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Let (ξ, y) be a point in R 2 and ψ : N → R + a function. We investigate the problem of the existence of infinitely many pairs p, q of coprime integers such that

We give both unconditional results which are valid for every real pair (ξ, y) with ξ irrational, and metrical results valid for almost all points (ξ, y). We link the subject with density exponents of lattice orbits in R 2 .

Introduction and results

Minkowski has proved that for every real irrational number ξ and every real number y not belonging to Zξ + Z, there exist infinitely many pairs of integers p, q such that |qξ + p -y| ≤ 1 4|q| .

See for instance Theorem II in Chapter 3 of Cassels' monograph [START_REF] Cassels | An Introduction to Diophantine Approximation[END_REF]. The statement is optimal in the sense that the approximating function → (4 ) -1 cannot be decreased. Note that the restriction y / ∈ Zξ + Z can be dropped at the cost of replacing the upper bound (4|q|) -1 by c|q| -1 for any constant c greater than 1/ √ 5. When y = 0, the primitive point ( p gcd(p,q) , q gcd(p,q) ) remains a solution to the above inequality, therefore we may moreover require that the pair of integers p, q be coprime. However, for a non-zero real number y, this extra requirement is far from being obvious to satisfy. In this direction, Chalk and Erdos [START_REF] Chalk | On the distribution of primitive lattice points in the plane[END_REF] have obtained the following result:

Theorem (Chalk-Erdos). Let ξ be an irrational real number and let y be a real number. There exists an absolute constant c such that the inequality [START_REF] Beresnevitch | Classical metric diophantine approximation revisited[END_REF] |qξ + p -y| ≤ c(log q) 2 q(log log q) 2 holds for infinitely many pairs of coprime integers (p, q) with q positive.

We study more generally the diophantine inequation

|qξ + p -y| ≤ ψ(|q|)
for coprime integers p and q, where ψ : N → R + is a given function. Two types of questions naturally arise. First, finding unconditional results which are valid for every real pair (ξ, y) with ξ irrational as [START_REF] Beresnevitch | Classical metric diophantine approximation revisited[END_REF], and secondly getting metrical results valid for almost all points (ξ, y). Here is an example of the first kind.

Theorem 1. Let ξ be an irrational real number and let y be a real number. There exist infinitely many integer quadruples (p 1 , q 1 , p 2 , q 2 ) satisfying q 1 p 2 -p 1 q 2 = 1 and

(2)

|q i ξ + p i -y| ≤ c max(|q 1 |, |q 2 |) 1/2 ≤ c |q i | , (i = 1, 2), with c = 2 √ 3 max(1, |ξ|) 1/2 |y| 1/2 .
Theorem 1 will be deduced in Section 2 from our results [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)orbits[END_REF] of effective density for SL(2, Z)-orbits in R 2 . The estimate (2) is best possible, up to the value of the constant c. However, the optimality of (1) remains unclear. We address the following Problem. Can we replace the approximating function ψ( ) = c(log ) 2 / (log log ) 2 occurring in (1) by a smaller one, possibly ψ( ) = c -1 ?

We shall further discuss this problem in Section 4 for the function ψ( ) = 2 -1 , offering some hints and indicating the difficulties which then arise. It turns out that the approximating function ψ( ) = -1 is permitted for almost all pairs (ξ, y) of real numbers relatively to Lebesgue measure. The last assertion follows from the following metrical statement: Theorem 2. Let ψ : N → R + be a function. Assume that ψ is non-increasing, tends to 0 at infinity and that for every positive integer c there exists a positive real number c 1 satisfying

(3) ψ(c ) ≥ c 1 ψ( ), ∀ ≥ 1.
Furthermore assume that

≥1 ψ( ) = +∞.
Then, for almost all pairs (ξ, y) of real numbers there exist infinitely many primitive points (p, q) such that

(4) q ≥ 1 and |qξ + p -y| ≤ ψ(q).
If ≥1 ψ( ) converges, the pairs (ξ, y) satisfying (4) for infinitely many primitive points (p, q) form a set of null Lebesgue measure.

Note that we could have equivalently required in (4) that q be negative. Such a refinement could as well be achieved in the frame of Theorem 1, with a weaker approximating function of the form ψ( ) = -µ for any given real number µ < 1/3, by employing alternatively Theorem 5 in Section 9 of [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)orbits[END_REF]. We leave the details of proof to the interested reader, arguing as in Section 2. For questions of density involving signs, see also [START_REF] Dani | On SL(n, Z) + -orbits on R n and positive integral solutions of linear inequalities[END_REF].

The proof of Theorem 2 is given in Section 3. It combines standard tools from metrical number theory with the ergodic properties of the linear action of SL(2, Z) on R 2 [START_REF] Moore | Ergodicity of flows on homogeneous spaces[END_REF]. We refer to Harman's book [START_REF] Harman | Metric Number Theory[END_REF] for closely related results. See also the recent overview [START_REF] Beresnevitch | Classical metric diophantine approximation revisited[END_REF] and the monographs [START_REF] Schmidt | Diophantine Approximation[END_REF], [START_REF] Sprindzuck | Metric Theory of Diophantine Approximations[END_REF].

Theorem 2 is a metrical statement about pairs (ξ, y) of real numbers. A natural question is to understand what happens on each fiber when we fix either ξ or y. In this direction, here is a partial result which will be deduced from the explicit construction displayed in Section 4. Theorem 3. Let ξ be an irrational number and let (p k /q k ) k≥0 be the sequence of its convergents. Assume that the series

(5) k≥0 1 max(1, log q k )
diverges. Then for almost every real number y there exist infinitely many primitive points (p, q) satisfying

|qξ + p -y| ≤ 2 |q| .
Moreover the series (5) diverges for almost every real number ξ.

We now turn to the second part of the paper devoted to density exponents for lattice orbits in R 2 . As already mentioned, the approximating function ψ( ) = c -1/2 occurring in Theorem 1 is directly connected to the density exponent 1/2 for SL(2, Z)orbits. We intend to show that this exponent 1/2 is best possible in general.

We work in the more general setting of lattices Γ in SL(2, R). Recall that a lattice Γ in SL(2, R) is a discrete subgroup for which the quotient Γ\SL(2, R) has finite Haar measure. We view R 2 as a space of column vectors on which the group of matrices Γ acts by left multiplication. We equip R 2 with the supremum norm | |, and for any matrix γ ∈ Γ, we denote as well by |γ| the maximum of the absolute values of the entries of γ. Let us first give a Definition. Let x and y be two points in R 2 . We denote by µ Γ (x, y) the supremum, possibly infinite, of the exponents µ such that the inequality [START_REF] Chalk | On the distribution of primitive lattice points in the plane[END_REF] |γx -y| ≤ |γ| -µ has infinitely many solutions γ ∈ Γ.

Note that for a fixed x ∈ R 2 , the function y → µ Γ (x, y) is Γ-invariant. By the ergodicity of the action of Γ on R 2 , see [START_REF] Moore | Ergodicity of flows on homogeneous spaces[END_REF], this function is therefore constant almost everywhere on R 2 . We denote by µ Γ (x) its generic value and we call µ Γ (x) the generic density exponent of the orbit Γx.

Theorem 4. The upper bound µ Γ (x) ≤ 1/2 holds true for any point x ∈ R 2 such that the orbit Γx is dense in R 2 .

In an equivalent way, Theorem 4 asserts that the upper bound µ(x, y) ≤ 1/2 holds for almost all points y ∈ R 2 . This bound was already known in the case of the unimodular group Γ = SL(2, Z) as a consequence of Theorem 3 in [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)orbits[END_REF].

One may optimistically conjecture that µ Γ (x) = 1/2 for every point x such that Γx is dense in R 2 , or at least for almost every point x ∈ R 2 . In this direction, it follows from [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)orbits[END_REF] that the lower bound

µ SL(2,Z) (x) ≥ 1 3
holds for all points x in R 2 \ {0} with irrational slope. Weaker lower bounds can as well be deduced from [START_REF] Maucourant | Lattice actions on the plane revisited[END_REF] which are valid for any lattice Γ ⊂ SL(2, R). Note that the function x → µ Γ (x) is Γ-invariant since the quantity µ Γ (x) obviously depends only on the orbit Γx. Thus, the generic density exponent µ Γ (x) takes the same value for almost all points x ∈ R 2 .

Proof of Theorem 1

We first state a result obtained in [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)orbits[END_REF]. In this section, we denote by Γ the lattice SL(2, Z). For any point

x = x 1 x 2 in R 2 with irrational slope x 1 /x 2 , the orbit Γx is dense in R 2 .
We have obtained in [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)orbits[END_REF] effective results concerning the density of such an orbit. In particular, our estimates are essentially optimal when the target point y has rational slope.

Lemma 1. Let x be a point in R 2 with irrational slope and y = y y a point on the diagonal with y = 0. Then, there exist infinitely many matrices γ ∈ Γ such that

(7) |γx -y| ≤ c |γ| 1/2 with c = 2 √ 3|x| 1/2 |y| 1/2 .
Proof. The point y has rational slope 1. Apply Theorem 1 (ii) of [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)orbits[END_REF] with

a = b = 1. Put x = ξ 1 .
The point x has irrational slope ξ so that Lemma 1 may be applied.

Write γ = q 1 p 1 q 2 p 2 a matrix provided by Lemma 1. Then, the inequality [START_REF] Dani | On SL(n, Z) + -orbits on R n and positive integral solutions of linear inequalities[END_REF] gives

max (|q 1 ξ + p 1 -y|, |q 2 ξ + p 2 -y|) ≤ c max(|p 1 |, |p 2 |, |q 1 |, |p 2 |) 1/2 ≤ c max(|q 1 |, |q 2 |) 1/2 .
Therefore, both points (p 1 , q 1 ) and (p 2 , q 2 ) satisfy (2), and since the determinant q 1 p 2q 2 p 1 = 1, the two integer points (p 1 , q 1 ) and (p 2 , q 2 ) are primitive. As there exist infinitely many matrices γ verifying [START_REF] Dani | On SL(n, Z) + -orbits on R n and positive integral solutions of linear inequalities[END_REF], we thus find infinitely many solutions to [START_REF] Billingsley | Ergodic Theory and Information[END_REF].

Assume now that the irrational number ξ has bounded partial quotients. Then, Theorem 4 in [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)orbits[END_REF] gives us in the opposite direction a lower bound of the form

|γx -y| ≥ c |γ| 1/2 ,
for some positive constant c depending only upon (ξ, y). Since |γ| ≤ c max(|q 1 |, |q 2 |) when (2) holds, the estimate (2) is optimal up to the value of c.

Remark. The single inequality |q 1 ξ + p 1 -y| ≤ ψ(|q 1 |) geometrically means that the point γx falls inside a neighborhood of the vertical line x 1 = y. A better understanding of the shrinking target problem for the dense orbit Γx, not to a point y as in [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)orbits[END_REF] but to a line in R 2 , may possibly lead to a refinement of (1).

Proof of Theorem 2

It is convenient to view the pairs (ξ, y) occurring in Theorem 2 as column vectors ξ y in R 2 . We are concerned with the set E(ψ) of vectors ξ y ∈ R 2 for which there exist infinitely many primitive integer points (p, q) such that (8) q ≥ 1 and |qξ + p -y| ≤ ψ(q).

For fixed p, q, denote by E p,q (ψ) the strip

E p,q (ψ) := ξ y ∈ R 2 ; |qξ + p -y| ≤ ψ(q) ,
and for every positive integer q, let E q (ψ) := p∈Z gcd(p,q)=1 E p,q (ψ) be the union of all relevant strips involved in (8) for fixed q. Without loss of generality, we shall assume that ψ(q) ≤ 1/2, so that the above union is disjoint. Then E(ψ) is equal to the lim sup set

E(ψ) = Q≥1 q≥Q E q (ψ).
As usual when dealing with lim sup set in metrical theory, we first estimate Lebesgue measure of pairwise intersections of the subsets E q (ψ), q ≥ 1. We establish next a new kind of zero-one law.

Measuring intersections

In this section, we restrict our attention to points located in the unit square [0, 1] 2 . We denote by ϕ the Euler totient function and by λ the Lebesgue measure on R 2 . Lemma 2. Let ψ : N → [0, 1/2] be a function. (i) For every positive integer q, we have

λ(E q (ψ) ∩ [0, 1] 2 ) =
2ϕ(q)ψ(q) q .

(ii) Let q and s be distinct positive integers. Then, we have the upper bound

λ(E q (ψ) ∩ E s (ψ) ∩ [0, 1] 2 ) ≤ 4ψ(q)ψ(s).
Proof. Denote by χ q the characteristic function of the interval [-ψ(q), ψ(q)] . Then the characteristic function χ Eq(ψ) of the subset E q (ψ) ⊂ R 2 is equal to

χ Eq(ψ) (ξ, y) = p∈Z gcd(p,q)=1 χ q (qξ + p -y) = p∈Z gcd(p,q)=1 χ q (qξ -p -y).
Observe that if ξ y belongs to [0, 1] 2 , the indices p of non-vanishing terms occurring in the last sum are located in the interval -1 ≤ p ≤ q. Integrating first with respect to x, we find

λ(E q (ψ) ∩ [0, 1] 2 ) = 1 0 1 0 χ Eq(ψ) (x, y)dxdy = p∈Z -1≤p≤q, gcd(p,q)=1 1 0 1 0 χ q (qx -p -y)dxdy = 1 1-ψ(q) -1 + y + ψ(q) q dy + 1≤p≤q-2 gcd(p,q)=1 1 0 2ψ(q) q dy + 1-ψ(q) 0 2ψ(q) q dy + 1 1-ψ(q)
1 -y + ψ(q) q dy = 2ϕ(q)ψ(q) q .

The first term appearing in the third equality of the above formula corresponds to the summation index p = -1 and the two last ones to p = q -1. We have thus proved (i).

For the second assertion, we majorize

λ(E q (ψ) ∩ E s (ψ) ∩ [0, 1] 2 ) = 1 0 1 0 χ Eq(ψ) (x, y)χ Es(ψ) (x, y)dxdy ≤ 1 0 1 0 p∈Z χ q (qx + p -y) r∈Z χ s (sx + r -y) dxdy = 1 0 1 0 χ q ( qx -y )χ s ( sx -y )dxdy,
where . stands as usual for the distance to the nearest integer. Now, (ii) follows from the probabilistic independence formula

1 0 1 0 χ q ( qx -y )χ s ( sx -y )dxdy = 4ψ(q)ψ(s),
obtained by Cassels on page 124 of [START_REF] Cassels | An Introduction to Diophantine Approximation[END_REF] (see Proof (ii)).

A zero-one law

We say that a subset of R 2 is a null set if it has Lebesgue measure 0. A set whose complementary is a null set is called a full set. The goal of this section is to prove the Proposition. Let ψ be an approximating function as in Theorem 2. Then the subset E(ψ) is either a null set or a full set.

For proving the proposition, it is convenient to introduce the larger subset

E (ψ) = k≥1 E(kψ).
In other words, E (ψ) is the set of all points ξ y in R 2 for which there exist a positive real number κ, depending possibly on ξ y , and infinitely many primitive points (p, q) satisfying ( 9) q ≥ 1 and |qξ + p -y| ≤ κψ(q).

Observe that

E(kψ) ⊆ E(k ψ) if 1 ≤ k ≤ k . In particular, E(ψ) is contained in E (ψ).
Lemma 3. Let ψ : N → R + be a function tending to zero at infinity. Then the difference E (ψ) \ E(ψ) is a set of null Lebesgue measure.

Proof. We show that all sets E(kψ), k ≥ 1, have the same Lebesgue measure. For every real number y, denote by E(ψ, y) ⊆ R the section of E(ψ) on the horizontal line R × {y}, i.e.

E(ψ, y) = ξ ∈ R ; ξ y ∈ E(ψ) .
Then, using (8), we can express

E(ψ, y) = Q≥1 q≥Q p∈Z gcd(p,q)=1 -p + y -ψ(q) q , -p + y + ψ(q) q
as a limsup set of intervals. If we restrict to a bounded part of E(ψ, y), the above union over p reduces to a finite one. Observe that the centers -p+y q of these intervals do not depend on ψ, and that their length is multiplied by the constant factor k when replacing ψ by kψ. Appealing now to a result due to Cassels [START_REF] Cassels | Some metrical theorems in Diophantine approximation I[END_REF], we infer that all lim sup sets E(kψ, y), k ≥ 1, have the same Lebesgue measure. See also Corollary of Lemma 2.1 on page 30 of [START_REF] Harman | Metric Number Theory[END_REF]. Notice that for fixed k, the length 2kψ(q) q of the intervals -p+y-kψ(q) q , -p+y+kψ(q) q tend to 0 as q tends to infinity, as required by Lemma 2.1. By Fubini, the fibered sets belongs to E (ψ). Indeed, substituting [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)orbits[END_REF] q = aq + cp , p = bq + dp in ( 9) and dividing by cξ + d, we obtain the inequalities [START_REF] Ledrappier | Distribution des orbites des réseaux sur le plan réel[END_REF] q ≥ 1 and

E(kψ) = y∈R E(kψ, y) × {y} , k ≥ 1,
|q ξ + p -y | ≤ κ cξ + d ψ(q) ≤ κ ψ(q ),
for some κ > 0 independent of q . The positivity of q is proved as follows. Note that (9) implies the estimate p = -qξ + O ξ,y (1).

Then, inverting the linear substitution [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)orbits[END_REF], we find

q = dq -cp = q(cξ + d) + O γ,ξ,y (1) 
.

Since we have assumed that cξ + d > 0, the term q(cξ + d) is arbitrarily large when q is large enough. The condition (3) now shows that ψ(q) ψ(q ). Thus ( 11) is satisfied for infinitely many primitive points (p , q ), since the linear substitution [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)orbits[END_REF] is unimodular. We have shown that ξ y belongs to E (ψ).

We now prove that the intersection E (ψ) ∩ (R × R + ) is either a full or a null subset of the half plane R × R + . To that purpose, we consider the map

Φ : R × R + → R × R + , defined by Φ x y = x/y 1/y .
Clearly Φ is a continuous involution of R × R + . The image

Ω := Φ E (ψ) ∩ (R × R + )
is formed by all points of the type

u v = ξ y 1 y
, where ξ y ranges over E (ψ) ∩ (R × R + ). Now, the above condition cξ + d > 0 is obviously equivalent to cu + dv > 0 since y is positive. Then, the point 

Φ au + bv cu + dv = au+bv cu+dv 1 cu+dv = aξ+b cξ+d y cξ+d belongs to E (ψ) ∩ (R × R + ),
(ΓΩ) ∩ (R × R + ) ⊆ Ω.
Since the reversed inclusion is obvious, the equality Ω = (ΓΩ) ∩ (R × R + ) holds in fact. Assuming that Ω is not a null set, the ergodicity of the linear action of Γ on R 2 [START_REF] Moore | Ergodicity of flows on homogeneous spaces[END_REF] shows that ΓΩ is a full set in R 2 . Hence Ω is a full set in the half plane R × R + .

Transforming now Ω by Φ, we find that

Φ(Ω) = E (ψ) ∩ (R × R + ),
is as well a full set in R × R + , thus proving the claim. We finally use another transformation to carry the zero-one law from the positive half plane R × R + to the negative one R × R -. Writing (9) in the equivalent form

q ≥ 1 and |q(-ξ) + (-p) -(-y)| ≤ κψ(q), shows that E (ψ) is invariant under the symmetry ξ y → -ξ -y which maps R × R + onto R × R -. Therefore E (ψ) ∩ (R × R -) is a null or a full set in R × R -when E (ψ) ∩ (R × R + ) is accordingly a null or a full set in R × R + .
Now, the combination of Lemma 3 and Lemma 4 obviously yields our proposition.

Concluding the proof of Theorem 2

Assume first that ψ( ) converges. We have to show that the set

E(ψ) = lim sup q→+∞ E q (ψ)
has null Lebesgue measure. Lemma 2 shows that the partial sums

Q q=1 λ(E q (ψ) ∩ [0, 1] 2 ) = 2 Q q=1 ϕ(q)ψ(q) q ≤ 2 Q q=1 ψ(q)
converge (*). Then, Borel-Cantelli Lemma ensures that the lim sup set E(ψ) ∩ [0, 1] 2 is a null set. Thus E(ψ) cannot be a full set. Now, the above proposition tells us that E(ψ) is a null set. We now consider the case of a divergent series ψ( ). Observe that the estimate

(12) 1 2 Q q=1 ψ(q) ≤ Q q=1 ϕ(q)ψ(q) q ≤ Q q=1 ψ(q)
holds true for any large integer Q, since the sequence ψ( ) ≥1 is non-increasing. The right inequality is obvious, while the left one easily follows from Abel summation process. See for instance Chapter 2 of [START_REF] Harman | Metric Number Theory[END_REF], where full details are provided. By Lemma 2 and ( 12), the sums

Q q=1 λ(E q (ψ) ∩ [0, 1] 2 ) = 2 Q q=1 ϕ(q)ψ(q) q ≥ Q q=1 ψ(q)
are then unbounded. Then, using a classical converse to Borel-Cantelli Lemma, we have the lower bound ( 13)

λ E(ψ) ∩ [0, 1] 2 = λ lim sup q→+∞ (E q (ψ) ∩ [0, 1] 2 ) ≥ lim sup Q→+∞ Q q=1 λ(E q (ψ) ∩ [0, 1] 2 ) 2 Q q=1 Q s=1 λ(E q (ψ) ∩ E s (ψ) ∩ [0, 1] 2 )
.

See for instance Lemma 2.3 in [START_REF] Harman | Metric Number Theory[END_REF]. Lemma 2 and ( 12) now show that the numerator on the right hand side of (13) equals

4 Q q=1 ϕ(q)ψ(q) q 2 ≥ Q q=1 ψ(q) 2 ,
(*) Here again we assume without loss of generality that ψ(q) ≤ 1/2 for every q ≥ 1, so that Lemma 2 may be applied.

when Q is large, while the denominator is bounded from above by 4

Q q=1,s=1 q =s ψ(q)ψ(s) + 2 Q q=1 ψ(q) ≤ 4 Q q=1 ψ(q) 2 + 2 Q q=1 ψ(q).
Thus [START_REF] Moore | Ergodicity of flows on homogeneous spaces[END_REF] yields the lower bound

λ E(ψ) ∩ [0, 1] 2 ≥ 1 4
.

Hence E(ψ) is not a null set; it is thus a full set according to our proposition.

An approach to our problem

In this section, we apply a transference principle between homogeneous and inhomogeneous approximation, as displayed in Chapter V of [START_REF] Cassels | An Introduction to Diophantine Approximation[END_REF] and in [START_REF] Bugeaud | Exponents of inhomogeneous Diophantine approximation[END_REF], for constructing explicit integer solutions of the inequality ( 14)

|qξ + p -y| ≤ 2 |q| .
Let (p k /q k ) k≥0 be the sequence of convergents to the irrational number ξ. The theory of continued fractions, see for instance the monograph [START_REF] Khintchine | Continued Fractions[END_REF], tells us that [START_REF] Sprindzuck | Metric Theory of Diophantine Approximations[END_REF] |q k ξ -p k | ≤ 1 q k+1 and p k q k+1 -p k+1 q k = (-1) k+1 , for any k ≥ 0. Setting ν k = (-1) k+1 q k y, we thus have the relations (16) ν k q k+1 + ν k+1 q k = 0 and ν k (q k+1 ξ -p k+1 ) + ν k+1 (q k ξ -p k ) = y. Now, let n k be anyone of the two integers ν k and ν k ( †). Then,

(17) |ν k -n k | < 1,
and n k is either equal to (-1) k+1 yq k or to (-1) k+1 yq k . Setting (18) p = -n k p k+1 -n k+1 p k and q = n k q k+1 + n k+1 q k , ( †) As usual x and x stand respectively for the floor and the ceiling of the real number x. Then x = x + 1, unless x is an integer in which case x = x = x.

we deduce from (16) the expressions

(19) qξ + p -y = n k (q k+1 ξ -p k+1 ) + n k+1 (q k ξ -p k ) -y = (n k -ν k )(q k+1 ξ -p k+1 ) + (n k+1 -ν k+1 )(q k ξ -p k ) and (20) q = (n k -ν k )q k+1 + (n k+1 -ν k+1 )q k .
Recall that q k ξ -p k and q k+1 ξ -p k+1 have opposite signs. Assuming that n k -ν k and n k+1 -ν k+1 have the same sign, we infer from the formulas ( 19), (20) and from ( 15), ( 17) that

(21) |qξ + p -y| < 1 q k+1
and |q| < 2q k+1 .

Otherwise, we have

(22) |qξ + p -y| < 2 q k+1
and |q| < q k+1 .

The inequalities (21) and ( 22) obviously imply [START_REF] Schmidt | Diophantine Approximation[END_REF]. Since the linear substitution (18) is unimodular, the integers p and q are coprime if and only if n k and n k+1 are coprime. Recall that the two choices n k = ν k and n k = ν k are admissible, both for n k and n k+1 . It thus remains to find indices k for which at least one of the coprimality conditions (23) gcd( yq k , yq k+1 ) = 1 or gcd( yq k , yq k+1 ) = 1 or gcd( yq k , yq k+1 ) = 1 or gcd( yq k , yq k+1 ) = 1, is verified. Note that (23) obviously fails for all k ≥ 0 when y is an integer not equal to 1 or to -1. Otherwise, the contingent existence of infinitely many indices k satisfying (23) is a non-trivial problem that we leave hanging.

Let us mention that the proof of (1) in [START_REF] Chalk | On the distribution of primitive lattice points in the plane[END_REF] follows the same idea, finding a primitive integer point inside the square centered at the point (ν k , ν k+1 ) ∈ R 2 with side C log |ν k |/ log log |ν k | for some suitable large absolute constant C.

Proof of Theorem 3

We quote the following metrical result due to Harman (Theorem 8.3 in [START_REF] Harman | Metric Number Theory[END_REF]). Assume that the series (5) diverges. Then for almost all positive real numbers y, there exist infinitely many indices k such that the integer part yq k is a prime number. These indices k fulfill (23) since, assuming for simplicity that y is irrational, either yq k+1 or yq k+1 = yq k+1 + 1 is not divisible by yq k and is thus relatively prime with yq k . Hence [START_REF] Schmidt | Diophantine Approximation[END_REF] has infinitely many coprime solutions (p, q) for almost every positive real number y. Writing now [START_REF] Schmidt | Diophantine Approximation[END_REF] in the equivalent form

|(-q)ξ + (-p) -(-y)| ≤ 2 |q|
shows that, ξ being given, the set of all real numbers y for which [START_REF] Schmidt | Diophantine Approximation[END_REF] has infinitely many coprime solutions is invariant by the symmetry y → -y. The first assertion is thus established. To complete the proof, note that

lim k→+∞ log q k k = π 2 12 log 2
for almost every ξ by Khintchine-Levy Theorem (see equation (4.18) in [START_REF] Billingsley | Ergodic Theory and Information[END_REF]). Thus the series (5) diverges for almost every ξ.

Generic density exponents

We prove in this section Theorem 4, as a consequence of Borel-Cantelli Lemma combined with the following counting result. thus converge if µ > 1/2.

Proof of Theorem 4

We argue by contradiction and suppose on the contrary that µ Γ (x) > 1/2. Fix a real number µ with 1/2 < µ < µ Γ (x). Then for almost all points y ∈ R 2 , we have µ(x, y) > µ. This means that there exist infinitely many γ ∈ Γ satisfying [START_REF] Chalk | On the distribution of primitive lattice points in the plane[END_REF], or equivalently that y belongs to infinitely many balls of the form B(γx, |γ| -µ ). We now restrict our attention to points y with µ(x, y) > µ lying in an annulus Ω = {z ∈ R considered in Lemma 6 for every integer N large enough, and thus y belongs to B. However, Lemma 6 asserts that B is a null set which is a contradiction.

2 . 4 .

 24 have as well the same Lebesgue measure in R Lemma Let ψ : N → R + be a non-increasing function satisfying[START_REF] Bugeaud | Exponents of inhomogeneous Diophantine approximation[END_REF]. Then E (ψ) is either a null or a full set. Proof. It is based on the following observation. Let ξ y belong to E (ψ) and let γ = a b c d be a matrix in SL(2, Z) such that cξ + d > 0. Then the point ξ y with coordinates ξ = aξ + b cξ + d and y = y cξ + d

  by the preceding observation. Applying the involution Φ, we find that Φ to Ω. In other words, setting Γ = SL(2, Z), we have established the inclusion

Lemma 5 .

 5 Let x be a point in R 2 whose orbit Γx is dense in R 2 . For every symmetric compact set Ω in R 2 \ {0} there exists c > 0 such thatCard{γ ∈ Γ; γx ∈ Ω, |γ| ≤ T } ≤ cTfor any real number T ≥ 1.Proof. Ledrappier[START_REF] Ledrappier | Distribution des orbites des réseaux sur le plan réel[END_REF] has shown that the limit formula lim even continuous function f : R 2 → R having compact support on R 2 \{0}, with a suitable normalisation of Haar measure on SL(2, R). Approximating uniformly from above and from below the characteristic function of Ω by even continuous functions, we deduce that lim T →+∞ Card{γ ∈ Γ; γx ∈ Ω, |γ| ≤ T }

  2 ; a ≤ |z| ≤ b }, where b > a > 0 are arbitrarily fixed. Since y belongs to the intersection Ω ∩ B(γx, |γ| -µ ), we deduce from the triangle inequality the estimate a -|γ| -µ ≤ |γx| ≤ b + |γ| -µ . Fixing a < a and b > b , the center γx then lies in the larger annulus Ω = {z ∈ R 2 ; a ≤ |z| ≤ b}, provided that |γ| is large enough. It follows that y falls inside the union of balls γ∈Γ |γ|≥N,γx∈Ω B(γx, |γ| -µ )

Aknowledgement. We are grateful to Martin Windmer for calling our attention on the Chalk-Erdos Theorem in [6].

Lemma 5 immediately follows.

For any point y ∈ R 2 and any positive real number r, we denote by B(y, r) = {z ∈ R 2 ; |z -y| ≤ r} the closed disc centered at y with radius r. Lemma 6. Let x be a point in R 2 whose orbit Γx is dense, Ω a symmetric compact set in R 2 \ {0} and µ a real number > 1/2. For every integer n ≥ 1, put

Then the set

has null Lebesgue measure.

Proof. We apply Borel-Cantelli Lemma and we prove that the series

For every positive integer n, set

Lemma 5 gives us the upper bound

for some c > 0 independent of n ≥ 1. Since a ball of radius r has Lebesgue measure 4r 2 , we trivially bound from above

Summing by parts, we deduce from (24) that