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On inhomogeneous Diophantine approximation and Hausdorff dimension

Let Γ = ZA + Z n ⊂ R n be a dense subgroup with rank n + 1 and let ω(A) denote the exponent of uniform simultaneous rational approximation to the point A. We show that for any real number v ≥ ω(A), the Hausdorff dimension of the set B v of points in R n which are v-approximable with respect to Γ, is equal to 1/v.

1. Inhomogeneous approximation.

We first introduce the general framework of inhomogeneous approximation, following the traditional setting employed in the book of Cassels [START_REF] Cassels | An introduction to Diophantine Approximation[END_REF], and adhering to the notations of [START_REF] Bugeaud | On exponents of homogeneous and inhomogeneous Diophantine approximation[END_REF] for the various exponents of approximation involved.

Let m and n be positive integers and let A be a n × m matrix with real entries. The transposed matrix of A is denoted by t A. We consider both the subgroup Γ = AZ m + Z n ⊂ R n , generated modulo Z n by the m columns of A, and its dual subgroup

Γ = t AZ n + Z m ⊂ R m ,
generated modulo Z m by the n rows of A. It may be enlightening to view alternatively Γ as a subgroup of classes modulo Z n , lying in the n-dimensional torus T n = (R/Z) n . Kronecker's theorem asserts that Γ is dense in R n iff the dual group Γ has maximal rank m + n over Z. We shall assume from now that rk Z Γ = m + n.

In order to measure how sharp is the approximation to a given point β in R n by elements of Γ, we introduce the following exponent ω(A, β). For any point θ in R n , denote by |θ| the supremum norm of θ and by θ = min x∈Z n |θ -x| the distance in T n between θ mod Z n and 0.

2000 Mathematics Subject Classification : 11J13, 11J20. 1 Definition 1. For any β ∈ R n , let ω(A, β) be the supremum, possibly infinite, of the real numbers ω for which there exist infinitely many integer points q ∈ Z m such that

Aq -β ≤ |q| -ω .
It is plain from the definition that ω(A, β) ≥ 0. Now, in relation with the linear independence of the rows of A, we introduce for any real matrix M the following uniform homogeneous exponent: Definition 2. Let M be an m × n matrix with real entries. We denote by ω(M ) the supremum, possibly infinite, of the real numbers ω such that for any sufficiently large positive real number Q, there exists a non-zero integer point q ∈ Z n such that

|q| ≤ Q and M q ≤ Q -ω .
Dirichlet's box principle shows that ω(M ) ≥ n/m. We are now able to formulate the classical transfer between homogeneous and inhomogeneous approximation in terms of these exponents thanks to the Theorem 1 [START_REF] Bugeaud | On exponents of homogeneous and inhomogeneous Diophantine approximation[END_REF]. For any n-tuple β of real numbers, the lower bound

(1) ω(A, β) ≥ 1 ω( t A)
holds true. Moreover we have equality of both members in [START_REF] Bernik | Metric Diophantine approximation on Manifolds[END_REF] for almost all β with respect to the Lebesgue measure on R n .

We come now to our main topic which is the study for v ≥ 0 of the family of subsets

B v = {β ∈ R n ; ω(A, β) ≥ v} ⊆ R n ,
and of their Hausdorff dimension δ(v) as a function of v. It follows immediately from Theorem 1 that B v = R n when v ≤ 1/ω( t A), while B v is a null set for v > 1/ω( t A). Furthermore, we know that these latter sets are rather small thanks to the following crude result, quoted as Proposition 7 in [START_REF] Bugeaud | On exponents of homogeneous and inhomogeneous Diophantine approximation[END_REF]: Theorem 2. For any real number v > 1/ω( t A), the Hausdorff dimension δ(v) is strictly less than n.

In fact, the proof of Proposition 7 of [START_REF] Bugeaud | On exponents of homogeneous and inhomogeneous Diophantine approximation[END_REF] gives the explicit upper bound

(2) δ(v) ≤ n -1 + 1 1 + (v ω( t A) -1)/(1 + v) .
Theorem 3. For any v > 0, we have

(3) δ(v) ≤ min n, m v .
We refer to Theorem 5 of [START_REF] Bugeaud | On simultaneous inhomogeneous Diophantine approximation[END_REF] for a proof of the inequality (3). Note that ( 2) is certainly sharper than (3) when v belongs to the interval [1/ω( t A), m/n], while the upper bound (3) is expected to be an equality for sufficiently large values of v. When m = n = 1, it has been proved independently in [START_REF] Bugeaud | A note on inhomogeneous Diophantine approximation[END_REF] and in [START_REF] Schmeling | Inhomogeneous Diophantine Approximation and Angular Recurrence for Polygonal Billiards[END_REF] that δ(v) = min(1, 1/v), so that (3) is indeed an equality for any v > 0 in that case. However, the examples displayed in Theorem 1 of [START_REF] Bugeaud | On simultaneous inhomogeneous Diophantine approximation[END_REF] for (m, n) = (2, 1) or (m, n) = (3, 1), show that the inequality (3) may be strict for any given v > 1. Motivated by Theorem 5 below, we address the following

Problem. Assume that ω(A) is finite. Show that δ(v) = m/v for any v sufficiently large in term of ω(A).
Notice that ω(A) ≥ m/n. It seems plausible that the assumption v ≥ ω(A) should always be sufficient in order to ensure that δ(v) = m/v. It holds true when m = 1 according to Theorem 5 below. Note also that the lower bound v ≥ ω(A) occurs naturally in the construction of a Cantor-type set K as in Section 4.

Simultaneous approximation.

Our knowledge concerning the Hausdorff dimension δ(v) is more substantial for m = 1, that is to say when

Γ = Z   α 1 . . . α n   + Z n
is generated by a single vector spinning in T n , thanks to the fine results [START_REF] Bugeaud | On simultaneous inhomogeneous Diophantine approximation[END_REF] obtained by Bugeaud and Chevallier. With regard to the above Problem, let us first quote their Theorem 3 as follows:

Theorem 4. Let A = t (α 1 , . . . , α n ) be an n × 1 real matrix with 1, α 1 , . . . , α n linearly independent over Q. Then δ(v) = 1/v for any v ≥ 1.
We state now our main result.

Theorem 5. Let A = t (α 1 , . . . , α n ) be an n × 1 real matrix with 1, α 1 , . . . , α n linearly independent over Q. Then the equality δ(v) = 1/v holds true for any v ≥ ω(A).

Note that Theorem 5 extends the previous statement since

1 n ≤ ω(A) ≤ 1.
The lower bound ω(A) ≥ 1/n follows immediately from Dirichlet's box principle, while the upper bound ω(A) ≤ 1 is implicitely contained in the seminal work [START_REF] Ya | Über eine Klasse linearer diophantischer Approximationen[END_REF] of Khintchine. It is expected that any intermediate value should be reached for some n × 1 matrix A. We direct to [START_REF] Bugeaud | On exponents of homogeneous and inhomogeneous Diophantine approximation[END_REF][START_REF] Bugeaud | On exponents of Diophantine Approximation[END_REF] for more precise informations on that topic. Theorem 5 implies the following

Corollary. Assume that ω(A) = 1/n. Then δ(v) = min n, 1 v
for any v > 0.

The above statement was initially established by Bugeaud and Chevallier in [START_REF] Bugeaud | On simultaneous inhomogeneous Diophantine approximation[END_REF], under the stronger assumption that A is a regular matrix (according to the terminology of [START_REF] Cassels | An introduction to Diophantine Approximation[END_REF]), meaning that there exists a positive real number such that the lower bound

min q∈Z 0<q≤Q qA ≥ Q -1/n
holds for arbitrary large values of Q.

The proof of Theorem 5 is based on the mass distribution principle [START_REF] Bugeaud | Approximation by algebraic numbers[END_REF][START_REF] Falconer | Fractal Geometry: Mathematical Foundations and Applications[END_REF]. This method enables us to bound from below the Hausdorff measure H f (B v ) of the set B v for suitable dimension functions f . It turns out that H f (B v ) = +∞ when f (r) = r 1/v log(r -1 ) and v > ω(A), as it can be easily seen with some minor modifications of the proof given in Section 4. Since v → 1/v is a decreasing function, a standard argument of Hausdorff measure (see [START_REF] Bernik | Metric Diophantine approximation on Manifolds[END_REF] p. 71) then shows that the Hausdorff dimension of the smaller subset

B v = {β ∈ R n ; ω(A, β) = v} ⊆ R n , coincides with the Hausdorff dimension δ(v) = 1/v of B v if v > ω(A).
It follows that for fixed A, the set of values of the exponent ω(A, β) contains the whole interval ]ω(A), +∞[, when β ranges over R n .

Best approximations.

We review here some properties of the best approximations to A which are needed for proving Theorem 5. Their detailled proof can be found in Section 5 of [START_REF] Bugeaud | On simultaneous inhomogeneous Diophantine approximation[END_REF] and in [START_REF] Chevallier | Meilleures approximations d'un élément du tore T 2 et géométrie des multiples de cet élément[END_REF]. Throughout this section, A stands for a n × 1 matrix.

A best approximation to A is a positive integer q such that pA > qA for every integer p with 0 < p < q. Let (q k ) k≥0 be the ordered sequence of these best approximations, starting with q 0 = 1. Put ρ k = min

0<q<q k qA = q k-1 A .
It is readily observed that ω(A) is equal to the lower limit of the ratio log(ρ -1 k )/ log q k , as k → +∞. Therefore, if v is any given real number greater than ω(A), the inequality (4) q k-1 A ≥ 4q -v k holds for infinitely many k.

The key point is to remark that, for large k, the set

Γ k = {qA + Z n ; 0 ≤ q < q k },
when viewed as a subset of T n , is closed to a finite group Λ k which is well distributed in the torus. Let P k be the closest integer point to q k A. Set now

Λ k = {q P k q k + Z n ; 0 ≤ q < q k } = {q P k q k + Z n ; q ∈ Z}. Clearly Λ k is lattice in R n with determinant q -1 k . Let λ 1,k ≤ • • • ≤ λ n,k
be the successive minima of the lattice Λ k with respect to the unit ball |x| ≤ 1.

Lemma 1. For any integer k and any ball B(x, r) ⊂ R n centered at the point x with radius r, we have the following upper bounds ( †). If r ≤ λ i,k for some i ≤ n, then

Card Γ k ∩ B(x, r) i-1 j=1 r λ j,k q k n j=i λ j,k r i-1 ,
(with the convention that the empty product is equal to

1 when i = 1). If r ≥ λ n,k , then Card Γ k ∩ B(x, r) q k r n .
Furthermore ρ k λ 1,k , and the last minimum λ n,k tends to 0 when k tends to infinity.

Proof. We first prove the above inequalities for x = 0 with Γ k replaced by Λ k . To that purpose, thanks to LLL algorithm, we use a reduced basis {e 1 , . . . , e n } of the lattice Λ k , meaning that

|e i | λ i,k for 1 ≤ i ≤ n and | x i e i | max |x i e i |.
We easily obtain the expected bounds for Card Λ k ∩B(0, r) , using morever Minkowski's theorem on successive minima:

n j=1 λ j,k det Λ k = q -1 k .
( †) The constants involved in the symbols and depend only on n. The ball B(x, r) denotes the hypercube of points y ∈ R n with |y -x| ≤ r.

See [START_REF] Bugeaud | On simultaneous inhomogeneous Diophantine approximation[END_REF] for more details. Next, the same inequalities hold for any point x ∈ R n since Λ k is a group. In order to replace finally Λ k by Γ k , observe that the distance between the points qA and qP k /q k is smaller than ρ k+1 < ρ k λ 1,k , for any integer q with 0 ≤ q < q k . As for the assertions concerning λ 1,k and λ n,k , we refer to §5 of [START_REF] Bugeaud | On simultaneous inhomogeneous Diophantine approximation[END_REF].

4. Proof of Theorem 5 and of its corollary.

Let us first deduce the corollary from Theorem 5. Thanks to transfer inequalities between uniform exponents due to Apfelbeck and Jarník (see for instance formula [START_REF] Bugeaud | On exponents of Diophantine Approximation[END_REF] in [START_REF] Bugeaud | On exponents of homogeneous and inhomogeneous Diophantine approximation[END_REF]), we know that ω(A) = 1/n iff ω( t A) = n. Then, it follows from Theorem 1 that B v = R n when v ≤ 1/n, so that δ(v) = n for any v in the interval [0, 1/n]. On the other hand, Theorem 5 gives δ(v) = 1/v for v ≥ 1/n. Therefore, the formula

δ(v) = min n, 1 v
holds true for any positive real number v.

As for the proof of Theorem 5, note that the dimension δ(v) is a non-increasing function of v and that δ(v) ≤ 1/v by Theorem 3. Thus, it suffices to establish the lower bound δ(v) ≥ 1/v for any v > ω(A). We closely follow the lines of [START_REF] Bugeaud | On simultaneous inhomogeneous Diophantine approximation[END_REF].

Let v and s be positive real numbers such that v > ω(A) and s < 1/v. We construct a Cantor-type set K ⊆ B v whose Hausdorff dimension is ≥ s. Let (k j ) j≥0 be an increasing sequence of positive integers such that (4) holds for any integer k = k j , j ≥ 0, appearing in the sequence. The sequence (k j ) is also assumed to be very lacunary, in the sense that each value k j+1 is taken sufficiently large in term of the preceding value k j . The precise meaning of these growth conditions will be explicited in the course of the construction.

The set K is the intersection K = ∩ j≥0 K j of nested sets K j . Each K j is a finite union of closed balls B with radius q -v k j , centered at some point of Γ k j . Therefore K is clearly contained in B v . Note that the K j are made up with disjoint balls, as a consequence of (4). We start by taking k 0 arbitrary and by choosing for K 0 a single ball of the required type. Put N 0 = 1. We define inductively K 1 ⊃ K 2 ⊃ . . . as follows. Suppose that K j has already been constructed. Since the sequence of points (qA) q≥1 is uniformely distributed modulo Z n in T n ( [START_REF] Cassels | An introduction to Diophantine Approximation[END_REF] Chapter IV), we may choose k j+1 large enough so that each ball occurring in K j , whose Euclidean volume is equal to 2 n q -nv k j , contains ∼ 2 n q k j+1 q -nv k j points of Γ k j+1 . Dropping eventually some of them, we select in each ball B occurring in K j exactly the same number N j+1 = 2 n-1 q k j+1 q -nv k j

On the other hand, an easy application of Hausdorff-Cantelli Lemma (see[START_REF] Bernik | Metric Diophantine approximation on Manifolds[END_REF][START_REF] Bugeaud | Approximation by algebraic numbers[END_REF]) provides us with the following bound:

of points in B ∩ Γ k j+1 for which the balls B with radius q -v k j+1 centered at these points are included in B. We define K j+1 as the union of all these selected balls B , for any B in K j .

We define now a probability measure µ on R n in the following way. First, if B is one of the balls which is part of a set K j , we set

where the infimum is taken over all coverings C of E ∩ K by disjoint balls B occurring in the sets K j , j ≥ 0. Then µ is a probability measure on R n whose support is contained in

Lemma 2. For any point x ∈ R n and any sufficiently small radius r, we have the upper bound µ(B(x, r)) r s .

Proof. Let j be the index determined by

The set K ∩ B(x, r) is certainly covered by the collection of all balls B with radius

We make use of Lemma 1 to bound the right hand side of [START_REF] Bugeaud | On exponents of homogeneous and inhomogeneous Diophantine approximation[END_REF]. Suppose first that

Then Lemma 1 (with i = 1) gives -sv) (note that the exponent sv -1 is negative).
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Suppose now that there exists an integer i with 1 ≤ i < n, such that

We distinguish two cases, depending on whether i < s or i ≥ s. If i < s, using Lemma 1, we get the same bound

and r ≥ q -v k j+1 .

When i ≥ s, Lemma 1 and ( 5) give the bounds s) . But we also know from Lemma 1 that λ n,k j+1 is arbitrarily small when k j+1 is sufficiently large (note that the exponent n -s is positive since s < 1/v < 1/ω(A) ≤ n).

Suppose finally that r + q -v k j+1 ≥ λ n,k j+1 .

Recalling that r ≤ q -v k j , Lemma 1 gives now

By the mass distribution principle, Lemma 2 ensures that the Hausdorff dimension of K is greater or equal to s. Since K ⊆ B v , it follows that δ(v) ≥ s. Taking now s arbitrarily close to 1/v, we obtain the lower bound δ(v) ≥ 1/v. The proof of Theorem 5 is now complete.