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Abstract—Spectrum sensing is a fundamental problem in cog-
nitive radio systems. Its main objective is to reliably detect signals
from licensed primary users to avoid harmful interference. As a
first step toward building a large-scale cognitive radio network
testbed, we propose to investigate experimentally the performance
of three blind spectrum sensing algorithms. Using random matrix
theory to the covariance matrix of signals received at the sec-
ondary users, the first two sensing algorithms base their decision
statistics on the maximum to minimum eigenvalue ratio and the
sum of the eigenvalues to minimum eigenvalue ratio, respec-
tively. However, the third algorithm is based on cyclostationary
feature detection and it uses the symmetry property of cyclic
autocorrelation function as a decision policy. These spectrum
sensing algorithms are blind in the sense that no knowledge
of the received signals is available. Moreover, they are robust
against noise uncertainty. In this paper, we implement spectrum
sensing in real environment and the performance of these three
algorithms is conducted using the GNU-Radio framework and
the universal software radio peripheral (USRP) platforms. The
results of the evaluation reveal that cyclostationary feature
detector is effective in finite sample-size settings, and the gain in
terms of the SNR with respect to eigenvalues-based detectors to
achieve Pfa (probability of false alarm) = 0.08 is at least 4 dB.

Index Terms—Cognitive radio, spectrum sensing, random ma-
trix theory, compressive sensing, GNU-Radio, USRP platform.

I. INTRODUCTION

Spectrum sensing to detect the presence of primary user
transmissions is a crucial task for a cognitive radio system,
which opportunistically accesses the spectrum once an empty
subband is detected. Two basic approaches to spectrum sharing
have been considered [1]: spectrum overlay and spectrum
underlay. According to the spectrum overlay approach, the sec-
ondary users sense and identify unused frequency bands and
use them for communication purposes. Thus, the secondary
users (SU) are responsible for detecting the unused bands
and they should vacate the spectrum as soon as the primary
user begins its activities [2]. The underlay approach imposes
constraints on the secondary users’ transmission power level

This research is supported by the European Commission in the framework
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so that it can operates below the noise floor of primary users.
In this paper we focus on the experimental evaluation of the
overlay spectrum sharing.

The detection of spectral occupancy can be viewed as a
binary hypothesis testing problem. The null hypothesis H

0

corresponds to the case where only additive noise is present,
whereas the alternative hypothesis H

1

refers to the case
when the PU signal is present along with noise. Based on
the latter hypothesis testing model, several spectrum sensing
techniques have been proposed so far in literature [3], [4], [5].
These techniques are mainly categorized in two family three
categories:

• non-blind techniques which require both primary user
signal and noise variance information,

• semi-blind techniques which need just a few parameters,
such as the additive noise variance and/or the fundamental
cyclic frequency,

• blind techniques which exploits only the received signals
without any a priori informations about noise or primary
user signal,

In this paper, we will conduct an experimental evaluation by
implementing three of the most known blind algorithms in the
literature and compare their performance in real environments.
The choice of the blind algorithms is motivated by the fact that
the main aspect of of a typical cognitive radio is related to
autonomously exploiting locally unused spectrum. There have
been several blind spectrum sensing techniques proposed in lit-
erature. They include wavelet-based detection [4], eigenvalue-
based detection [6], second order statistical based detection
[7], and symmetry property of cyclic autocorrelation function
based detection [8].The purpose of the conducted experiment
is to sense the spectrum in a given frequency range and to
make a reliable decision on the potential presence of primary
user signal within frequency subband. In order to achieve this
goal, three blind techniques for spectrum sensing have been
implemented using USRP platforms and GNU Radio frame-
work. We focus on sensing algorithms based on eigenvalues
of received covariance matrix [6] and cyclostationary feature-
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based detectors [8].
The rest of the paper is organized as follows: in section II,

the system model is presented. In section III and section IV, we
present the eigenvalue based detection and the cyclostationary
feature-based detection methods, respectively. In section V, we
describe our testbed implemented to carry out the experiments.
Section VI presents the experimental results of the considered
algorithms. Finally, conclusions are presented in section VII.

II. SYSTEM MODEL

We consider the problem of detecting the presence of a
primary user signal at a specific frequency band based on the
signal observed by the secondary user. Detecting the presence
of a primary signal can be treated as a binary hypothesis
testing problem [9]. Assuming a frequency-flat fading channel
between the primary and secondary users, the sampled signal
r(t) received by the secondary users, defined as r[n] = r(nT

s

)
with 1/T

s

being the sampling rate, is expressed as

r[n] =

⇢
w[n] ) H

0

(h ⇤ s)[n] + w[n] ) H
1

(1)

where ⇤ is the convolution operator. s[n] and h[n] stand is
the digitally modulated signal of the primary user drawn from
a certain modulation and the channel between the primary
and secondary users, respectively, w[n] is an additive white
Gaussian noise with zero mean and variance �

2. The objective
of the spectrum sensing operation is to decide between null
hypothesis H

0

and alternative hypothesis H
1

based on the
observation of the received signal r[n]. The detection per-
formance is characterized by two probabilities: probability of
detection, Pd, where the decision is H

1

, while H
1

is true; and
probability of false alarm, Pfa, which corresponds to the case
where the decision is H

1

while H
0

is true.
In this paper, three algorithms have been tested and com-

pared through experimental analysis, namely eigenvalue based
maximum-minimum eigenvalue detection method [6], energy
with minimum eigenvalue detection [10], and a method based
on cyclostationarity detection called Symmetry Property of
Cyclic Autocorrelation Function [8].

III. EIGENVALUE BASED DETECTION ALGORITHMS

In this section we study two spectrum sensing algorithms
based on the distribution of eigenvalues in large dimensional
random matrix theory [11]. The discrete-time domain received
signal r[m] under H

1

can be given as

r[m] =
N

hX

k=0

h[k]s[m� k] + w[m] (2)

where N

h

is the channel filter length. At the cognitive radio’s
receiver, the received samples are split into M vectors each
of length N

s

. Let us consider the following M ⇥ N

s

matrix
consisting of the stacking of the M vectors.

Y =

2

6664

r

1

[1] r

1

[2] · · · r

1

[N
s

]
r

2

[1] r

2

[2] · · · r

2

[N
s

]
...

...
. . .

...
r

M

[1] r

M

[2] · · · r

M

[N
s

]

3

7775

In the absence of primary user signal (H
0

: alternative hypothe-
sis) all the received samples are uncorrelated whatever fading
channel model. Moreover, the non-diagonal element of the
received covariance matrix is theoretically zero, whereas the
diagonal elements contain the noise variance. Hence, for a
fixed M and N

s

! 1, the sample covariance matrix 1

N

s

YY⇤

converges to the true covariance matrix �

2IM.
In this paper, we assume that the noise is additive white

Gaussian noise and, furthermore, the noise and the transmit-
ted signal are uncorrelated. Then if the number of received
samples N

s

are large enough, it can be shown that

Rr(Ns) ⇡ Rr = E


1

Ns
YY⇤

�
= HRsH

⇤ + �

2IM (3)

where Rr and Rs matrices represent the covariance matrices
of the received and transmitted signals, respectively. IM is the
identity matrix of size.

Let �
max

and �

min

represent the maximum and minimum
eigenvalues of R

r

, respectively. Now suppose that ⇢
max

and
⇢

min

are the maximum and minimum eigenvalues of the
matrix HRsH

⇤ then

�

max

= ⇢

max

+ �

2

�

min

= ⇢

min

+ �

2

If Z = HRsH
⇤ = �IM then ⇢

min

= ⇢

max

where � is
a positive integer. In practice it is highly unlikely that the
matrix Z will be equal to �I

M

as mentioned in [6]. Hence,
if there is no signal present then �

max

/�

min

= 1 otherwise
�

max

/�

min

> 1. Therefore, this ratio can be used to detect the
presence or absence of the signal. Based on the eigenvalues
of the received covariance matrix, the following two methods
are proposed in literature.

A. Maximum-Minimum Eigenvalue (MME) detection method

The steps of the MME algorithm are stated below
• Compute the received sample covariance matrix

Rr(Ns) =
1

Ns
YY⇤ (4)

• Compute the Maximum and Minimum Eigenvalues of the
matrix Rr(Ns) (i.e. �

max

and �

min

).
• Sensing decision is given by:

D =

⇢ H
1

if

�

max

�

min

� �

MME

H
0

otherwise

Note that �

MME

represents the threshold for the MME
method. It is shown that the covariance matrix of the received
signal in the absence of any signal at the receiver approximates
to one class of random matrices called Wishart random matrix.
The probability density function of Wishart random matrix
has no marginal defined expression, finite dimensional case,
and also present complex mathematics. Some studies on the
spectral distribution of eigenvalues found the limiting values
for maximum and minimum eigenvalues. Based on the proves
given in [6], the distribution of the (properly rescaled) largest
eigenvalue of the complex (real) Wishart matrix converges to
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the Tracy-Widom law as M ,N
s

tend to +1 in some ratio
M/N

s

> 0. As a result, the threshold �

MME

given by:

�

MME

=
�

2

�

2

✓
1 +

�

�2/3

(MN

2

s

)1/6
F

�1

�

(1� P

fa

)

◆

Where � =
p
N

s

+
p
MN

s

, � =
p
N

s

� p
MN

s

, and F

�

is the cumulative distribution function (CDF) of the Tracy-
Widom distribution of order � (i.e. � = 1 for real signal,� = 2
for complex signal).

B. Energy with Minimum Eigenvalue (EME) detection method

The steps of the EME algorithm are stated below
• Compute the covariance matrix R

r

as given in (4).
• Compute the average power of the received signal

� (N
s

) =
1

MN

s

MX

i=1

N

s

�1X

n=0

|r
i

[n]|2 (5)

• Then the eigenvalues of Rr are obtained.
• Decision: if

� (N
s

)

�

min

> �

EME

(6)

where �

EME

represents the threshold for EME method
defined by:

�

EME

=

✓r
2

MN

s

Q

�1 (P
fa

) + 1

◆
N

s

�

2

where Q(.) is the Gaussian Q-function and P

fa

is the
probability of false alarm.

In the above discussion, we can notice that the threshold
are not depending on the noise property but rather on the
probability of false alarm, the number of segments M and
the number of samples N

s

per segment.

IV. CYCLOSTATIONARY BASED DETECTION: SPCAF
ALGORITHM

In wireless communications, the transmitted signals show
very strong cyclostationary features [12]. In the context of
spectrum sensing many works have been conducted in using
the cyclostationary features to detect the presence of PU in
the radio environment [4]. In general, this method can perform
better than the eigenvalue based detectors. However its main
drawbacks are the complexity associated with the detection
technique and needs of some a-priori knowledge of the PU
signal.
The cyclostationary detector can be realized by analysing the
Cyclic Autocorrelation Function (CAF) of a received signal
r(k). The CAF of a received signal r(k) at the SU can be
expressed as illustrated in (7).

R

r

(k,⌧ ) =
X

↵

R

↵

r

(⌧)e2⇡j↵k (7)

where ⌧ is lag associated to the autocorrelation function, ↵
the cyclic frequency and R

↵

r

(⌧) is given by (8).

R

↵

r

(⌧) = lim
N

s

!1

1

N

s

N

s

�1X

k=0

R

r

(k,⌧ )e�2⇡j↵k (8)

The discrete-time consistent and unbiased estimation of the
CAF of a random process is given as:

R̃

↵

rr

⇤(⌧) =
1

N

FFT

N

FFT

�1X

k=0

r(k)r⇤(k + ⌧)e�2j⇡↵k (9)

For a given lag parameter ⌧ 2 {1, 2, . . . , L}, the cyclic
autocorrelation function (CAF) can be seen as Fourier trans-
form of V = [r(0)r⇤(0 + ⌧), r(1)r⇤(1 + ⌧), . . . , r(N

FFT

�
1)r⇤(N

FFT

�1+ ⌧)], where N

FFT

is FFT size. As shown in
the work of Khalaf et al. [8], the CAF is an N

FFT

-dimensional
sparse vector in cyclic frequency domain for a fixed lag
parameter ⌧ . Moreover, it presents a symmetry property as
illustrated in (10).

||R̃↵

rr

⇤(⌧)||
2

= ||R̃�↵

rr

⇤(⌧)||
2

(10)

Using a compressed sensing (CS) recovery technique like the
Orthogonal Matching Pursuit (OMP) algorithm [13], we can
accurately estimate the CAF using a limited and small number
of received samples N

s

<< N

FFT

. If the obtained CAF
verifies the property (10) then H

1

is true otherwise H
0

is true.
Its important to note that even under H

0

the obtained CAF
verifies the symmetry property. However, when using a small
number of samples, the probability to obtain a symmetrical
CAF under H

0

is very small [8]. This SPCAF technique, can
perform with a limited number of samples and consequently
with lower complexity and shorter observation time compared
to the classical cyclostationary feature detector.

V. SPECTRUM SENSING EXPERIMENTAL SETUP

The performance of the previously presented spectrum sens-
ing algorithms has been verified by conducting experiments
realized by means of Universal Software Radio Peripheral
(USRP) N210 board by Ettus Research. Being the realization
of the SDR concept, USRP are steered from the software level,
i.e. the whole data processing in the base-band is realized on
the computer side. In our experiments two USRP boards have
been utilized: the PU signal has been generated by means of
the first board, whereas the second one has been used for
spectrum sensing purposes and acted as the secondary user.
The whole software processing has been realized in the open-
source GNU-Radio environment. This set of libraries together
with the appropriate drivers for manipulating the USRP N210
boards and graphical programming environment allowed for
implementing the selected spectrum sensing algorithms. The
schematic diagram of the experimentation setup is presented
in Fig. 1 and the testbed environment is shown in Fig. 2.

A. Transmitter side (PU)

At the transmitter side, three types of signals were gener-
ated, the narrow-band FM, 8QPSK and GMSK signals. As it
has already been mentioned, the whole baseband processing
has been realized on the computer in the GNU-Radio envi-
ronment where the whole system is built from blocks. After
proper power adjustment, the signal was sent to the USRP
block (USRP Sink), responsible for sending data to the USRP
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PU Tx SU Rx

EigenValue
based 

detector

SPCAF 
based 

detector

USRP+GNU Radio #2USRP+GNU Radio #1

GMSK

FM

2m

8PSK

Fig. 1. Schematic system diagram

Fig. 2. The experimentation setup

platform. The center frequency was set to 560 MHz. This
frequency band has been chosen intentionally - it is within
the TV band and is not occupied in the physical location
where the experiment was conducted (i.e. no interference from
the distance digital-television station could be observed). The
spectrum bandwidth occupied by the FM, 8PSK and GMSK
signals are 144 kHz, 600 kHz and 800 kHz, respectively.

B. Receiver side (SU)

As indicated in Fig. 1, the three spectrum sensing algorithms
explained in Section II have been implemented. Analogously
to the transmitter side, the whole baseband processing -
that will be performed by the SU - has been realized in
the computer side using the GNU-Radio environment. The
schematic diagram of the receiver is shown in Fig. 3. One can
observe the presence of the USRP Source block responsible
for delivering data from RF spectrum to the computer; it
operates at the center frequency equal to 560 MHz and covers
the band of 1 MHz (what corresponds to complex sampling
frequency equal to 1 Msps). In order to evaluate the influence
of noise on the performance of selected spectrum sensing
algorithms, additional block for noise generation has been used
and the noise-signal of appropriate power has been added to
the signal produced by the USRP Source block. After, the
signal is split into three parallel chains: one dedicated for each
sensing method algorithm. In such a configuration the three
algorithms operate on the same received samples making the
comparison fair. One can also observe the presence of the
FFT plot block used for displaying the received signal on the

computer screen. In the upper processing chain, devoted for
cyclostationary feature spectrum sensing algorithm, the signal
is converted from complex to real type and such modified
signals are subject to processing in the Symmetry block,
realizing the functionality of the SPCAF algorithm described
in the previous sections. The lower processing chains, devoted
for eigenvalue based algorithm realized by the EBSS algo
block. In this block, the parameter Sensing Algo selects the
detection method: “0” for MME and “1” for EME.

VI. EXPERIMENTAL RESULTS

In order to compare the performance of the selected spec-
trum sensing algorithms let us analyse the results obtained
during the conducted experiments.

A. FM signal as PU

Here, we compare performance of the SPCAF based blind
detector with the MME and EME detectors. A frequency
modulated signal is used as primary user’s signal. In the
experiments, the central carrier frequency is set to 560 MHz.
We compute the correct detection probability (P

d

) for the three
detectors at different values of estimated SNR. In order to
estimate the SNR, the noise power �

2 is estimated at the
receiver with no transmitted signal. Then, the transmitter is
switched on and its transmission power is varied to obtain
different signal-to-noise ratios (SNRs) at the receiver. Fig. 4
shows the detection probability of the three detectors obtained
through experiments as function of SNRs. As concluded from
the measurements, the probability of false alarm (P

fa

) is
approximately equal to 0.08 for both detectors. Furthermore,
for the SPCAF detector, the maximum value of the lag
parameter is ⌧ = 5 and the FFT size is N

FFT

= 2048.
It is clear from Fig. 4 that the performance of the SPCAF
is significantly better than the MME and EME algorithm.
MME and EME methods show similar performance. Another
important point to note is that the number of received samples
used by SPCAF is N

s

= 512.

B. 8PSK signal as PU

In this section we test the performance of the three algorithm
for a 8PSK signal. The central carrier frequency is set to 560
MHz. We compute the correct detection probability (P

d

) for
the three detectors at different values of estimated SNR. The
probability of false alarm (P

fa

) is approximately equal to 0.08
for both detectors. Furthermore, for the SPCAF detector, the
maximum value of the lag parameter is ⌧ = 5 and the FFT
size is N

FFT

= 2048. Fig. 5 shows that the performance
of the SPCAF is significantly better than the MME and
EME algorithm. An important point to note here is that the
performance of MME method is better than the EME method.
The number of received samples used by SPCAF is N

s

= 512.

C. GMSK signal as PU

In this part, the primary user signal is a GMSK (Gaussian
Minimum Shift Keying) signal. Fig. 6 shows the detection
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Fig. 3. Diagram of the SU receiver realized in the GNU radio (Screenshot from GRC)
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Fig. 4. Probability of detection for the three algorithms when using FM signal
as PU (Pfa = 0.08).

−18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

EME Ns=128, M=16 
MME Ns=128, M=16
SPCAF Ns=512, FFT=2048, Delay = 5

SNR(dB)

Pd

Fig. 5. Probability of detection for the three algorithms when using 8PSK
signal as PU (Pfa = 0.08).
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Fig. 6. Probability of detection for both algorithms when using GMSK signal
as PU (Pfa = 0.08)

probability achieved by the secondary user using SPCAF,
MME and EME, while maintaining the false alarm probability
below 0.08. Based on the results in Fig. 6, it can be concluded
that the SPCAF outperforms the eigenvalue based MME and
EME methods at low signal-to-noise ratios (SNRs).

VII. CONCLUSION

In this paper, two classes of sensing methods are presented
i.e. eigenvalue based detection methods (MME and EME)
and SPCAF method which is based on cyclostationary feature
detection. We analysed the performance of these spectrum
sensing methods by measuring the detection probabilities as
a function of SNR for a given false alarm probability. The
testbed setup for the comparison of the three methods is based
on two USRP N210 boards and GNU-Radio development
toolkit using three types of modulations i.e. FM, 8PSK and
GMSK. The cyclostationary feature-based detector achieves
results far superior than the eigenvalue based methods in the
case of finite received samples. The SPCAF gain in terms of
the SNR with respect to eigenvalues-based detectors to achieve
P

fa

= 0.08 is at least 4 dB. This is due to the fact that
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eigenvalue based techniques are more sensitive to the number
of received samples.
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