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of Riemann surfaces.

Thomas Delzant

IRMA, Université de Strasbourg et CNRS

January 26, 2016

Abstract. LetX be a compact Kähler manifold, and g a fixed genus. Due to
the work of Parshin and Arakelov, it is known that there are only a finite number
of non isotrivial holomorphic families of Riemann surfaces of genus g > 2 overX .
We prove that this number only depends on the fundamental group of X . Our
approach uses geometric group theory (limit groups, R−trees, the asymptotic
geometry of the mapping class group), and Gromov-Shoen theory. We prove
that in many important cases limit groups (in the sense of Sela) associated to
infinite sequences of actions of a Kähler group on a Gromov-hyperbolic space
are surface groups and we apply this result to monodromy groups acting on
complexes of curves.

1 Introduction

Let X be a compact, connected Kähler manifold. A holomorphic family of Rie-
mann surfaces of genus g over X is a pair (Y, π) where Y is a complex manifold
and π : Y → X a holomorphic submersion whose fibers are Riemann surfaces of
genus g (we assume g > 2). It is called non isotrivial if the family of Riemann
surfaces Ys = π−1(s) is not constant in the moduli space of Riemann surfaces.
A holomorphic family of Riemann surfaces determines a monodromy, which is a
homomorphism ϕ from the fundamental group π1(X, s0) to the mapping class
group M(S) of the topological surface underlying Ys0 , the fiber at the point s0.

A fundamental result due to Parshin and Arakelov ([Ar], [Par]) and answer-
ing a question of Shafarevich asserts that given a Riemann surface B the set of
families of given genus over B is finite. Another proof based on the study of the
action of the monodromy on the Teichmüller spaces, as been given by Imayoshi
and Shiga [Im-Sh], see also the article of McMullen [McM].

Another consequence of the study of [Ar] is that the number of non isotrivial
families over a projective manifold X can be bounded in terms of this manifold.
A uniform result has even been described by L. Caporaso [Ca] who proved that
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the Hilbert polynomial of a complex surface which is a non singular bundle
of genus g > 2 over a base of genus p > 2 can only take a finite number of
values. In particular, given a topological surface Σp of genus p and a topological
surface S (of genus g), the cardinality of the set of homomorphisms from the
fundamental group of Σp to the mapping class group of S which can be realized
as a monodromy (for a certain complex structure on Σ) is finite up to conjugacy
at the target and automorphism at the source.

In this article, we want to give a bound of the number of families over a base
X in terms of its fundamental group Γ = π1(X), independent of the manifold
X . Before stating our main result let us recall some definitions.

A finitely presented group Γ is Kähler if it can be realized as the fundamental
group of a compact Kähler manifold. The group Γ fibers if there exist a topolog-
ical 2-orbifold Σ of hyperbolic type together with a surjective homomorphism
π : Γ → πorb

1 (Σ) whose kernel is finitely generated. This is equivalent to the
fact that every compact Kähler manifold X with fundamental group Γ admits
a holomorphic map with connected fibers on a complex hyperbolic 1-orbifold
whose underlying topological orbifold is Σ (see paragraph 2.1). Analogously,
one says that the family Y over X factors through a curve B if there exist a
Riemann orbifold B and a holomorphic map q : X → B so that Y is the pull-
back of a family over B. We shall see (see Corollary 1 in paragraph 5.3) that
this property only depends on the monodromy of the family and not on the
manifold X . We will prove (see Theorem 9 in 5.4) :

Theorem 1 Let Γ be a Kähler group and S a topological surface. There exists
only finitely many conjugacy classes of homomorphisms ϕ : Γ → M(S) which
can be realized as the monodromy of a holomorphic family of Riemann surfaces
on some Kähler manifold with fundamental group Γ, but do not factor through
a curve.

Combining this result with the case of curves ([Ca]) one obtains that the
number of non isotrivial families over a Kähler manifold X can be bounded in
terms of its fundamental group (see Corollary 2 in Paragraph 5.4).

In fact, Theorem 1 appears as a very special case of a general factoriza-
tion Theorem for actions of Kähler groups on Gromov-hyperbolic spaces (see
Theorem 6 in Paragraph 3.4).

Let H be a hyperbolic space in the sense of Gromov ([Gr]), and G a sub-
group of the group of isometries of H . If Γ is a finitely generated group, one
can study infinite sequences of non elementary homomorphisms from Γ to G
with an asymptotic method (sometimes called the Bestvina-Paulin method).
Let Σ be a fixed set of generators of Γ. The energy of the homomorphism ϕ
is e(ϕ) = Minx∈H Maxs∈Σ d(x, ϕ(s)x). An infinite sequence of pairwise non
conjugate homomorphisms is diverging if lim sup e(ϕn) = +∞. After choosing
some ultrafilter, infinite sequences of diverging energy converge to an action of
Γ on some R-tree : the asymptotic cone of H (see Paragraph 3.2). Due to
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the fundamental work of Gromov-Shoen [Gr-Sh], one deduces that the Kähler
group “fibers”, i.e. admits an epimorphism π to a 2-orbifold group with finitely
generated kernel K.

In order to prove that for some (and in fact almost every) integer n, ϕn

factor through this orbifold group, one need to check that this normal subgroup
K belongs to the kernel of ϕn. This is why we introduce the property of weak
acylindricity for an action of a group on a hyperbolic space, which enable to
prove that if the limit action is not elementary, for some integer n, ϕn(K) is an
elliptic subgroup of G, normal in ϕn(Γ). In many cases, a normal subgroup of
a group acting effectively on a hyperbolic space cannot be elliptic, and this is
enough to insure that K is in the kernel of ϕn.

Unfortunately this natural method cannot be applied directly to the mapping
class group acting on the complex of curves (which is a hyperbolic space due to
the work of Masur and Minsky [Ma-Mi]) as there is no reason that an infinite
sequence of homomorphisms to the mapping class group acting on the complex
of curves has diverging energy. The whole machinery of Bestvina, Bromberg,
and Fujiwara [Be-Br-Fu] which creates a proper action of the mapping class
group on a finite product of hyperbolic spaces will be needed together with the
work of Berhstock, Drutu and Sapir [Be-Dr-Sa] on the asymptotic geometry of
this group.

In the first paragraph we review some basic results concerning Kähler groups
acting on R-trees, in the second paragraph we recall the Bestvina-Paulin method
to construct actions on R-trees and we introduce the notion of a limit group
associated to an infinite sequence. This theory is applied to the study of Kähler
groups, and in particular we prove that in many cases, limit groups of Kähler
groups are surface groups. In the last paragraph these results are combined
with the description of the asymptotic geometry of the mapping class group to
study monodromies.

Acknowledgments. I would like to thank Pierre Py for many comments
and remarks on this subject, and Chloé Perin for discussions concerning limit
groups, and especially the referee for several important comments, questions
and suggestions.

2 Kähler groups and R -trees
2.1 2-Orbifolds and their fundamental groups

Let us recall some basic facts about 2− orbifolds, their fundamental groups and
geometric structures as introduced by W. Thurston ([Th] Chapter 13).

An (oriented) 2-orbifold is a topological (oriented) compact surface S en-
dowed with a finite set of marked points {(p1,m1), . . . , (pk,mk)}, where mi is
an integer greater than 2. We shall denote it by Σ = {S; (p1,m1), . . . , (pk,mk)}.
For each point pi, let γi be a small simple loop which is the boundary of a small
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embedded disc Di centered at pi and chosen so that the disks (Di)16i6k are
disjoints.

The fundamental group of Σ is defined as a quotient :

πorb
1 = π1(S\{p1, . . . , pk})/≪ γm1

1 , . . . , γmk

k ≫ .

The Euler characteristic of Σ is χ(Σ) = 2− 2g − k +
∑

16i6k
1
mi

. A 2-orbifold
is called of hyperbolic type if its Euler characteristic χ(X) is strictly negative.

If Λ is a co-compact lattice in PSL(2,R), the quotient of the unit disk D
by Λ has naturally a structure of a 2-orbifold : D/Λ is a topological oriented
surface S and modulo Λ, only finitely many points (pi)16i6k have a non trivial
isotropy group, which is a finite cyclic subgroup of order (mi)16i6k of Λ. If
Σ = {S; (pi,mi)} is the underlying orbifold, one proves that Λ = πorb

1 (Σ). A
hyperbolic structure on Σ is a realization of its fundamental group as a co-
compact lattice in PSL(2,R) = Aut(D), the automorphism group of the unit
disc in C

A complex structure on Σ is a complex structure on S, marked at the points
pi, and the uniformization Theorem for 2-orbifolds implies that there is a one-
to-one correspondence between hyperbolic and complex structures on general
2-orbifolds.

Let us denote Y the orbifold Σ = {S; (p1,m1), ..(pk,mk)} endowed with a
complex structure. In order to define holomorphic maps with values in Y , let
us choose for every i a small closed disk Di around pi. Let Gi : (D̃

mi , pi)
(Di, pi) be the mi− th cover ramified at the origin. If X is a complex manifold,
a map f : X → Σ is called holomorphic if it is holomorphic in the usual sense
in X− f−1{(pi)16i6n

}, and if for every i and every point x such that f(x) = pi,
the map f admits a local holomorphic lift through the map Gi. In other words,
f−pi is locally the mi−th power of a holomorphic map. This definition enables
us to endow Y with the Kobayashi metric which coincides with the hyperbolic
structure given by the uniformization Theorem.

The following result is due to F. Catanese ([Cat] Theorem 5.14). We propose
below a different proof based on the work of J. Carleson and D. Toledo [Ca-To].

Theorem 2 Let Γ be the fundamental group of a compact Kähler manifold X
and Λ the fundamental group of a compact 2-orbifold Σ of hyperbolic type. The
following are equivalent :

i. There exists a surjective homomorphism ψ : Γ → Λ with finitely generated
kernel.

ii. There exists a complex structure Y on Σ together with a holomorphic map
X → Y with connected fibers.

Proof Let us choose some discrete co-compact action of Λ on the unit disk,
with orbifold quotient Yaux (an auxiliary hyperbolic/complex structure on Σ).
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The theory of harmonic maps (developed by J. Carlson and D. Toledo [Ca-To])
proves that there exists an equivariant harmonic map from the universal cover
of X to D which leads to a differentiable map f from X to Yaux. Using a
Bochner formula, [Ca-To] prove that the map f is pluriharmonic and that the
connected components of the fibers of f are complex hypersurfaces. The set of
connected components of fibers of f is a complex one dimensional orbifold Z
, i.e a Riemann surface with a finite set of marked points, the multiple fibers
with their multiplicity. Let Σ′ be the topological orbifold underlying Z. There
exists a continuous map q : Σ′ → Σ that induces a surjective homomorphism on
(orbifolds) fundamental groups. In order to prove that this homomorphism is an
isomorphism, we adapt the argument of F. Catanese. Let us consider the image
of ker(ψ) in πorb

1 (Σ′). As ker(ψ) is finitely generated and ψ′ : Γ → πorb
1 (Σ′) is

onto, the image of ker(ψ) in πorb
1 (Σ′) must be trivial or have finite index (finitely

generated normal subgroups in 2-orbifold groups have finite index). This group,
which is the kernel of q∗, cannot have finite index as q∗ : πorb

1 (Σ′) → πorb
1 (Σ) is

onto, thus it is trivial and q is an isomorphism. �

Using the fact that holomorphic maps are 1-Lipshitz for the Kobayashi met-
ric (which is the hyperbolic metric on a hyperbolic 2-orbifold), one proves the fol-
lowing Proposition (see [De] Theorem 2 or [Co-Si] for a purely algebraic proof).

Proposition 1 Let X be a compact complex manifold. There exist only finitely
many pairs (Yi, Fi) where Yi is a hyperbolic/complex 2-orbifold and Fi a holo-
morphic map from X to Yi. �

This suggests the following definition (see [ABCKT] Chapter 2, Paragraph
3).

Definition 1 A Kähler group Γ fibers if there exists a 2-orbifold of hyperbolic
type Σ and a surjective homomorphism Γ → πorb

1 (Σ) whose kernel is finitely
generated.

We wish to emphasize that this definition only depends on Γ and not on
the choice of a Kähler manifold with Γ as a fundamental group. Combining the
previous two results, one gets the following :

Proposition 2 Let Γ be a Kähler group. There exists a finite family of pairs
(Σi, πi)16i6p of 2-orbifolds of hyperbolic type and surjective homomorphisms
πi : Γ → πorb

1 (Σi) with finitely generated kernel, such that for every Kähler
manifold X with fundamental group Γ, every one dimensional hyperbolic orbifold
Y and every holomorphic map F : X → Y with connected fibers, there exists an
integer i such that the topological orbifold underlying Y is isomorphic to Σi by
an isomorphism inducing πi on the fundamental groups. �

2.2 Trees

Recall that anR−tree is a connected geodesic metric space which is 0−hyperbolic
(see [Be2] or [Ka] for an introduction to this subject).

5



An R−tree, endowed with an action of a group Γ is called minimal if it
does not contain an invariant subtree. If the group Γ is finitely generated, such
a minimal subtree exists and is unique. The action is called non-elementary if
it is neither elliptic (fixing a point) nor axial (fixing a line but no point on this
line) nor parabolic (fixing a unique point at infinity).

The main example of a Kähler group acting on an R − tree is the funda-
mental group of a Riemann surface (or 2-orbifold) endowed with a holomorphic
quadratic differential ω : the R− tree is the set of leaves of the real part of ω.

After the fundamental work of Gromov-Schoen [Gr-Sh] several authors ([Ko-
Sh], [Su]) studied actions of Kähler groups on R−trees. The following Theorem
summarizes the situation.

Theorem 3 Let Γ be a Kähler group acting on an R-tree T . Assume that T
is minimal and is not a line. Then Γ fibers. More precisely, there exist a 2-
orbifold Σ of hyperbolic type, a surjective map π : Γ → πorb

1 (Σ) with finitely
generated kernel, an action of the fundamental group of Σ on an R − tree T ′,
and a π−equivariant map T ′ → T . If the action of Γ on T is faithful, then π is
an isomorphism.

If T is a simplicial locally finite tree, the proof is explained in [Gr-Sh] ; the
general case is sketched in Paragraph 9.1 of the same article. Let us recall the
main steps of the proof.

Let X be a compact Kähler manifold with fundamental group Γ. One con-
structs a Γ-equivariant harmonic map h from the universal cover of X to the
tree T with finite Γ−energy ([Gr-Sh], [Ko-Sh]). The regularity of this harmonic
map ([Gr-Sh]) has been detailed by [Su]; in particular, its set of singular points
Xsing has codimension 2 and the image of a connected fundamental domain in

X̃ appears to be a finite tree (the convex hull of a finite number of points). At
this point one can copy the argument of [Gr-Sh]: using the Kähler structure,
one proves that the map h is pluriharmonic: outside from Xsing it is locally the
real part of a holomorphic function, and there exists a holomorphic quadratic
differential ω on X such that locally ±dh = ω. Using the fact that the tree is
not a line one proves that one leaf of the foliation defined by ω on X is singular
(entirely contained in the set ω = 0) hence compact. One deduces that all leaves
are compact and X fibers on some hyperbolic 2-orbifold Σ with fibers the leaves
of ω. Thus ω comes from Σ and if Tω stands for the R− tree dual to the leaves
of ω, the harmonic map h factors through the π1(Σ)-equivariant map from D
to Tw. �

The case of axial actions of Kähler groups is also quite useful (see [De2]).

Theorem 4 Let Γ be a Kähler group with an isometric action on a line (iso-
metric to R). If the kernel of this action is not finitely generated, the group Γ
fibers; there exists a 2-orbifold of hyperbolic type and a surjective morphism with
finitely generated kernel π : Γ → πorb

1 (Σ) such that the action factors through π.
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Proof Let X be a compact manifold with fundamental group Γ. In the case
of an oriented line, such an action is defined by the real part of an holomorphic
form and [De2] applies. In the general case, the action defines a holomorphic
quadratic differential ω which becomes a differential on a (perhaps) ramified
double cover. All the leaves of this form are compact, hence all the leaves of ω
are compact and the same argument as in Theorem 3 completes the proof. �

3 Limit groups and R -trees as limit spaces

In many cases, actions of groups on R-trees are obtained by a limit process of
actions on hyperbolic spaces, as observed by Bestvina [Be1] and Paulin [Pa].

3.1 Limit spaces and limit groups.

Let Γ be a finitely generated group, (Hn, xn, dn) a sequence of pointed metric
spaces, and ϕn : Γ → Isom(Hn) a sequence of isometric actions of Γ on Hn. Let
us recall the definition of the ω− limit (or asymptotic cone) associated to such
a sequence (see [B-H], pp. 77-80).

In order to study the asymptotic behavior of this sequence of actions, let
us fix a non principal ultrafilter ω on N. Recall (see [BH] p.78), that ω is a
subset of the set of infinite subsets of N such that, if A,B ∈ ω then A ∩B ∈ ω,
the complementary F c of every finite set F is in ω, and ω is maximal for these
properties. One says that a family of Propositions (Pn)n∈N is true ω-almost
surely if the subset of N such that Pn is true belongs to ω. If (un)n∈N is a
sequence in a Hausdorff topological space, one says that l is an ω−limit of (un)
and writes l = limω un, if for every neighborhood U of l, the set {n ∈ N/un ∈ U}
is an element of ω. In a compact Hausdorff space every sequence has a unique
ω-limit. In particular every bounded sequence of real numbers has a ω-limit inR and every sequence of positive numbers has a ω-limit in R ∪ {+∞}. The
following definitions are useful to describe the asymptotic behavior of a family
of actions.

Definition 2 The space ΠboundedHn is the subset of the usual product Πn∈NHn

made with sequences (yn)n∈N such that limω d(xn, yn) <∞.
The limit space Hω = limω(Hn, dn, xn) is the quotient of the set ΠboundedHn

by the equivalence relation limω dn(yn, zn) = 0.

This limit space limω(Hn, dn, xn) = Hω has a natural base-point namely
the equivalence class of (xn) and a natural distance dω defined by dω(y, z) =
limω d(yn,zn). It is a complete metric space. If for every element g in a gen-
erating set of Γ, the sequence dn(xn, ϕn(g)xn) is bounded, the group Γ acts
isometrically on Hω, as Γ acts on ΠboundedHn.

Definition 3 The stable kernel of (ϕn)n∈N is the normal subgroup Nω of Γ
defined as Nω = {g ∈ Γ/{n/ϕn(g) = e} ∈ ω} .
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Definition 4 The limit group Γω is the quotient Γ/Nω.

By definition, the limit group Γω acts on the limit space Hω. The follow-
ing Proposition emphasizes the importance of finiteness properties of kernels of
actions.

Proposition 3 Let K be a finitely generated subgroup contained in Nω. Then
for ω-almost every integer n, K ⊂ Ker(ϕn) the kernel of the action of ϕn. For
ω-almost all n, ϕn factors through Γ/K.

Proof In fact, if σ = {a1, . . . , an} is a finite set of generators of K, for every
i the set Ai = {n ∈ N/ϕn(ai) = e} is an element of ω. The finite intersection
∩Ai is therefore an element of ω. �

3.2 Hyperbolic metric spaces and R-trees
Let H denotes a δ-hyperbolic space (in the sense of Gromov [Gr]), Γ a finitely
generated group, σ be a fixed set of generators of Γ, and ϕ : Γ → Isom(H) an
isometric action.

The energy function of the action is the function defined by e(x) = Sups∈σ d(ϕ(s).x, x),
and the energy of the action is the minimum e(ϕ) = Minx∈H e(x). If the action
of Γ on H is not elementary (neither elliptic, nor parabolic, nor loxodromic),
then the function e(x) is metrically proper (it goes to infinity with the distance
of x to a fixed base-point). In this case, the set {x ∈ H/e(x) 6 e(ϕ) + 1} is not
empty and has bounded diameter. If H is furthermore a CAT(−1) complete
metric space, the minimum is in fact achieved, as e is a convex (along geodesics)
metrically proper function. (See [Be2]).

The main result concerning (ultra)-limits of actions of a group acting on a
hyperbolic space is due to M. Bestvina and F. Paulin see ([Be1], [Be2],[Br-Ha],
[Ka], [Ko-Sh], [Pa]).

Theorem 5 Let Γ be a finitely generated group, (H, d) a hyperbolic space and
ϕn : Γ → Isom(H) be a sequence of actions. Let xn be a sequence of base points
with en(xn) → ∞, and dn be the renormalized distance: dn = d

en(xn)
. Then the

limit space limω(H, dn, xn) is a complete R-tree Hω.

Proof (Compare [Be2], [Ko-Sh], [Gr2] 2.B.b). Recall (see [Co-De-Pa] for a
detailed presentation of the subject) that a complete metric space H with a
base point x is hyperbolic if :

∀y, z, t ∈ H, < y, z >> min(< y, t >;< t, z >)− δ,

where < y, z >= 1/2(d(x, y) + d(x, z)− d(y, z)).
Recall that such a space is geodesic if :

∀y, z ∈ H ∃m ∈ H/ d(y,m) = d(m, z) = 1/2d(y, z).
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These two properties (geodesicity, hyperbolicity) are formulated in the first order
language of metric spaces : a finite number of quantifiers and inequalities only
involving distances. Therefore, they behave nicely through ultra-limits. Let
δn = δ

en
the hyperbolicity constant of (H, dn). As limω δn = 0, the limit space

Hω of the family (H, dn) of δn hyperbolic geodesic spaces is a 0−hyperbolic
geodesic space, hence an R-tree. Using the finiteness of the generating set σ,
one proves that e(xω) = 1. �

Changing base points. Let Γ be a f.g. group, and ϕn a sequence of
actions in some hyperbolic space X , en(x) the energy function of the action ϕn,
en = Infx(en(x)) and xn a sequence of point in X . Assume that limω en(xn) =
+∞. Then Γ acts on the limit tree T = limω(Xn, xn, d/en(xn)). The next
proposition shows that if the limit space is not trivial, it does not really depend
on the choice of the sequence. However, in general, it depends on the choice of
the ultra-filter.

Proposition 4 If the limit action of Γ on T = lim(X, d
en(xn)

, xn) is not elliptic,

then limω en = ∞. If furthermore it is non elementary, then for some D and
omega-almost integer, en(xn) ≤ (D+1)en. Up to a scaling factor, the limit tree
does not depends on the choice of the sequence (xn). �

Proof Assume firstly that the limit action of Γ on this limit tree is not elliptic,
and let yω ∈ Tω be such that eω(y) is minimal for y = yω. Let y = limω(yn).

As eω(y) = limω
en(yn)
en(xn)

, have en(yn) = en(xn)eω + o(en(xn)). In particular the

limit limω(X, yn, d/en(yn)) is the same tree but with the distance d′ω = dω

eω
.

Assume now that the action of Γ on the limit tree is not elementary.
The set y ∈ Tω, y = limω(yn) be such that eω(y) is minimal is bounded of

diameter D (if not Γ would fix a point in the boundary of this tree). Let zn ∈ X

with en(zn) ≤ en(y) + o(en(xn)). Let us prove that limω
dn(yn,zn)
en(yn)

<∞.

If not, for ω almost all n, we have : dn(yn,zn)
en(yn)

> D + 1. Let z′n ∈ [yn, zn]

be a point at a distance en(yn).(D + 1). Recall that the distance function in
hyperbolic space is 8δ−convex : if c1(t), c2(t) are two geodesics parametrized
by arc length on the segment [0, L], d(c1(t.L), c2(t.L)) ≤ (1− t)d(c1(0), c2(0))+
td(c1(L), c2(L)+8δ (see [Co-De-Pa], Corollary 5.3, page 117). Therefore, en(z

′
n) ≤

max(en(zn), en(yn))+8δ. The point z′ = limω(z
′
n) is a point at a distance D+1

of y with e(z′) ≤ e(y), contradiction.

Assume that the action of Γ on the limit tree is not elliptic.
As Γ is finitely generated, there exists a g ∈ Γ which is an hyperbolic isometry

of Tω, of translation length [g]ω > 0. Let dϕn(g)(x) = d(ϕn(g)x, x) the displace-
ment function of ϕn(g), [ϕn(g)] its minimum, and Cn = {x/d(x, ϕn(g)x) ≤
max([ϕn(g)], 20δ)} the set where it is minimal. We know (see for instance
[De-Gr], prop. 2.3.3 (1)) that 2d(xn, Cn) ≤ d(ϕn(g)xn, xn)) − [ϕn(g)] + 8δ ≤
ken(xn) + 8δ, if k denote the word length g. Therefore, if pn is a point where
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d(xn, Cn) is minimal, d(xn,pn)
en(xn)

is bounded, and pn converges to a point in the

ultra-limit. Then for every x, k.en ≥ d(ϕn(g)x), x) ≥ d(ϕn(g)(pn), pn) ≥
[g]ωen(xn) + o(en(xn), and

en
en(xn)

≥ 1/k[g]ω + o(1). �

3.3 Acylindricity, WWPD, weak acylindricity.

In this subsection we study the notion of weak acylindricity which interme-
diates between two definitions, acylindricity, due to Sela in the case of trees
and Bowditch [Bo], and the weak proper discontinuity property, WWPD due
to Bestvina Bromberg and Fujiwara [Be-Br-Fu]. We will need to use the basic
properties of isometries of Gromov-hyperbolic spaces ; see for instance [Co-De-
Pa], Chapter 9 for a detailed discussion of the classification and properties of
isometries in such a space.

Let us first recall the following definition.

Definition 5 The action of G on a δ-hyperbolic space H is acylindrical, if
there exists an integer N and a real K such that for every pair of points a, b
with d(a, b) > K the set {g ∈ G/d(g.a, a) + d(g.b, b) 6 1000δ} is finite with
cardinality 6 N .

Let G be a group acting on a δ-hyperbolic space H . The translation length
[g] of an element g is [g] = Minx∈H d(x, g.x). Let g be some element with
translation length > 100δ. Then g is an hyperbolic isometry (see [Co-De-Pa],
Lemma 3.1, p. 301) .

More precisely, if x0 realizes the minimum Minx∈H d(x, g.x), the union of
geodesic segments Lg = ∪n∈Zgn[x0, g.x0] is a [g]-local geodesic (this fact is
true for every geodesic space). In a δ-hyperbolic space such a local geodesic
respectively converges as n tends to +∞ and −∞, to two points in the Gromov
boundary of H , say g+, g−, and these two points are fixed by g. (This is the
definition of a hyperbolic isometry, see [Co-De-Pa], Chap.9).

We consider Lg as a [g]-local geodesic oriented by the action of g. The
set Lg is called a quasi-line of g. Note that a different choice of minimizing
point or a different choice of geodesic segment [x1, g.x1] will give another quasi-
line L′

g. Using basic properties of Gromov hyperbolic spaces, in particular the
fundamental Theorem of ”stability of quasi-geodesics” one sees that there exists
a universal constant C such that the Hausdorff distance between Lg and L′

g is
bounded by Cδ.

If h is an hyperbolic element, for instance an element with translation length
[h] ≥ 100δ, we denote by E(h) the elementary group defined by h, i.e. the
subgroup E(h) = {g ∈ G/g.{h−, h+} = {h−, h+}}, where {h−, h+} are the two
fixed points of h in the boundary of H .

Definition 6 The action of G on a δ-hyperbolic space is weakly acylindrical
if there exists a real D > 0 such that for every hyperbolic element g, and every
h 6∈ E(g), the diameter of the projection of hLg to Lg is bounded by D(1 + [g]).
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If the constant D is specified, the action is called D- weakly acylindrical

This definition of weak acylindricity is a uniform version of the WWPD
property introduced by [Be-Br-Fu] : the WWPD property requires that, there
exists a constant κ(g) such that for h /∈ E(g), the diameter of the same set {x ∈
Lg/d(x, hx) 6 100δ} is bounded by κ(g). We require that κ(g) ≤ D.([g] + 1).

The following Proposition (which is not obvious despite its formulation)
explain the relationship between the two concepts of acylindricity. Its proof is
very similar to the usual proof of the Margulis-Zassenhaus Lemma.

Proposition 5 An acylindrical action on a hyperbolic space is weakly acylin-
drical.

Proof Let (K,N) be the two constants involved in the definition of acylin-
dricity. Let us fix some hyperbolic element g, and let E(g) be the elemen-
tary subgroup defined by g. Let ∆ be the maximum of the diameter of the
sets Ph = {a ∈ Lg/∃a

′ ∈ hLg/d(a, a
′) 6 10δ} for h 6∈ E(g). We will prove

that ∆ ≤ (N + 1)([g] + 1000δ) + K, hence the D-weak acylindricity for D =
max(N + 1,K + (N + 1)1000δ).

Let h ∈ G, and let us assume that the curve Lg contains a segment I = [a, b]
of length (N + 1)([g] + 1000δ) + K such that ∃a′, b′ ⊂ hLg with d(a, a′) 6

10δ, d(b, b′) 6 10δ. We will prove that h ∈ E(g).
Note that for every c ∈ [a, b] there exists c′ ∈ [a′, b′] with d(c, c′) 6 12δ. Let

a1 = g.a and I1 = [a1, b] ⊂ [a, b] . As d(a, a1) = [g], the length of I1 is the
length of I minus the translation length [g]. As g acts as a translation of length
[g] on Lg, its conjugate h.g.h

−1 acts as a translation of the same length on hLg.
Therefore, if h1 = h−1g.h.g−1, for every x ∈ I1, d(h1x, x) 6 20δ . Replacing
g by gk, k 6 N + 1, and defining ak = gka as the point of [a, b] ⊂ Lg with
d(ak, a) = k[g], and hk = h−1gkhgk, we see that if ∆ − (N + 1)[g]− 100δ > 0,
then d(aN+1, b) > K, and for every k, we have d(hkaN+1, aN+1) 6 20δ and
d(hkb, b) 6 20δ. Therefore, by acylindricity, the family (hk)1≤k≤N+1 take at
most N values, and for two different indexes, k, l, h−1gkhg−k = h−1glhg−l, or
[h, gk−l] = 1, hence h ∈ E(g).

�

Example 1 Let G be a group acting discretely on some simply connected mani-
fold with pinched negative curvatureH . Let δ be the hyperbolicity constant, and
µ the Margulis constant ofH . Let g ∈ G be an hyperbolic isometry , A = {h/the
diameter of the projection of h.Lg to Lg is greater than 2[g] + 100δ+ µ}. Argu-
ing as in the proof of Proposition 4, and using the Margulis Lemma, one proves
that the set B = {ghg−1h−1, h ∈ A} ∪ {g} generates a subgroup K such that
[K,K)] is nilpotent. The group K is therefore solvable, hence an elementary
subgroup of G, containing g. Therefore if h ∈ A, the commutator g.h.g−1h−1

is in E(g), as well as hg−1h−1 and h fixes the two fixes point of g at infinity.
Note that if there is some parabolic element, the action is not acylindrical, and
weak acylindricity is better adapted to this situation.

11



In his survey on R-trees [Be2], M. Bestvina explain why Margulis Lemma
implies that a limit of discrete faithfull actions on a classical hyperbolic space has
virtually nilpotent edge stabilizers. In our case, we have no Margulis Lemma,
and the actions are not faithful. However, we will prove that, under some weak
acylindricity assumption, the kernel of the action of the limit group on the limit
tree is finite ; of course our proof is very similar to that of [Be2].

Proposition 6 Let (H, d) be a hyperbolic space, G a group of isometries of
H, Γ a finitely generated group and ϕn : Γ → G a sequence of actions, xn a
sequence of base points with limω en(xn) = ∞. Let Hω = limω(H, dn, xn) for
dn = d

e(xn)
be the limit tree and Tω ⊂ Hω the minimal invariant subtree. Let Γω

the limit group of this sequence. Assume that the action of G on H is weakly
acylindrical, and that Γω is not elliptic (i.e. Tω is not a point).

1. Let N ⊂ ker(ϕω) be a finitely generated subgroup contained in the kernel
of the limit action. Let g be an element whose image in Γω is hyperbolic. Then
for ω-almost every n, ϕn(N) is contained in E(ϕn(g)), the maximal elementary
subgroup containing ϕn(g) of G.

2. If Tω is not line, for ω-almost every n, the group ϕn(N) is elliptic.

3. If Tω is a line, for infinitely many n, ϕn(Γ) is elementary.

4. Assume that the action of G on H is acylindrical. Then the kernel of the
action of Γω on Tω is finite if Tω is not a point or line, or virtually abelian if
Tω is a line

Proof As Γ is finitely generated, and as its action on Tω is not elliptic, it
contains an element g whose image in Γω is an hyperbolic isometry of Tω. Let
Λg ⊂ Tω be the g-invariant line, and [g]ω its translation length. Let us first
note that [g]ω = limω [ϕn(g)]n. Indeed, if mn ∈ Hn is a midpoint of a segment
[xn, ϕn(g)xn], one has that [ϕn(g)] 6 dn(mn, ϕn(g)mn) 6 [ϕn(g)] + 10δn. Note
that dn(xn, ϕn(g)xn) is bounded, therefore mn converges to a point which is a
midpoint of [xω, g.xω], hence on Λg. If yn ∈ Lϕn(g) is such that dn(xn, yn) is
bounded, the same argument proves that limω yn ∈ Λg. As limω[ϕn(g)]n = [g],
for ω-almost every n, [ϕn(g)]n ≫ δ

en
= δn, the hyperbolicity constant of Hn.

Note that g acts on its axis Lϕn(g) as a translation of length [ϕn(g)]n. Let
h ∈ Γ, and assume that ϕω(h) = IdTω

. Let us prove that for ω-almost n,
ϕn(h) ∈ E(ϕn(g)). Let α, β be two points on L at a distance > D([g]ω +1)+ 1.
These points are ω-limits of points an, bn or of ϕn(g)an, ϕn(g)bn. In particular,
d(an, ϕn(g)an) = o(en), d(bn, ϕn(g)bn) = o(en), but d(an, bn) > D([ϕn(g)] +
1) + en. Let a′n and b′n ∈ [an, bn] be the points at distance en from an and
bn respectively. Then for ω-almost every n, the distance between the point
a′n (respectively b′n) and ϕn(g)[an, bn] is bounded above by 10δ. By (weak)
acylindricity ϕn(h) ∈ E(ϕn(g)). This proves the first point of the proposition.

If Tω is not a line, for some u the line Λg is not stable by u : Λu.g.u−1 =
hω(u)Λg 6= Λg. Furthermore, if N is a f.g. subgroup of the kernel of the
action, for ω-almost all n, ϕn(N) ⊂ E(ϕn(ugu

−1)) (by applying the argument
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of 1 to u.g.u−1). Then, the group ϕn(N) is contained in the two elementary
subgroups generated by ϕn(g) and ϕn(u.g.u

−1). It is thus elliptic, and contained
in E(ϕn(g)). This proves (2). In particular it is finite in the acylindrical case
(4).

If the limit space is a line, h acts with non zero translation length on this
line, and σ ∈ Σ, we can apply (1) to the commutator σhσ−1h−1 : this element
is in E((ϕn(h)) for ω-almost all n, and as Σ is finite, this prove 3. �

3.4 Kähler groups.

Let us keep the notations of Section 3.3 unchanged, but assume now further
that Γ is a Kähler group ; applying Theorem 3 and Proposition 6 we get :

Theorem 6 Let Γ be a Kähler group; let G be a group of isometries of a hy-
perbolic space (H, d), ϕn : Γ → G a sequence of actions, xn ∈ H a sequence
of base points with energy limω en(xn) = ∞. Let Hω = limω(H,

1
en
dn, xn), and

Tω ⊂ Hω be the minimal invariant subtree, and assume that the limit action is
not elliptic.

1. If the limit action is not elementary, then Γ fibers. There exists a 2-
orbifold Σ and a surjective homomorphism π : Γ → πorb

1 (Σ) with finitely gener-
ated kernel N . The same is true if Tω is a line, but the kernel of the action of
Γ on this line is not finitely generated.

2. If the action of G on H is weakly acylindrical, and Tω is not a line, then
for ω-almost every n, the group ϕn(N) is a finitely generated normal subgroup
of ϕn(G) contained in an elliptic subgroup of G.

3. If the action of G on H is weakly acylindrical, and Tω is a line, for
ω-almost all n, ϕn(Γ) is contained in an elementary subgroup of G.

4. If the action of G on H is acylindrical, then for ω-almost every n,
ϕn(N) is a finite group. Therefore ϕn factors, via π, through a finite extension
of πorb

1 (Σ).

Proof 1. If the action of Γ on the limit tree is not elementary, Theorem 3 (or
Theorem 4) applies. Then the second point follows from Proposition 6 (2), the
third point from Proposition 6 (3), and the last one from Proposition 6 (4). �

Example 2 This Theorem implies a compactness result on non elementary dis-
crete actions on a simply connected manifold with pinched non positive curva-
ture, for instance the complex or quaternionic hyperbolic space : such an action
is weakly acylindrical (Example 1). Let G = Isom(H) where H is a complete
simply connected manifold with pinched strictly negative curvature. As Γ is
finitely generated the set Homdisc(Γ, G)/ conj of conjugacy classes of discrete
non elementary representations of Γ to G is endowed with a natural topology,
such that the set of representations of bounded energy is compact. Our result
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(2) applies. Furtheremore, in a Kleinian group, more generally if H is a CAT(-1)
space, a f.g. elliptic group induces the identity on a totally geodesic subspace,
reducing the dimension. Thus, the set of non elementary representations which
do not factor through the fundamental group of a 2-orbifold and do not preserve
a strict totally geodesic subspace (Zariski dense representations in the case of
rank 1 symmetric spaces) is a compact subset of Homdisc(Γ, G). Note that, in
the case of SO(n, 1) this set is even known to be empty (see [Ca-To]) if n ≥ 3.
It would be interesting to have an arithmetic interpretation of the finite set of
connected components of this representations spaces, in the spirit of [Co-Si].

If G = G = SU(n, 1) or Sp(n, 1), and Γ = π1(X), X Kähler, the results of
Siu [Si] (improved by Carlson and Toledo [Ca-To]) implies that a representation
of Γ in G which do not factors through a Riemann surface can be realized
as an equivariant holomorphic (or anti-holomorphic) map from the universal
cover of X to the symmetric space G/K. Such a map is 1-Lipshitz for the
Kobayashi pseudo distance on X , giving an explicit bound on the energy : if
L is the greatest Kobayashi length of the generators of Γ, the energy of the
representation that can be realized by an holomorphic map is ≤ L ; a stronger
result than our (non effective) compacity result.

4 Projection complexes and weak acylindricity.

Let us review the construction of M. Bestvina, K. Bromberg and K. Fujiwara
of a projection complex of δ-hyperbolic metric spaces ; we follow the notations
of [Be-Br-Fu].

4.1 Introduction.

Let Y be a set of δ-hyperbolic geodesic metric spaces. If Y ∈ Y it is convenient
to make a difference between Y as an element of Y and C(Y ) the metric space
it represents (in our case this will be a graph, in fact a curve complex). We
emphasize that the hyperbolicity constant δ is uniform for C(Y ), Y ∈ Y . A
function πY is given, called the projection, from Y − {Y } to the set of subsets
of Y of diameter6 θ. Here θ is a fixed constant. One extends this function πY on
Y by setting πY (x) = x and on the union of X ∈ Y −{Y }, by setting πY (x) =
πY (X). We assume that the function dπY (X,Z) = diam{πY (X)∪πY (Z)} endows
Y with the structure of a projection complex in the sense of [Be-Br-Fu], i.e.
satisfies two further axioms : for every A,B,C, at most one of the three numbers
dπA(B,C), d

π
B(C,A) and d

π
C(A,B) is greater than θ, and for every A,B, the set

{C/dπC(A,B) > θ} is finite.

Unfortunately this number dπY (X,Z) does not behave like a hyperbolic dis-
tance, and this forces [Be-Br-Fu], Definition 3.1. to introduce a modified dis-
tance with better properties.

This new distance is defined in two steps.
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First one define H(X,Z) as the set of pairs (X ′, Z ′) with X ′ 6= Z ′ and one
of the following properties holds.

-both dπX(X ′, Z ′) > 2θ, dπZ(X
′, Z ′) > 2θ

-X = X ′ and dπZ(X,Z
′) > 2θ

-Z = Z ′ and dπX(X ′, Z) > 2θ
-X = X ′, Z = Z ′

Then on defines dY (X,Z) = Inf(X′,Z′)∈H(X,Z)d
π
Y (X,Z).

If K is a given positive constant, let YK(X,Z) = {Y/dY (X,Z) > K}, and
let PK(Y ) be the graph whose vertex set is Y and where two vertices are joined
by an edge if YK(X,Z) = ∅.

The first important result of [Be-Br-Fu] (Theorem 3.16) is that for sufficiently
large K, this metric space is a quasi-tree, i.e. a metric space that is quasi-
isometric to a tree. In particular, it is a Gromov-hyperbolic space. It appears
to be β-hyperbolic for a universal constant β. In fact this space satisfies the
so-called ”bottleneck” property: for every pair of points a, b and c ∈ [a, b], every
continuous path between a and b contains a point c′ with d(c, c′) 6 2. The exact
value of the hyperbolicity constant β is not meaningful, but it is important that
it remains constant as K increases. As the bottleneck constant of PK(Y ) is 2,
we can choose β = 10.

In a second step, [Be-Br-Fu] construct a ”quasi-tree of metric spaces” C(Y ).
This metric space is obtained by taking the disjoint union of the metric spaces
C(Y ), for Y ∈ Y , and adding an edge of length L from every point of πX(Z) to
every point in πZ(X), if [X,Z] is an edge of PK(Y ). In this new metric space
C(Y ), the subsets C(Y ) are totally geodesically embedded subspaces. We see
now that is was important, in the notations, to distinguish between Y as a point
in Y , and C(Y ) a metric space totally geodesically embedded in C(Y ).

As all metric spaces Y ∈ Y are uniformly δ-hyperbolic, if K is large enough
and L is correctly chosen betweenK and 2K, there exists a constant ∆ such that
the metric space C(Y ) is ∆−hyperbolic [Be-Br-Fu] (Theorem 4.17). Moreover
this number ∆ is independent of the choice of K. If necessary, we will write
CK(Y ) to remind the dependence on the parameter K.

Assume that G is a group acting on Y , preserving the maps π, and such
that for every Y ∈ Y and g ∈ G, there is map Fg : ∪C(Y ) → ∪C(Y ), which for
each Y restricts to an isometry Fg : C(Y ) → C(g.Y ), and such that for all g, h
Fg.h = Fg.Fh. Then, the group G acts isometrically on C(Y ).

The following definition, the ν-invariant, is useful to describe algebraic prop-
erties of elementary subgroups of certain hyperbolic groups (compare [Co]). The
finiteness of ν can substitute the existence of the Margulis constant when there
is no lower bound on the curvature.

Definition 7 Let G act on a set Y . One says that ν(G,Y ) 6 ν if the following
property holds. Let h, g ∈ G. Suppose that < h, g.h.g−1, g2.h.g−2, . . . , gν .h.g−ν >
fixes a point Y0 ∈ Y . Then for every n ∈ N, gn.h.g−n fixes this point.
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Proposition 7 Assume that there exists a constant D such that for every Y ∈
Y , the action of the stabilizer GY on C(Y ) is D−weakly acylindrical and assume
that ν(G,Y ) = ν is finite. Then, for K large enough, the action of G on CK(Y )
is weakly acylindrical.

In order to prove this Proposition, we will study the action of G on the
metric space CK∗(Y ), where K∗ will be defined later, in the proof of Lemma 3
in 4.3. Recall that ∆ is a fixed common hyperbolicity constant for the metric
spaces CK×(Y ) provided K× > K. Let g ∈ G be an element acting on CK∗(Y )
and assume that g is a hyperbolic isometry. Up to replacing g by some power,
we may assume that the translation length [g] of g is large compared to the
hyperbolicity constant: Minx∈CK∗(y)

d(x, g.x) = [g]CK∗ (Y ) > 104∆. If Lg is a
quasi-line of g and h /∈ E(g), we have to estimate the diameter of the projection
of h.Lg to Lg. The meaning of Proposition 7 is that this diameter is bounded
by a constant time the translation length of g.

In order to estimate this diameter, we will distinguish two very different
cases in the next two sections (4.2 and 4.3 respectively). If the isometry g is
hyperbolic for its action on PK∗(Y ), we will see that it has an axis when acting
on PK . If it is elliptic or parabolic, then we will see that it fixes a point in Y .
We remark that both cases have been already discussed in [Be-Br-Fu], and their
estimates will imply the result.

4.2 Elliptic or parabolic case.

Recall that for all K large enough, the graph PK(Y ) is 10−hyperbolic. Before
stating the main result of this subsection let us state and prove a Lemma (well
known but hard to find in the literature) about non-hyperbolic isometries of
hyperbolic spaces.

Lemma 1 If H be a hyperbolic space, g an isometry of H. If g is elliptic, there
exists a point in H such that ∀n ∈ Z, d(gnx0, x0) ≤ 5δ. If g is parabolic, for ev-
ery integer N0, there exists a point x0 such that ∀n ∈ {1, 2, .., N0}, d(g

nx0, x0) ≤
10δ

Proof Assume firstly that g is elliptic, let x1 ∈ H its g−orbit B is bounded,
and let ρ =∈ {r ∈ R/∃x/B ⊂ B(x, r)} its radius. We know ([Br-Ha], Lemma
3.3 page 460), that the g invariant set {c B ⊂ B(c, ρ+ δ/2)} is of diameter less
than 5δ. The orbit of any point x0 in this set satisfy our property.

Assume now that g is parabolic and let p be a fixed point at infinity. Recall
that a ray is a geodesic r : [0,∞[→ X parametrized by arc length, and that
two rays ending at the same point in ∂X must be 2δ-close outside of a bounded
set (thinness of triangles). We will prove that if t is large enough, if x0 = r(t)
∀n ∈ {1, 2, .., N0}, d(g

nx0, x0) ≤ 10δ ; of course t depends on N0. The example
of the translation of the hyperbolic plane g(z) = z+1 is a good illustration: every
point in the ray Re(z) = 0, Im(z) > 1

N0
satisfies ∀n ∈ {1, .., N0}, d(g

n.x, x) ≤ 1.
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As g is not hyperbolic, there exists a point x1 with d(x1, gx1) ≤ 6δ ([Co-
De-Pa], Lemma 3.1, page 101). Let us choose a ray r1 starting at x1 and
ending at p. As p is fixed by g, there exists at t1 such that for every t > t1,
g.r1(t) is 2δ-close to the ray r1. By the triangular inequality, if t > t1 we have
d(r1(t), g.r1(t)) ≤ 6δ + 2δ = 8δ.

As two rays r, r′ ending at p are 2δ-close outside a compact set, we see
that for every ray r : [0,∞[→ X ending at p there exists a tc such that if
t > tc, d(g.r(t), r(t)) ≤ 10δ. One fixes a ray r ending at p. As gn fixes p,
for every n ≤ N0 we can find tn such that if t > tn, d(g.r(t), r(t)) ≤ 10δ. In
particular any point x0 in the geodesic ray r([sup tn,+∞[ satisfies our property.

�

Lemma 2 If g on PK∗(Y ) the element g is elliptic or parabolic, then g fixes a
point in Y .

Proof As PK
∗ (Y ) is 10-hyperbolic, for every N0, one can find a point in this

graph (i.e an element Y0 ∈ Y ), such that d(Y0, g
nY0) 6 100 for all 1 6 n 6 N0.

More precisely, Let n be a fixed integer (n will be chosen later) and consider
a geodesic path of length 6 100 between Y0 and gnY0. This path can be written
as a sequence of adjacent vertices Y0 = X0, X1, . . . Xk = gnX0 with k 6 100.
For every i ∈ {0, 1, .., k−1}, one chooses a point x+i in πXi

(Xi+1) (the diameter
of this set is 6 θ) and for i ∈ {1, .., k}, a point x−i in πXi

(Xi−1). One
sets x+n = gnx0, and for every i ∈ {1, .., k}, one considers a geodesic segment
[xi−, xi+ ] in Xi. Note that, for every i, d(x+i , x

−
i+1) 6 L∗, and that [x+i , x

−
i+1] is

an edge of PK∗(Y ). We consider the path γ = [x+0 , x
−
1 ]∪ [x−1 , x

+
1 ]∪ . . . .[x

−
k , x

+
k ].

We remark that if gnY0 = Y0, this path is entirely contained in Y0.

Applying [Co-De-Pa] Lemma 1.5 page 25, one gets that in CK∗(Y ) any
geodesic [x+0 , g

n.x0] remains in the (ln2 k)∆-neighborhood (or 10.∆ as k 6 100)
of this path γ.

Let y0 be a point where the function d(y, gy) is minimal, equivalently [g] =
d(y0, g.y0). By minimality, the g−invariant set Lg = ∪k∈Zgk[y0, g.y0] is a [g]-
local geodesic (a quasi-line) and is therefore 100∆−quasi-convex ([Co-De-Pa]
Proposition 10.3.1). Let p be a projection of x0 on this set (p realizes the
minimal distance of x to Lg). Then q = gnp is at the distance > n([g]− 100∆)
of p. Therefore the segment [q, gnq] of Lg contains a subsegment [a, b] of length>
n([g]−100∆)−L∗

K
which is 10∆-close to a segment [x−i , x

+
i ]. Let A be some positive

number. Choosing n large enough, one may assume that d(a, b) > [g] + A and
find an arbitrary long segment (of size > A) in some metric space Xi whose
image by g is 10∆−close to Xi. Choosing A > θ+1000∆ (and n consequently),
we see that the projection of gXi to Xi has an arbitrary large diameter : by
definition of a projection complex, the point Xi is fixed by g. This proves
Lemma 2.

�
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Now, in order to study the action of g on CK(Y ) we can use the argument of
[Be-Br-Fu], Proposition 4.20. The metric space Xi is a totally geodesic subspace
of CK(Y ) fixed by g, and Lg ⊂ Xi is a g-invariant [g]-local geodesic. If the
diameter of the projection of h.Lg on Lg is greater than θ, then h must fix Xi.
This implies that E(g) ⊂ GXi

. Then, the D-acylindricity of the action of GXi

on Xi implies that if h /∈ E(g) but h ∈ GXi
, the diameter of the projection of

h.Lg to Lg is bounded by D(1 + [g]). Summing up:

(1) If, acting on PK∗(Y ), g is elliptic or parabolic and if the diameter of the
projection of h.Lg on Lg is greater than θ +D(1 + [g]), then h ∈ E(g).

4.3 Hyperbolic case.

Let us now assume that g is a hyperbolic isometry for its action on PK∗ . Recall
that an axis of g is a g-invariant subset of a bi-infinite geodesic (joining the two
fixed points of g at infinity). It is contained in a bi-infinite geodesic, but might
be a proper subset.

If a point X belongs to every bi-infinite geodesic between the two fixed
points at infinity, we call it stable ([Be-Br-Fu]). The set of stable points (if not
empty) is an axis, invariant by E(g). We call it the stable axis of g (if it is not
empty). If X0 belongs to the stable axis of g, if X1 = gX0 is the g orbit of X0

and [X0, X1] is a fixed geodesic segment, then the union ∪n∈Zgn[X0, X1] is a
g-invariant geodesic. The following Lemma is very similar to Lemma 3.22 from
[Be-Br-Fu].

Lemma 3 1. In the metric space PK , the isometry g has a stable axis α.

2. If furthermore h ∈ G is such that the diameter (measured in PK) of the
projection of h.α on α is greater than (k + 1)[g] + 1000, then this stable
axis contains a point X ′

0 such that for every p ∈ {0, . . . k}, the commutator
h′ = hg−1h−1g fixes gpX ′

0 ∈ α.

3. If furthermore k > ν(G,Y ), then h belongs to the elementary (for the
action on PK) subgroup of G containing g.

Proof As g is hyperbolic for its action on PK∗ , up to replacing g by some power,
one can assume that its translation length d = MinY d(Y, gY ) is greater than 105

(104 times the hyperbolicity constant which is≤ 10). LetX0 be chosen so that in
the graph PK∗ , d(X0, gX0) = d is minimal. LetX1 = g.X0, and let [X0, X1] be a
geodesic segment in the graph PK∗ between these points. We consider a geodesic
path {X0 = Y0, Y1, . . . .Yd = X1} = [X0, X1] between these two points . By
isometry, if Y−i = g−1Yn−i , the path {X−1 = Y−d, .Y−d+1, . . . .Y−1, Y0 = X0}
is a geodesic segment between X−1 = g−1X0 and X0. Let Xn = gnX0, and
Yn.d+k = gnYk. Note that by minimality the sequence (Yj)j∈Z is a d-local
geodesic path in PK∗ . Let k 6 n

2 . As d(Y−k, Yk) = 2k, the set YK∗(Y−k, Yk) =
{Z/dZ(Y−k, Yk) > K∗} ∪ {Y−k, Yk} is another (injective) path of length > 2k
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([Be-Br-Fu] proof of Proposition 3.7). By the 10-bottelneck property ([Be-Br-
Fu] Theorem 3.16), this path contains a point X ′

0 which is 10-close to X0.
Now d(X ′

0, Yl) > l − 10 > 3 if |l| > 13. Therefore, applying ([Be-Br-Fu]
Proposition 3.14) to the path {Yl, Yl+1, . . . Yn} and the vertex X ′

0, one obtains
that if 13 6 l 6 n, then dX′

0
(Yl, Yn) as well as dX′

0
(Y−l, Y−n) is bounded by

a constant cθ depending only on θ. By the triangle inequality, if l,m > 13,
then dX′

0
(Y−l, Ym) > K∗ − 2cθ. In particular if K∗ is sufficiently large, then for

every p, q > 1, dX′

0
(g−pX0, g

qX0) > K ′ , where K ′ is the constant introduced in
Lemma 3.18 of [Be-Br-Fu]. Similarly, let l, q > 200 and consider a pair of points
{A−p, Aq} such that d(A−p, Y−p) 6 100 and d(Aq, Yq) 6 100. Let [Aq, Yq] and
[A−p, Aq] be two geodesic paths. Then the paths {Y−l, Yl+1, . . . Y−p}∪[A−p, Y−p]
and {Yl, Yl+1, . . . Yq}∪[Aq, Yq] remain at a distance at least 3 fromX ′

0. Moreover
if K∗ is sufficiently large then dX′

0
(A−p, Aq) > K ′.

The Lemma 3.18 of [Be-Br-Fu] applies : in PK(Y ) for every p, q > 0, the
point X ′

0 belongs to every geodesic between g−pX0 and gqX0, and even between
the two points A−p, Aq.

By equivariance, for every integer n, the point gnX ′
0 belongs to every geodesic

between g−lX0 and gmX0 if l,m > 2n, and every geodesic segment [A−l, Am]
between two points Ap, Aq such that d(Ap, g

pX ′
0) 6 100. All the points gnX ′

0

are therefore on a g-invariant geodesic α. In fact, the same argument shows that
for every geodesic β parallel to α, the point X ′

0 belongs to YK′′(β). Thus Corol-
lary 3.19 from [Be-Br-Fu] proves that X ′

0 belongs to every geodesic β which is
parallel to α: the isometry g has a stable axis, and the first point of Lemma 2
is established.

For the second assertion, note that the hypothesis proves that one can find
two points P,Q on α such that the distance between P or Q and the geodesic
hα is bounded by 100, but d(P,Q) > (ν +1)[g] + 200. Let k 6 ν. The length of
the segment [P,Q] being greater than (k + 1)[g] + 200, [P,Q] contains at least
k+1 consecutive translates of X ′

0. Reordering them, we may assume that these
points are X ′

0, gX
′
0, . . . ., g

kX ′
0. By hyperbolicity, these points are 100-close to

some points Z0, Z1, , Zk on hα, chosen in such a way that d(Zi, Zi+1) = [g].
Thus h−1Zi ∈ α, and gh−1Zi = h−1Zi+1, as d(h

−1Zi, h
−1Zi+1) = [g]. Since

d(Z0, X
′
0) 6 100 and d(Z2, g

2X ′
0) 6 100, every geodesic between Z0 and Z2 must

go through gX ′
0. Replacing Z0 by a point Z ′

0 ∈ hα such that d(Z ′
0, gX

′
0) = [g],

and setting Z ′
i = hgih−1Z ′

0 we now have Z ′
i = giX ′

0 for i ∈ {1, . . . , k}. Let
h′ = hg−1h−1g. For every i ∈ {0, . . . .k − 1}, h′.giX ′

0 = hg−1h−1gk+i+1X ′
0 =

hg−1h−1Z ′
i+1 = Z ′

i = giX ′
0. The points (giX ′

0)06i6k−1 are fixed by h′. The
second assertion is proved.

By definition of the ν-invariant, if k > ν, the isometry h′ fixes gnX ′
0 for all

n. Therefore h′ = h.g.h−1g−1 is in the elementary subgroup of g, as well as
h.g.h−1, and h. The third assertion and the Lemma are proved. �

In order to complete the proof of Proposition 7, we consider an element g
which is a hyperbolic isometry for its action on PK∗ .
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Recall that ∆ denotes a hyperbolicity constant of CK(Y ). Replacing g by
some power, we may assume that [g] > 1000∆. Let y0 ∈ C(Y ) be a point
such that d(y0, g.y0) is minimal, and [y0, g.y0] a geodesic segment. Hence Lg =
∪n∈Zgn[y0, g.y0] is a quasi-line of g, which is a g-invariant [g]-local geodesic. Let
yn = gny0, and Yn = gnY0 ∈ Y be the unique point such that yn ∈ Yn. Let α
be a g-invariant axis of g for its action on PK (it exists due to Lemma 6), let
X0 ∈ α be a projection of Y0. By equivariance Xn = gn.X0 is a projection of
Yn. Let h ∈ E(g). Assume that the diameter of the projection of h.Lg to Lg is
at least (ν + 4)[g] + 1000∆. One can find four points a, b, c, d in Lg such that
d(a, h.c) 6 10∆, d(b, h.d) 6 10∆, and d(a, b) > (ν + 4)[g]. As every point in Lg

belongs to some segment [yi, yi+1], we even can find 4 integers α, β, γ, δ such
that d(yα, hyγ) 6 10∆, d(yβ, h.yδ) 6 10∆, and β − α = δ − γ > (ν + 2).

Now, if in CK(Y ) two points y, z are 10∆-closed, the distance of their im-
ages Y, Z in the complex PK is bounded by a uniform constant, d(Y, Z) 6
10∆
L

. Therefore, if [g] ≫ 10∆
L

and if Yi is the space containing yi, one has
d(Yα, hYγ)+ d(Yβ , h.Yδ) 6

1
10 [g]. A similar inequality occurs for the projections

Xα, Xβ, Xγ , Xδ of these points on the stable axis α of g: in a ∆-hyperbolic space
projection decreases distances up to an error of 12∆ (see [Co-De-Pa] Proposi-
tion 2.1 p.108). Hence the axis α and its h translate hα are 10∆− close along
a segment of length > (β − α− 1)[g] > (ν + 2)[g]. Applying Lemma 2, one de-
duce that the commutator [h, g−1] fixes the axis of g in PK . Therefore in C(Y )
[h, g−1] transforms the quasi-line Lg in a parallel quasi-line, and h belongs to
the elementary subgroup generated by g. This proves Lemma 3.

�

Summing up we proved (2), that if acting on PK∗(Y ), g is hyperbolic and if
the diameter of the projection of h.Lg on Lg is greater than (ν+4)[g])+1000∆,
then h ∈ E(g).

The combination of (1) and (2) proves the Proposition 7. �

5 Mapping class group, complex of curves and

holomorphic families of Riemann surfaces

5.1 Asymptotic geometry of the mapping class group

Let S be a compact topological surface (possibly with a boundary); the complex
of curves (and arcs) of S, denoted by X (S) (or simply X if only one surface is
involved) is the graph whose vertices are the homotopy classes of simple closed
loops on S which are non parallel to the boundary and arcs from the boundary
to the boundary which are not homotopic to the boundary and whose edges are
pairs of curves that can be made disjoint by a homotopy.

A fundamental result due to H. Masur and Y. Minsky asserts that X is
hyperbolic [Ma-Mi]; this statement has been improved by B. Bowditch [Bo] who
proved that the action of M(S) on X is acylindrical. Therefore, in principle,
the results in paragraph 3 can be applied to this example. However, in order to
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study monodromy groups we will need a deeper result and consider sequences
in Hom(Γ,M(S))/ conj which are infinite but whose energy when acting in X
does not diverge. The reason is that the action of M(S) on X is not proper.
The work of M. Bestvina, M. Bromberg, and K. Fujiwara [Be-Br-Fu] gives a
new geometric structure on the mapping class group which enables to apply the
results of Paragraph 3, and in particular Theorem 6.

Theorem 7 (Be-Br-Fu) The mapping class group M(S) of a compact surface
S contains a subgroup of finite index M1(S) which admits a product action
on a finite product of hyperbolic spaces Πi∈IXi. Furthermore the orbit map
M1(S) → Πi∈IXi is a quasi-isometric embedding.

The spaces Xi constructed by [Be-Br-Fu] are projection complexes of com-
plexes of curves. In order to apply the factorization Theorem 6 of Paragraph 3
we have to check that these actions are weakly acylindrical. In fact, the metric
spaces Xi are defined as CK(Y i), where Y i is a family of connected subsurfaces
of S, and the metric space attached to a subsurface Y is the complex of curves
and arcs C(Y ) of Y . As Bowditch proved that the action of the mapping class
group of Y on C(Y ) is acylindrical [Bo], it is enough (due to Proposition 7) to
prove that the ν invariant for the action ofM(S) on the set Y of isotopy classes
of connected subsurfaces of S if finite.

Lemma 4 The action of the mapping class group on the set of isotopy classes
of connected subsurfaces of S has a finite ν-invariant. In particular the action
of M(S) on Xi is weakly acylindrical.

Proof Let g, h be two elements in M(S) such that h fixes the non empty
connected surfaces Y0, g

−1Y0, g
−2Y0 . . . , g

−kY0. Let us consider Y1, . . . , Yc the
pieces of the Nielsen decomposition of S associated with h (the orbits under h
of connected components of the Nielsen decomposition) and I ⊂ {1, . . . c} the
components on which h is homotopic to the identity. For every i, the surface
g−iY0 is contained in a unique Yα, say in Yf(i). As h fixes g−iY0, this subsurface
Yf(i), must be connected. Then either the restriction of h to Yf(i) is the identity

(f(i) ∈ I), or it is a pseudo-Anosov and in this case, g−kY0 = Yc is fixed by
h. Let us assume that k > c. Then either for two different indices i, j 6 k,
g−iY0 = g−jY0 = Yc and gj−iY0 = Y0, and h fixes all gkY0, or if k is sufficiently
large (greater than Σ16i6c − ξ(Yi)+1, where ξ the Euler characteristic), g−kY0
must be contained in ∪06i<k,f(i)∈Ig

−iY0. Therefore g−(k+1)Y0 is contained in
a set on which h induces the identity.

�

5.2 Infinite sequences of homomorphisms.

We will apply Paragraph 3.2 to create actions on R − trees from an infinite
sequence of pairwise non conjugate homomorphisms of a finitely generated group
(Γ,Σ) to the mapping class groupM(S). At this point one could directly apply
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the work of J. Behrstock, C. Drutu and M. Sapir [Be-Dr-Sa] Corollary 6 from
the appendix. In particular, we know that, given a group Γ and a sequence of
pairwise non conjugate homomorphisms ϕn : Γ →M(S) we can construct a non
elliptic action of Γ on some limit tree.

Assume furthermore that ϕn(Γ) is not reducible. Using the weak acylin-
dricity of the spaces Xi constructed by Bestvina, Bromberg, Fujiwara, together
with Proposition 6, we will deduce (Proposition 8) that the action on the limit
tree is not elementary, and that if N is a finitely generated normal subgroup of
the kernel of this limit action ϕn(N) is finite for almost every n.

Let us recall very briefly the definition of this family of spaces. If S is a
surface, Y denote the set of isotopy classes of incompressible subsurfaces of
S which are not spheres with three holes. It is shown [Be-Br-Fu], prop. 4.8
that Y can be partitioned in a finite set Y = ∪i∈IYi such that the boundaries
two subsurfaces in the same components always meet. Further, the partition is
natural, i.e. the mapping class group contains a subgroup of finite index M1(S)
which acts while preserving its components (the Yi). Recall that each Yi is a
endowed with a structure of a projection complex of metric spaces, where the
metric space attached to a sub-surface is the complex of curves and arcs of
this subsurface (a hyperbolic space due to the fundamental work of Masur and
Minsky). The space Xi is the metric space CK(Yi), where K is large enough.

In order to apply our Theorem 6 to the action of M1(S) on Xi, we recall a
fundamental result of Ivanov [Iv] concerning the mapping class group: a finitely
generated subgroup of M(S) which is not reducible contains a pseudo-Anosov
element. Here, reducible means that the subgroup permutes a finite set of
disjoint simple closed curves, up to homotopy, equivalently is elliptic while acting
in the complex of curves of S.

Lemma 5 Let G ⊂ M(S) be a f.g. irreducible group and N ⊂ G a finitely
generated normal subgroup. Then N contains a pseudo-Anosov.

If an elementary subgroup of M1(S) acting on Xi contains a pseudo Anosov,
it is virtually cyclic.

Proof If a N contains no pseudo-Anosov and is finitely generated, then its
action on the complex of curves is elliptic and the set of curves preserved by N
is bounded (for instance because of the acylindricity of the action). Applying
Ivanov’s Theorem, we get that G must be reducible.

As the vertices of the projection complex associated to Yi are sub-surfaces,
Lemma 2 in 4.2 implies that a pseudo-Anosov ψ cannot act as an elliptic or
parabolic isometry of PK(Yi) = Xi. The elementary subgroup generated by
ψ acts by translation on its stable axis, with kernel a subgroup K which is
reducible as it fixes the stable vertices of this stable axis. If it is not finite, the
set of curves it fixes in the complex of curve is bounded (by acylindricity) and
cannot be ψ invariant.

�
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Now, let Γ be a group and ϕn : Γ →M(S) be an infinite sequence of pairwise
non conjugate homomorphisms.

Let Γ1 ⊂ Γ is the intersection of all kernel of all homomorphisms of Γ to the
permutation group of the set I. As Γ is finitely generated and I is finite, the
subgroup Γ1 is of finite index in Γ, and for every n, ϕn(Γ1) ⊂ M1(S). Thus,
the restriction of hn to Γ1 does not permute the factors Xi.

Let us fix a generating system Σ of Γ1. Simultaneously, we fix a generating
system of M(S) and denote by |γ| the word length of an element γ ∈M(S).

If ϕ : Γ1 → M(S) is an homomorphism, the energy of Γ1 acting on the
Cayley graph of M(S) is E(ϕ) = Minγ∈M(S)Maxs∈Σ |γ−1ϕ(s)γ|. As they are
only a finite number of elements of a given length, there are only a finite number
of conjugacy classes of homomorphisms whose restriction to Γ1 have a given
energy.

In our case, the homomorphisms (ϕn)n∈N are pairwise non conjugate, there-
fore limn→∞E(ϕn) = ∞.

For each n choose γn such that the minimum is achieved, and let us replace
ϕn by its conjugate γn.ϕnγ

−1
n . Let C be the asymptotic cone of the mapping

class group associated to the sequence En, namely C = limω(
1
En

Ca(M(S)), 1).

Let us fix an origin α = (αi)i∈I in Πi∈IXi. Recall (Theorem 7) that the
orbit map M1(S) → Πi∈IXi defined by φ(g) = g.α = (g.αi)i∈I is a quasi-
isometric embedding, i.e there exists constants K,L such that K−1 −L ≤ |g| ≤
Maxi∈I d(g.αi, αi) ≤ K.|g|

Therefore, if n is fixed and ei,n is the energy of the action ϕn of Γ1 on Xi

computed at the point αi K
−1E(ϕn)− L ≤ Maxi∈I ei,n ≤ KE(ϕn).

Fort each n, let in be an index for which this maximum is achieved. As the
sequence (in) takes only a finite number of values, if j = limω in, for ω-almost
all integer n, in = j.

If i is another index, then for ω-almost all integer n, 0 ≤
ej,n
ei,n

≤ 1, and either

limω
ej,n
ei,n

= 0 or limω
ej,n
ei,n

= λj > 0.

Now, let Ti be the minimal invariant subtree of the limit tree of the sequence
of hyperbolic spaces limω

1
E(ϕn)

(Xi, αi). Note that, if limω
ej,n
ei,n

= 0, the origin

is fixed by all the generators, and Ti is reduced to a point. But if limω
ej,n
ei,n

=

λj > 0, the limit tree Ti is, up to the factor λi, the same tree as the minimal
subtree of the limit tree limω(

1
ei,n

Xi, αi) defined by the sequence of actions of

Γ1 on Xi .

Proposition 8 Assume that for all n, the group ϕn(Γ1) is neither reducible
nor virtually abelian. Then, Γ1 admits a non elementary action on a tree, more
precisely, for some i, the action of Γ1 on Ti is not elementary.

Let N be a f.g. normal subgroup contained in the kernel of the action of Γ1
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on this tree Ti. Then for infinitely many n, ϕn(N) is finite. In particular, the
restriction of ϕn to a subgroup of finite index in Γ1 factors through Γ1/N .

Proof
Let O ⊂ C the orbit of the natural base point limω e for the limit action

of Γ1. Dividing the distances by E(ϕn) we see that the orbit map induces a
bi-lipshitz embedding φ : O ⊂ C → Πi∈I′ limω(

1
ei,n

Xi, αi), where I
′ ⊂ I is the

subset for which λi > 0. This embedding is equivariant for limit the action of
Γ1 on these spaces.

The fact that for some i, the action of Γ on Ti is not elliptic, follows from
[Be-Dr-Sa], Section 6, Theorem 6.2, who proved that the orbit O of the group
Γ1 on C is unbounded. As the embedding of C in the product of the limit spaces
is bi-Lipshitz (hence metrically proper) it cannot project onto bounded orbits.
For some index i the action of Γ1 on the limit tree is unbounded, and Γ1 is not
elliptic in Ti.

If Ti is a line (equivalently if the limit action is elementary) Proposition 6
(3) proves that for some n ϕn(Γ) acting on Xi is elementary. As it contains a
pseudo-Anosov, it must be virtually abelian (Lemma 5), contradiction.

For the second point, note that, due the weak acylindricity property (Propo-
sition 6, (2)), the group ϕn(N) is elementary elliptic, hence reducible. Due to
Lemma 5 it must be finite.

�

5.3 Holomorphic family of Riemann surfaces

LetX be a compact Kähler manifold. A holomorphic family of Riemann surfaces
of genus g over X is a pair (Z, π) where Z is a compact complex manifold and
π : Z → X a holomorphic fibration such that the fibers of π are Riemann
surfaces of genus g.

Let x0 be a base point in X , Zx0 = π−1(x0) its fiber and S the underlying
topological surface. Let T = Tg be the Teichmüller space of S. Recall that T is
defined as the set of isotopy classes of complex structures on S, i.e. the quotient
of the set of complex structures on S by the group of diffeomorphisms of S that
are isotopic to the identity. The mapping class group M(S), being defined as
the group of isotopy classes of diffeomorphisms of S, naturally acts on T .

As the bundle Z → X is locally trivial, it determines an homomorphism
ϕ : π1(X, x0) →M(S) called the monodromy.

Simultaneously the Teichmüller theory enables to construct a complex struc-
ture on T and an holomorphic map Φ from the universal cover (X̃, x0) of X to
T , such that Φ(p) is the isotopy class of the complex structure on the image of
p in X .

Let us briefly recall the construction of this map Φ, called the classifying
map. As we will use it in the slightly more general context of orbifolds, we
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present this construction in terms of homomorphisms of étale groupöıds rather
than analytic continuation of holomorphic maps.

A differentiable trivialization Ψ : U × S → Z over a connected open neigh-
borhood U of x0 gives a map ΦU sending x to the complex structure on S
obtained by pulling back by Ψ(x, .) : S → Z the complex structure of Z. A
fundamental result (due to Teichmüller and Bers) endows T with a structure
of a complex manifold so that the map ΦU is holomorphic (see for instance the
beautiful text of Weil [We]). One proves that this map is uniquely defined (i.e
it does not depend on the trivialization over U) modulo the action of the finite
group of complex automorphism of the Riemann surface Aut(Sx0).

Let (X̃, x0) be the universal cover of X , computed at the base point x0.

Let (Uα)α∈A be a covering ofX by open sets which is an atlas for the complex
structure and over which the family has a trivialization. We may assume that
the intersections Uα∩Uβ are empty or contractible. Let us consider holomorphic
maps Φα : Uα → T over each of these sets such that the complex structure over
a point p is isomorphic to Φα(p). The family (Φα) is well defined up to the
action of M(S0). For every non empty intersection Uα ∩ Uβ there exists a
mapping class gα,β such that Φα = gα,βΦβ . In the langage of étale groupöıds
([Br-Ha] Chapter III.G.2), the set of map (Φα)α∈A and isometries gα,β is a
continuous homomorphism from the étale groupöıd of holomorphic changes of
charts defining X to the (mapping class) group of isometries of the Teichmüller
space endowed with its Weil-Peterson Kähler structure. From the developing
Lemma ([Br-Ha] Proposition 3.17, p. 611), one deduces that there exists a
unique holomorphic map Φ from the universal cover of X computed at the
point x0 to the Teichmüller space which extends the map Φ0 defined on Uo ∋ x0.
Moreover this map is equivariant for the monodromy ϕ : π1(X, x0) →M(S) .

This (rather abstract) point of view allows us to immediately extend the
definitions to the case whereX is a complex orbifold , viewed as an étale groupöıd
(see [Br-Ha]). If the orbifold is developable, a non isotrivial family of Riemann
surfaces over X is nothing else but a family π̃ : Z̃ → X̃ over the universal cover
of X , endowed with a π̃-equivariant action of the fundamental group πorb

1 (X).
An important case is the one where the base is a hyperbolic (hence complex)

2-orbifold. Such an orbifold is developable, its fundamental group is a lattice in
PSL2(R) = Aut(U) the group of automorphisms of the unit disc. Conversely,
let Γ ⊂ PSL(2,R) be a Fuchsian group, then X = U/Γ is a complex 2-orbifold.
A family of Riemann surfaces over X is gives a representation ϕ : Γ → M(S)
and a holomorphic Γ-equivariant map from U → T .

Summing up, a holomorphic family π : Z → X of Riemann surfaces of genus
g over a complex manifold (orbifold) X determines two objects:

1. The monodromy ϕ, which is a homomorphism from the (orbifold) funda-
mental group of X to the mapping class group of its fiber.

2. The classifying map which is an holomorphic ϕ-equivariant map from the
universal cover of X to the Teichmüller space of S.
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One says that the family is isotrivial if Φ is constant (equivalently, the image
of ϕ is finite).

Definition 8 Let (Z, π,X) be a family of Riemann surfaces over X. One says
that π factors through a curve if there exists a hyperbolic 2-orbifold Y , a holo-
morphic map with connected fibers F : X → Y and a family (Z ′, π′, Y ) over Y
such that Z = F ∗Z ′.

Let us recall that the Teichmüller space is contractible (it is homeomorphic to
a ball) and let ΩWP be the imaginary part of the Weil-Peterson Kähler metric
(defined in [We]). As T is contractible and the action of M(S) is properly
discontinuous with finite stabilizers, this space serves as a classifying space of
M(S) over R, and the form ΩWP determines a cohomology class in the mapping
class group [ΩWP] ∈ H∗(M(S),R), the Weil-Peterson class.

Proposition 9 The following assertions are equivalent:

i. The family factors through a curve

ii. ϕ∗([ΩWP])
2 = 0 (in H4(Γ,R))

iii. The complex rank of the (holomorphic) classifying map Φ is 1.

Proof The implications i ⇒ ii and iii ⇒ i are obvious. Assume that the
complex rank of Φ is r > 2. As Φ is holomorphic and ΩWP is a Kähler form
on the Teichmüller space, Φ∗(Ωr

WP) is a non zero harmonic (r, r)-form on X̃,
which is Γ-equivariant and defines a non zero harmonic form of degree 2r on
X , providing a non zero class in H2r(X,R). As the Teichmüller space is con-
tractible, this class vanishes on πk(X) for every k ∈ {1, . . . , 2r} and belongs
to the image of the cohomology of the fundamental group by the natural map
H∗(Γ,R) → H∗(X,R). �

Corollary 1 The fact that a family of Riemann surfaces over a manifold X
factors only depends on its monodromy (the morphism ϕ : Γ = π1(X) →M(S)),
not on the manifold.

If there exists a finite cover X1 of X such that the pullback of the bundle Z
factors through a curve, then Z itself factors.

Proof. For the second point, note that the family factor if and only f
ϕ∗(ωWP )

2 = 0, and the map H2,2(X) → H2,2(X1) is injective, as X is a Kähler
manifold. The following Theorem, due to Imayoshi and Shiga [Im-Sh] (see also
[McM]) is a key point in their proof of Parshin’s finiteness Theorem.

Theorem 8 Let ϕ be the monodromy of a family of Riemann surfaces; then
the image of ϕ cannot be reducible or virtually cyclic.
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Proof The first point is just a reformulation of Paragraph 4, Case 2 from
[Im-Sh], or the “Irreducibility” Part in the proof of Theorem 3.1, page 126 in
[McM]. In order to check that the image cannot be virtually Z, note that by
contradiction this would imply that ϕ∗Ω = 0, as H2(Z,R) = 0. Thus Φ would
be constant. �

5.4 Finiteness of monodromies.

Let us say that a morphism Γ → M(S) from a Kähler group to the mapping
class group of a topological surface S of genus at least 2 is a monodromy if it
can be realized as the monodromy of a family of Riemann surfaces over a Kähler
manifold whose fundamental group is Γ.

Theorem 9 Let Γ be a Kähler group. Then there are only finitely many conju-
gacy classes of monodromies ϕ : Γ →M which do not factor through a Riemann
surface.

Proof Let ϕn be an infinite sequence of pairwise non conjugate monodromies.
Theorem 8 enables to apply Proposition 8 together with the factorization The-
orem (Theorem 6). We construct a finite index subgroup of Γ which fibers over
a Riemann surface group Λ such that if N is the kernel of this fibration, ϕn|N
is finite. Thus, Γ admits a finite index subgroup such that ϕn restricted to this
subgroup factors through a Riemann surface. By Corollary 1, ϕn itself factors
through a Riemann surface, a contradiction. �

Corollary 2 The number of non isotrivial families over a compact Kähler man-
ifold X can be bounded in terms of its fundamental group.

Proof The case of a Riemann surface is a Theorem of L. Caporaso [Ca].
Applying simultaneously Proposition 2 and corollary 1, we are reduced to study
families which do not factor through a curve. According to Theorem 8, we know
that these families can only have finitely many possible monodromies. �

In order to conclude, we need to prove the following Lemma, which extends
the Rigidity Theorem of Imayoshi and Shiga [Im-Sh], page 212,see also [McM].

Lemma 6 On a given compact Kähler manifold, a non isotrivial family is de-
termined by its monodromy.

Proof The case of curves is exactly the Rigidity Theorem of Imayoshi and
Shiga. The case where X is a projective manifold follows by induction on the
dimension, while considering the restriction of the family to hyperplane sections.
For the case of a Kähler manifold, let us first assume that the monodromy group
ϕ(Γ) of a fixed family Y → X do not contain element of finite order.

Consider the algebraic reduction V of X (see [Ue], p. 24-25). There exists
another Kähler manifold X∗ bimeromorphically equivalent to X via a mero-
morphic map F (which induces an isomorphism on fundamental groups), a

27



projective manifold V and a holomorphic map r : X∗ → V such that for every
holomorphic map to X → CPn, there exists an holomorphic map g : V → CPn

such that f = goF .
If Φ : X → Mg is the classifying map of our family, as Mg is a quasi-

projective manifold, every fiber of the algebraic reduction V are send to point
in Mg, the monodromy factors through r∗, and, as the monodromy group does
not contain elements of finite order, the family overX is the pullback of a family
over V . Therefore it is determined by its monodromy.

Let us now consider the general case. Let M ′(S) a torsion free subgroup of
finite index in M(S). If ϕ : π1(X) → M(S) is given, we can consider the étale
cover X ′ of X associated to the subgroup ϕ−1(M ′(S)). As a family over X is
determined by its pullback on X ′, we see that a family over X is determined by
the restriction of ϕ to this subgroup of finite index. �
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