ch = −1 (for all x) as black dashed lines. As the noise goes to zero, we observe the convergence of
the functions ∂WF(x, t)/∂x and ∂WB(x, t)/∂x determined numerically at large t towards the analytical line (S41) and (S42),
where the + sign in ± is taken for x < xmin and the − sign is taken for x > xmin.

(for all x) (black dashed line). We can see the convergence of the numerical lines (with decreasing ε) towards the
analytical lines (S41) and (S42), where + sign is chosen for x < xmin and − sign is chosen for x > xmin.
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