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On inhomogeneous Diophantine approximation
and Hausdorff dimension

by Michel LAURENT

Abstract – Let Γ = ZA + Zn ⊂ Rn be a dense subgroup with rank n + 1 and let ω̂(A)
denote the exponent of uniform simultaneous rational approximation to the point A. We
show that for any real number v ≥ ω̂(A), the Hausdorff dimension of the set Bv of points
in Rn which are v-approximable with respect to Γ, is equal to 1/v.

1. Inhomogeneous approximation.

We first introduce the general framework of inhomogeneous approximation, following
the traditional setting employed in the book of Cassels [7], and adhering to the notations
of [5] for the various exponents of approximation involved.

Let m and n be positive integers and let A be a n×m matrix with real entries. The
transposed matrix of A is denoted by tA. We consider both the subgroup

Γ = AZm + Zn ⊂ Rn,

generated modulo Zn by the m columns of A, and its dual subgroup

Γ′ = tAZn + Zm ⊂ Rm,

generated modulo Zm by the n rows of A. It may be enlightening to view alternatively
Γ as a subgroup of classes modulo Zn, lying in the n-dimensional torus Tn = (R/Z)n.
Kronecker’s theorem asserts that Γ is dense in Rn iff the dual group Γ′ has maximal rank
m+ n over Z. We shall assume from now that rkZ Γ′ = m+ n.

In order to measure how sharp is the approximation to a given point β in Rn by
elements of Γ, we introduce the following exponent ω(A, β). For any point θ in Rn, denote
by |θ| the supremum norm of θ and by ‖θ‖ = minx∈Zn |θ − x| the distance in Tn between
θ mod Zn and 0.
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Definition 1. For any β ∈ Rn, let ω(A, β) be the supremum, possibly infinite, of the real

numbers ω for which there exist infinitely many integer points q ∈ Zm such that

‖Aq − β‖ ≤ |q|−ω.

It is plain from the definition that ω(A, β) ≥ 0. Now, in relation with the linear
independence of the rows of A, we introduce for any real matrix M the following uniform
homogeneous exponent:

Definition 2. Let M be an m × n matrix with real entries. We denote by ω̂(M) the

supremum, possibly infinite, of the real numbers ω such that for any sufficiently large

positive real number Q, there exists a non-zero integer point q ∈ Zn such that

|q| ≤ Q and ‖Mq‖ ≤ Q−ω.

Dirichlet’s box principle shows that ω̂(M) ≥ n/m. We are now able to formulate
the classical transfer between homogeneous and inhomogeneous approximation in terms of
these exponents thanks to the

Theorem 1 [5]. For any n-tuple β of real numbers, the lower bound

(1) ω(A, β) ≥ 1
ω̂(tA)

holds true. Moreover we have equality of both members in (1) for almost all β with respect

to the Lebesgue measure on Rn.

We come now to our main topic which is the study for v ≥ 0 of the family of subsets

Bv = {β ∈ Rn; ω(A, β) ≥ v} ⊆ Rn,

and of their Hausdorff dimension δ(v) as a function of v. It follows immediately from
Theorem 1 that Bv = Rn when v ≤ 1/ω̂(tA), while Bv is a null set for v > 1/ω̂(tA).
Furthermore, we know that these latter sets are rather small thanks to the following crude
result, quoted as Proposition 7 in [5]:

Theorem 2. For any real number v > 1/ω̂(tA), the Hausdorff dimension δ(v) is strictly

less than n.

In fact, the proof of Proposition 7 of [5] gives the explicit upper bound

(2) δ(v) ≤ n− 1 +
1

1 + (v ω̂(tA)− 1)/(1 + v)
.

On the other hand, an easy application of Hausdorff-Cantelli Lemma (see [1, 3]) provides
us with the following bound:
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Theorem 3. For any v > 0, we have

(3) δ(v) ≤ min
(
n,
m

v

)
.

We refer to Theorem 5 of [4] for a proof of the inequality (3). Note that (2) is certainly
sharper than (3) when v belongs to the interval [1/ω̂(tA),m/n], while the upper bound
(3) is expected to be an equality for sufficiently large values of v. When m = n = 1, it has
been proved independently in [2] and in [11] that δ(v) = min(1, 1/v), so that (3) is indeed
an equality for any v > 0 in that case. However, the examples displayed in Theorem 1 of
[4] for (m,n) = (2, 1) or (m,n) = (3, 1), show that the inequality (3) may be strict for any
given v > 1. Motivated by Theorem 5 below, we address the following

Problem. Assume that ω̂(A) is finite. Show that δ(v) = m/v for any v sufficiently large

in term of ω̂(A).

Notice that ω̂(A) ≥ m/n. It seems plausible that the assumption v ≥ ω̂(A) should
always be sufficient in order to ensure that δ(v) = m/v. It holds true when m = 1 according
to Theorem 5 below. Note also that the lower bound v ≥ ω̂(A) occurs naturally in the
construction of a Cantor-type set K as in Section 4.

2. Simultaneous approximation.

Our knowledge concerning the Hausdorff dimension δ(v) is more substantial for m = 1,
that is to say when

Γ = Z

 α1
...
αn

+ Zn

is generated by a single vector spinning in Tn, thanks to the fine results [4] obtained
by Bugeaud and Chevallier. With regard to the above Problem, let us first quote their
Theorem 3 as follows:

Theorem 4. Let A = t(α1, . . . , αn) be an n × 1 real matrix with 1, α1, . . . , αn linearly

independent over Q. Then δ(v) = 1/v for any v ≥ 1.

We state now our main result.

Theorem 5. Let A = t(α1, . . . , αn) be an n × 1 real matrix with 1, α1, . . . , αn linearly

independent over Q. Then the equality δ(v) = 1/v holds true for any v ≥ ω̂(A).

Note that Theorem 5 extends the previous statement since

1
n
≤ ω̂(A) ≤ 1.
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The lower bound ω̂(A) ≥ 1/n follows immediately from Dirichlet’s box principle, while the
upper bound ω̂(A) ≤ 1 is implicitely contained in the seminal work [10] of Khintchine. It
is expected that any intermediate value should be reached for some n × 1 matrix A. We
direct to [5, 6] for more precise informations on that topic.

Theorem 5 implies the following

Corollary. Assume that ω̂(A) = 1/n. Then

δ(v) = min
(
n,

1
v

)
for any v > 0.

The above statement was initially established by Bugeaud and Chevallier in [4], under
the stronger assumption that A is a regular matrix (according to the terminology of [7]),
meaning that there exists a positive real number ε such that the lower bound

min
q∈Z

0<q≤Q

‖qA‖ ≥ εQ−1/n

holds for arbitrary large values of Q.
The proof of Theorem 5 is based on the mass distribution principle [3, 9]. This method

enables us to bound from below the Hausdorff measure Hf (Bv) of the set Bv for suitable
dimension functions f . It turns out that Hf (Bv) = +∞ when f(r) = r1/v log(r−1) and
v > ω̂(A), as it can be easily seen with some minor modifications of the proof given in
Section 4. Since v 7→ 1/v is a decreasing function, a standard argument of Hausdorff
measure (see [1] p. 71) then shows that the Hausdorff dimension of the smaller subset

B′v = {β ∈ Rn; ω(A, β) = v} ⊆ Rn,

coincides with the Hausdorff dimension δ(v) = 1/v of Bv if v > ω̂(A). It follows that for
fixed A, the set of values of the exponent ω(A, β) contains the whole interval ]ω̂(A),+∞[,
when β ranges over Rn.

2. Best approximations.

We review here some properties of the best approximations to A which are needed
for proving Theorem 5. Their detailled proof can be found in Section 5 of [4] and in [8].
Throughout this section, A stands for a n× 1 matrix.

A best approximation to A is a positive integer q such that ‖pA‖ > ‖qA‖ for every
integer p with 0 < p < q. Let (qk)k≥0 be the ordered sequence of these best approximations,
starting with q0 = 1. Put

ρk = min
0<q<qk

‖qA‖ = ‖qk−1A‖.
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It is readily observed that ω̂(A) is equal to the lower limit of the ratio log(ρ−1
k )/ log qk, as

k → +∞. Therefore, if v is any given real number greater than ω̂(A), the inequality

(4) ‖qk−1A‖ ≥ 4q−v
k

holds for infinitely many k.
The key point is to remark that, for large k, the set

Γk = {qA+ Zn; 0 ≤ q < qk},

when viewed as a subset of Tn, is closed to a finite group Λk which is well distributed in
the torus. Let Pk be the closest integer point to qkA. Set now

Λk = {qPk

qk
+ Zn; 0 ≤ q < qk} = {qPk

qk
+ Zn; q ∈ Z}.

Clearly Λk is lattice in Rn with determinant q−1
k . Let λ1,k ≤ · · · ≤ λn,k be the successive

minima of the lattice Λk with respect to the unit ball |x| ≤ 1.

Lemma 1. For any integer k and any ball B(x, r) ⊂ Rn centered at the point x with

radius r, we have the following upper bounds (†). If r ≤ λi,k for some i ≤ n, then

Card
(

Γk ∩B(x, r)
)
�

i−1∏
j=1

r

λj,k
�
(
qk

n∏
j=i

λj,k

)
ri−1 ,

(with the convention that the empty product is equal to 1 when i = 1). If r ≥ λn,k, then

Card
(

Γk ∩B(x, r)
)
� qkr

n.

Furthermore ρk � λ1,k, and the last minimum λn,k tends to 0 when k tends to infinity.

Proof. We first prove the above inequalities for x = 0 with Γk replaced by Λk. To that
purpose, thanks to LLL algorithm, we use a reduced basis {e1, . . . , en} of the lattice Λk,
meaning that |ei| � λi,k for 1 ≤ i ≤ n and |

∑
xiei| � max |xiei|. We easily obtain the

expected bounds for Card
(

Λk∩B(0, r)
)

, using morever Minkowski’s theorem on successive
minima:

n∏
j=1

λj,k � det Λk = q−1
k .

(†) The constants involved in the symbols � and � depend only on n. The ball B(x, r)
denotes the hypercube of points y ∈ Rn with |y − x| ≤ r.
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See [4] for more details. Next, the same inequalities hold for any point x ∈ Rn since Λk is
a group. In order to replace finally Λk by Γk, observe that the distance between the points
qA and qPk/qk is smaller than ρk+1 < ρk � λ1,k, for any integer q with 0 ≤ q < qk.

As for the assertions concerning λ1,k and λn,k, we refer to §5 of [4].

4. Proof of Theorem 5 and of its corollary.

Let us first deduce the corollary from Theorem 5. Thanks to transfer inequalities
between uniform exponents due to Apfelbeck and Jarńık (see for instance formula (6) in
[5]), we know that ω̂(A) = 1/n iff ω̂(tA) = n. Then, it follows from Theorem 1 that
Bv = Rn when v ≤ 1/n, so that δ(v) = n for any v in the interval [0, 1/n]. On the other
hand, Theorem 5 gives δ(v) = 1/v for v ≥ 1/n. Therefore, the formula

δ(v) = min
(
n,

1
v

)
holds true for any positive real number v.

As for the proof of Theorem 5, note that the dimension δ(v) is a non-increasing
function of v and that δ(v) ≤ 1/v by Theorem 3. Thus, it suffices to establish the lower
bound δ(v) ≥ 1/v for any v > ω̂(A). We closely follow the lines of [4].

Let v and s be positive real numbers such that v > ω̂(A) and s < 1/v. We construct
a Cantor-type set K ⊆ Bv whose Hausdorff dimension is ≥ s. Let (kj)j≥0 be an increasing
sequence of positive integers such that (4) holds for any integer k = kj , j ≥ 0, appearing
in the sequence. The sequence (kj) is also assumed to be very lacunary, in the sense that
each value kj+1 is taken sufficiently large in term of the preceding value kj . The precise
meaning of these growth conditions will be explicited in the course of the construction.

The set K is the intersection
K = ∩j≥0Kj

of nested sets Kj . Each Kj is a finite union of closed balls B with radius q−v
kj

, centered at
some point of Γkj

. Therefore K is clearly contained in Bv. Note that the Kj are made up
with disjoint balls, as a consequence of (4). We start by taking k0 arbitrary and by choosing
for K0 a single ball of the required type. Put N0 = 1. We define inductively K1 ⊃ K2 ⊃ . . .
as follows. Suppose that Kj has already been constructed. Since the sequence of points
(qA)q≥1 is uniformely distributed modulo Zn in Tn ([7] Chapter IV), we may choose kj+1

large enough so that each ball occurring in Kj , whose Euclidean volume is equal to 2nq−nv
kj

,
contains ∼ 2nqkj+1q

−nv
kj

points of Γkj+1 . Dropping eventually some of them, we select in
each ball B occurring in Kj exactly the same number

Nj+1 =
[
2n−1qkj+1q

−nv
kj

]
6
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of points in B ∩Γkj+1 for which the balls B′ with radius q−v
kj+1

centered at these points are
included in B. We define Kj+1 as the union of all these selected balls B′, for any B in Kj .

We define now a probability measure µ on Rn in the following way. First, if B is one
of the balls which is part of a set Kj , we set

µ(B) =
1

N0 × · · · ×Nj
,

so that µ(Kj) = 1. For any borelian subset E, put

µ(E) = inf
C

(∑
B∈C

µ(B)
)
,

where the infimum is taken over all coverings C of E ∩ K by disjoint balls B occurring in
the sets Kj , j ≥ 0. Then µ is a probability measure on Rn whose support is contained in
K [9].

Lemma 2. For any point x ∈ Rn and any sufficiently small radius r, we have the upper

bound

µ(B(x, r))� rs.

Proof. Let j be the index determined by

q−v
kj+1
≤ r < q−v

kj
.

The set K ∩ B(x, r) is certainly covered by the collection of all balls B with radius q−v
kj+1

involved in Kj+1 which intersect B(x, r). Therefore

(5) µ(B(x, r)) ≤
∑

B∩B(x,r)6=∅

µ(B) ≤ 1
N0 × · · · ×Nj+1

Card
(

Γkj+1 ∩B(x, r + q−v
kj+1

)
)
.

We make use of Lemma 1 to bound the right hand side of (5).
Suppose first that

r + q−v
kj+1
≤ λ1,kj+1 .

Then Lemma 1 (with i = 1) gives

µ(B(x, r))r−s �
(q−v

kj+1
)−s

N0 × · · · ×Nj+1
�

qnv
kj

N0 × · · · ×Nj
qsv−1
kj+1

� 1,

provided qkj+1 ≥ (qnv
kj
/(N0×· · ·×Nj))1/(1−sv) (note that the exponent sv−1 is negative).
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Suppose now that there exists an integer i with 1 ≤ i < n, such that

λi,kj+1 ≤ r + q−v
kj+1
≤ λi+1,kj+1 .

We distinguish two cases, depending on whether i < s or i ≥ s. If i < s, using Lemma 1,
we get the same bound

µ(B(x, r))r−s � ri−s

(N0 × · · · ×Nj+1)(λ1,kj+1 × . . .× λi,kj+1)
�

qnv
kj

N0 × · · · ×Nj
qsv−1
kj+1

,

since
λi,kj+1 ≥ . . . ≥ λ1,kj+1 � ρkj+1 � q−v

kj+1
and r ≥ q−v

kj+1
.

When i ≥ s, Lemma 1 and (5) give the bounds

µ(B(x, r))r−s � 1
N0 × · · · ×Nj+1

ri−sqkj+1

n∏
`=i+1

λ`,kj+1

�
qnv
kj

(N0 × · · · ×Nj)qkj+1

λi−s
i+1,kj+1

qkj+1

n∏
`=i+1

λ`,kj+1

�
qnv
kj

N0 × · · · ×Nj
λn−s

n,kj+1
� 1,

provided λn,kj+1 ≤ (qnv
kj
/(N0 × · · · ×Nj))−1/(n−s). But we also know from Lemma 1 that

λn,kj+1 is arbitrarily small when kj+1 is sufficiently large (note that the exponent n− s is
positive since s < 1/v < 1/ω̂(A) ≤ n).

Suppose finally that
r + q−v

kj+1
≥ λn,kj+1 .

Recalling that r ≤ q−v
kj

, Lemma 1 gives now

µ(B(x, r))r−s � 1
N0 × · · · ×Nj+1

rn−sqkj+1 �
qnv
kj

N0 × · · · ×Nj
(q−v

kj
)n−s

�
qsv
kj

N0 × · · · ×Nj
�

qnv
kj−1

N0 × · · · ×Nj−1
qsv−1
kj

� 1,

provided qkj
≥ (qnv

kj−1
/(N0 × · · · ×Nj−1))1/(1−sv).

By the mass distribution principle, Lemma 2 ensures that the Hausdorff dimension of
K is greater or equal to s. Since K ⊆ Bv, it follows that δ(v) ≥ s. Taking now s arbitrarily
close to 1/v, we obtain the lower bound δ(v) ≥ 1/v. The proof of Theorem 5 is now
complete.
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