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Abstract—Todays’ DNS resolving platforms have been designed
for DNS with fast and light resolutions over the Internet. With
signature checks and larger payload, experimental measure-
ments [10] showed that DNSSEC resolutions require up to 4
times more CPU.
While DNSSEC requires more CPU than DNS, this paper
proposes PREFETCHX , an architecture that optimizes the
use of CPU and thus avoids that resolving platforms increase
their size for DNSSEC migration. Current resolving platforms
IPXOR split the traffic between the nodes according to the
IP addresses. Alternatively, PREFETCHX takes advantage of
the FQDN’s popularity distribution (Zipf), a layered cache and
cache sharing mechanisms between the nodes and requires at
least 4 times less nodes. Furthermore PREFETCHX does not
impact the network infrastructure which eases its deployment.
Then, defining X the number of prefetched FQDNs makes
PREFETCHX highly scalable and flexible to different type
of traffic.

Index Terms—DNS, DNSSEC, DHT, Pastry, Cache sharing

I. INTRODUCTION

Internet Service Providers (ISPs) have always hosted Do-
main Name System (DNS) resolution platform for its end
users and Machine-to-Machine communications. However, lit-
tle attention was paid to optimize DNS resolving platform.
Therefore, most of them are currently composed of a load
balancer —like [12]—that splits the traffic between the plat-
form’s nodes according to the IP addresses of the incoming
queries. This architecture is named IPXOR and is used to
compare the proposed alternative architectures.
In fact, DNSSEC resolution involves larger payload than DNS
and signature checks that require more CPU. Although this
CPU overhead depends on the type of traffic, the server’s
implementation, the resolution policy or the hardware, Migault
and al. Experimentally measured in [10] this overhead to be
up to 425%. This has been confirmed in real deployment,
mainly because DNSSEC generates much more exchanges. In
addition, the demand for DNS resolutions keeps on increasing
and ISPs can observe roughly a monthly 8% increase rate.
With Contend Delivery Network and short Time to Live (TTL)
DNS responses, we expect the DNS traffic to keep or increase
its growth rate.
As ISPs can hardly afford increasing their resolution platform
by 5 and as DNS traffic is still expected to increase, it
is now crucial to optimize resolving platform to face the
future demands on DNS and DNS(SEC) evolutions. This paper
proposes the PREFETCHX architecture, designed to:

1) Reduce the number of nodes (i.e. CPU or resources).
2) Provide management facilities for Operation, Admin-

istration & Management (OAM) such as overcoming
nodes fail-over or addition of a node.

3) Deliver limited impact on the core network with a
straight forward design to ease its deployment.

PREFETCHX takes advantage of the Zipf distribution of
the Fully Qualified Domain Names (FQDN). This distribution
means that a large part of the traffic is constituted by a
small amount of FQDNs. In this paper we call HEADX ,
the X most popular FQDNs and TAILX the remaining
FQDNs. PREFETCHX takes also advantage of a layered
cache, by prefetching the HEADX FQDNs in a dedicated
cache and pre-processing each DNS query before they are
sent to the server’s software. More specifically, for each
incoming DNS query, we check whether the queried FQDN
is in HEADX . Only if the query is not in HEADX , it
is forwarded to the traditional DNSSEC server’s software
— [1], [18]. We typically expect the dedicated cache and
its lookup process to be hosted in a Network Hardware
Acceleration Cards (NHAC). The length of the cache X is a
trade-off between fast lookup, a large cache hit rate (CHR),
and a uniform distribution of the necessary CPU to deal with
TAILX among the node of the platform. X is the variable
for adjustment to find this trade-off with multiple type of
traffic, making PREFETCHX highly flexible.

PREFETCHX takes advantage of cache sharing
mechanisms. This means that a given FQDN should be
resolved by a single or a small set of nodes, mainly to
avoid duplicated resolutions. In this paper, we considered
for TAILX different cache sharing mechanisms on top of
Pastry [15]. Not only Pastry avoids duplicated resolutions,
but also provides OAM facilities. Note that the advantages
provided by Pastry mainly apply to DNSSEC and not
DNS. In fact, with Pastry based architectures, an intra-node
communication occurs instead of a resolution. Because
DNSSEC resolution requires signature checks, an intra-node
communication costs much less than a resolution. This is not
so obvious with DNS.

The remaining of this paper is organized as follows.
Section II positions the paper towards existing work.
Section III details motivations for PREFETCHX and its
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design. As mentioned above, X is defined by the traffic
in order to find a trade-off between cache efficiency and a
uniform CPU distribution between the nodes. In this paper
we considered 10 minute DNS live captures from a large
ISP, with more than 35 millions DNS queries. In section IV
we show that setting X = 2000 FQDNs results in a uniform
CPU distribution among the nodes of the platform for the
remaining TAILX FQDNs. Section V, VI and VII are
dedicated to the cache sharing architectures that deals with
TAILX . Section V, defines analytic models of various cache
sharing architectures. Section VI computes these models
with a live traffic capture, and compares their efficiencies.
At last, section VI compares efficiency of the Pastry model
with those provided by an experimental platform based on
FreePastry [5] to validate our analytic models and the thus
our considerations for real deployment.

II. RELATED WORK

Many works focus on Web caching architectures. Wang
in [19] describes different caching architectures, providing
inputs on where and how placing the cache devices according
to the Web requirements. Tewari and al. introduce a cost
comparison to different distributed caching methods in [17].
Wolman and al. investigate the benefits of cooperative caching
in [21], and demonstrates that performance are reached only
with a limited number of nodes. The DHT web caching
methods are investigated by Iyer and al. with Squirrel [6],
which is based on Pastry [15]. This paper compares two
architectures, one using a home node dedicated to a bench of
web pages and one with a home node that can also delegate
the resolution to other nodes during a flash crowd. It happens
that the less flexible but simpler architecture have better
performance.
Massey and al. in [9] and Risson and al. in [14] analyze how
DHT could enhance the robustness of the Naming System.
The robustness of both Chord and DNS considers Data
failure rate, Path failure rate and Path length. The DNS
efficiency was proved to be linked to the popularity of its
zone and the number of labels of the domain name, whereas
the DHT efficiency is related to the popularity of its RRsets.
In fact, DHT main drawback is its heavy routing algorithms.
DHT is also more robust to orchestrated attacks and could
achieve the same availability of the current DNS with added
mechanisms like proactive caching —Beehive [13].
Our paper differs from the papers cited above since the
DHT ring is used for hosting authoritative data, whereas
our architecture uses the DHT Pastry as a way to define the
node responsible for performing the resolutions. The way
the data is stored into the DHT also differs from DHash and
we use PAST. In DHash, blocks of the files are spread over
the DHT nodes, whereas in PAST the whole file is hosted
on the node. Our architecture is also expected to consider
at maximum around one or two hundred nodes, whereas the
DHT described by Cox and al. [3] is a 1000 node experiment

which is mentioned as being a restricted number.

III. PREFETCH ARCHITECTURE: GOALS AND DESIGN

As mentioned in section I, this paper introduces the design
of an architecture that makes DNSSEC deployment feasible
for a resolving platform. Current resolving platforms IPXOR
are based on a load balancers that split the DNS queries
by XORing their IP addresses —like with [11]. Our target
architecture must (1) reduce the involved resources, (2)
provide OAM and (3) enjoys a straight forward design.

A. Global resource reduction of IPXOR with FQDNSHA1

The resource we care in this paper is the CPU which is
heavily used for DNS resolution with signature checks and
cache lookup over large caches. Thus, our goals are to reduce
(a) the number of resolutions, (b) the size of the cache and (c)
the number of cache lookups. Then, to prove the architecture
is efficient, we must check the CPU is uniformly distributed
among the nodes of the platform.
We first consider FQDNSHA1, an architecture that assigns
each incoming FQDN to a specific node according to the
hash of its FQDN. As a result, a given FQDN is resolved and
stored by a single node which avoids simultaneous resolutions
and partly reduces the cache size. More specifically, the cache
size is reduced for FQDNs that are queried more than once.
The problem with caches in IPXOR is that they are very
large and filled with infrequently queried FQDNs. This
increases the necessary CPU for cache lookup without really
providing an advantage of the caching mechanism. Finally
FQDNSHA1 addresses goals a), b) and c).

B. Caching to make FQDNSHA1 CPU distribution uniform

The problem faced by FQDNSHA1, is that resources are
non-uniformly distributed among the nodes of the platform.
With a 10 minute DNS capture of more than 35 million
queries, figure 1 depicts how the CPU cycles, queries and
resolutions are distributed among the nodes. Our live traffic
is captured on a 18 node platform, so we replay it for a 18
node platform, and plot how many nodes are associated to
a given value of CPU cycles, query and resolution numbers.
The CPU cycles associated to resolutions are provided by
experimental measurements in [10]. Figures 1a and 1b
show that FQDNSHA1 globally reduces the CPU by 30%,
compared to IPXOR. On the other hand CPU are unfairly
distributed among the nodes. Similarly, figures 1c and 1d
depict the relative dispersion of the number of queries
(δQ), respectively resolution (δR) as defined in equation (2)
with Qi the number of queries on node i and Q̄ the mean
query number over the platform. From figures 1c and 1d,
δFQDNQ ≈ 5δXORQ and δFQDNR ≈ 0.026δXORR . Finally,
SHA1 does not provide any benefit over XOR in term
of load balancing, which confirms the use of XOR for
load balancing the DNS traffic. FQDNSHA1 is adapted for
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balancing resolution whereas IPXOR is more adapted for
query load balancing.

δQ = |MAX(Q̂i)−MIN(Q̂i)|, i ∈ [1..n] (1)

Q̂i =
| Qi − Q̄ |

Q̄
(2)
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Fig. 1. Resource Distributions on a 18 node platform

The non-uniform distribution of the resources results from
a large inequality between the FQDN’s popularity as depicted
in figure 2a. Accordingly to the Zipf distribution of FQDN’s
popularity, to counterbalance the query number of FQDN with
popularity i, a large number (K) of FQDNs with popularity
i + k, k ∈ K must be involved. This is especially true for
FQDNs in HEADX , so, to prevent these FQDN to unbalance
the resources distribution over the platform, we consider a pre-
process that handles FQDNs belonging to HEADX . Thus,
only the remaining FQDN of TAILX will be handled by the
DNS(SEC) server, and the cache sharing architecture must be
designed for TAILX .
As represented in figure 2b, for each incoming DNS query, the
query is pre-processed. If the queried FQDN is in HEADX ,
the response is directly sent back, otherwise, the query is
forwarded to the node to be resolved.
The key advantage provided by this pre-processing step is that
a large part of the traffic is querying FQDNs in HEADX ,
and X is a relatively small number. This makes cache lookup
much faster than when handled by the DNS(SEC) server
with a large red-black binary tree cache of regular DNS
server implementations —BIND [1], UNBOUND [18]. More
specifically, we expect the pre-processing part to be computed
in Network Hardware Acceleration Card (NHAC) [2], [4]. The
key challenge of the PREFETCHX is to derive X from

the DNS traffic so that the resources are uniformly distributed
among the nodes of the platform. Section IV proved that that
X as little as X = 2000 provides a uniform distribution of
queries, resolutions, and so CPU.

HEADX TAILX

X=2000

(a) X , HEADX , TAILX
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(b) PREFETCH Node Architecture

Fig. 2. PREFETCH Node Parameters

C. Providing OAM via DHT

Because PREFETCHX prefetches HEADX , the DNS
server software only deals with FQDNs of TAILX . Each
of these FQDN is being assigned to a specific node as
with FQDNSHA1. Thus, it becomes convenient to place
the DNS(SEC) resolving servers on the top of a Distributed
Hash Table (DHT) infrastructure. In this paper, we consider
Pastry [15] that provides auto-configuration when a node is
added or removed from the platform. Note that we only use
a subset of the Pastry functionalities. More specifically, we
do not use the Pastry Dynamic Node Discovery that defines
which Pastry node hosts a given content. This mechanism is
quite complex because DHT protocols have been designed for
billions of dynamic nodes, making impossible for each node
to have a global knowledge of the platform. On the other hand,
our platform is not expected to have more than a (few) hundred
nodes, all administrated by the same ISP. This makes possible
for each node to consider the other nodes as its Neighbors, and
thus does not require Dynamic Node Discovery. On the other
hand, we take advantage of the content distribution among
the nodes of the platform and the auto-configuration Pastry
mechanisms. Figure 2b shows that when the queried FQDN is
not in HEADX , the query is forwarded to the DNS(SEC)
server on top of Pastry. The Pastry protocol forwards the
query to the responsible node for that FQDN. The Pastry
infrastructure for TAILX is detailed in section V.

IV. DERIVING X , HEADX , TAILX FROM LIVE CAPTURE

Section III defined PREFETCHX , and showed that
caching X most popular FQDN in a NHAC results in an
uniform distribution of the number of queries, resolutions
and so the CPU. This section derives X , —and so HEADX

and TAILX —from a live DNS traffic capture. We define
X so that the necessary resources to handle TAILX are
uniformly distributed among the nodes. The distribution must
remain uniform when different hash functions are used in
the DHT, and at any time of the day. Finally, we show that
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PREFETCH2000 only needs half of the resources required
by IPXOR.

A. X for δCPUX hash function stability

Equation 2 in section III-B defined the relative disper-
sions δQX and δRX and showed that resources for TAILX
are uniformly distributed when these values are small.
PREFETCHXo is more efficient than IPXOR when Xo

makes δQXo ≤ δQXORX
and δRXo ≤ δRXORX

—QXORX (resp.
RXORX ) are the number of queries (resp. responses) with
IPXOR.
Figure 3 sums up the hash function stability results of a
computation over a 10 minute DNS capture. Figures 3a and 3b
depict δQ and δR for different hash functions (SHA1, MD5,
CRC32) and table 3c compares them with IPXOR. It clearly
shows that with X = 2000, PREFETCH2000 overcomes
both IPXOR queries and resolution dispersion. On the other
hand, the comparison of CPU shows that with X = 500
PREFETCHX has a better CPU distribution than IPXOR.
Considering queries and resolutions has more constrains than
considering CPU, and we will consider X = 2000 in the
remaining of the paper.
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Fig. 3. PREFETCHX δQX , δRX measurements

B. X for δCPUX time stability

Section IV-A derived X = 2000 from hash function
stability. In this section, we check if this value is stable over
at least a day. Figure 4 plots δQX , δRX for various X values
during the whole day and depicts in figure 4c for different
value of X the maximum of δQX (respectively δRX ) observed
in that day.
From figures 4a and 4b PREFETCHX provides, over
time, a much more uniform distribution of the resources than
IPXOR. X = 2000 reduces variations which do not exceed

a 10% variation over time, and increasing X to X = 10000
does not significantly improve PREFETCHX stability. This
confirms our choice of X = 2000.
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In section III, we exposed our motivations for a new
architecture for a DNSSEC resolving platform and designed
PREFETCHX . This architecture requires to set X ,
the number of most popular FQDNs that are cached and
pre-processed by NHACs. X must be set according to the
DNS traffic and section IV details how to derive X and
shows that on our live DNS capture PREFETCH2000

provides a uniform distribution of the resources —queries,
resolutions and so CPU —. These distributions remain
stable to different hash functions and over time. In term of
efficiency, PREFETCH2000 roughly requires half of the
nodes required by IPXOR.
The second part of the paper focuses on the DHT
architecture for TAILX . Section V models various DHT
configurations. Theseanalytic models lead to simulation with
real traffic in section VI to define which architecture best
fits PREFETCHX goals. At last, we validate these models
in section VII with a real implementation based on FreePastry.

V. DHT THEORETICAL ANALYTIC MODELS FOR TAILX

In DNS over Pastry [15], as represented in figure 5a, queries
are identified according to the requested FQDN. Each node
is assigned a set of FQDNs and resolves queries it is a
Responsible Node (RN) for. Other queries are forwarded to
their associated RN.
Pastry is widely known by the community, but other DHT
protocols may be used - like chord or Tapestry. The way we



5

use Pastry differs from what it was originally designed for.
First, the Pastry nodes constitute the platform and belong to the
same administrator, they are located in the same data center,
on the same LAN and every node knows all the other nodes -
the platform is not expected to be larger than a few hundreds
nodes. We do not assert that the node ID is derived from the
data by a simple hash function (SHA1), but we may apply
a specific mapping known by all nodes. Finally, we do not
consider the Pastry routing discovery algorithm. On the other
hand, we take advantage of Pastry’s auto-configuration mecha-
nisms, robustness to DoS attacks [3], [9], [14] - as such it may
balance the sensitivity to DoS attacks introduced by DNSSEC
with heavier resolutions. We also take advantage of the cache
sharing mechanisms for enhancing Pastry based platforms.
Note that how FQDNs are associated to their Responsible
Node (RN) may require the auto-configuration mechanism
to be reconsidered. Furthermore, robustness to DoS requires
architectures that cache somehow the responses. This section
provides a model description for Pastry based architectures,
with different mechanisms that either reduce routing traffic, or
enhance the cache of the platform. Section VI computes the
models and compares the different pastry based architectures
with FQDN and IPSHA1.
From figure 5b, the traffic has the following features:

IP Load
Balancer

[1] DNS
Query

[6] DNS 
Response

[2] DHT
Query

[5] DHT 
Response

@

[3] DNS
Query

[4] DNS
Response

(a) Pastry (b) Node J

Fig. 5. DHT Traffic and Node Modelization

- Q: DNS queries sent by all end users with query rate q.
- Qj : DNS queries sent to nj with query rate qj .
- M

′

j (resp. Mj): incoming (resp outgoing) exchanges
between nj and the other n − 1 nodes of the n node
platform.

The different entities we consider are:
- p(IPs, fqdn) : a DNS query with IPs = (IPsource,
IPdestination), and fqdn the queried FQDN as defined
below.

- fqdn(name, ttl, rank) : a FQDN where name desig-
nates the FQDN, ttl its TTL and rank its rank which
reflects its popularity. Note that rank is based on the
popularity of the FQDN, i.e. the query rate value associ-
ated to that FQDN. Each FQDN has a distinct rank, that
is, two FQDN with the same request rate, are ordered
alphabetically.

The following architecture components are : a Load Balancer
that splits the traffic among the different nodes nj of the

platform. We note :
- F = {the ranked fqdnr, r ∈ R}. The list of different

FQDN with their associated rank r.
- OT defines the Occupancy Time (OT) that depends on

the action performed (cache lookup OTH , cache insertion
OTR, query forwarding OTFWD...) and the considered
protocol (DNS, DNSSEC).

The different probabilities considered for each node are :
- Lj the probability nj receives a packet p of Q: qj = Lj .q.
- Hr,j the probability nj is RN for fqdnr.
- Φ(r) the probability fqdnr of rank r is queried.
- CM (resp. CH) the platform probability for a Cache

Miss (resp. Cache Hit) , i.e. the response is not stored in
any cache node Cj of the platform.

- CMj (resp. CHj) the probability a packet addressed to
nj triggers a Cache Miss (resp. a Cache Hit).

- Rj the probability p in Qj triggers a resolution over the
Internet on nj .

- Mj the probability p in Qj is forwarded by nj .
Note that we have CM + CH = 1, CMj + CHj = 1 and
CMj = Mj +Rj , so an architecture is fully characterized by
CM , Rj and Mj .

A. Single Node Model: τr
Let us consider the case where a DNS traffic Q is addressed

to a single node. In our model, we consider as in [8] a constant
TTL for the FQDNs and a constant query rate q measured
in queries.s−1. Let CMo be the experimental Cache Miss
measured on our live capture. We define τr the time (s) so that
measured CMo =

∑
r∈R(1−Φ(r))q.τr .Φ(r). For each fqdn

with associated rank r, a Cache Miss (CM) occurs if the fqdn
is queried at t and has not been queried during the last TTL
seconds. Φ(r) represents the probability the FQDN is queried,
and (1−Φ(r)) the probability it is not being requested. If qτr
represents the number of queries received during fqdn.ttl,
then (1−Φ(r))q.τr . represents the probability the FQDN has
not been queried during fqdn.ttl. As such, τr is the mean time
a FQDN is cached in the live capture. The empirical definition
of τr can also be expressed in a theoretical way as a function
of T the duration of the capture, and the various fqdn.ttls of
the FQDNs. We clearly have Ro = CMo and Mo = 0.

B. IPSHA1 Architecture

If we assume that fqdn and IP addresses are indepen-
dent, then CM =

∑n−1
i=0 Li.CMi. Because nodes are equal,

CMj = CM , and CMj =
∑
r∈RΦ(r).(1 − Φ(r))Lj .qτr ,

Rj = CMj , Mj = 0 as node do not forward incoming traffic.
Finally:

OT (qj) = qj .OT
H + qj .CMj .OT

R (3)

C. FQDN Architecture

In FQDN we assume that load balancers redirect each
fqdnr to its RN . We also considered that our FQDN mapping
results in a uniform distribution of queries, resolutions and
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homed FQDNs. Then CM = CMo, CMj = CMo, Rj =
CMj and Mj = 0. Finally:

OT (qj) = qj .OT
H + qj .CM.OTR (4)

D. Pastry Architecture (no cache, no replication)

Pastry architectures are of interest since Pastry [15] is quite
robust to DoS attacks [3], [9], [14], nodes are self organized,
and can be deployed as a flat architecture without modifying
the core network infrastructure. In Pastry, nodes route queries
to their RN node and resolves the queries they are RN
for. The challenge is to find out how managing the traffic
balances the number of avoided DNS(SEC) resolutions. There
are various ways to manage the incoming traffic. In this section
we consider the following mechanisms :

- No cache no Replication (Pastry): When a node receives
a query it is not RN for, a query response exchange is
performed with the RN node.

- Stateless Forwarding (Pastry-SF): It works like Pastry
except that the RN node sends directly the response to
the end user, rather than to the Pastry node.

- Passive Caching (Pastry-PC): It works like Pastry except
that nodes cache the responses.

- Replication (Pastry-R): It works like Pastry, but when
RN node performs a resolution, it provides a copy of
the response to k neighbours that cache them.

- Active Caching (Pastry-AC): It works like Pastry-SF but
takes advantage of the FQDN’s Zipf distribution. RN
provides the response for their γ most popular FQDN to
all other nodes of the platform.

Pastry, Pastry-SF, Pastry-PC, Pastry-R and Pastry-AC are
illustrated in figures 6.
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Fig. 6. DHT Architecture Principles

Thus for Pastry, CM = CMo, CMj =
∑
r∈R Φ(r)(1 −

Hr,j)+Hr,j .Φ(r).(1−Φ(r))qτr , Rj = Hr,j

∑
r∈R Φ(r).(1−

Φ(r))qτr , Mj = (1 − Hr,j)Φ(r). With OTFWD the OT
required to forward a packet we have :

OT (qj) = qj .(CHj +Mj .CH).OTH +

qj .Mj .OT
FWD +

qj .(Rj +Mj .CM).OTR (5)

OTFWD ≈ OTH as we consider a routing table lookup
on a small table, forwarding the query to the RN node and
then forwarding the response to the end user. OTH considers
reading the DNS query, but this might not be necessary, and
redirection may be based on reading and hashing a fixed
number of bits at a defined position, as routers do with IP
addresses.

E. Pastry − Stateless Forwarding (Pastry − SF): (no
cache, no replication)

SF-Pastry nj sends the response directly to the end user
rather than to the pastry node that has forwarded the query.
Similarly to Pastry in section V-D:

OT (qj) = qj .(CHj +Mj .CH).OTH +

qj .Mj .OT
FWD′ +

qj .(Rj +Mj .CM).OTR (6)

OTFWD′ ≈ OTH

2 , since to the difference with OTFWD there
is no response - which is much larger than query.

F. Pastry −Active Caching (Pastry −AC): (no repli-
cation)

Active Caching [13] takes advantage of the Zipf distribution
of the FQDNs. Each node informs all other nodes of the γ most
popular RNd FQDNs. In our model, nodes responsible for
the γ FQDNs are proactive, which means that no cache miss
occurs for those FQDNs. If we consider that all FQDN have
the same TTL (as in [8]), during TTL, nj sends γ responses
to all n − 1 nodes and receives the γ most popular FQDNs
from all n − 1 nodes. As a consequence, a DNS query with
rank greater than n.γ follows the Stateless Forwarding Pastry
resolution procedure. As such, with CM =

∑r>n.γ
r∈R Φ(r)(1−

Φ(r))q.τr ,
Rj =

∑
r>n.γ Hr,jΦ(r)(1−Φ(r))q.τr and Mj =

∑
r>n.γ(1−

Hr,j)Φ(r). Finally:

OT (qj) = qj .(CMj +Mj .CH)OTH +

qj .(Rj +Mj .CM).OTR +

qj .Mj .OT
FWD′ +

γ

τr
.OTRAC +

OTFWDAC (2.
γ.(n − 1)

τr
) (7)

OTFWD′

j ≈ OTH

2 as in equation 6. For resolution of Active
Cached FQDNs, OTRACj ≈ OTH . OTFWDAC

j ≈ n.OTRDNS
since cache updates are sent in one block, and the cache to
be updated is quite small. Optimization may also consider
different levels of caches, so to improve cache lookup and
interactions between Cj and the Active Cache.
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G. Pastry −PassiveCaching(Pastry −PC): (cache,
no replication)

With Passive Caching node proceeds as in the regular
Pastry, but keeps the response in its cache. Similarly to Pastry
CM = CMo, Rj =

∑
r∈R Φ(r).Hr,j .(1 − Φ(r))q.τr and

Mj =
∑
r∈R(1−Hr,j).Φ(r).(1− Φ(r))q.Lj .τr . Finally:

OT (q) = qj .(Rj +Mj .CM).OTR +

qj .(CHj +Mj .CH).OTH +

qj .Mj .OT
FWD

′′

(8)

OTFWD
′′

≈ OTRDNS as insertion is performed on a large
cache.

H. Pastry −Replication(Pastry −R): (no cache, repli-
cation)

Replication with no cache works like the regular Pastry
architecture with no cache except that when a resolution is
performed the response is replicated on k neighbors. This
mechanism is close to the active caching mechanism to the
extent that all FQDNs will be replicated. On the contrary,
in active caching one only cares about the most popular
FQDNs, then replication occurs only to k nodes, whereas
Active Caching replicates the responses on all nodes. When
node nj does not have the response in its cache, it proceeds as
in Pastry (cf. section V-D). Pastry-R provides CM = CMo,
Rj =

∑
r∈R Φ(r).Hr,j .(1− Φ(r))q.τr , and

Mj =
∑
r∈R Φ(r).k.Hr,j .(1 − Φ(r))q.τr + Φ(r).(1 − (k +

1).Hr,j). Then, we estimate the probability of replicating or
receiving a replication from a peer PCFWD = 2kRj . Finally:

OT (qj) = qj .(CHj +Mj .CH).OTH +

qj .(Rj +Mj .CM).OTR +

qj .Mj .OT
FWD′ + qj .2.k.Rj .OT

FWDPC(9)

OTFWD′

j ≈ OTH

2 (cf. equation 6). OTFWDPC
j ≈ 1

2OT
R
DNS

since cache update is performed, but no response is sent nor
cache lookup performed.

VI. EXECUTING DHT MODELS WITH TAILX

This section computes the distribution TAIL2000 over
various DHT architectures modeled in section V. The effi-
ciency of a DHT architecture depends on the relative cost of
caching versus requesting another node. Caching may result
in large expensive caches whereas requesting may result in
heavy network operations. Because cache length’s impact on
performance is hard to estimate, in our evaluation we assume
that all cache operations have the same cost over the various
DHT architectures. This is true as long as the cache remains
small or of the same size.
Figure 7 exhibits how traffic variations impacts the CPU
ratio of the DHT architectures to IPXOR. Architectures based
on routing provide better performances, and are more stable
to TTL or query rate variations —with constant number
of FQDNs. Thus Pastry-SF is recommended. Pastry-PC and

Pastry-R, especially for DNSSEC, take advantage of large
TTL values and large query Rate because the number of
FQDNs remains constant in our computations. Hence, increas-
ing TTL or query rates results in increasing the CHR.
Figure 7c shows that RCPU = CPUResolution

CPUCache
≥ 20, DHT pro-

vides a clear advantage over IPXOR, which remains stable for
greater values. [10] measured on UNBOUND RDNSCPU = 3.74
and RDNSSECCPU = 38.69, which shows Pastry-SF only requires
55% of IPXOR resources for DNS and 19.2% for DNSSEC.
Figures 7a shows that with TAIL2000, TTL above 100 have
small impact on the platform. Furthermore, routing packet is
lighter than caching operations, which makes Pastry-SF and
Pastry the recommended architectures for TAILX . Since our
simulations run with a constant number of FQDNs, it reduces
the Cache Hit Rate (CHR), and increasing the query rates in
figure 7b increases the Cache Hit Rate. This makes Pastry-PC
and Pastry-R take much more advantage to other architecture,
especially with DNSSEC. Architectures provide a balance
between caching mechanisms and routing and the efficiency
of an architecture really depends on the traffic characteristics.
Figures 7d confirms that DHT architectures reduce by up to
60% the CPU consumption over IPXOR. Then, Pastry-AC is
clearly the most scalable architecture, and is able to lower
the load by expanding the number of prefetched FQDNs. This
is confirmed by figure 7f. However, Pastry-AC is redundant
with PREFETCHX which is expected to take advantage of
NHAC, and Pastry-SF is the most appropriated architecture in
term of scalability.
Figure 7d shows that response replication proves to be benefi-
cial with DNSSEC due to the relative costs of caching toward
forwarding. However replication on multiple nodes increases
the size of the cache which is not taken into account in our
models. Pastry-R is useful in case of failover and future work
should measure how starting a node with empty cache may
impact the platform. If it is of importance, then the marginal
cost provided by figure 7d may require to activate replication.

In section IV, we concluded that prefetching X = 2000
results in dividing the number of nodes of PREFETCH by
2 over IPXOR. In this section we show that, for the remaining
TAILX traffic, which represents around 32% of the traffic,
DHT can reasonably decrease the necessary resources by 55%
and 80%. This means that overall DHT reduces the necessary
resources by roughly between 20% and 35% over IPXOR.
This confirms the 30% resource reduction provided by the
FQDNSHA1. As a result, PREFETCHX requires at least
4 times fewer nodes than IPXOR. The purpose of section VII
is to validate our models with experimental measurements.

VII. FREE PASTRY EXPERIMENTATION

This section validates our models by implementing and
testing a DNS platform based on FreePastry [5], results are
compared to those provided by the theoretical model of
Pastry which models Pastry without any cache and IPXOR.
In this section, a uniform FQDN popularity distribution is
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Fig. 7. TAIL2000 Models evaluation with live DNS capture

used for the experimentation and the simulation.

First, we measure the performance on a single node, and
then extend the platform to 10 nodes. Our 10 node Pastry
experimental platform is based on the Java FreePastry library
(version 2.1alpha3) [5]. FreePastry implements Pastry [15]
as the routing protocol between DHT nodes, PAST [16]
implements the DHT, and GCPAST on the top of PAST
implements a garbage collector to remove expired contents.
DNS responses are stored in the DHT and indexed by the hash
of the queried FQDN and type, the assigned GCPAST TTL is
the one associated to the DNS response. DNS resolutions and
interaction with GCPAST are performed with DNSJava [20].
The format of the DHT contents must be chosen carefully,
and we choose to store a complete answer involving multiple
RRsets, rather than each RRsets individually. The hash key is
built using the name, class and type of the query field. The
main drawback is that it generates a high redundancy between
the RRsets contained in different DHT contents and the size
of the DHT caches on the nodes. For the TTL, we assign to
GCPAST the TTL provided for the ANSWER field in the DNS
response.

Our experimental platform is composed of 10 Pentium III
and Pentium II servers with Debian Lenny. Although different
configurations were used, the CPU frequency varies from
500MHz to 1GHz, and RAM varies from 128M bytes to
384M bytes. The 10 node platform is loaded with traffic with
a T = 3 minute TTL. We fix CHRo = 0.7, so caches are pre-
populated with FQDNs from a list, and 7 out of 10 queries are
from this list. Tests last Ttest = 1 minute so with a maximum
of Q = 1100 q.s−1 with Pastry.
Figure 8a shows for different numbers of nodes n the per-
centage of answered queries. We estimated the Maximum
Load (ML) reached when there are more than 2% errors.
Figure 8b plots experimental measured ML, and plots the
Stand Alone value (for n = 1, ML(1) = 200) as well
as the linear approximation for the experimental value with
n ≥ 2: MLPastry(n) = 114.7n − 96.9. In a Stand Alone
mode, the whole FreePastry network is supported by the same
hardware, and no routing operations are required. Although
in our theoretical model, we neglect here the routing table
lookup, because we have reliable nodes. Our routing discovery
protocol is much lighter than the one originally designed
in Pastry, and all CPU estimations have been modeled by
measuring a C implementation of a performance driven server:
UNBOUND. In FreePastry and the DNS module we add
results from academic development of a Java software, and
routing table is definitely not negligible. As such, the Stand
Alone mode does not provide a good estimation for the
experimental IPXOR measurement. In order to provide a ex-
perimental measurement for IPXOR, we need to estimate the
costs of routing table on a FreePastry node. ML(n) estimates
that routing table lookup cost to ≈ 96.9queries.s−1, which
leads to the experimental IPXOR experimental measurement
MLIP (n) = 200n− 96.9 queries.s−1.
Figure 8c compares our theoretical and experimental results
for MLPastry

MLIP
(n). Theoretical and experimental measurements

confirm that the ratio between Pastry and IPXOR remains
stable and independent of n. However, theoretical model ex-
pects Pastry to be equivalent as IPXOR, whereas Experimental
measurement shows that Pastry costs around twice as much
as IPXOR. The difference between the two results can be
explained by the FreePastry implementation and the testing
conditions: 1) FreePastry is not optimized for performance.
Profiling the code with JRat [7] revealed that 64% of the time
would be spent on insertion and DHT look up, if we were
using FreePastry in synchronous mode. Using asynchronous
mode leverages this bottleneck, but does not mean the code
is now optimal. In addition, 2) Routing operations are much
heavier than those we require in Pastry. When we compare
the time necessary to perform a resolution in a Stand Alone
configuration or in a FreePastry configuration we measure that
when the DNS response is in the cache, it takes 5ms to 65ms
(resp. 4ms to 300ms) in a Stand Alone mode (resp. in a
DHT mode). When the responses require a resolution it takes
8ms to 175ms (resp. 59ms to 342ms) in a Stand Alone
(resp. DHT) mode. In both cases time variation reveals that
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optimization may be improved in event thread synchronization
of the FreePastry implementation. On the other hand, it also
shows that the routing function is clearly not negligible in this
implementation. At last, the lake of FreePastry and hardware
performance only makes experimental measurements under
quite small load which makes overhead more visible. In our
case, routing overhead consists in a bit less that half of the
performance.
Another way to measure the dependence between the experi-
mental and theoretical values is to derive the sample correla-
tion coefficient as an estimator of the Pearson correlation. For
both IPXOR and Pastry, we consider the set of experimental
measurements for Maximum Load: MLexp, and the set of
computed values for Maximum Load: MLmodel. The various
values are those measured and computed with various values
of n the number of nodes. We derive rIPMLexpMLmodel

=

0.9991 and rPastryMLexpMLmodel
= 0.9827. Correlation coefficients

are very close to 1 which shows a perfect positive linear
relationship between the measured values and those computed
from our models.
As a result, experimental measurements shows our theoretical
model does not present major bias, and confirms the stable
ratio of MLPastry

MLIP
(n) in the testing conditions. On the other

hand it also shows that a FreePastry implementation may
not fill the requirements of our models, and that further
investigation would need specific developments, especially to
simplify the routing code and algorithms.
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Fig. 8. Maximum Load

VIII. CONCLUSION

This paper proposes the PREFETCHX architecture
which prefetches X FQDNs (HEADX ) and handles the
remaining FQDNs (TAILX ) with a Distributed Hash Table
(DHT) structure. Traffic analysis sets X = 2000 to uniformly
distribute the resource among the nodes. Prefetching HEADX

reduces the number of nodes by 2, and DHT reduces nodes
for TAILX between 55% and 80%, making PREFETCHX

4 times more efficient than the current IPXOR architecture.
PREFETCHX ’s efficiency can be enhanced by increasing
X , providing an adapted light Pastry-like implementation. In
this paper, we keep X small to limit the exchanges between the
nodes to fill their cache. Large values for X require protocols
and architectures optimized for cache updates. Similarly, a
light Pastry implementation is also expected to enhance the
architecture.All these aspects are let for future work.
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