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In this paper we present an original demonstration of the Bertrand's theorem. This demonstration is the consequence of a generalization of the Binet's equation. Moreover we present a family of central and non conservative forces which allows obtaining closed trajectories.

Introduction

At the 19 th century the mathematician Bertrand published an important theorem of the classical mechanics (Bertrand,[1]). This theorem states that it is only two conservative and central forces for which all orbits radially bounded are closed, the force of Newton and the Hooke's. These forces leads to conic trajectories with the difference that the Newton's is directed towards one of the foci and the Hooke's towards the geometrical centre of the conic. The proof of this theorem has continued to draw attention and several different demonstrations has been recently published (Santos[2], Grandati [3]). In this paper we present another demonstration of this theorem. This demonstration seems original and is the consequence of a generalization of the Binet's equation. Moreover we present a family of central and non conservative forces which allows obtaining closed trajectories. This family seems unknown. Consequently, in a first part of this paper we study the forces which lead to conics trajectories. In a second part we study the central forces and we determine if these forces are conservative.

Generalization of the Binet's equation

To obtain these forces we use the equation of the acceleration in polar coordinate. Therefore as distinguished from the Binet's equation we consider not only the radial acceleration but also the tangential acceleration. This original method (at our knowledge) allows obtaining all the forces which lead to conic trajectories and not only the central forces. We present here this method which has been published elsewhere (Guiot [4], [5]).

As usual in celestial mechanics we will use the polar system of coordinate )
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where F (foci of the conic) is the origin of the repair, r is the radial distance to the origin with the relation
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And the angle  is measured from the periapsis of the orbit. In this repair the acceleration is given by the classical relations
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But the orbital shape is more concisely described by the reciprocal r u 1  as a function of  .

And by using the relations " . ' ' ' . 
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We obtain a generalization of the Binet's equation.
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By noticing that this equation can be written
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We introduce two functions given by
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And the acceleration becomes
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We can now write the system of equation
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Where

Ais constant. To obtain ) ( r as a conic, we have to solve a differential equation as
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Where B is a second constant. Consequently we have now to introduce a relation between ) (u Y and   . This relation is
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Where

C is a constant of the motion. Indeed with this relation we obtain
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This differential equation leads now to the classical solution
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Where e is the eccentricity and a the semi major axis. Thus we obtain
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We have now to determine the tangential component of the acceleration and by using
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Consequently our family of force (per unit mass) is with respect for the Newton's law of dynamics
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Where

A and C are two constants. Their physical dimensions depend on the choice of ) (r f .

Determination of the central forces

A force is central if this force is always directed to the same point. Consequently to determine the family of central forces we introduce a point, called I which is located on the right ) (AB . The distance FI is called  (Figure 1). 

And the force becomes
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Consequently we have determined a family of central forces which lead to conic trajectories. These forces are depending on two constants 1 C and 2 C are directed toward the point I . The distance IF is given by To simplify the expression we call R the distance IM . This one is given by 
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And by using
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We determine now the magnitude of our force. This one is given by
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Note that we give the expressions of the kinetic momentum and of the equation of time of this force in another paper (Guiot [6]).

-Our demonstration of the Bertrand's theorem.

A force is conservative if its magnitude only depends on the distance of the object from the origin. With this definition we can now study our force. By introducing the unity vector This indicates that I and O are combined. Consequently this force is the Hooke's. A second solution is to inverse the relation between R and r given by equation (1). We obtain
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It appears that we can't choose the sign of the second part of this relation. Indeed, by noticing that the equation We see that for this value of r the distance IM is minimal. Therefore r is defined by )
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Thus the sign of the second part of the equation (2) has to be alternatively positive and negative. Thus the expression of the force is depending on the position of M and consequently on the angle of revolution. This fact indicates that this force isn't conservative because we can't obtain a potential which is only depending on R . Consequently the only solution is given by the condition R r  The solving of equation (1) leads to 0

2  C Or ) 2 2 ( ) ( 2 2 2 1 2 R ae a R a ae aC C       
We have to choose the first solution because 2 C has to be constant. Consequently the force is given by
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And the position of center of force is given by We have demonstrated that only two central and conservative forces lead to conics trajectories, the Newton's and the Hooke's. This result is naturally in agreement with the theorem of Bertrand but is obtained with an original way.

Conclusion

In this paper we showed that the force given by 

Figure 1 .

 1 Figure 1. Representation of the central force

  Thus if the force is conservative r has to disappear from this expression. A first solution is to choose 0

F

  are combined. This force is the Newton's.

  Is a central force which leads to conic and closed trajectories. This force isn't conservative except in the two limiting cases: the Hooke's.

This result is an original demonstration of the Bertrand's theorem. Moreover the force we present here seems unknown until today. Consequently it could be an improvement of our knowledge on the relation between the conic and the central forces.