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Université Pierre et Marie Curie

4 place Jussieu
75005 Paris, France

Abstract

We consider a problem arising in the context of industrial production plan-
ning, namely the multi-product discrete lot-sizing and scheduling problem
with sequence-dependent changeover costs. We aim at developing an exact
solution approach based on a Cut & Branch procedure for this combina-
torial optimization problem. To achieve this, we propose a new family of
multi-product valid inequalities which corresponds to taking into account
the conflicts between different products simultaneously requiring production
on the resource. We then present both an exact and a heuristic separation
algorithm which form the basis of a cutting-plane generation algorithm. We
finally discuss computational results which confirm the practical usefulness
of the proposed inequalities at strengthening the MILP formulation and at
reducing the overall computation time.

Keywords: production planning, discrete lot-sizing problem, mixed-integer
linear programming, valid inequalities
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1. Introduction

We consider an optimization problem arising in the context of industrial
production planning, namely a lot-sizing problem. Lot-sizing arises in pro-
duction planning whenever changeover operations such as preheating, tool
changing or cleaning are required between production runs of different prod-
ucts on a machine. The amount of the related changeover costs usually does
not depend on the number of products processed after the changeover. Thus,
to minimize changeover costs, production should be run using large lot sizes.
However, this generates inventory holding costs as the production cannot
be synchronized with the actual demand pattern: products must be held in
inventory between the time they are produced and the time they are used
to satisfy customer demand. The objective of lot-sizing is thus to reach the
best possible trade-off between changeover and inventory holding costs while
taking into account both the customer demand satisfaction and the technical
limitations of the production system.

An early attempt at modelling this trade-off can be found in [19] for the
problem of planning production for a single product on a single resource with
an unlimited production capacity. Since this seminal work, a large part of the
research on lot-sizing problems has focused on modelling operational aspects
in more detail to answer the growing industry need to solve more realistic
and complex production planning problems. An overview of recent develop-
ments in the field of modelling industrial extensions of lot-sizing problems is
provided in [11].

In the present paper, we focus on one of the variants of lot-sizing prob-
lems mentioned in [11], namely the multi-product single-resource discrete
lot-sizing and scheduling problem or DLSP. As defined in [7, 11], several
key assumptions are used in the DLSP to model the production planning
problem:

• A set of products is to be produced on a single capacitated production
resource.

• A finite time horizon subdivided into discrete periods is used to plan
production.

• Demand for products is time-varying (i.e. dynamic) and deterministi-
cally known.
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• At most one product can be produced per period (small bucket model)
and the facility processes either one product at full capacity or is com-
pletely idle (discrete or all-or-nothing production policy).

• Costs to be minimized are the inventory holding costs and the changeover
costs.

In the DLSP, it is assumed that a changeover between two production
runs for different products results in a changeover cost. Changeover costs
can depend either on the next product only (sequence-independent case) or
on the sequence of products (sequence-dependent case). We consider in the
present paper the DLSP with sequence-dependent changeover costs (denoted
DLSPSD in the sequel). Sequence-dependent changeover costs are mentioned
in [11] as one of the relevant operational aspects to be incorporated into lot-
sizing models. Moreover, a significant number of real-life lot-sizing problems
involving sequence-dependent changeover costs have been recently reported
in the academic literature: see for instance [4] for an injection moulding
process, [17] for a textile fibre industry or [6] for soft drink production.

A wide variety of solution techniques from the Operations Research field
have been proposed to solve lot-sizing problems: the reader is referred to
[3, 10] for recent reviews on the corresponding literature. The present paper
belongs to the line of research dealing with exact solution approaches, i.e.
aiming at providing guaranteed optimal solutions to the problem. A large
amount of existing solution techniques in this area consists in formulating
the problem as a mixed-integer linear program (MILP) and in relying on a
Branch & Bound type procedure to solve the obtained MILP. However the
computational efficiency of such a procedure strongly depends on the quality
of the lower bounds used to evaluate the nodes of the search tree. In the
present paper, we seek to improve the quality of these lower bounds so as
to decrease the total computation time needed to obtain guaranteed optimal
solutions.

Within the last thirty years, much research has been devoted to the
polyhedral study of lot-sizing problems in order to obtain tight linear re-
laxations and improve the corresponding lower bounds: see e.g. [15] for a
general overview of the related literature. In particular, valid inequalities
which reduce the volume of the linear relaxation solution space by cutting
off irrelevant parts have been proposed for several variants. Inequalities to
strengthen the Capacitated Lot Sizing Problem (CLSP) are thus proposed
in [1, 13, 14]. Contributions focusing specifically on the Discrete Lot Sizing
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Problem (DLSP) can be found in [2, 5, 8, 18]. However, the known inequal-
ities mainly exploit the underlying single-product subproblems and thus fail
at capturing the conflicts between multiple products sharing the same resource
capacity. This leads in some cases to significant residual integrality gaps for
multi-product instances. In the present paper, we propose a new family of
multi-product multi-period inequalities which enables us to partially remedy
this difficulty for the DLSPSD. We then discuss both an exact and a heuristic
algorithm to solve the corresponding separation problem. To the best of our
knowledge, this is one of the first attempts at proposing multi-product valid
inequalities for discrete lot-sizing problems.

The main contributions of the present paper are thus twofold. First we
introduce a new family of valid inequalities representing conflicts on multi-
period time intervals between several products simultaneously requiring pro-
duction on the available resource. Second we formulate the corresponding
separation problem as a quadratic binary program and propose to solve it ei-
ther exactly by relying on a quadratic programming solver or approximately
through a variable depth search heuristic algorithm of Kernighan-Lin type
(see [12]). The results of our computational results show that the proposed
inequalities are efficient at strengthening the linear relaxation of the problem
and at decreasing the overall computation time needed to obtain guaranteed
optimal solutions of the DLSPSD.

The remainder of the paper is organized as follows. In Section 2, we recall
the initial MILP formulation of the multi-product DSLPSD as well as the
previously published inequalities for the underlying single-product subprob-
lems. We then present in Section 3 the proposed multi-product inequalities
and discuss in Section 4 both an exact and a heuristic algorithm to solve
the corresponding separation problem. Computational results are provided
in Section 5.

2. MILP formulation of the DLSPSD

In this section, we first recall the initial MILP formulation of the DL-
SPSD. We use the network flow representation of changeovers between prod-
ucts, which was discussed among others in [2], as this leads to a tighter linear
relaxation of the problem. We then present the inequalities proposed in [18]
to strengthen the underlying single-product subproblems.
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2.1. Initial MILP formulation

We wish to plan production for a set of products denoted p = 1...P to be
processed on a single production machine over a planning horizon involving
T periods indexed t = 1...T . Product p = 0 represents the idle state of
the machine and period t = 0 is used to describe the initial state of the
production system.

Production capacity is assumed to be constant throughout the planning
horizon. We can thus w.l.o.g. normalize the production capacity to one unit
per period and apply a pretreatment on the original demand matrix resulting
in a demand matrix containing only binary numbers (see [2, 7, 9]). We denote
dpt the demand for product p in period t: dpt = 1 in case there is a demand for
product p in period t corresponding to producing p at full capacity in a period,
dpt = 0 otherwise. Futhermore, we denote hp the inventory holding cost per
unit per period for product p and Spq the sequence-dependent changeover cost
to be incurred whenever the resource setup state is changed from product p
to product q.

Using this notation, the DLSPSD can be seen as the problem of assigning
at most one product to each period of the planning horizon while ensuring
demand satisfaction and minimizing both inventory and changeover costs.
We thus introduce the following binary decision variables:

• ypt where ypt = 1 if product p is assigned to period t, 0 otherwise.

• wpqt where wpqt = 1 if there is a changeover from product p to product
q at the beginning of t, 0 otherwise.

This leads to the following MILP formulation denoted DLSPSD0 for the
problem.

Z∗ = min
P∑
p=1

T∑
t=1

hp

t∑
τ=1

(ypτ − dpτ ) +
P∑

p,q=0

Sp,q

T−1∑
t=1

wp,q,t (1)

t∑
τ=1

ypτ ≥
t∑

τ=1

dpτ ∀p,∀t (2)

P∑
p=0

ypt = 1, ∀t (3)

yp,t =
P∑
q=0

wq,p,t ∀p,∀t (4)
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yp,t =
P∑
q=0

wp,q,t+1 ∀p,∀t (5)

ypt ∈ {0, 1} ∀p,∀t (6)

wp,q,t ∈ {0, 1} ∀p,∀q,∀t (7)

The objective function (1) corresponds to the minimization of the inven-
tory holding and changeover costs over the planning horizon.

∑t
τ=1(ypτ−dpτ )

is the inventory level of product p at the end of period t. Constraints (2)
impose that the cumulated demand over interval [1, t] is satisfied by the
cumulated production over the same time interval. Constraints (3) ensure
that, in each period, the resource is either producing a single product or idle.
Constraints (4)-(5) link setup variables ypt with changeover variables wpqt
through equalities which can be seen as flow conservation constraints in a
network (see e.g. [2]). They ensure that in case product p is setup in period
t, there is a changeover from another product q (possible q = p) to product
p at the beginning of period t and a changeover from product p to another
product q (possible q = p) at the end of period t.

2.2. Single-product valid inequalities

We now recall the expression of the inequalities proposed by [18] for the
single product DLSP. We denote Dp,t,τ the cumulated demand for product p
in the interval {t, ..., τ} and ∆p,v the vth positive demand period for product
p. ∆p,Dp,1,t+v is thus the period in which the vth positive unit demand for
product p after period t occurs.

t∑
τ=1

(ypτ − dpτ ) ≥ u−
u∑
v=1

[
yp,t+v +

∆p,dp,1,t+v∑
τ=t+v+1

∑
q 6=p

wq,p,τ

]
∀p, ∀t, ∀u ∈ [1, Dp,t+1,T ]

(8)

The idea underlying constraints (8) is to compute a lower bound on the
inventory level of a product p at the end of a period t (

∑t
τ=1(ypτ − dpτ )) by

considering both the demands and the resource setup states for this product
in the forthcoming periods τ = t+1...∆p,Dp,1,t+u. The reader is refered to [18]
for a full proof of validity for these inequalities. In the computation experi-
ments to be presented in Section 5, we use a standard cutting-plane gener-
ation algorithm to strengthen the formulation DLSPSD0 by adding violated
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inequalities of family (8). Since in practice the number of such inequalities is
limited, the separation in this case is efficiently performed by enumeration.
The resulting improved formulation is denoted DLSPSD1.

Constraints (8) can be understood as a way to strengthen the demand
satisfaction constraints (2) by expressing in a more detailed way the need
for each individual product to access the resource in order to satisfy its
own demand on a given subinterval of the planning horizon. However, in
the resulting DLSPSD1 formulation, the conflicts between different products
simultaneously requiring production on the resource will only be handled by
the single-period capacity constraints (3). In what follows, we propose to
improve this representation of the conflicts between products by considering
multi-period multi-product inequalities.

3. Multi-product valid inequalities for the DLSPSD

We now present the multi-period multi-product valid inequalities pro-
posed to strengthen the linear relaxation of the DLSPSD.

3.1. General expression of the multi-product inequalities

As stated above, the proposed inequalities aim at improving the repre-
sentation of the interactions between the products competing for the scarce
capacity of the production resource. In formulation DSLPSD1, these in-
teractions are only managed on a period by period basis via the capacity
constraints (3). On the contrary, the proposed inequalities consider this
competition on a multi-period time interval denoted [1, θ] in what follows.
More precisely, the competition is expressed as an opposition between two
disjoint subsets of products denoted SP and SD. The product set SP cor-
responds to products for which production in period t ∈ [1, θ] is considered
and that may consequently take up the resource capacity in this period. If
this is to happen, the products of the other set, SD, will not have access to
the resource in period t and will loose the corresponding production capacity.
The purpose of inequalities (9) below is to manage this opposition by stating
that, if one of the products in SP is assigned for production in t, then we
should make sure that the cumulated demand over interval [1, θ] for the prod-
ucts in the other set SD will fit in the remaining production capacity. The
right hand side of inequalities (9) computes a tight upper bound

∑θ
τ=1 C̃τ of

this production capacity: C̃τ represents an upper bound of Cτ , the capacity
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avaible in period τ ∈ [1, θ] for the products in SD in case period t is devoted
to the production of one of the products in SP .

Proposition 1.
Let SP ⊂ {0...P} and SD ⊂ {0...P} be two disjoint subsets of products.
Let t ∈ [1, T ] and consider [1, θ] ⊂ [1, T ] a time interval including period t.
For each period τ ∈ [1, θ], we denote SDτ = {q ∈ SD|∆q,Dq,1,θ ≥ τ}.
The following inequality is valid for the multi-product DLSPSD.

[∑
q∈SD

Dq,1,θ

][∑
p∈SP

ypt

]
≤

θ∑
τ=1

C̃τ (9)

where C̃τ is defined by:

C̃τ =min
( ∑
q∈SDτ

yq,τ ,
∑
p∈SP

yp,t

)
if τ [1; t− 2] ∪ [t+ 2, θ] (9a)

C̃t−1 =
∑

q∈SDt−1,p∈SP

wqpt (9b)

C̃t = 0 (9c)

C̃t+1 =
∑

p∈SP,q∈SDt+1

wpq,t+1 (9d)

Proof. Let (y, w) be a feasible solution of the DLSPSD. We arbitrarily choose
a period t, an interval [1, θ] including t and two disjoint subsets of products
SP and SD and show that the proposed inequality (9) is valid for the con-
sidered feasible solution.

We distinguish two main cases:
- Case 1:

∑
p∈SP ypt = 0

In this case, the left hand side of the inequality is equal to 0 whereas the
right hand side is nonnegative. Inequality (9) is thus trivially valid.
- Case 2:

∑
p∈SP ypt = 1

In this case, the left hand side of inequality (9) is equal to the total
cumulated demand over interval [1, θ] for the products belonging to SD, i.e.
to
∑

q∈SDDq,1,θ.∑
p∈SP ypt = 1 means that period t is devoted to the production of one of

the products in SP and thus cannot be used to satisfy the cumulated demand
for products in SD as these two product subsets are disjoint. Hence (y, w)
can be a feasible solution of the DLSPSD if and only if the total cumulated
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production for products in SD over the remaining periods 1...t− 1, t+ 1...θ
is sufficient to satisfy the cumulated demand

∑
q∈SDDq,1,θ.

We now seek to compute a tight upper bound C̃τ for the production
capacity Cτ available in each period τ ∈ [1, t− 1]∪ [t+ 1, θ] for the products
in SD:
- By capacity constraints (3), we have Cτ ≤ 1, i.e. Cτ ≤

∑
p∈SP ypt.

- Moreover, the cumulated demand Dq,1,θ for a product q ∈ SD can only
be satisfied by a production for this product in period τ if τ is within the
interval [1,∆q,Dq,1,θ ], i.e. if there is a least of unit of demand belonging to
Dq,1,θ occuring after period τ . Thus, τ can be used to satisfy part of demand∑

q∈SDDq,1,θ only if the resource is setup in τ for one of the products such
that ∆q,Dq,1,θ ≥ τ . This gives Cτ ≤

∑
q∈SDτ yq,τ .

We thus obtain Cτ ≤ min(
∑

q∈SDτ yq,τ ,
∑

p∈SP ypt),∀τ ∈ [1, t − 1] ∪ [t +
1, θ]. It leads to the following inequality stating that, in a feasible solution
(y, w) of the DSLSP, in case period t is devoted to the production of one
product belonging to SP , the cumulated capacity available for products in
SD over periods [1, t− 1] ∪ [t + 1, θ] should be large enough to produce the
corresponding cumulated demand:[∑

q∈SD

Dq,1,θ

][∑
p∈SP

ypt

]
≤

∑
τ=1...t−1
t+1...θ

[
min(

∑
q∈SDτ

yq,τ ,
∑
p∈SP

ypt)
]

(10)

Now, we can exploit our knowledge of the setup state of the resource
in period t to further strengthen this inequality. Namely, we know that a
product p belonging to SP is produced in period t. A changeover to (resp.
from) this product p thus has to take place at the beginning (resp. at the
end) of period t. This means that:
- If period t − 1 is to be used to satisfy the demand of one of the products
belonging to SDt−1, there must be a changeover from this product q ∈ SDt−1

to the product p ∈ SP at the beginning of period t. The production capacity
available in period τ = t − 1 for the products in SDt−1 is thus limited by
Ct−1 ≤

∑
p∈SP,q∈SDt−1

wq,p,t.
- Similarly, if period t + 1 is to be used to satisfy the demand of one of the
products belonging to SDt+1, there must be a changeover from the product
p ∈ SP to this product at the end of period t. The production capacity
available in period τ = t + 1 for the products in SDt+1 is thus limited by
Ct+1 ≤

∑
p∈SP,q∈SDt+1

wp,q,t+1.
We can thus strengthen the upper bound of Ct−1 (resp Ct+1) by re-
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placing the term min(
∑

q∈SDτ yq,τ ,
∑

p∈SP ypt) by
∑

p∈SP,q∈SDt−1
wq,p,t (resp.∑

p∈SP,q∈SDt+1
wp,q,t+1) and obtain the inequality (9) discussed in Proposition

1.
This completes the proof.

We point out here that, for any integer feasible solution of the DLSPSD,
in case

∑
p∈SP ypt = 1, we have:∑

j∈SDτ

yq,τ ≤
∑
p∈SP

ypt, ∀τ ∈ [1, t− 1] ∪ [t+ 1, θ] (11)∑
p∈SP

q∈SDt−1

wq,p,t =
∑

q∈SDt−1

yq,t−1 if t 6= 1 (12)

∑
p∈SP

q∈SDt+1

wp,q,t+1 =
∑

q∈SDt+1

yq,t+1 if t 6= θ (13)

We will thus have Cτ =
∑

q∈SD yq,τ ,∀τ ∈ [1, t−1]∪ [t+1, θ] in any integer
feasible solution of the problem. However, in a fractional solution obtained
by solving the linear relaxation of formulation DLSPSD1, we may encounter
situations where 0 <

∑
p∈SP ypt < 1 so that we may have

∑
p∈SP ypt ≤∑

q∈SD yq,τ ,
∑

p∈SP
q∈SD

wq,p,t ≤
∑

q∈SD yq,t−1 and
∑

p∈SP
q∈SD

wp,q,t+1 ≤
∑

q∈SD yq,t+1.

In these cases, it is interesting to have the flexibility to select for each period
τ the smallest upper bound for the available production capacity Cτ as this
will lead to tighter inequalities.

3.2. Illustrative example

We introduce a small instance of the DLSPSD in order to illustrate how
the proposed multi-product inequalities may help at strengthening the MILP
formulation of the problem. This instance involves P = 4 products and
T = 10 periods. Table 1 gives the numerical data on the inventory holding
costs, on the changeover costs and on the demand for this instance. We note
that the changeover cost matrix displays a frequently encountered feature:
the presence of two product families (products {1, 2} and products {3, 4}).
The changeover costs between products belonging to different families are
significantly higher than the ones between products belonging to the same
family.
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We provide in Table 2 the fractional solution obtained by solving the
continuous relaxation of formulation DLSPSD1, i.e. the initial formulation
of the problem strengthened only by the single-product inequalities (8). In
this solution, periods 1 and 2 are assigned to the production of a single
product, which complies with the problem constraints. However, in periods
3 to 10, the resource capacity is shared between several products, which
means that this solution is not feasible for the integer optimization problem.
The corresponding cost, Z = 563.25, is thus a lower bound for the optimal
integer solution value.

The fractional solution provided in Table 2 violates several inequalities
belonging to the family described in Proposition 1.

One of them corresponds to the period t = 6, the interval [1; θ] = [1; 7]
and the product sets SP = {2} and SD = {3, 4}. Namely, we have:

• LHS = (D3,1,7 +D4,1,7)y2,6 = 2 ∗ 0.5 = 1

• RHS =
∑7

τ=1 C̃τ = 0.75 as:

−C̃1 = min(y3,1 + y4,1, y2,6) = y3,1 + y4,1 = 0 see (9a)

−C̃2 = min(y3,2 + y4,2, y2,6) = y3,2 + y4,2 = 0 see (9a)

−C̃3 = min(y3,3 + y4,3, y2,6) = y3,3 + y4,3 = 0.25 see (9a)

−C̃4 = min(y3,4 + y4,4, y2,6) = y2,6 = 0.5 see (9a)

−C̃5 = w3,2,6 + w4,2,6 = 0 see (9b)

−C̃6 = 0 see (9c)

−C̃7 = w2,3,7 = 0 (Note that SD7 = {3}) see (9d)

We can thus improve the problem formulation by adding the following
cut:

(D3,1,7+D4,1,7)y2,6 ≤ y3,1+y4,1+y3,2+y4,2+y3,3+y4,3+y2,6+w3,2,6+w4,2,6+w2,3,7

The idea underlying this inequality is the following. We choose the subset
SP = {2}. If product 2 is not assigned for production in period 6 (i.e.
y26 = 0), the inequality is trivially respected. But if product 2 is assigned
for production in period 6 (i.e. y26 = 1), then we have to make sure that
we are able to satisfy the total cumulated demand over the interval [1; 7]
for the products in subset SD = {3, 4} (i.e to sastify D3,1,7 + D4,1,7) on the
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Table 1: Small illustrative example: numerical input data

Spq dpt
q t

p hp 0 1 2 3 4 1 2 3 4 5 6 7 8 9 10
0 0 0 191 156 130 161 0 0 0 0 0 0 0 0 0 0
1 7 152 0 14 122 173 1 0 1 0 1 0 1 0 0 0
2 10 125 13 0 119 157 0 0 0 0 0 0 0 0 1 1
3 6 156 157 109 0 6 0 0 0 0 0 0 1 0 0 1
4 7 116 132 134 19 0 0 0 0 0 1 0 0 0 0 1

remaining periods 1, 2, .., 5, 7. In this case, the right hand side of inequalities
(9) computes a tight upper bound of the production capacity available over
these periods for products 3 and 4.

Three additional multi-product nequalities are violated by the fractional
solution, namely those corresponding to:

• t = 4, [1; θ] = [1; 5], SP = {1} and SD = {4}

• t = 7, [1; θ] = [1; 10], SP = {3} and SD = {2}

• t = 9, [1; θ] = [1; 10], SP = {2} and SD = {1, 3, 4}

We add these four multi-product inequalities to the formulation DL-
SPSD1 and solve the linear relaxation of the resulting strengthened formu-
lation. We obtain the integer feasible solution described in Table 3, the cost
of which is Z = 574 and corresponds to the optimal integer solution value.

4. Exact and heuristic algorithms for solving the separation prob-
lem

The number of inequalities (9) grows very fast with the problem size.

Namely, we have a series of inequalities for the (T+1)T
2

pairs of periods (t, θ)
with t ≤ θ. Moreover, for a given pair of periods (t, θ), the number of
available inequalities is given by 3Part(P+1, 3) where Part(P+1, 3) denotes
the number of partitions of a set of P + 1 elements into 3 subsets (SP , SD
and {0...P}\(SD∪SP )). Part(P+1, 3) can be computed by a mathematical
induction on the value of P . Thus, for an instance involving e.g. P = 10
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Table 2: Small illustrative example: solution obtained by computing the continuous re-
laxation of formulation DLSPSD1

Value of the setup variables ypt
t

p 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0
1 1 1 0.75 0.25 0.5 0 0.5 0 0 0
2 0 0 0 0 0 0.5 0 0.5 0.75 0.25
3 0 0 0 0.5 0 0 0.5 0.25 0.25 0.5
4 0 0 0.25 0.25 0.5 0.5 0 0.25 0 0.25

Table 3: Small illustrative example: solution obtained by computing the continuous re-
laxation of formulation DLSPSD1 strengthened by 4 multi-product inequalities

Value of the setup variables ypt
t

p 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 1 1
3 0 0 0 0 0 0 1 1 0 0
4 0 0 0 0 1 1 0 0 0 0
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products and T = 25 periods, we have 0.5 ∗ 26 ∗ 25 ∗ 3 ∗ 28501 = 27788475
inequalities.

The large number of inequalities (9) has two implications. First, it will
not be possible to include all of them a priori in the MILP formulation of
the problem. A cutting-plane generation strategy is thus needed to add to
the MILP formulation only a subset of these inequalities. It is described in
subsection 4.3. Second, using a simple enumeration scheme to identify which
inequalities to incorporate in the formulation will be too time-consuming.
Hence the development of efficient algorithms to solve the separation problem
is required.

In view of the difficulty of solving the whole separation problem directly,
we propose a solution approach relying on its decomposition into a series
of smaller separation subproblems, one for each pair of periods (t, θ). Each
subproblem thus consists in finding the most violated inequality (9) amongst
the ones corresponding to periods (t, θ) if such an inequality exists. The
resulting combinatorial optimization problem can be solved using either the
exact or the heuristic separation algorithms described in subsections 4.1 and
4.2.

4.1. Exact separation algorithm

We first discuss an exact algorithm to solve the separation subproblem
encountered for a pair of periods (t, θ). This algorithm is guaranteed to find,
amongs the inequalities corresponding to periods (t, θ), the one which is the
most violated by the fractional solution (y, w) if such an inequality exists.
The method consists in looking for the partition of {0...P} into 3 subsets
providing the largest difference between the left and the right hand sides of
inequalities (9). To achieve this, we formulate the separation subproblem for
a given (t, θ) as a small combinatorial optimization problem.

We first introduce the following decision variables:
- αp = 1 if product p belongs to subset SP , 0 otherwise.
- βp = 1 if product p belongs to subset SD, 0 otherwise.

- γτ = 1 if capacity Cτ is limited by
∑P

p=0 yptαp, 0 if Cτ is limited by∑
q=0..P s.t.

∆q,Dq,1,θ
≥τ
yqτβq.

With this notation, the separation problem for a given (t, θ) and a solution
(y, w) is formulated as:

QBPt,θ
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max

P∑
p=0

P∑
q=0

Dq,1,θαpβq

−
∑

τ=1...t−2
t+2...θ

[ P∑
p=0

yptαpγτ +
∑

q=0..P s.t.
∆q,Dq,1,θ

≥τ

yq,τβq(1− γτ )
]

−
P∑
p=0

∑
q=0..P s.t.

∆q,Dq,1,θ
≥t−1

wq,p,tαpβq −
P∑
p=0

∑
q=0..P s.t.

∆q,Dq,1,θ
≥t+1

wp,q,t+1αpβq (14)

αp + βp ≤ 1 ∀p (15)

αp ∈ {0, 1}, βp ∈ {0, 1} ∀p (16)

γτ ∈ {0, 1} ∀τ (17)

The objective function (14) corresponds to the maximimization of the
violation of the inequalities, i.e. we seek to identify the subsets SP and
SD for which the difference between the left and the right hand sides of
the inequality takes the largest value. In case the optimal value of (14)
is strictly positive, the most violated inequality corresponding to (t, θ) has
been identified and is described by the optimal values of variables αp and
βp. In case this value is less than or equal to 0, it means that no violated
inequality exists for the pair of periods (t, θ). Constraints (15) state that a
given product p cannot be simultaneously included in subsets SP and SD.

Problem QBPt,θ is a binary program with a quadratic objective function
and a series of linear constraints. It can be solved to optimality using a
quadratic binary programming solver such as the one embedded in CPLEX.

4.2. Heuristic separation algorithm

As can be seen from the computational experiments to be presented in
Section 5, solving to optimality a sequence of quadratic binary programs
QBPt,θ leads to prohibitively long computation times for the cutting-plane
generation algorithm, even for small-size instances. We thus propose in what
follows a variable depth seach heuristic of Kernighan-Lin type to solve the
partitioning subproblem QBPt,θ for each pair of periods (t, θ) (see [12]).

This algorithm relies on a local search prcedure: it starts from a feasible
partition of the set of products {0, ..., P} and tries to iteratively improve it
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by moving from the current solution to the best solution in the immediate
neighbourhood. The neighbourhood of a tripartition Π of {0...P} is defined
here as the set of tripartitions obtained by moving a single product from
its current subset in Π to one of the two other subsets. To avoid cycling
between suboptimal solutions and force the exploration of new areas of the
search space, a blocking mechanism is used: during a phase of the algorithm,
each product can be moved at most once. Once the maximum number of
moves has been reached, we stop the algorithm if no improvement has been
found during the phase. In case an improvement has occured, we start a new
phase of the algorithm using the best known solution as starting point and
unblocking all moves.

A formal statement of the algorithm is is as follows:
Start with a tripartition of {0...P}, Πref , and compute its violation
Vref .
While (test =0):

Let test = 1, PossMove = P/2 and Πcur = Πref .
Allow all possible moves to explore the neighbourhood of Πcur.
While (PossMove > 0):

Consider the partitions obtained by carrying out all allowed
moves in the neighbourhood of Πcur and evaluate the violation
for each obtained partition.
Select the best partition obtained in this neighbourhood of Πcur,
Πbest, forbid the move used to obtain Πbest from Πcur, decrease
PossMove by 1 and set Πcur = Πbest.
If Vbest > Vref , test = 0 and Πref = Πbest.

In the computational experiments to be presented in Section 5, five dis-
tinct partitions are used to initialize the heuristic, namely:

1. SP = ∅ and SD = {q = 1...P |Dq,1,θ ≥ 1}
2. SP = {p = 0...P |ypt > 0} and SD = {q = 1...P |q /∈ SP and Dq,1,θ ≥

1}
3. SP = {pmax} where pmax = arg maxp=0..P ypt

and SD = {qmax} where qmax = arg maxq=1..P{Needq,t}
withNeedq,t = Dq,1,θypmaxt−wpmaxqt−wq,pmax,t+1−

∑
τ=1..t−2
t+2...θ

min(ypmax,t, yq,τ )

4. SP = {pmax} where pmax = arg maxp=0..P ypt
and SD = {q = 1...P |yqt > 0 and q /∈ SP}

5. SP and SD are randomly generated such that SP ∩ SD = ∅
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In spite of the fact that the above heuristic may not always produce the
most violated inequalities, the computational experiments to be presented in
Section 5.2 confirm that it consistently produces results of similar quality as
compared with the exact separation procedure and this within much smaller
computation times.

4.3. Cutting-plane generation algorithm

We now describe the cutting-plane generation algorithm used to strengthen
formulation DLSPSD1 by adding a subset of the multi-product inequalities
(9).

Several possible strategies for generating cutting-planes could be used.
A first one consists in adding, in each iteration, a single inequality (usually
the one which is the most violated by the current solution of the linear
relaxation) to the formulation. This leads to the introduction of a small
number of inequalities and thus limits the increase in the size of the linear
program. However, it usually requires a large number of iterations and thus
negatively impacts the overall computation time. Another possible strategy
is to add, in each iteration, all the violated inequalities found. However,
it leads to the introduction of a relatively large number of inequalities and
thus to a significant increase in the size of the linear program. This is why
an intermediate strategy is exploited in what follows. In each iteration of
the cutting-plane generation, we namely seek to identify a single violated
inequality for each period t and add it to the problem formulation. Thus at
most T inequalities are added in each iteration.

Moreover, the inequality added for period t will not be the most violated
one corresponding to period t but will be amongst the most violated ones.
Indeed, to identify the most violated inequality corresponding to period t,
our solution approach would rely on solving a sequence of optimization sub-
problems QBPt,θ, each aiming at finding the most violated inequality for the
pair of periods (t, θ), with θ ∈ [t, T ]. This amounts to solving the separation
problem for period t by decomposing it into a series of smaller and easier to
solve separation subproblems, by solving each subproblem separately and by
selecting the most violated inequality amongst the ones found. Thus, find-
ing the most violated inequality for period t would imply to solve T − t + 1
subproblems, one for each pair of periods (t, θ).

However, our preliminary computational experiments show that when a
violated inequality is found for a pair (t, θ), inequalities for pairs (t, θ + 1),
(t, θ + 2)... are most often also violated and the amount of the violation is
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identical to the one found for (t, θ). Thus solving a larger amount of separa-
tion subproblems does not result in significant improvements in the strength
of the inequality found. In other words, it is not computationally efficient
to solve all separation subproblems (t, θ) for period t. On the contrary, for
each period t, stopping the search for violated inequalities as soon as one has
been found appeared to be a better strategy.

A detailed description of the corresponding cutting-plane generation al-
gorithm is provided below.

Compute the initial LP relaxation of the DLSPSD using formu-
lation DLSPSD1.
While (test = 0):

Denote (y, w) the solution of the current linear relaxation.
For t = 1...T such that ∃p such that 0.0001 < ypt < 0.9999;

Let θ = t and found =0.
While (θ ≤ T and found = 0),

Solve the separation problem for periods (t, θ) using:
- either the exact algorithm
- or the heuristic algorithm as follows:

Set ini = 1 and foundH = 0
While (ini < 5 and foundH = 0)
- Use the heuristic algorithm with initial partition ini
- If a violated inequality is found, foundH = 1
- ini = ini+ 1

If a violated inequality has been found, let found = 1.
θ = θ + 1.

If a violated inequality has been found during the current it-
eration for at least one period, add the (at most T ) violated
inequalities found during the current iteration to the problem
formulation and compute its LP relaxation.
Else set test = 1 to stop the cutting-plane generation and solve
the problem using a Branch & Bound procedure.

5. Computational results

We now discuss the results of the computational experiments carried out
to evaluate the effectiveness of the proposed multi-product inequalities at
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strengthening the formulation of the multi-product DLSPSD and to assess
their impact on the total computation time.

5.1. Instances

We randomly generated instances of the problem using a procedure similar
to the one described in [16] for the DLSP with sequence-dependent change-
over costs and times. More precisely, the various instances tested have the
following characteristics:
- Problem dimension. The problem dimension is represented by the number
of products P and the number of periods T : we solved medium-size instances
involving 4 to 12 products and 10 to 75 periods.
- Inventory holding costs. For each product, inventory holding costs have
been randomly generated from a discrete uniform DU(5, 10) distribution.
- Changeover costs. We used two different types of structure for the changeover
cost matrix S. Instances of sets A1-A20 have a general cost structure: the
cost of a changeover from product p to product q, Spq, was randomly gen-
erated from a discrete uniform DU(100, 200) distribution. Instances of sets
B1-B20 correspond to the frequently encountered case where products can
be grouped into product families: there is a high changeover cost between
products of different families and a smaller changeover cost between products
belonging to the same family. In this case, for products p and q belonging
to different product families, Spq was randomly generated from a discrete
uniform DU(100, 200) distribution; for products p and q belonging to the
same product family, Spq was randomly generated from a discrete uniform
DU(0, 100) distribution.
- Production capacity utilization. Production capacity utilization ρ is defined
as the ratio between the total cumulated demand (

∑P
p=1

∑T
t=1 dpt) and the

total cumulated available capacity (T ). We set ρ = 0.95 for all instances.
- Demand pattern. Binary demands dpt ∈ {0, 1} for each product have been
randomly generated according to the following procedure:
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1. We randomly select a product p∗ from a discrete uniform
DU(1, N) distribution and set dp∗T = 1.
2. For each product p, except product p∗, we randomly select a
period tp from a discrete uniform DU(1, T ) distribution and set
dp,tp = 1.
3. For each entry in a P × T matrix, except for the entries cor-
responding to the (p, t) combinations for which we set dpt > 0 in
steps 1 or 2, we randomly generate a number αpt from a discrete
uniform DU(1, PT ) distribution.
4. While the total cumulated demand (

∑P
p=1

∑T
t=1 dpt) does not ex-

ceed ρT , we consider the entries (p, t) one by one in the increasing
order of the corresponding value αpt and set dpt = 1.
5. When the total cumulated demand reaches ρT , we examine
whether the corresponding instance is feasible by checking that∑P

p=1

∑t
τ=1 dpτ ≤ t for all t. If the instance is infeasible, we re-

peat steps 1 to 4.

For each considered problem dimension and each possible structure of the
changeover cost matrix, we generated 10 instances, leading to a total of 400
instances.

5.2. Results
All tests were run on an Intel Core i5 (2.7 GHz) with 4 Go of RAM,

running under Windows 7. We used a standard MILP software (CPLEX
12.5) with the solver default settings to solve the problems with one of the
following formulations:

• DLPSD1: initial MILP formulation DLSPSD0, i.e. formulation (1)-(7),
strengthened by single-product inequalities (8). We used a standard
cutting-plane generation strategy based on a complete enumeration of
all possible inequalities to add them into the formulation.

• DLSPSD2e: formulation DLSPSD1 strengthened by multi-product in-
equalities (9). We used the cutting-plane generation algorithm pre-
sented in Section 4.3 with the exact separation algorithm discussed in
Section 4.1.

• DLSPSD2h: formulation DLSPSD1 strengthened by multi-product in-
equalities (9). We used the cutting-plane generation algorithm pre-
sented in Section 4.3 with the heuristic separation algorithm discussed
in Section 4.2.
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Tables 4-6 display the computational results. We provide for each set of
10 instances:

• P and T : the number of products and planning periods involved in the
production planning problem.

• SP : the number of single-product violated inequalities (8) added in
the three formulations.

• MPe and MPh: the number of multi-product violated inequalities
added in formulation DLSPSD2e by the exact separation algorithm
and in formulation DLSPSD2h by the heuristic separation algorithm.

• G1 (resp. G2e, G2h): the average percentage gap between the linear
relaxation of formulation DLSPSD1 (resp. DLSPSD2e, DLSPSD2h)
and the value of an optimal integer solution.

• N1 (resp. N2e, N2h): the average number of nodes explored by the
Branch & Bound procedure before a guaranteed optimal integer solu-
tion is found or the computation time limit of 2700s is reached.

• T1 (resp. T2e, T2h): the total computation time (cutting-plane genera-
tion and Branch & Bound search) needed to find a guaranteed optimal
integer solution (we used the value of 2700s in case a guaranteed opti-
mal integer solution could not be found within the computation time
limit).

Table 4 provides the results for the small instances A1-A5 and B1-B5.
These results show that the proposed multi-product inequalities (9) are ef-
ficient at strengthening the formulation DLSPSD1. Namely, the integrality
gap is reduced from an average of 5.8% with formulation DLSPSD1 (see G1)
to an average of 1.5% with formulation DLSPSD2e (see G2e). We note that
this reduction is particularly significant for instances B1-B5 featuring a prod-
uct family changeover cost structure. Moreover this formulation strengthen-
ing is obtained thanks to a relatively small number of multi-product inequal-
ities as can be seen from the average value of MPe (14). However, even if the
number of nodes needed by the Branch & Bound procedure to find a guaran-
teed optimal solution is slightly reduced when using formulation DLSPSD2e,
it does not lead to an overall reduction of the computation time. This is
mainly explained by the fact that the cutting-plane generation algorithm
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based on an exact separation algorithm requires prohibitively long compu-
tation times to identify the violated multi-product inequalities to be added
to the formulation. It is thus necessary to resort to a heuristic separation
algorithm such as the one proposed in Section 4.2.

Comparison of the results obtained with the exact and the heuristic sep-
aration algorithm for the instances A1-A5 and B1-B5 (see Table 4) shows
that the proposed heuristic is very efficient at finding violated inequalities
for small size instances. Namely, the average integrality gap for these 100
instances obtained when using the heuristic algorithm is the same as the one
obtained when using the exact algorithm (i.e. G2h = G2e). Moreover, the
average number of violated inequalities found by the heuristic algorithm (13)
is nearly the same as the average number of violated inequalities found by
the exact algorithm (14).

Results from Tables 5 and 6 confirm that the proposed approach is ef-
ficient at strengthening the problem formulation and at reducing the total
computation time when the number of periods involved in the planning prob-
lem is medium (i.e. below 50). Namely, for instances A5-A15 and B5-B15,
the average integrality gap is reduced from 7.6% to 4.1% while using the
multi-product inequalities generated with the heuristic separation algorithm.
This leads to a significant reduction of the average number of nodes explored
by the Branch & Bound algorithm before a proven optimal solution is found
(from 2307 to 1201) and consequently to a decrease in the overall average
computation time (from 79.3s to 52.2s).

However, when the number of periods increases (i.e. is above 75), the
efficiency of the proposed approach at strengthening the MILP formulation
and at reducing the computation time seems to decrease. This can be seen
by the fact that, for instances A16-A20 and B16-B20, the average number
of violated inequalities generated by the cutting-plane generation algorithm
decreases as compared to the number of inequalities generated for instances
A5-A15 and B5-B15. Consequently, the average integrality gap is only re-
duced from 7.8% to 7.1% and the average computation time is only decreased
from 853.6s to 810.1s This might indicate that the strength of the proposed
multi-product inequalities decreases when the number of planning periods
increases.
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Table 4: Computational results: small instances

DLSPSD1 DLSPSD2e DLSPSD2h
P T SP G1 N1 T1 MPe G2e N2e T2e MPh G2h N2h T2h

A1 4 10 44 0.0% 0 0.1s 0 0.0% 0 0.1s 0 0.0% 0 0.1s
A2 4 15 106 8.7% 1 0.4s 18 0.7% 0 46.5s 16 0.7% 0 0.1s
A3 6 15 108 0.9% 0 0.3s 4 0.2% 0 13.5s 3 0.2% 0 0.1s
A4 4 20 193 2.6% 5 0.4s 15 0.2% 0 445.4s 15 0.2% 0 0.1s
A5 6 20 190 2.3% 4 0.5s 17 0.3% 0 534.4s 13 0.3% 0 0.2s
B1 4 10 41 0.4% 0 0.1s 1 0.0% 0 1.8s 1 0.0% 0 0.1s
B2 4 15 105 11.5% 4 0.3s 15 0.1% 0 23.6s 13 0.1% 0 0.1s
B3 6 15 107 5.3% 1 0.3s 12 2.1% 0 60.1s 11 2.1% 1 0.2s
B4 4 20 192 11.6% 57 0.4s 26 4.4% 7 804.1s 26 4.4% 10 0.3s
B5 6 20 187 14.5% 55 0.8s 38 6.6% 10 1610.7s 35 6.6% 10 0.6s

Table 5: Computational results: instances with a general changeover cost structure

DLSPSD1 DLSPSD2h
P T SP G1 N1 T1 MPh G2h N2h T2h

A6 4 25 295 2.7% 2 0.5s 17 0.3% 0 0.2s
A7 6 25 315 4.3% 9 1.0s 27 0.7% 2 0.5s
A8 8 25 319 2.4% 14 2.5s 44 0.1% 0 0.5s
A9 10 25 318 1.7% 6 1.4s 19 0.0% 0 0.8s
A10 12 25 321 1.9% 14 1.7s 54 0.2% 2 1.7s
A11 4 50 1189 3.8% 60 5.8s 35 1.9% 17 4.7s
A12 6 50 1153 1.6% 32 6.7s 20 0.9% 11 4.0s
A13 8 50 1226 2.9% 142 21.0s 54 1.3% 60 13.3s
A14 10 50 1246 2.1% 99 21.0s 52 1.1% 52 21.7s
A15 12 50 1303 2.0% 147 32.2s 59 0.8% 35 27.3s
A16 4 75 2693 3.4% 483 58.1s 12 3.2% 484 49.8s
A17 6 75 2817 3.5% 1045 129.9s 18 3.3% 1000 132.8s
A18 8 75 2776 2.7% 856 151.9s 23 2.5% 709 130.7s
A19 10 75 2799 1.7% 379 133.7s 18 1.6% 450 148.9s
A20 12 75 2850 2.1% 861 256.8s 39 1.9% 649 224.8s
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Table 6: Computational results: instances with a product family changeover cost structure

DLSPSD1 DLSPSD2h
P T SP G1 NIP1 TI MPh G2h N2h T2h

B6 4 25 293 10.2% 38 0.9s 21 4.9% 16 0.5s
B7 6 25 312 9.7% 36 1.3s 31 2.8% 8 0.9s
B8 8 25 320 13.7% 320 5.6s 56 7.1% 95 2.3s
B9 10 25 318 12.7% 309 4.8s 51 4.9% 66 2.9s
B10 12 25 329 11.1% 154 4.6s 96 3.8% 33 4.1s
B11 4 50 1176 11.7% 3327 31.0s 29 8.1% 1637 18.4s
B12 6 50 1248 12.3% 1753 47.7s 48 9.5% 1104 38.8s
B13 8 50 1261 15.1% 8570 232.9s 70 11.7% 5436 200.3s
B14 10 50 1274 15.6% 25837 901.0s 91 11.9% 12707 501.1s
B15 12 50 1271 13.3% 5173 262.6s 142 8.5% 2737 199.8s
B16 4 75 2694 13.4% 20096 635.9s 18 12.2% 18212 574.7s
B17 6 75 2638 11.3% 18895 827.6s 27 10.5% 14416 717.0s
B18 8 75 2688 15.4% 25015 1962.0s 53 13.7% 22501 1815.7s
B19 10 75 2700 12.1% 19087 2085.8s 46 11.2% 16852 2006.9s
B20 12 75 2817 12.8% 16469 2295.2s 70 11.6% 15326 2300.2s

6. Conclusion

The multi-product discrete lot-sizing and scheduling problem with sequence-
dependent changeover costs has been investigated and a new family of multi-
product valid inequalities for the problem has been exhibited. Both an exact
and a heuristic separation algorithms have been devised and computation-
ally tested. Our results show that the proposed inequalities are efficient at
strengthening the MILP formulation and at reducing the overall computation
time needed to obtain guaranteed optimal solution, at least for instances fea-
turing a number of periods up to 50. Among the possible research directions
suggested by the present work, it might be worth exploring the extension of
the proposed inequalities to other variants of discrete lot-sizing problems, in
particular those involving multiple parallel resources or positive changeover
times.
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