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Inhomogeneous approximation with coprime integers
and lattice orbits

Michel Laurent & Arnaldo Nogueira

ABSTRACT – Let (ξ, y) be a point in R2 and ψ : N→ R+ a function. We investigate
the problem of the existence of infinitely many pairs p, q of coprime integers such that

|qξ + p− y| ≤ ψ(|q|).

We give both unconditional results which are valid for every real pair (ξ, y) with ξ
irrational, and metrical results valid for almost all points (ξ, y). We link the subject
with density exponents of lattice orbits in R2.

1 Introduction and results

Minkowski has proved that for every real irrational number ξ and every real number
y not belonging to Zξ + Z, there exist infinitely many pairs of integers p, q such that

|qξ + p− y| ≤ 1

4|q|
.

See for instance Theorem II in Chapter 3 of Cassels’ monograph [4]. The statement is
optimal in the sense that the approximating function ` 7→ (4`)−1 cannot be decreased.
Note that the restriction y /∈ Zξ+Z can be dropped at the cost of replacing the upper
bound (4|q|)−1 by c|q|−1 for any constant c greater than 1/

√
5. When y = 0, the

primitive point ( p
gcd(p,q)

, q
gcd(p,q)

) remains a solution to the above inequality, therefore

we may moreover require that the pair of integers p, q be coprime. However, for a
non-zero real number y, this extra requirement is far from being obvious to satisfy. In
this direction, Chalk and Erdos [6] have obtained the following result:
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Theorem (Chalk-Erdos). Let ξ be an irrational real number and let y be a real number.
There exists an absolute constant c such that the inequality

(1) |qξ + p− y| ≤ c(log q)2

q(log log q)2

holds for infinitely many pairs of coprime integers (p, q) with q positive.

We study more generally the diophantine inequation

|qξ + p− y| ≤ ψ(|q|)

for coprime integers p and q, where ψ : N → R+ is a given function. Two types of
questions naturally arise. First, finding unconditional results which are valid for every
real pair (ξ, y) with ξ irrational as (1), and secondly getting metrical results valid for
almost all points (ξ, y). Here is an example of the first kind.

Theorem 1. Let ξ be an irrational real number and let y be a real number. There
exist infinitely many integer quadruples (p1, q1, p2, q2) satisfying

q1p2 − p1q2 = 1

and

(2) |qiξ + pi − y| ≤
c

max(|q1|, |q2|)1/2
≤ c√

|qi|
, (i = 1, 2),

with c = 2
√

3 max(1, |ξ|)1/2|y|1/2.

Theorem 1 will be deduced in Section 2 from our results [10] of effective density
for SL(2,Z)-orbits in R2. The estimate (2) is best possible, up to the value of the
constant c. However, the optimality of (1) remains unclear. We address the following

Problem. Can we replace the approximating function ψ(`) = c(log `)2/`(log log `)2

occurring in (1) by a smaller one, possibly ψ(`) = c `−1 ?

We shall further discuss this problem in Section 4 for the function ψ(`) = 2 `−1,
offering some hints and indicating the difficulties which then arise. It turns out that
the approximating function ψ(`) = `−1 is permitted for almost all pairs (ξ, y) of real
numbers relatively to Lebesgue measure. The last assertion follows from the following
metrical statement:
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Theorem 2. Let ψ : N 7→ R+ be a function. Assume that ψ is non-increasing, tends
to 0 at infinity and that for every positive integer c there exists a positive real number
c1 satisfying

(3) ψ(c `) ≥ c1ψ(`), ∀` ≥ 1.

Furthermore assume that ∑
`≥1

ψ(`) = +∞.

Then, for almost all pairs (ξ, y) of real numbers there exist infinitely many primitive
points (p, q) such that

(4) q ≥ 1 and |qξ + p− y| ≤ ψ(q).

If
∑

`≥1 ψ(`) converges, the pairs (ξ, y) satisfying (4) for infinitely many primitive
points (p, q) form a set of null Lebesgue measure.

Note that we could have equivalently required in (4) that q be negative. Such
a refinement could as well be achieved in the frame of Theorem 1, with a weaker
approximating function of the form ψ(`) = `−µ for any given real number µ < 1/3, by
employing alternatively Theorem 5 in Section 9 of [10]. We leave the details of proof
to the interested reader, arguing as in Section 2. For questions of density involving
signs, see also [7].

The proof of Theorem 2 is given in Section 3. It combines standard tools from
metrical number theory with the ergodic properties of the linear action of SL(2,Z) on
R2 [13]. We refer to Harman’s book [8] for closely related results. See also the recent
overview [1] and the monographs [14], [15].

Theorem 2 is a metrical statement about pairs (ξ, y) of real numbers. A natural
question is to understand what happens on each fiber when we fix either ξ or y. In this
direction, here is a partial result which will be deduced from the explicit construction
displayed in Section 4.

Theorem 3. Let ξ be an irrational number and let (pk/qk)k≥0 be the sequence of its
convergents. Assume that the series

(5)
∑
k≥0

1

max(1, log qk)

diverges. Then for almost every real number y there exist infinitely many primitive
points (p, q) satisfying

|qξ + p− y| ≤ 2

|q|
.

Moreover the series (5) diverges for almost every real number ξ.
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We now turn to the second part of the paper devoted to density exponents for
lattice orbits in R2. As already mentioned, the approximating function ψ(`) = c `−1/2

occurring in Theorem 1 is directly connected to the density exponent 1/2 for SL(2,Z)-
orbits. We intend to show that this exponent 1/2 is best possible in general.

We work in the more general setting of lattices Γ in SL(2,R). Recall that a lattice
Γ in SL(2,R) is a discrete subgroup for which the quotient Γ\SL(2,R) has finite Haar
measure. We view R2 as a space of column vectors on which the group of matrices
Γ acts by left multiplication. We equip R2 with the supremum norm | |, and for any
matrix γ ∈ Γ, we denote as well by |γ| the maximum of the absolute values of the
entries of γ. Let us first give a

Definition. Let x and y be two points in R2. We denote by µΓ(x,y) the supremum,
possibly infinite, of the exponents µ such that the inequality

(6) |γx− y| ≤ |γ|−µ

has infinitely many solutions γ ∈ Γ.

Note that for a fixed x ∈ R2, the function y 7→ µΓ(x,y) is Γ-invariant. By the
ergodicity of the action of Γ on R2, see [13], this function is therefore constant almost
everywhere on R2. We denote by µΓ(x) its generic value and we call µΓ(x) the generic
density exponent of the orbit Γx.

Theorem 4. The upper bound µΓ(x) ≤ 1/2 holds true for any point x ∈ R2 such that
the orbit Γx is dense in R2.

In an equivalent way, Theorem 4 asserts that the upper bound µ(x,y) ≤ 1/2
holds for almost all points y ∈ R2. This bound was already known in the case of the
unimodular group Γ = SL(2,Z) as a consequence of Theorem 3 in [10].

One may optimistically conjecture that µΓ(x) = 1/2 for every point x such that Γx
is dense in R2, or at least for almost every point x ∈ R2. In this direction, it follows
from [10] that the lower bound

µSL(2,Z)(x) ≥ 1

3

holds for all points x in R2 \ {0} with irrational slope. Weaker lower bounds can as
well be deduced from [12] which are valid for any lattice Γ ⊂ SL(2,R). Note that the
function x 7→ µΓ(x) is Γ-invariant since the quantity µΓ(x) obviously depends only
on the orbit Γx. Thus, the generic density exponent µΓ(x) takes the same value for
almost all points x ∈ R2.

Aknowledgement. We are grateful to Martin Windmer for calling our attention on
the Chalk-Erdos Theorem in [6].
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2 Proof of Theorem 1

We first state a result obtained in [10]. In this section, we denote by Γ the lattice

SL(2,Z). For any point x =

(
x1

x2

)
in R2 with irrational slope x1/x2, the orbit Γx is

dense in R2. We have obtained in [10] effective results concerning the density of such
an orbit. In particular, our estimates are essentially optimal when the target point y
has rational slope.

Lemma 1. Let x be a point in R2 with irrational slope and y =

(
y
y

)
a point on the

diagonal with y 6= 0. Then, there exist infinitely many matrices γ ∈ Γ such that

(7) |γx− y| ≤ c

|γ|1/2
with c = 2

√
3|x|1/2|y|1/2.

Proof. The point y has rational slope 1. Apply Theorem 1 (ii) of [10] with a = b = 1.

Put x =

(
ξ
1

)
. The point x has irrational slope ξ so that Lemma 1 may be applied.

Write γ =

(
q1 p1

q2 p2

)
a matrix provided by Lemma 1. Then, the inequality (7) gives

max (|q1ξ + p1 − y|, |q2ξ + p2 − y|) ≤
c

max(|p1|, |p2|, |q1|, |p2|)1/2

≤ c

max(|q1|, |q2|)1/2
.

Therefore, both points (p1, q1) and (p2, q2) satisfy (2), and since the determinant q1p2−
q2p1 = 1, the two integer points (p1, q1) and (p2, q2) are primitive. As there exist
infinitely many matrices γ verifying (7), we thus find infinitely many solutions to (2).

Assume now that the irrational number ξ has bounded partial quotients. Then,
Theorem 4 in [10] gives us in the opposite direction a lower bound of the form

|γx− y| ≥ c′

|γ|1/2
,

for some positive constant c′ depending only upon (ξ, y). Since |γ| ≤ c′′max(|q1|, |q2|)
when (2) holds, the estimate (2) is optimal up to the value of c.

Remark. The single inequality |q1ξ + p1 − y| ≤ ψ(|q1|) geometrically means that the
point γx falls inside a neighborhood of the vertical line x1 = y. A better understanding
of the shrinking target problem for the dense orbit Γx, not to a point y as in [10] but
to a line in R2, may possibly lead to a refinement of (1).
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3 Proof of Theorem 2

It is convenient to view the pairs (ξ, y) occurring in Theorem 2 as column vectors

(
ξ
y

)
in R2. We are concerned with the set E(ψ) of vectors

(
ξ
y

)
∈ R2 for which there exist

infinitely many primitive integer points (p, q) such that

(8) q ≥ 1 and |qξ + p− y| ≤ ψ(q).

For fixed p, q, denote by Ep,q(ψ) the strip

Ep,q(ψ) :=
{(

ξ
y

)
∈ R2; |qξ + p− y| ≤ ψ(q)

}
,

and for every positive integer q, let

Eq(ψ) :=
⋃
p∈Z

gcd(p,q)=1

Ep,q(ψ)

be the union of all relevant strips involved in (8) for fixed q. Without loss of generality,
we shall assume that ψ(q) ≤ 1/2, so that the above union is disjoint. Then E(ψ) is
equal to the lim sup set

E(ψ) =
⋂
Q≥1

⋃
q≥Q

Eq(ψ).

As usual when dealing with lim sup set in metrical theory, we first estimate Lebesgue
measure of pairwise intersections of the subsets Eq(ψ), q ≥ 1. We establish next a new
kind of zero-one law.

3.1 Measuring intersections

In this section, we restrict our attention to points located in the unit square [0, 1]2.
We denote by ϕ the Euler totient function and by λ the Lebesgue measure on R2.

Lemma 2. Let ψ : N→ [0, 1/2] be a function.
(i) For every positive integer q, we have

λ(Eq(ψ) ∩ [0, 1]2) =
2ϕ(q)ψ(q)

q
.

(ii) Let q and s be distinct positive integers. Then, we have the upper bound

λ(Eq(ψ) ∩ Es(ψ) ∩ [0, 1]2) ≤ 4ψ(q)ψ(s).
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Proof. Denote by χq the characteristic function of the interval [−ψ(q), ψ(q)] . Then
the characteristic function χEq(ψ) of the subset Eq(ψ) ⊂ R2 is equal to

χEq(ψ)(ξ, y) =
∑
p∈Z

gcd(p,q)=1

χq(qξ + p− y) =
∑
p∈Z

gcd(p,q)=1

χq(qξ − p− y).

Observe that if

(
ξ
y

)
belongs to [0, 1]2, the indices p of non-vanishing terms occurring

in the last sum are located in the interval −1 ≤ p ≤ q. Integrating first with respect
to x, we find

λ(Eq(ψ) ∩ [0, 1]2) =

∫ 1

0

∫ 1

0

χEq(ψ)(x, y)dxdy

=
∑
p∈Z

−1≤p≤q, gcd(p,q)=1

∫ 1

0

∫ 1

0

χq(qx− p− y)dxdy

=

∫ 1

1−ψ(q)

−1 + y + ψ(q)

q
dy +

∑
1≤p≤q−2
gcd(p,q)=1

∫ 1

0

2ψ(q)

q
dy

+

∫ 1−ψ(q)

0

2ψ(q)

q
dy +

∫ 1

1−ψ(q)

1− y + ψ(q)

q
dy

=
2ϕ(q)ψ(q)

q
.

The first term appearing in the third equality of the above formula corresponds to the
summation index p = −1 and the two last ones to p = q− 1. We have thus proved (i).

For the second assertion, we majorize

λ(Eq(ψ) ∩ Es(ψ) ∩ [0, 1]2) =

∫ 1

0

∫ 1

0

χEq(ψ)(x, y)χEs(ψ)(x, y)dxdy

≤
∫ 1

0

∫ 1

0

(∑
p∈Z

χq(qx+ p− y)

)(∑
r∈Z

χs(sx+ r − y)

)
dxdy

=

∫ 1

0

∫ 1

0

χq(‖qx− y‖)χs(‖sx− y‖)dxdy,

where ‖.‖ stands as usual for the distance to the nearest integer. Now, (ii) follows
from the probabilistic independence formula∫ 1

0

∫ 1

0

χq(‖qx− y‖)χs(‖sx− y‖)dxdy = 4ψ(q)ψ(s),

obtained by Cassels on page 124 of [4] (see Proof (ii)).
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3.2 A zero-one law

We say that a subset of R2 is a null set if it has Lebesgue measure 0. A set whose
complementary is a null set is called a full set. The goal of this section is to prove the

Proposition. Let ψ be an approximating function as in Theorem 2. Then the subset
E(ψ) is either a null set or a full set.

For proving the proposition, it is convenient to introduce the larger subset

E ′(ψ) =
⋃
k≥1

E(kψ).

In other words, E ′(ψ) is the set of all points

(
ξ
y

)
in R2 for which there exist a positive

real number κ, depending possibly on

(
ξ
y

)
, and infinitely many primitive points (p, q)

satisfying

(9) q ≥ 1 and |qξ + p− y| ≤ κψ(q).

Observe that E(kψ) ⊆ E(k′ψ) if 1 ≤ k ≤ k′. In particular, E(ψ) is contained in E ′(ψ).

Lemma 3. Let ψ : N → R+ be a function tending to zero at infinity. Then the
difference E ′(ψ) \ E(ψ) is a set of null Lebesgue measure.

Proof. We show that all sets E(kψ), k ≥ 1, have the same Lebesgue measure. For
every real number y, denote by E(ψ, y) ⊆ R the section of E(ψ) on the horizontal line
R× {y}, i.e.

E(ψ, y) =

{
ξ ∈ R ;

(
ξ
y

)
∈ E(ψ)

}
.

Then, using (8), we can express

E(ψ, y) =
⋂
Q≥1

⋃
q≥Q

⋃
p∈Z

gcd(p,q)=1

[
−p+ y − ψ(q)

q
,
−p+ y + ψ(q)

q

]

as a limsup set of intervals. If we restrict to a bounded part of E(ψ, y), the above
union over p reduces to a finite one. Observe that the centers −p+y

q
of these intervals

do not depend on ψ, and that their length is multiplied by the constant factor k when
replacing ψ by kψ. Appealing now to a result due to Cassels [5], we infer that all
lim sup sets E(kψ, y), k ≥ 1, have the same Lebesgue measure. See also Corollary of

Lemma 2.1 on page 30 of [8]. Notice that for fixed k, the length 2kψ(q)
q

of the intervals
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[
−p+y−kψ(q)

q
, −p+y+kψ(q)

q

]
tend to 0 as q tends to infinity, as required by Lemma 2.1. By

Fubini, the fibered sets

E(kψ) =
∐
y∈R

(
E(kψ, y)× {y}

)
, k ≥ 1,

have as well the same Lebesgue measure in R2.

Lemma 4. Let ψ : N → R+ be a non-increasing function satisfying (3). Then E ′(ψ)
is either a null or a full set.

Proof. It is based on the following observation. Let

(
ξ
y

)
belong to E ′(ψ) and let

γ =

(
a b
c d

)
be a matrix in SL(2,Z) such that cξ + d > 0. Then the point

(
ξ′

y′

)
with

coordinates

ξ′ =
aξ + b

cξ + d
and y′ =

y

cξ + d

belongs to E ′(ψ). Indeed, substituting

(10) q = aq′ + cp′, p = bq′ + dp′

in (9) and dividing by cξ + d, we obtain the inequalities

(11) q′ ≥ 1 and |q′ξ′ + p′ − y′| ≤ κ

cξ + d
ψ(q) ≤ κ′ψ(q′),

for some κ′ > 0 independent of q′. The positivity of q′ is proved as follows. Note that
(9) implies the estimate

p = −qξ +Oξ,y(1).

Then, inverting the linear substitution (10), we find

q′ = dq − cp = q(cξ + d) +Oγ,ξ,y(1).

Since we have assumed that cξ + d > 0, the term q(cξ + d) is arbitrarily large when
q is large enough. The condition (3) now shows that ψ(q) � ψ(q′). Thus (11) is
satisfied for infinitely many primitive points (p′, q′), since the linear substitution (10)

is unimodular. We have shown that

(
ξ′

y′

)
belongs to E ′(ψ).

We now prove that the intersection E ′(ψ)∩ (R×R+) is either a full or a null subset
of the half plane R× R+. To that purpose, we consider the map

Φ : R× R+ → R× R+, defined by Φ

((
x
y

))
=

(
x/y
1/y

)
.
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Clearly Φ is a continuous involution of R× R+. The image

Ω := Φ
(
E ′(ψ) ∩ (R× R+)

)
is formed by all points of the type (

u
v

)
=

(
ξ
y
1
y

)
,

where

(
ξ
y

)
ranges over E ′(ψ) ∩ (R × R+). Now, the above condition cξ + d > 0 is

obviously equivalent to cu+ dv > 0 since y is positive. Then, the point

Φ

(
au+ bv
cu+ dv

)
=

(
au+bv
cu+dv

1
cu+dv

)
=

(
aξ+b
cξ+d
y

cξ+d

)
belongs to E ′(ψ) ∩ (R × R+), by the preceding observation. Applying the involution
Φ, we find that

Φ

((
aξ+b
cξ+d
y

cξ+d

))
=

(
au+ bv
cu+ dv

)
=

(
a b
c d

)(
u
v

)
belongs to Ω. In other words, setting Γ = SL(2,Z), we have established the inclusion

(ΓΩ) ∩ (R× R+) ⊆ Ω.

Since the reversed inclusion is obvious, the equality Ω = (ΓΩ) ∩ (R × R+) holds in
fact. Assuming that Ω is not a null set, the ergodicity of the linear action of Γ on R2

[13] shows that ΓΩ is a full set in R2. Hence Ω is a full set in the half plane R× R+.
Transforming now Ω by Φ, we find that

Φ(Ω) = E ′(ψ) ∩ (R× R+),

is as well a full set in R× R+, thus proving the claim.

We finally use another transformation to carry the zero-one law from the positive
half plane R× R+ to the negative one R× R−. Writing (9) in the equivalent form

q ≥ 1 and |q(−ξ) + (−p)− (−y)| ≤ κψ(q),

shows that E ′(ψ) is invariant under the symmetry

(
ξ
y

)
7→
(
−ξ
−y

)
which maps R×R+

onto R × R−. Therefore E ′(ψ) ∩ (R × R−) is a null or a full set in R × R− when
E ′(ψ) ∩ (R× R+) is accordingly a null or a full set in R× R+.

Now, the combination of Lemma 3 and Lemma 4 obviously yields our proposition.
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3.3 Concluding the proof of Theorem 2

Assume first that
∑
ψ(`) converges. We have to show that the set

E(ψ) = lim sup
q→+∞

Eq(ψ)

has null Lebesgue measure. Lemma 2 shows that the partial sums

Q∑
q=1

λ(Eq(ψ) ∩ [0, 1]2) = 2

Q∑
q=1

ϕ(q)ψ(q)

q
≤ 2

Q∑
q=1

ψ(q)

converge (*). Then, Borel-Cantelli Lemma ensures that the lim sup set E(ψ) ∩ [0, 1]2

is a null set. Thus E(ψ) cannot be a full set. Now, the above proposition tells us that
E(ψ) is a null set.

We now consider the case of a divergent series
∑
ψ(`). Observe that the estimate

(12)
1

2

Q∑
q=1

ψ(q) ≤
Q∑
q=1

ϕ(q)ψ(q)

q
≤

Q∑
q=1

ψ(q)

holds true for any large integer Q, since the sequence ψ(`)`≥1 is non-increasing. The
right inequality is obvious, while the left one easily follows from Abel summation
process. See for instance Chapter 2 of [8], where full details are provided. By Lemma
2 and (12), the sums

Q∑
q=1

λ(Eq(ψ) ∩ [0, 1]2) = 2

Q∑
q=1

ϕ(q)ψ(q)

q
≥

Q∑
q=1

ψ(q)

are then unbounded. Then, using a classical converse to Borel-Cantelli Lemma, we
have the lower bound

(13)

λ
(
E(ψ) ∩ [0, 1]2

)
= λ

(
lim sup
q→+∞

(Eq(ψ) ∩ [0, 1]2)
)

≥ lim sup
Q→+∞

(∑Q
q=1 λ(Eq(ψ) ∩ [0, 1]2)

)2

∑Q
q=1

∑Q
s=1 λ(Eq(ψ) ∩ Es(ψ) ∩ [0, 1]2)

.

See for instance Lemma 2.3 in [8]. Lemma 2 and (12) now show that the numerator
on the right hand side of (13) equals

4

(
Q∑
q=1

ϕ(q)ψ(q)

q

)2

≥

(
Q∑
q=1

ψ(q)

)2

,

(*) Here again we assume without loss of generality that ψ(q) ≤ 1/2 for every q ≥ 1, so that
Lemma 2 may be applied.
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when Q is large, while the denominator is bounded from above by

4

Q∑
q=1,s=1
q 6=s

ψ(q)ψ(s) + 2

Q∑
q=1

ψ(q) ≤ 4

(
Q∑
q=1

ψ(q)

)2

+ 2

Q∑
q=1

ψ(q).

Thus (13) yields the lower bound

λ
(
E(ψ) ∩ [0, 1]2

)
≥ 1

4
.

Hence E(ψ) is not a null set; it is thus a full set according to our proposition.

4 An approach to our problem

In this section, we apply a transference principle between homogeneous and inhomo-
geneous approximation, as displayed in Chapter V of [4] and in [3], for constructing
explicit integer solutions of the inequality

(14) |qξ + p− y| ≤ 2

|q|
.

Let (pk/qk)k≥0 be the sequence of convergents to the irrational number ξ. The
theory of continued fractions, see for instance the monograph [9], tells us that

(15) |qkξ − pk| ≤
1

qk+1

and pkqk+1 − pk+1qk = (−1)k+1,

for any k ≥ 0. Setting νk = (−1)k+1qky, we thus have the relations

(16) νkqk+1 + νk+1qk = 0 and νk(qk+1ξ − pk+1) + νk+1(qkξ − pk) = y.

Now, let nk be anyone of the two integers bνkc and dνke (†). Then,

(17) |νk − nk| < 1,

and nk is either equal to (−1)k+1byqkc or to (−1)k+1dyqke. Setting

(18) p = −nkpk+1 − nk+1pk and q = nkqk+1 + nk+1qk,

(†) As usual bxc and dxe stand respectively for the floor and the ceiling of the real number x.
Then dxe = bxc+ 1, unless x is an integer in which case bxc = dxe = x.
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we deduce from (16) the expressions

(19)
qξ + p− y = nk(qk+1ξ − pk+1) + nk+1(qkξ − pk)− y

= (nk − νk)(qk+1ξ − pk+1) + (nk+1 − νk+1)(qkξ − pk)

and

(20) q = (nk − νk)qk+1 + (nk+1 − νk+1)qk.

Recall that qkξ − pk and qk+1ξ − pk+1 have opposite signs. Assuming that nk − νk
and nk+1 − νk+1 have the same sign, we infer from the formulas (19), (20) and from
(15), (17) that

(21) |qξ + p− y| < 1

qk+1

and |q| < 2qk+1.

Otherwise, we have

(22) |qξ + p− y| < 2

qk+1

and |q| < qk+1.

The inequalities (21) and (22) obviously imply (14).

Since the linear substitution (18) is unimodular, the integers p and q are coprime
if and only if nk and nk+1 are coprime. Recall that the two choices nk = bνkc and
nk = dνke are admissible, both for nk and nk+1. It thus remains to find indices k for
which at least one of the coprimality conditions

(23)
gcd(byqkc, byqk+1c) = 1 or gcd(dyqke, dyqk+1e) = 1

or gcd(byqkc, dyqk+1e) = 1 or gcd(dyqke, byqk+1c) = 1,

is verified. Note that (23) obviously fails for all k ≥ 0 when y is an integer not equal to
1 or to −1. Otherwise, the contingent existence of infinitely many indices k satisfying
(23) is a non-trivial problem that we leave hanging.

Let us mention that the proof of (1) in [6] follows the same idea, finding a prim-
itive integer point inside the square centered at the point (νk, νk+1) ∈ R2 with side
C log |νk|/ log log |νk| for some suitable large absolute constant C.

4.1 Proof of Theorem 3

We quote the following metrical result due to Harman (Theorem 8.3 in [8]). Assume
that the series (5) diverges. Then for almost all positive real numbers y, there exist
infinitely many indices k such that the integer part byqkc is a prime number. These

13



indices k fulfill (23) since, assuming for simplicity that y is irrational, either byqk+1c or
dyqk+1e = byqk+1c+ 1 is not divisible by byqkc and is thus relatively prime with byqkc.
Hence (14) has infinitely many coprime solutions (p, q) for almost every positive real
number y. Writing now (14) in the equivalent form

|(−q)ξ + (−p)− (−y)| ≤ 2

|q|

shows that, ξ being given, the set of all real numbers y for which (14) has infinitely
many coprime solutions is invariant by the symmetry y 7→ −y. The first assertion is
thus established. To complete the proof, note that

lim
k→+∞

log qk
k

=
π2

12 log 2

for almost every ξ by Khintchine-Levy Theorem (see equation (4.18) in [2]). Thus the
series (5) diverges for almost every ξ.

5 Generic density exponents

We prove in this section Theorem 4, as a consequence of Borel-Cantelli Lemma com-
bined with the following counting result.

Lemma 5. Let x be a point in R2 whose orbit Γx is dense in R2. For every symmetric
compact set Ω in R2 \ {0} there exists c > 0 such that

Card{γ ∈ Γ; γx ∈ Ω, |γ| ≤ T} ≤ cT

for any real number T ≥ 1.

Proof. Ledrappier [11] has shown that the limit formula

lim
T→+∞

1

T

∑
γ∈Γ,|γ|≤T

f(γx) =
4

|x|vol(Γ \ SL(2,R))

∫
f(y)

|y|
dy

holds for any even continuous function f : R2 → R having compact support on R2\{0},
with a suitable normalisation of Haar measure on SL(2,R). Approximating uniformly
from above and from below the characteristic function of Ω by even continuous func-
tions, we deduce that

lim
T→+∞

Card{γ ∈ Γ; γx ∈ Ω, |γ| ≤ T}
T

=
4

|x|vol(Γ \ SL(2,R))

∫
Ω

dy

|y|
.
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Lemma 5 immediately follows.

For any point y ∈ R2 and any positive real number r, we denote by

B(y, r) = {z ∈ R2; |z− y| ≤ r}

the closed disc centered at y with radius r.

Lemma 6. Let x be a point in R2 whose orbit Γx is dense, Ω a symmetric compact
set in R2 \ {0} and µ a real number > 1/2. For every integer n ≥ 1, put

Bn =
⋃
γ∈Γ

|γ|=n,γx∈Ω

B(γx, n−µ).

Then the set

B := lim sup
n→+∞

Bn =
⋂
N≥1

⋃
n≥N

Bn =
⋂
N≥1

⋃
γ∈Γ

|γ|≥N,γx∈Ω

B(γx, |γ|−µ)

has null Lebesgue measure.

Proof. We apply Borel-Cantelli Lemma and we prove that the series
∑

n≥1 λ(Bn)
converges if µ > 1/2.

For every positive integer n, set

Mn = Card{γ ∈ Γ; γx ∈ Ω, |γ| = n}.

Lemma 5 gives us the upper bound

(24) M1 + · · ·+Mn = Card{γ ∈ Γ; γx ∈ Ω, |γ| ≤ n} ≤ cn,

for some c > 0 independent of n ≥ 1. Since a ball of radius r has Lebesgue measure
4r2, we trivially bound from above

λ(Bn) ≤
∑
γ∈Γ

|γ|=n,γx∈Ω

4n−2µ = 4Mnn
−2µ.

Summing by parts, we deduce from (24) that

N∑
n=1

Mn

n2µ
=

N−1∑
n=1

(M1 + · · ·+Mn)

(
1

n2µ
− 1

(n+ 1)2µ

)
+
M1 + · · ·+MN

N2µ

≤ c

N−1∑
n=1

n

(
1

n2µ
− 1

(n+ 1)2µ

)
+

cN

N2µ
= c

N∑
n=1

1

n2µ
.
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The partial sums
N∑
n=1

λ(Bn) ≤ 4
N∑
n=1

Mn

n2µ
≤ 4c

N∑
n=1

1

n2µ

thus converge if µ > 1/2.

5.1 Proof of Theorem 4

We argue by contradiction and suppose on the contrary that µΓ(x) > 1/2. Fix a
real number µ with 1/2 < µ < µΓ(x). Then for almost all points y ∈ R2, we have
µ(x,y) > µ. This means that there exist infinitely many γ ∈ Γ satisfying (6), or
equivalently that y belongs to infinitely many balls of the form B(γx, |γ|−µ). We now
restrict our attention to points y with µ(x,y) > µ lying in an annulus

Ω′ = {z ∈ R2; a′ ≤ |z| ≤ b′},

where b′ > a′ > 0 are arbitrarily fixed. Since y belongs to the intersection Ω′ ∩
B(γx, |γ|−µ), we deduce from the triangle inequality the estimate

a′ − |γ|−µ ≤ |γx| ≤ b′ + |γ|−µ.

Fixing a < a′ and b > b′, the center γx then lies in the larger annulus

Ω = {z ∈ R2; a ≤ |z| ≤ b},

provided that |γ| is large enough. It follows that y falls inside the union of balls⋃
γ∈Γ

|γ|≥N,γx∈Ω

B(γx, |γ|−µ)

considered in Lemma 6 for every integer N large enough, and thus y belongs to B.
However, Lemma 6 asserts that B is a null set which is a contradiction.
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