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Approximation to points in the plane by
SL(2,Z)-orbits

Michel Laurent & Arnaldo Nogueira

Abstract

The orbit SL(2,Z)x is dense in R2 when the initial point x ∈ R2 has irrational slope.
We refine this result from a diophantine perspective. For any target point y ∈ R2, we
introduce two exponents µ(x,y) and µ̂(x,y) that measure the approximation to y
by elements γx of the orbit in terms of the size of γ. We estimate both exponents
under various conditions. Our results are optimal when the slope of the target point
y is a rational number. In that case we express µ(x,y) and µ̂(x,y) in terms of the
irrationality measure of the slope of x.

1 Introduction and results

We view the real plane R2 as a space of column vectors on which the group

Γ = SL(2,Z) acts by left multiplication. Let x =

(
x1

x2

)
be a point in R2 with

irrational slope ξ = x1/x2. The orbit Γx is then dense in R2. The assertion
follows from density results of J. S. Dani [5] for lattice orbits in homogeneous
spaces, see also [4] (Propriété 4.4 in Chapter V), as well as a more elementary
proof in [6]. The study of lattice orbit distribution has been the subject of
numerous works in a wide setting. In particular the articles [8, 11, 14, 15] are
concerned in counting the number of elements γx belonging to various sets under
restriction on the size of γ, and [9] regards the approximation to a radius with
rational slope. Here we are interested in the effective approximation of a given
point y ∈ R2 by points of the form γx, where γ ∈ Γ, in terms of the size of γ.

As a guide to our results, let us recall some classical results on inhomogeneous
approximation in R. The Minkowski Theorem, see for instance [3, Chapter III],
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asserts that for any irrational number ξ and any real number y not belonging to
Zξ + Z, there exist infinitely many pairs of integers (u, v), with v 6= 0, such that

(1.1) |vξ + u− y| ≤ 1

4|v|
.

Our first goal is to obtain an analogous result for the orbit Γ

(
ξ
1

)
in R2. Let

us equip R2 with the supremum norm |x| = max(|x1|, |x2|), and for any matrix
γ, denote as well by |γ| the maximum of the absolute values of the entries of γ.
Notice that any choice of norm on the algebra of matrices M2(R) would lead to
the same exponents with possibly different constants. We distinguish three cases,

according as the target point y coincides with the origin 0 =

(
0
0

)
, or it lies

on a line passing through the origin whose slope is either rational or irrational.

Theorem 1. Let x be a point in R2 with irrational slope.
(i) There exist infinitely many matrices γ ∈ Γ such that

(1.2) |γx| ≤ |x|
|γ|
.

(ii) Let y =

(
y1

y2

)
be a point ∈ R2 \ {0}. Assume that either the slope y1/y2

is a rational number a/b, where a and b are coprime integers, or that y2 = 0 in
which case we put a = 1 and b = 0. Then, there exist infinitely many matrices
γ ∈ Γ such that

(1.3) |γx− y| ≤ c

|γ|1/2
with c = 2

√
3 max(|a|, |b|)|x|1/2|y|1/2.

(iii) If the slope y1/y2 of the point y is irrational, there exist infinitely many
matrices γ ∈ Γ satisfying

(1.4) |γx− y| ≤ c′

|γ|1/3
with c′ = 7

√
5|x|1/3|y|2/3.

The exponents 1 and 1/2 of |γ| occurring respectively in (1.2) and (1.3) are
best possible. We are also interested in uniform versions of Theorem 1, in the
sense of [2]. We first state the uniform version of Minkowski’s Theorem. To this
purpose, we need the standard notion of irrationality measure of an irrational
number.
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Definition 1. For any irrational real number α, we denote by ω(α) the supre-
mum of the numbers ω such that the inequation

|vα + u| ≤ |v|−ω

has infinitely many integer solutions (v, u).

Then, for any real number µ < 1/ω(ξ) and any positive real number T
sufficiently large in terms of µ, there exist integers u, v such that

(1.5) max(|u|, |v|) ≤ T and |vξ + u− y| ≤ T−µ.

See for instance the main theorem of [2], as well as the comments explaining the
link with the claims (1.1) and (1.5). More information and results can be found
in [1, 2, 3], including metrical theory and higher dimensional generalizations.

In view of the above results, let us define two exponents measuring respec-
tively the usual and the uniform approximation to a point y by elements of the
orbit Γx. We follow the notational conventions of [2].

Definition 2. Let x and y be two points in R2. We denote by µ(x,y) the
supremum of the real numbers µ for which there exist infinitely many matrices
γ ∈ Γ satisfying the inequality

|γx− y| ≤ |γ|−µ.

We denote by µ̂(x,y) the supremum of the exponents µ such that for any suffi-
ciently large positive real number T , there exists a matrix γ ∈ Γ satisfying

|γ| ≤ T and |γx− y| ≤ T−µ.

Clearly µ(x,y) ≥ µ̂(x,y) ≥ 0, unless y belongs to the orbit Γx in which case
µ̂(x,y) = +∞. We can now state the

Theorem 2. Let x be a point in R2 with irrational slope ξ.
(i) We have

(1.6) µ(x,0) = 1 and µ̂(x,0) =
1

ω(ξ)
.

(ii) Let y =

(
y1

y2

)
be a point ∈ R2\{0}. Assume that either the slope y = y1/y2

is rational or that y2 = 0. Then, we have the equalities

(1.7) µ(x,y) =
ω(ξ)

ω(ξ) + 1
≥ 1

2
and µ̂(x,y) =

1

ω(ξ) + 1
.
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(iii) If the slope y of the point y is an irrational number, then the following lower
bounds hold

(1.8) µ(x,y) ≥ 1

3
and µ̂(x,y) ≥ ω(y) + 1

2(2ω(y) + 1)ω(ξ)
≥ 1

4ω(ξ)
.

If ξ is a Liouville number, meaning that ω(ξ) = +∞, the equalities (1.7)
obviously read µ(x,y) = 1 and µ̂(x,y) = 0. When the slope y is rational, an
explicit lower bound for the distance between γx and y will be given in Theorem
4 of Section 8, which brings further information in terms of the convergents of ξ.

Subsequent to proving the results described in the present paper, we learned
that Maucourant and Weiss [12] have obtained the weaker estimates

µ(x,y) ≥ 1

144
and µ̂(x,y) ≥ 1

72(ω(ξ) + 1)
,

as a consequence of effective equidistribution estimates for unipotent trajectories
in Γ\SL(2,R) (use Corollary 1.9 in [12] and substitute δ0 = 1/48, which is an
admissible value as mentioned in Remark 1.6). Our method is totally different. In
another related work [9], Guilloux observes the existence of gaps around rational
directions in the repartition of the cloud of points {γx ; γ ∈ Γ, |γ| ≤ T} for large
T . In our setting, he proves the upper bound µ(x,y) ≤ 1 for any point y with
rational slope.

We now discuss upper bounds for our exponents µ(x,y) and µ̂(x,y). Apply-
ing Proposition 8 of [2] to the two inequalities of the form (1.5) determined by
the two coordinates of γx−y, we obtain the bound µ̂(x,y) ≤ ω(ξ) for any point
y which does not belong to the orbit Γx. Moreover, the stronger upper bound

µ̂(x,y) ≤ 1

ω(ξ)
≤ ω(ξ)

holds for almost all (*) points y, since the main theorem of [2] tells us that
the exponent µ in (1.5) cannot be larger than 1/ω(ξ) for almost all real number
y. As for the exponent µ(x,y), it may be arbitrarily large when y is a point
of Liouville type, meaning that y is the limit of a fast converging sequence
(γnx)n≥1 of points of the orbit. However, µ(x,y) is bounded almost everywhere.
Projecting as above on both coordinates, the main theorem of [2] shows that
the upper bound µ(x,y) ≤ 1 holds for almost all points y. Here is a stronger
statement.

(*) Throughout the paper, the expression almost all refers to Lebesgue measure in the
ambient space.
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Theorem 3. Let x be a point in R2 with irrational slope and let y be an irrational
number having irrationality measure ω(y) = 1. Then, the upper bound

µ(x,y) ≤ 1

2

holds for almost all points y of the line R
(
y
1

)
.

It follows from Theorems 2 and 3 that, x being fixed, we have the estimate

1

3
≤ µ(x,y) ≤ 1

2

for almost all points y ∈ R2, since the assumption ω(y) = 1 occurring in Theorem
3 is valid for almost all real numbers y. Moreover the maximal value 1/2 is
reached for any point y 6= 0 lying on a radius with rational slope when the slope
ξ of x has irrationality measure ω(ξ) = 1. We address the problem of finding
the generic value of the exponents µ(x,y) and µ̂(x,y) on R2 ×R2. An heuristic
(but optimistic) argument of equidistribution suggests that we should have

µ(x,y) = µ̂(x,y) =
1

2

for almost all pairs of points (x,y). Note that generic values for both exponents
do exist by the following remark due to B. Weiss. The natural linear action on
R2 × R2 of the group Γ × Γ is ergodic with respect to Lebesgue measure [13].
Therefore, the (Γ × Γ)-invariant measurable functions µ(x,y) and µ̂(x,y) are
constant almost everywhere on R2 × R2.

The proofs are based on an explicit construction of approximating matrices
γ ∈ Γ. The process may be geometrically described as follows. The origin 0
plays a specific role in our approach. We first associate to every fixed irrational
number ξ a sequence of matrices Mk in Γ, called convergent matrices, sending
any point x with slope ξ towards the origin. Secondly, we introduce an other

sequence of matrices Nj in Γ transforming the horizontal axis R
(

1
0

)
into a

line passing through 0 whose slope tends to the slope y of the target point y as j
tends to infinity. These matrices Nj are essentially the inverse of the convergent

matrices corresponding to the slope y. Set U =

(
1 1
0 1

)
and fix two matrices

M = Mk and N = Nj as above. We consider products of the form

γ = NU `M,

5



where ` ranges over Z. Therefore, we have the relation

γx = NU `x′,

where x′ = Mx is a point close to the origin. Observe now that the unipotent

matrix U leaves invariant any horizontal line
{(

z
ε

)
; z ∈ R

}
and acts on this

line as a translation with step |ε|. Let L be the horizontal line passing through
the point x′. Then, the points U `x′, ` ∈ Z, form a lattice on L whose step
is at most |x′|. Transforming this lattice by the linear transformation N , we
obtain a lattice on the line NL with step ≤ 2|N ||x′|. On the other hand, the

point y is close to the line NL, since L is close to the axis R
(

1
0

)
whose image

by N is a line passing near to y. Then, under suitable conditions, there exists
an element γx = NU `x′ of the lattice contained in NL, whose distance to y is
not much larger than the step of this lattice. The argument will be quantified
in Section 4 and translated in terms of inequalities. We thus obtain fairly good
approximations in term of the norm |γ|, depending upon the diophantine nature
of the slopes ξ and y. Here is a picture showing the motion from x to γx.
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It would be interesting to extend our decomposition method to other lattices
Γ in SL(2,R). Observe that the rational slopes, namely the set of cusps of the
Fuchsian group PSL(2,Z), play a prominent role in our approach.

The paper is organized as follows. The convergent matrices are defined in
Section 2 in terms of continued fractions of ξ. As a first application, the easy
case y = 0 is investigated in Section 3. In Section 4, we state two basic lemmas
involving the above approximating matrices γ. We apply the method in Sections
5 and 6, thus obtaining various lower bounds for µ(x,y) and µ̂(x,y) depending
on whether the slope of the target point y is rational or not. Assuming now
conversely that γx is close to y, it turns out that we necessarily have a decompo-
sition of the form γ = NGM , whereM and N are as above with an intermediate
factor G of small norm. Such a statement will be provided by the important
Lemma 7 in Section 7. Then, we deduce from this fact upper bounds for our
exponents µ(x,y) and µ̂(x,y), which are valid for almost all points y ∈ R2, in-
cluding all points y with rational slope. In the latter case, it turns out that the
upper and lower bounds thus obtained coincide; hence we get the exact formulas
(1.7) for µ(x,y) and µ̂(x,y). The proofs are displayed in Sections 7 and 8. The
final Section 9 deals with additional constraints of signs.

Throughout the paper, we write A� B when there exists a positive constant
c such that A ≤ cB for all values of the parameters under consideration (usually
the indices j and k). The coefficient c may possibly depend upon the points x
and y. As usual, the notation A � B means that A� B and A� B.

2 Convergent matrices

Let ξ be an irrational number and let (pk/qk)k≥0 be the sequence of convergents
of ξ. We set εk = qkξ−pk. The theory of continued fractions, see for instance the
monography [10], tells us that the sign of εk is alternatively positive or negative
according to whether k is even or odd, and that the estimate

(2.1)
1

2qk+1

≤ |εk| ≤
1

qk+1

holds for k ≥ 0. For later use, note as a consequence of (2.1) that, when ω(ξ)
is finite, we have the upper bound qk+1 ≤ qωk for any real number ω > ω(ξ)
provided k is large enough, while if ω < ω(ξ), the lower bound qk+1 ≥ qωk holds
for infinitely many k.

For any positive integer k, we set

Mk =

(
qk −pk
−qk−1 pk−1

)
or Mk =

(
qk −pk
qk−1 −pk−1

)
7



respectively, when k is even or odd. In both cases the matrix Mk belongs to

Γ and has norm |Mk| = max(qk, |pk|). Let x =

(
x1

x2

)
be a point with slope

ξ = x1/x2. Then, we have

Mkx = x2

(
εk

(−1)k−1εk−1

)
= x2

(
εk
|εk−1|

)
,

noting that the second coordinate (−1)k−1εk−1 is always positive and thus equals
|εk−1|.

The matrices Mk will be called convergent matrices of ξ. The name is jus-
tified by the fact that the numerator and the denominator of two consecutive
convergents of ξ are given, up to a sign, by the columns of the inverse matrix

M−1
k =

(
pk−1 pk
qk−1 qk

)
or M−1

k =

(
−pk−1 pk
−qk−1 qk

)
.

3 Approximation to the origin

We first consider the easier case where the target point y equals the origin 0, and
prove claims (1.2) and (1.6) in this section. We assume without loss of generality

that x =

(
ξ
1

)
.

Lemma 1. Let k be a positive integer and let γ ∈ Γ with norm |γ| ≤ qk+1/2.
Then, we have the lower bound

|γx| ≥ 1

2qk
.

Proof. We argue by contradiction. On the contrary, suppose that |γx| <

1/(2qk). Put γ =

(
v1 u1

v2 u2

)
and G = γM−1

k . Assume first that k is even. We

find the formula

G =

(
v1 u1

v2 u2

)(
qk −pk
−qk−1 pk−1

)−1

=

(
pk−1v1 + qk−1u1 pkv1 + qku1

pk−1v2 + qk−1u2 pkv2 + qku2

)
=

(
−v1(qk−1ξ − pk−1) + qk−1(v1ξ + u1) −v1(qkξ − pk) + qk(v1ξ + u1)
−v2(qk−1ξ − pk−1) + qk−1(v2ξ + u2) −v2(qkξ − pk) + qk(v2ξ + u2)

)
.

Bounding from above the norm of the second column of the above matrix gives

max
(
|−v1(qkξ−pk)+qk(v1ξ+u1)|, |−v2(qkξ−pk)+qk(v2ξ+u2)|

)
≤ |γ|
qk+1

+qk|γx| < 1.
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Since G has integer entries, it follows that the second column of G equals 0. The
case k odd leads to the same conclusion. Contradiction with detG = 1.

For any γ ∈ Γ of norm |γ| > q1/2, let k be the integer defined by the estimate

qk
2
< |γ| ≤ qk+1

2
.

It follows from Lemma 1 that

|γx| ≥ 1

2qk
≥ 1

4|γ|
.

Therefore µ(x,0) ≤ 1. On the other hand, we have that

|Mk| = max(|pk|, qk) and |Mkx| = max(|εk|, |εk−1|) = |εk−1| ≤
1

qk
,

by (2.1). Observe that pk = qkξ − εk has absolute value ≤ |ξ|qk if εk and ξ have
the same sign. Hence (1.2) holds for γ = Mk when k is either odd or even.

It obviously follows from (1.2) that µ(x,0) = 1, thus proving the first as-
sertion of (1.6). The proof of the equality µ̂(x,0) = 1/ω(ξ) is similar. For any
real number ω < ω(ξ), there exist infinitely many k such that qk+1 ≥ qωk . Put
T = qk+1/2. For all γ ∈ Γ with norm |γ| ≤ T , Lemma 1 gives the lower bound

|γx| ≥ 1

2qk
≥ 1

2(2T )1/ω
.

Therefore µ̂(x,0) ≤ 1/ω, and letting ω tend to ω(ξ), we obtain the upper bound
µ̂(x,0) ≤ 1/ω(ξ). On the other hand, the choice of the matrix γ = Mk for
|Mk| ≤ T < |Mk+1| shows that µ̂(x,0) ≥ 1/ω(ξ). Hence the equality µ̂(x,0) =
1/ω(ξ) holds.

4 Construction of approximants

It is well known that the modular group Γ is generated by the two matrices

J =

(
0 −1
1 0

)
and U =

(
1 1
0 1

)
.

Observe that the matrix J acts on R2 as a rotation by a right angle.
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From now on, we assume that the target point y differs from 0. Note that
|Jz| = |z| for all z ∈ R2. Replacing possibly x by Jx or y by Jy, we shall assume
throughout the paper that

|x| = |x2| and |y| = |y2|,

so that the slopes ξ = x1/x2 and y = y1/y2 of the points x and y satisfy

0 < |ξ| < 1 and |y| ≤ 1.

Recall the convergent matrices Mk associated to ξ. We consider approximat-
ing matrices of the form γ = NU `Mk, where ` is an integer and N is a matrix in
Γ, which will be specified later. We first estimate the norm of γ.

Lemma 2. Let k be a positive integer, ` be an integer, and let N =

(
t t′

s s′

)
belong to Γ. Put γ = NU `Mk ∈ Γ. Then∣∣`qk−1 + (−1)k−1qk

∣∣ |s| − |s′|qk−1 ≤ |γ| ≤ |`||N |qk−1 + 2|N |qk.

Proof. Since |ξ| < 1, we have |pk| ≤ qk for all k ≥ 0. When k is even, we have

γ =

(
t t′

s s′

)(
1 `
0 1

)(
qk −pk
−qk−1 pk−1

)
=

(
−`tqk−1 + tqk − t′qk−1 `tpk−1 − tpk + t′pk−1

−`sqk−1 + sqk − s′qk−1 `spk−1 − spk + s′pk−1

)
.

When k is odd, we find

γ =

(
t t′

s s′

)(
1 `
0 1

)(
qk −pk
qk−1 −pk−1

)
=

(
`tqk−1 + tqk + t′qk−1 −`tpk−1 − tpk − t′pk−1

`sqk−1 + sqk + s′qk−1 −`spk−1 − spk − s′pk−1

)
.

The required upper bound obviously holds in both cases. For the lower bound,
look at the lower left entry of γ.

The next lemma relates the two components of the point γ
(
ξ
1

)
.

Lemma 3. Let k be a positive integer, ` be an integer, let N =

(
t t′

s s′

)
belong

to Γ and let y be any real number. Put

γ = NU `Mk =

(
v1 u1

v2 u2

)
, δ = |sy − t| and δ′ = |s′y − t′|.

10



Then, we have the upper bound

|v1ξ + u1 − y(v2ξ + u2)| ≤
δ|`|
qk

+
δ

qk+1

+
δ′

qk
.

Proof. It is a simple matter of bilinearity. We have the formula

y(v2ξ + u2)− v1ξ − u1 =
(
−1 y

)
γ

(
ξ
1

)
=

(
−1 y

)( t t′

s s′

)(
1 `
0 1

)
Mk

(
ξ
1

)
=

(
sy − t s′y − t′

)( 1 `
0 1

)(
εk
|εk−1|

)
= (sy − t)(εk + `|εk−1|) + (s′y − t′)|εk−1|.

Now the upper bound immediately follows from the estimate (2.1).

We shall use Lemma 3 in the following way. Put(
Λ1

Λ2

)
= γx− y =

(
x2(v1ξ + u1)− y1

x2(v2ξ + u2)− y2

)
and let y = y1/y2 be the slope of the point y, so that

Λ1 − yΛ2 = x2

(
v1ξ + u1 − y(v2ξ + u2)

)
.

Now, Lemma 3 provides us with a fine upper bound for |Λ1− yΛ2|, as far as the
quantities δ and δ′ are small. Therefore to bound from above |γx−y|, it suffices
to bound one of its coordinates, say Λ2. To that purpose, we use the expression

(4.1) Λ2 = x2

(
sεk + (s`+ s′)|εk−1|

)
− y2 = x2s|εk−1|(`− ρ),

where

(4.2) ρ =
y2

x2s|εk−1|
− εk
|εk−1|

− s′

s
.

4.1 Irrational slopes

We assume here that the slope y = y1/y2 is an irrational number and apply the
key lemmas 2 and 3 for constructing matrices γ in Γ such that γx is close to y.
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Denote by (tj/sj)j≥0 the sequence of convergents of y, and put

Nj =

(
tj t′j
sj s′j

)
, where s′j = (−1)j−1sj−1 and t′j = (−1)j−1tj−1,

for any j ≥ 1. Observe that JN−1
j coincides with the convergent matrix Mj

associated to the irrational number y as in Section 2. Hence Nj belongs to Γ.

Lemma 4. Let j and k be positive integers. There exists a matrix γ ∈ Γ, of the
form NjU

`Mk for some integer `, such that

(4.3)

∣∣∣∣ |y2|
|x2|

qk−1qk − sjqk
∣∣∣∣− 4sjqk−1 ≤ |γ| ≤

2|y2|
|x2|

qk−1qk + 4sjqk

and

(4.4) |γx− y| ≤ 2|y2|
sjsj+1

+
5|x2|sj
qk

.

Proof. Since |y| < 1, we have |tj| ≤ sj and |t′j| ≤ |s′j| < sj. The matrix Nj has
thus norm |Nj| = sj. The theory of continued fractions gives the upper bounds

(4.5) δ = |sjy − tj| ≤ s−1
j+1 and δ′ = |s′jy − t′j| = |sj−1y − tj−1| ≤ s−1

j .

Recall the definition of ρ given in (4.2), and substitute sj to s and s′j to s′.
Bounding |εk/εk−1| ≤ 1, sj−1/sj ≤ 1, and qk ≤ |εk−1|−1 ≤ 2qk by (2.1), we find

|y2|qk
|x2|sj

− 2 ≤ |ρ| ≤ 2|y2|qk
|x2|sj

+ 2.

Define ` to be the unique integer such that

|`− ρ| < 1 and |`| ≤ |ρ|.

We set
γ = NjU

`Mk and
(

Λ1

Λ2

)
= γx− y.

Therefore

(4.6)
|y2|qk
|x2|sj

− 3 ≤ |`| ≤ 2|y2|qk
|x2|sj

+ 2,

and it follows from (4.1) that

|Λ2| = |x2|sj|εk−1||`− ρ| ≤
|x2|sj
qk

.
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Now, we apply Lemma 3 to bound Λ1 − yΛ2. Using (4.5) and (4.6), we find

|Λ1 − yΛ2| ≤ |x2|
(
|`|

sj+1qk
+

1

sj+1qk+1

+
1

sjqk

)
≤ |x2|

(
2|y2|

|x2|sjsj+1

+
4

sjqk

)
.

Since |y| < 1, adding the two above upper bounds gives

|Λ1| ≤ |Λ2|+ |Λ1 − yΛ2| ≤ |x2|
(

2|y2|
|x2|sjsj+1

+
5sj
qk

)
.

We have obtained the upper bound

|γx− y| = max(|Λ1|, |Λ2|) ≤
2|y2|
sjsj+1

+
5|x2|sj
qk

claimed in (4.4). On the other hand, Lemma 2 combined with (4.6) gives the
estimate of norm (4.3).

4.2 Rational slopes

We consider here a target point y with rational slope y. Writing the rational
y = a/b in reduced form, the integers a and b are coprime and we have |a| ≤ b,
since we have assumed that |y| ≤ 1.

Lemma 5. For any sufficiently large integer k, there exists a matrix γ ∈ Γ such
that

|y2|
2|x2|

qk−1qk ≤ |γ| ≤
3|y2|
|x2|

qk−1qk and |γx− y| ≤ 2b|x2|
qk

.

Proof. We now use the number y = a/b itself as a best rational approximation

to y. Let us complete the primitive point
(
a
b

)
into an unimodular matrix

N =

(
a a′

b b′

)
, with norm |N | = b. The matrix N is thus fixed, independently

of k, and we have

(4.7) δ = |by − a| = 0 and δ′ = |b′y − a′| = 1

b
.

We use lemmas 2 and 3 with this choice of matrix N . Recall the definition of
ρ given in (4.2), with s and s′ respectively replaced by b and b′. As previously,
define ` as the unique integer verifying |`| ≤ |ρ| and |` − ρ| < 1. We have the
estimate

(4.8)

(
|y2|
b|x2|

)
qk − 3 ≤ |`| ≤

(
2|y2|
b|x2|

)
qk + 2,
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and

(4.9) |Λ2| = |x2|b|εk−1||`− ρ| ≤
|x2|b
qk

.

Substituting the values of δ and δ′ given by (4.7), Lemma 3 now gives

(4.10) |Λ1 − yΛ2| ≤
|x2|
bqk

.

We deduce from (4.9), (4.10) and the triangle inequality that

|γx− y| ≤ 2b|x2|
qk

,

as claimed. Finally, taking (4.8) into account, Lemma 2 gives

|γ| ≤ |`|bqk−1 + 2bqk ≤ 2
|y2|
|x2|

qk−1qk + 2bqk−1 + 2bqk ≤ 3
|y2|
|x2|

qk−1qk

and
|γ| ≥ |`|bqk−1 − 2bqk ≥

|y2|
|x2|

qk−1qk − 5bqk ≥
|y2|

2|x2|
qk−1qk,

for large k.

5 Proof of Theorem 1

We apply lemmas 4 and 5 in order to prove respectively the claims (1.3) and
(1.4). We first deal with an irrational slope y and prove (1.4) in the sections 5.1
and 5.2 below. The argument splits into two parts depending on whether the
value of the irrationality measure ω(ξ) is smaller than 3 or greater than 2.

5.1 The case ω(ξ) < 3

Let us define infinitely many pairs of integers j and k in the following way. Let
j0 be an arbitrarily large integer. We determine k by the estimate(

|y2|qk−1

|x2|

)1/3

< sj0 ≤
(
|y2|qk
|x2|

)1/3

.

Let j be the largest integer such that sj belongs to the above interval. We thus
have the inequalities

(5.1)

(
|y2|qk−1

|x2|

)1/3

< sj ≤
(
|y2|qk
|x2|

)1/3

< sj+1.
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We use Lemma 4 for any pair j and k verifying (5.1). It provides us with a
matrix γ satisfying (4.3) and (4.4). Combining (4.4) and (5.1), we find the upper
bound

(5.2) |γx− y| ≤ |y2|1/3|x2|2/3
(

2

q
1/3
k−1q

1/3
k

+
5

q
2/3
k

)
≤ 7|y2|1/3|x2|2/3

(qk−1qk)1/3
.

Observe now that for any real number ω satisfying ω(ξ) < ω < 3, we have
qk−1 ≥ q

1/ω
k for all k sufficiently large. Since sj � q

1/3
k , the second term 4sjqk

occurring on the right hand side of (4.3) is much smaller than the first one, as k
tends to infinity. Thus, for any sufficiently large k, we have the norm bound

(5.3) |γ| ≤ 3
|y2|
|x2|

qk−1qk.

Combining then (5.2) and (5.3), we obtain

|γx− y| ≤ 7
3
√

3|x2|1/3|y2|2/3|γ|−1/3 ≤ c′|γ|−1/3.

The upper bound (1.4) is therefore established. It remains to show that our
construction produces infinitely many solutions of (1.4). To that purpose, it
suffices to bound from below the norm of γ. The estimate (4.3) in Lemma 4
gives indeed

|γ| � |y2|
|x2|

qk−1qk.

5.2 The case ω(ξ) > 2

Let us fix a real number ω satisfying 2 < ω < ω(ξ). There exist infinitely many
k such that qωk−1 ≤ qk. For any such integer k, let j be the integer defined by the
inequality

(5.4) sj ≤
(
|y2|qk
|x2|

)1/2

< sj+1.

Applying Lemma 4 and using (5.4), we obtain the upper bounds

(5.5) |γ| ≤ 2|y2|
|x2|

qk−1qk + 4sjqk ≤
2|y2|
|x2|

qk−1qk + 4
|y2|1/2

|x2|1/2
q
3/2
k

and

(5.6)
|γx− y| ≤ 2|y2|

sjsj+1

+
5|x2|sj
qk

≤
(

2

sj
+ 5

)
|x2|1/2|y2|1/2q−1/2

k

≤ 7|x2|1/2|y2|1/2q−1/2
k .
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(5.6) |γx−y| ≤ 2|y2|
sjsj+1

+
5|x2|sj
qk

≤
(

2

sj
+ 5

)(
|x2||y2|
qk

)1/2

≤ 7

(
|x2||y2|
qk

)1/2

.

Recall that k has been chosen satisfying qk−1 ≤ q
1/ω
k , where ω > 2. Consequently,

the first term (2|y2|/|x2|)qk−1qk occurring on the right hand side of (5.5) is much
smaller than the second one, as k tends to infinity. The upper bound

(5.7) |γ| ≤ 5
|y2|1/2

|x2|1/2
q
3/2
k ,

is thus valid for k large enough. Combining (5.6) and (5.7), we obtain

|γx− y| ≤ 7
3
√

5|x2|1/3|y2|2/3|γ|−1/3 = c′|γ|−1/3.

Note that (5.7) turns out to be an estimate

|γ| � |y2|1/2

|x2|1/2
q
3/2
k ,

using (4.3). Hence the norm of γ tends to infinity with k, and here again, our
construction furnishes infinitely many solutions of the inequation (1.4).

The assertion (1.4) of Theorem 1 is finally established for any point y with
irrational slope.

5.3 Rational slopes

We deduce from Lemma 5 the claim (1.3) of Theorem 1. For any large integer
k, it furnishes a matrix γ ∈ Γ satisfying the inequalities

|γ| ≤ 3
|y2|
|x2|

qk−1qk ≤ 3
|y2|
|x2|

q2
k and |γx− y| ≤ 2b|x2|

qk
,

which imply

|γx− y| ≤ 2
√

3b|x2|1/2|y2|1/2|γ|−1/2 = c|γ|−1/2.

Using the lower bound for |γ| given in Lemma 5, we find the estimate

|γ| � |y2|
|x2|

qk−1qk.

Therefore, our construction produces infinitely many solutions γ of the inequation
(1.3). The proof of Theorem 1 is complete.
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6 Lower bounds of exponents

Applying further Lemmas 4 and 5, we now estimate from below the exponents
µ(x,y) and µ̂(x,y).

6.1 Lower bounds for irrational slopes

We assume here that the slope y of the point y is an irrational number. As an
immediate consequence of (1.4), we get the lower bound µ(x,y) ≥ 1/3.

We prove in this section the lower bound

µ̂(x,y) ≥ ω(y) + 1

2(2ω(y) + 1)ω(ξ)
,

claimed in (1.8). The irrationality measure ω(y) of the slope of the point y is
taken into account thanks to the following.

Lemma 6. Set
τ =

ω(y)

2ω(y) + 1
.

For any ε > 0 and any integer k sufficiently large in terms of ε, there exists
γ ∈ Γ such that

|γ| ≤ Cq2
k and |γx− y| ≤ qτ−1+ε

k ,

where C = C(x,y, ε) does not depend upon k.

Proof. Once again, we apply Lemma 4. Let j be the integer defined by the
inequality

(6.1) sj ≤ qτk < sj+1.

Observe that 1/3 ≤ τ ≤ 1/2, since ω(y) ≥ 1. Therefore j tends to infinity, as k
tends to infinity. When ω(y) is finite, the lower bound sj ≥ s

1/ω
j+1 holds for any

ω > ω(y) provided that j is large enough. Selecting properly ω close to ω(y), it
follows from (6.1) that

(6.2) sj ≥ q
τ/ω(y)−ε
k ,

for all sufficiently large integers k. When ω(y) = +∞, we read (6.2) as the
obvious lower bound sj ≥ q−εk . Now, Lemma 4 provides a matrix γ ∈ Γ satisfying

|γ| � qk−1qk + sjqk ≤ Cq2
k,
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and
|γx− y| � 1

sjsj+1

+
sj
qk
� q

−τ−τ/ω(y)+ε
k + qτ−1

k ,

by (6.1) and (6.2). Note that the exponents −τ−τ/ω(y) and τ−1 arising above,
are equal by the definition of τ . Therefore, we obtain the bound

|γx− y| � qτ−1+ε
k ,

and, possibly increasing ε, Lemma 6 is proved.

For any sufficiently large real number T , let k be the integer defined by the
inequalities

(6.3) Cq2
k ≤ T < Cq2

k+1.

Clearly, k tends to infinity when T tends to infinity. For any ε > 0, we can
bound further

(6.4) T ≤ Cq2
k+1 ≤ q

2ω(ξ)+ε
k ,

when T is large enough. Then, Lemma 6 gives a matrix γ ∈ Γ satisfying

|γ| ≤ Cq2
k ≤ T and |γx− y| ≤ qτ−1+ε

k ≤ T−(1−τ−ε)/(2ω(ξ)+ε),

by (6.3) and (6.4). Therefore

µ̂(x,y) ≥ 1− τ − ε
2ω(ξ) + ε

,

and letting ε tend to 0, we obtain the claimed lower bound

µ̂(x,y) ≥ 1− τ
2ω(ξ)

=
ω(y) + 1

2(2ω(y) + 1)ω(ξ)
.

6.2 Lower bounds for rational slopes

In this section, we prove that the lower bounds

µ(x,y) ≥ ω(ξ)

ω(ξ) + 1
and µ̂(x,y) ≥ 1

ω(ξ) + 1

hold for any point y with rational slope y, or when y2 = 0. As in Section 4.2, we
assume that y2 6= 0 and that y = a/b, where a and b are coprime integers with
|a| ≤ b.
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We start with the inequality µ(x,y) ≥ ω(ξ)/(ω(ξ) + 1). For any ω < ω(ξ)

there exist infinitely many integers k satisfying qk−1 ≤ q
1/ω
k . Using Lemma 5 for

such an index k, we get γ ∈ Γ such that

|γ| � qk−1qk � q
1+1/ω
k and |γx− y| � q−1

k .

Then |γx− y| � |γ|−ω/(ω+1) for infinitely many γ. Hence

µ(x,y) ≥ ω(ξ)

ω(ξ) + 1
,

by letting ω tend to ω(ξ).
As for the lower bound µ̂(x,y) ≥ 1/(ω(ξ) + 1), we briefly take again the

argumentation given in Section 6.1. We may obviously assume that ω(ξ) is
finite. For any real number T sufficiently large, let k be the integer uniquely
determined by

3
|y2|
|x2|

qk−1qk ≤ T < 3
|y2|
|x2|

qkqk+1.

For any ε > 0, we bound from above

T < 3
|y2|
|x2|

qkqk+1 ≤ q
ω(ξ)+1+ε
k ,

when k is large enough. Lemma 5 gives us a matrix γ ∈ Γ satisfying

|γ| ≤ 3
|y2|
|x2|

qk−1qk ≤ T and |γx− y| ≤ 2b|x2|
qk

≤ 2b|x2|T−1/(ω(ξ)+1+ε).

Therefore µ̂(x,y) ≥ 1/(ω(ξ) + 1 + ε) for any ε > 0.

7 Proof of Theorem 3

Recall the matrices Mk and Nj introduced in Sections 2 and 4.1. We intend to
show that if an element γx of the orbit is close to a given point y, then γ can be
factorized in the form γ = NjGMk, with a good estimate of the norm |G| for suit-

able indices j and k. Without loss of generality, we may assume that x =

(
ξ
1

)
.

Lemma 7. Let k be a positive integer, µ and T be real numbers such that

0 ≤ µ ≤ 1 and qk−1qk ≤ T ≤ qkqk+1,
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and let γ ∈ Γ satisfy

|γ| ≤ 2T and |γx− y| ≤ T−µ.

Let j be a positive integer such that sj ≥ T µ/2. Then γ can be decomposed as a

product γ = NjGMk, where the two columns of the matrix G =

(
m `
m′ `′

)
∈ Γ

satisfy the norm bound

max(|m|, |m′|) ≤ csjT
1−µ

qk
and max(|`|, |`′|) ≤ csjqkT

−µ,

with c = 10 max(|y|, |y|−1).

Proof. Write γ =

(
v1 u1

v2 u2

)
and put

Λ1 = v1ξ + u1 − y1, Λ2 = v2ξ + u2 − y2.

The upper bound |γx− y| ≤ T−µ means that

(7.1) max(|Λ1|, |Λ2|) ≤ T−µ.

We have the identities

(7.2)
v1y2 − v2y1 =

∣∣∣∣ v1 y1

v2 y2

∣∣∣∣ =

∣∣∣∣ v1 v1ξ + u1 − Λ1

v2 v2ξ + u2 − Λ2

∣∣∣∣ = 1 + Λ1v2 − Λ2v1,

u1y2 − u2y1 =

∣∣∣∣ u1 y1

u2 y2

∣∣∣∣ =

∣∣∣∣ u1 v1ξ + u1 − Λ1

u2 v2ξ + u2 − Λ2

∣∣∣∣ = −ξ + Λ1u2 − Λ2u1.

By (7.1), they imply the upper bound

(7.3) max
(
|u1y2 − u2y1|, |v1y2 − v2y1|

)
≤ 1 + 4T 1−µ.

We first factorize Nj. Define

γ′ = N−1
j γ =

(
tj t′j
sj s′j

)−1(
v1 u1

v2 u2

)
=

(
s′jv1 − t′jv2 s′ju1 − t′ju2

−sjv1 + tjv2 −sju1 + tju2

)
=

1

y2

(
s′j(v1y2 − v2y1) + v2(s

′
jy1 − t′jy2) s′j(u1y2 − u2y1) + u2(s

′
jy1 − t′jy2)

−sj(v1y2 − v2y1)− v2(sjy1 − tjy2) −sj(u1y2 − u2y1)− u2(sjy1 − tjy2)

)
.

Using (7.3) and the estimate |sjy − tj| ≤ |s′jy − t′j| ≤ 1/sj, we deduce from the
above expression the upper bound for the norm

(7.4) |γ′| ≤ sj(1 + 4T 1−µ)

|y2|
+

2T

sj
≤ (5|y2|−1 + 2)sjT

1−µ,
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since sj ≥ T µ/2. Now, put γ′ =
(
v′1 u′1
v′2 u′2

)
and write

(
v′1ξ + u′1
v′2ξ + u′2

)
= γ′x = N−1

j γx = N−1
j

(
y1 + Λ1

y2 + Λ2

)
=

(
y1s
′
j − y2t

′
j + s′jΛ1 − t′jΛ2

−y1sj + y2tj − sjΛ1 + tjΛ2

)
.

It follows that

(7.5) max
(
|v′1ξ + u′1|, |v′2ξ + u′2|

)
= |γ′x| ≤ |y2|

sj
+ 2sjT

−µ ≤ (|y2|+ 2)sjT
−µ.

Now, we multiply γ′ on the right by M−1
k and set

G = N−1
j γM−1

k = γ′M−1
k .

Suppose first that k is even. We find the formula

G =

(
v′1 u′1
v′2 u′2

)(
qk −pk
−qk−1 pk−1

)−1(
pk−1v

′
1 + qk−1u

′
1 pkv

′
1 + qku

′
1

pk−1v
′
2 + qk−1u

′
2 pkv

′
2 + qku

′
2

)
.

Write next

` = pkv
′
1 + qku

′
1 = −v′1(qkξ − pk) + qk(v

′
1ξ + u′1),

`′ = pkv
′
2 + qku

′
2 = −v′2(qkξ − pk) + qk(v

′
2ξ + u′2),

m = pk−1v
′
1 + qk−1u

′
1 = −v′1(qk−1ξ − pk−1) + qk−1(v

′
1ξ + u′1),

m′ = pk−1v
′
2 + qk−1u2 = −v′2(qk−1ξ − pk−1) + qk−1(v

′
2ξ + u′2).

We deduce from (2.1), (7.4) and (7.5) that

max(|`|, |`′|) ≤ (5|y2|−1 + 2)
sjT

1−µ

qk+1

+ (|y2|+ 2)qksjT
−µ ≤ csjqkT

−µ,

max(|m|, |m′|) ≤ (5|y2|−1 + 2)
sjT

1−µ

qk
+ (|y2|+ 2)qk−1sjT

−µ ≤ csjT
1−µ

qk
,

since qk−1qk ≤ T ≤ qkqk+1. The case k odd leads to the same upper bound.

We are now able to prove Theorem 3. Let C be a compact subset of the

punctured line (R \ {0})
(
y
1

)
, and let µ be a real number greater than 1/2.

Denote by Cµ the subset consisting of the points y ∈ C for which the inequation

(7.6) |γx− y| ≤ |γ|−µ
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has infinitely many solutions γ ∈ Γ. We have to show that Cµ has null Lebesgue
measure.

Let γ ∈ Γ and y ∈ Cµ satisfy (7.6). Assuming that |γ| is large enough, let
k ≥ 1 and n ≥ 0 be the integers defined by the inequalities

(7.7) qk−1qk < |γ| ≤ qkqk+1 and 2nqk−1qk < |γ| ≤ 2n+1qk−1qk.

Put T = 2nqk−1qk. It follows from (7.6) and (7.7) that

(7.8) |γ| ≤ 2T and |γx− y| ≤ |γ|−µ ≤ T−µ.

Let j be the smallest integer such that sj ≥ T µ/2. Since we have assumed that
ω(y) = 1, for any positive real number ε, we can bound from above sj ≤ T µ/2+ε

when j is large enough. Note that j is arbitrarily large if we take γ of sufficiently
large norm. Then, Lemma 7 provides us with the decomposition γ = NjGMk

for some matrix G =

(
m `
m′ `′

)
in Γ whose columns satisfy the bound of norm

(7.9)
max(|m|, |m′|) ≤ csjT

1−µ

qk
≤ cT 1−µ/2+ε

qk
= B1,

max(|`|, |`′|) ≤ csjqkT
−µ ≤ cqkT

−µ/2+ε = B2,

where the coefficient c = 10 maxy∈C(|y|, |y|−1) depends only upon C.
It is easily seen that the set of matrices G ∈ Γ whose first and second columns

have norm respectively bounded by B1 and B2, has at most 4(2B1 + 1)(2B2 + 1)
elements. Of course, if either B1 or B2 is smaller than 1, no such matrix exists.
Hence, there are at most

36B1B2 = 36c2T 1−µ+2ε

matrices G in Γ satisfying (7.9). The second upper bound of (7.8) means that

y belongs to the intersection of the line R
(
y
1

)
with the square centered at

the point NjGMkx with side 2T−µ. This intersection is a segment of Euclidean
length ≤ 2

√
2T−µ. For fixed k and n, at most 36B1B2 such segments may thus

appear. It follows that y belongs to some subset of the line R
(
y
1

)
whose

Lebesgue measure does not exceed

(36B1B2)(2
√

2T−µ) = 72
√

2c2(2nqk−1qk)
1−2µ+2ε.

Note that the sequence qk of denominators of convergents of the irrational
number ξ is bounded from below by the Fibonacci sequence 1, 1, 2, . . ., which
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grows geometrically. Therefore, the series∑
k≥1

∑
n≥0

(2nqk−1qk)
1−2µ+2ε

converges when ε is small enough, since the exponent 1− 2µ is negative. By the
Borel-Cantelli Lemma, the lim sup set Cµ has null Lebesgue measure.

8 Upper bounds for rational slopes

Here we prove that the upper bounds

µ(x,y) ≤ ω(ξ)

ω(ξ) + 1
and µ̂(x,y) ≤ 1

ω(ξ) + 1

hold for any point y 6= 0 with rational slope y. Since the reverse inequalities
have been established in Section 6.2, the proof of (1.7) will then be complete. To
that purpose, we adapt to rational slopes the factorisation method displayed in
the preceding section. We obtain the following explicit lower bound of distance
which may have its own interest.

Theorem 4. Let y =

(
y1

y2

)
be a point having rational slope y1/y2 = a/b, where

a and b are coprime integers with |a| ≤ b, and let k be a positive integer such
that qk ≥ 12b/|y2|. Then, for any γ ∈ Γ with norm

|γ| ≤ |y2|
4
qkqk+1,

we have the lower bound ∣∣∣∣γ ( ξ
1

)
− y

∣∣∣∣ ≥ 1

4bqk
.

Proof. Recall the matrix N =

(
a a′

b b′

)
in Γ introduced in Section 4.2. Notice

that N−1 maps the line R
(
a
b

)
on to the horizontal axis R

(
1
0

)
. Therefore

any point close to the line R
(
a
b

)
is sent by the map N−1 to a point close to the

horizontal axis. We insert this additional information into the proof of Lemma
7 with µ = 1/2.
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Set
(

Λ1

Λ2

)
= γ

(
ξ
1

)
−y and suppose on the contrary that max(|Λ1|, |Λ2|) <

(4bqk)
−1. Put

γ′ = N−1γ =

(
v′1 u′1
v′2 u′2

)
.

Noting that
by1 − ay2 = 0 and b′y1 − a′y2 =

y2

b
,

we obtain as in Section 7 the expressions

(8.1) γ′ =


b′(v1y2 − v2y1)

y2

+
v2

b

b′(u1y2 − u2y1)

y2

+
u2

b

−b(v1y2 − v2y1)

y2

−b(u1y2 − u2y1)

y2


and

(8.2) γ′x =

(
y2
b

+ b′Λ1 − a′Λ2

−bΛ1 + aΛ2

)
.

Using the formulas (7.2), we have that

(8.3) |v1y2 − v2y1| ≤ 1 + 2 max(|Λ1|, |Λ2|)|γ| ≤ 1 +
|y2|
8b
qk+1 ≤

|y2|
4b
qk+1,

since we have assumed that qk ≥ 12b/|y2|. Then, we deduce from the expressions
(8.1), (8.2) and from the upper bound (8.3) that

(8.4) |v′2| <
qk+1

4
and |v′2ξ + u′2| <

1

2qk
.

Set now
G = N−1γM−1

k = γ′M−1
k .

Assuming that k is even (the case k odd is similar), we use again the expressions

G =

(
−v′1(qk−1ξ − pk−1) + qk−1(v

′
1ξ + u′1) −v′1(qkξ − pk) + qk(v

′
1ξ + u′1)

−v′2(qk−1ξ − pk−1) + qk−1(v
′
2ξ + u′2) −v′2(qkξ − pk) + qk(v

′
2ξ + u′2)

)
obtained in Section 7. We deduce from (2.1) and (8.4) the upper bound∣∣∣− v′2(qkξ − pk) + qk(v

′
2ξ + u′2)

∣∣∣ ≤ |v′2|
qk+1

+ qk|v′2ξ + u′2| ≤
1

4
+

1

2
< 1,
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for the absolute value of the lower right entry of the matrix G, which therefore
vanishes. It follows that G has the form

G = ±
(
m −1
1 0

)
,

where m is an integer. Hence(
y2
b

+ b′Λ1 − a′Λ2

−bΛ1 + aΛ2

)
= γ′x = GMkx = ±

(
mεk − |εk−1|

εk

)
.

Looking at the first component of the above vectorial equality, we find the esti-
mates

|y2|
b
− 1

2qk
≤
∣∣∣y2

b
+ b′Λ1 − a′Λ2

∣∣∣ =
∣∣∣mεk − |εk−1|

∣∣∣ ≤ |m|
qk+1

+
1

qk
.

We thus obtain the lower bound

(8.5) |m| ≥ |y2|qk+1

2b
≥ 6,

since qk ≥ 12b/|y2|. Now, write

γ = ±
(
a a′

b b′

)(
m −1
1 0

)(
qk −pk
−qk−1 pk−1

)
= ±

 amqk + aqk−1 + a′qk −ampk−1 − apk−1 − a′pk

bmqk + bqk−1 + b′qk −bmpk−1 − bpk−1 − b′pk

 .

Hence, taking (8.5) into account, we find the lower bound

|γ| ≥ b(|m| − 2)qk ≥
|y2|
3
qkqk+1,

which contradicts the assumption |γ| ≤ (|y2|/4)qkqk+1.

We first deduce from Theorem 4 that µ(x,y) ≤ ω(ξ)/(ω(ξ) + 1). For any
matrix γ in Γ with norm |γ| large enough, let k be the integer defined by the
inequality

|y2|
4
qk−1qk < |γ| ≤

|y2|
4
qkqk+1.

In the case where ω(ξ) is finite, let ω be a real number greater than ω(ξ). We
then bound from below qk−1 ≥ q

1/ω
k , if k is large enough in terms of ω. In the
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case ω(ξ) = +∞, we simply bound from below qk−1 ≥ 1. Now, Theorem 4 gives
us the lower bound

|γx− y| ≥ 1

4bqk
≥ 1

4b

1

(4|γ|/|y2|)1/(1+1/ω)
,

where the exponent 1/(1 + 1/ω) is understood to be 1 when ω(ξ) = +∞. The
latter lower bound of distance is valid for any γ ∈ Γ with large norm. It thus
implies the upper bound

µ(x,y) ≤ 1

1 + 1
ω

=
ω

ω + 1
.

Letting ω tend to ω(ξ), we have proved the claim.
Let µ be a positive real number such that the inequations

(8.6) |γ| ≤ T and |γx− y| ≤ T−µ

have a solution γ ∈ Γ for any large real number T . Let ω be a real number
smaller than ω(ξ). There exist infinitely many integer k such that qk+1 ≥ qωk .
Choose T = (|y2|/4)qkqk+1 for such an integer k. Thus T ≥ (|y2|/4)q1+ω

k , and
Theorem 4 now gives the lower bound

|γx− y| ≥ 1

4bqk
≥ 1

4b

1

(4T/|y2|)1/(1+ω)
,

for any γ ∈ Γ with norm |γ| ≤ T . Comparing with (8.6), we find that µ ≤ 1/(1+
ω). Letting ω tend to ω(ξ), we obtain the expected bound µ̂(x,y) ≤ 1/(ω(ξ)+1).

9 Approximation with signs

Let us first state a theorem due to Davenport and Heilbronn which gives a ver-
sion of Minkowski’s Theorem with prescribed signs [7].

Theorem. (Davenport–Heilbronn) Let ξ be an irrational number and let y be a
real number not belonging to the subgroup Zξ + Z. There exist infinitely many
pairs of integers (v, u) such that

v > 0 and 0 < vξ + u− y ≤ 1

v
.
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Here is an analogous statement for Γ-orbits. For simplicity, we assume that

the target point y =

(
y1

y2

)
belongs to the positive quadrant R2

+.

Theorem 5. Let ξ be an irrational number and let y1, y2 be two positive real
numbers such that the ratio y = y1/y2 is an irrational number with irrationality
measure ω(y) = 1. Then, for any positive real number µ < 1/3, there exist

infinitely many matrices γ =

(
v1 u1

v2 u2

)
∈ Γ satisfying

v1 > 0, v2 > 0 and 0 < v1ξ+u1− y1 ≤ |γ|−µ, 0 < v2ξ+u2− y2 ≤ |γ|−µ.

Remark. Other constraints of signs are admissible. Notice however that v1 and
v2 have necessarily the same sign whenever y1 and y2 have the same sign, if we

assume that
∣∣∣∣γ ( ξ

1

)
−
(
y1

y2

)∣∣∣∣ = O(|γ|−µ) with µ > 0. That follows from the

estimate

v1y2 − v2y1 =

∣∣∣∣ v1 y1

v2 y2

∣∣∣∣ =

∣∣∣∣ v1 v1ξ + u1

v2 v2ξ + u2

∣∣∣∣− ∣∣∣∣ v1 v1ξ + u1 − y1

v2 v2ξ + u2 − y2

∣∣∣∣
= 1 +O (|γ|1−µ)

already mentioned in (7.2). Theorem 5 is a sample of statements that could be
obtained by reworking the previous sections and controling all signs.

Denote by Γ+ the semi-group of Γ consisting of the matrices γ with non-
negative entries. Theorem 5 enables us to recover in a constructive way the
following result from [6]:

Corollary. (Dani-Nogueira) Let ξ be a negative irrational number. Then, the

intersection with R2
+ of the semi-orbit Γ+

(
ξ
1

)
is dense in R2

+.

Proof. The points y =

(
y1

y2

)
∈ R2

+ for which the slope y = y1/y2 has

irrationality measure ω(y) = 1 form a full set in R2
+ (i.e. the complementary

set has null Lebesgue measure), hence dense. For any such point y, Theorem 5

provides us with a sequence of points in Γ+

(
ξ
1

)
tending to y, since the second

column
(
u1

u2

)
of γ has necessarily positive entries when v1 > 0, v2 > 0, ξ < 0

and
∣∣∣∣γ ( ξ

1

)
− y

∣∣∣∣ is sufficiently small.
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Proof of Theorem 5. We take again the construction of Section 4.1. In order
to prescribe positive signs, we need to introduce a variant Ñj of the matrices Nj

which induces slight modifications in the estimates.
Recall that (tj/sj)j≥0 stands for the sequence of convergents of y. For any

j ≥ 1, we set

Ñj =

(
tj−1 tj
sj−1 sj

)
or Ñj = Nj =

(
tj tj−1

sj sj−1

)
,

respectively when j is even or odd. The matrix Ñj belongs to Γ+ and has norm

|Ñj| = max(sj, tj) � sj.

Notice that if we put

Ñj =

(
t t′

s s′

)
and δ = sy − t, δ′ = s′y − t′

then δ is negative, and we now have the (weaker) estimates

(9.1)
1

2sj+1

< −δ ≤ 1

sj
and |δ′| ≤ 1

sj

for any j ≥ 1. We consider matrices of the form γ = ÑjU
`Mk, where k and ` are

positive integers and k is odd. Observe that the matrix Mk has positive entries
on its first column precisely when k is odd. We find the formula

γ =

(
v1 u1

v2 u2

)
=

(
`tqk−1 + tqk + t′qk−1 −`tpk−1 − tpk − t′pk−1

`sqk−1 + sqk + s′qk−1 −`spk−1 − spk − s′pk−1

)
.

It follows that the first column
(
v1

v2

)
of the matrix γ has positive entries, and

that we have the bound of norm

(9.2) |γ| ≤ (`+ 2)|Ñj||Mk| � `sjqk.

Denote as usual (
Λ1

Λ2

)
=

(
v1ξ + u1 − y1

v2ξ + u2 − y2

)
.

Taking again the computations of Lemma 3, we find the formulas

(9.3) Λ1 − yΛ2 = −δ(εk + `|εk−1|)− δ′|εk−1|
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and

(9.4) Λ2 = s|εk−1|(`− ρ) with ρ =
y2

s|εk−1|
− εk
|εk−1|

− s′

s
.

For any odd large index k, let j be the integer defined by the estimate

sj−1 < q
1/3
k ≤ sj.

Since we have assumed that ω(y) = 1, the inequalities

(9.5) q
1/3−ε
k ≤ sj−1 < q

1/3
k ≤ sj ≤ q

1/3+ε
k and sj+1 ≤ q

1/3+2ε
k

hold for any ε > 0, provided that j is large enough. We deduce from the expres-
sion for ρ, given in (9.4), the estimate

(9.6) y2q
2/3−ε
k − 1− q2ε

k ≤ ρ ≤ 2y2q
2/3+ε
k + 1,

using (2.1), (9.5), and noting that 0 ≤ s′/s ≤ sj/sj−1 ≤ q2ε
k by (9.5). It follows

that the real number ρ is positive, when k is large enough. Let ` be the smallest
integer larger or equal to ρ. We deduce from (2.1) and (9.5) that

(9.7) 0 < Λ2 ≤ s|εk−1| ≤
sj
qk
≤ q

−2/3+ε
k .

Moreover, ` is a positive integer satisfying

(9.8) q
2/3−ε
k � `� q

2/3+ε
k ,

according to the estimate (9.6). Using (9.5) and (9.8), observe now that the
leading term on the right hand side of formula (9.3) giving Λ1−yΛ2 is −δ`|εk−1|,
which is positive. We thus find the estimate

(9.9) 0 < Λ1 − yΛ2 �
`|εk−1|
sj

� q
−2/3+ε
k ,

making use of the inequalities (2.1), (9.1), (9.5) and (9.8). Since y is positive,
it follows that Λ1 is positive as well. Moreover, we deduce from (9.7) and (9.9)
that

(9.10) max(Λ1,Λ2)� q
−2/3+ε
k .

Next, the bound of norm
|γ| � `sjqk � q2+2ε

k .
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follows from (9.5) and (9.8). Now, we deduce from (9.10) that

max(Λ1,Λ2)� |γ|−(2/3−ε)/(2+2ε) ≤ |γ|−µ,

provided µ < (2− 3ε)/(6 + 6ε). Since µ < 1/3, this last inequality is satisfied by
choosing ε small enough.

Finally, observe that we have the estimate of norm

|γ| � `sqk−1 � q1−2ε
k qk−1,

by (9.5) and (9.8). Therefore, |γ| may be arbitrarily large when k is large enough,
and our construction produces infinitely many matrices γ verifying Theorem 5.
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