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Iterative decoding of Gold sequences

Gold sequences are widely used in communications and positioning systems for synchronization purposes or spread spectrum transmissions. This paper addresses the decoding of the initial state of a Gold sequence. This can be used to detect a harmful interferer closed to a 3G femtocell base station and implement interference mitigation techniques. The decoder implements an iterative message-passing algorithm which is built upon a parity check matrix. Thus, it depends on the coding properties of Gold codes. In this paper, we synthesize the coding properties of Gold codes and use them to compute the number of parity check equations of weight t = 3, 4 or 5. Eventually, the impact of the parity check equations used for decoding is highlighted.

INTRODUCTION

Gold sequences form a family of binary sequences with excellent correlation properties [START_REF] Mceliece | Finite fields for computer scientists and engineers[END_REF]. Hence, they are widely used for synchronization purpose in wireless communications and positioning systems, and also for scrambling in multi-user asynchronous CDMA systems [START_REF]3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Spreading and modulation (FDD)[END_REF] [START_REF] Kaplan | Understanding GPS: principles and applications[END_REF]. A Gold sequence z is generated with a preferred pair of m-sequences x and y [START_REF] Mceliece | Finite fields for computer scientists and engineers[END_REF].

The conventional method to synchronize with a Gold sequence is to correlate the received signal with a replica of the searched sequence [START_REF] Polydoros | A unified approach to serial search spreadspectrum code acquisition-part I: general theory[END_REF] [START_REF] Akopian | Fast FFT based GPS satellite acquisition methods[END_REF]. If a correlation peak is observed and is above a given threshold, the synchronization is declared. An alternative method consists in performing detection through a decoding of the received sequence. In fact, a m-sequence generator can be regarded as a linear code generator. It is thus possible to detect a transmitted sequence with a suitable decoder. This solution was originally proposed in cryptography for fast correlation attacks on stream ciphers [6][7]. This has been applied more recently in wireless communications and localization [START_REF] Chugg | A new approach to rapid PN code acquisition using iterative message passing techniques[END_REF] [START_REF] Kerr | Iterative signal processing for blind code phase acquisition of CDMA 1x signals for radio spectrum monitoring[END_REF][10] [START_REF] Noes | Blind identification of the uplink scrambling code index of a WCDMA transmission and application to femtocell networks[END_REF]. Exploiting the unique properties of theses sequences, an iterative message-passing algorithm can be implemented to decode the received signal [START_REF] Kschischang | Factor graphs and the sum-product algorithm[END_REF]. All these papers focus on the decoding of m-sequences [START_REF] Mceliece | Finite fields for computer scientists and engineers[END_REF]. A notable exception is [START_REF] Principe | Performance evaluation of message-passing-based algorithms for fast acquisition of spreading codes with application to satellite positioning[END_REF] which proposes a decoding procedure for Gold sequences. The approach consists in searching parity check equations which are multiple of g z (x), the generator polynomial of sequence z. The authors did not detailed the coding properties of Gold sequences. One objective of this paper is to clarify this point.

The decoding procedure is known to be sensitive to the weight of the parity check equations [START_REF] Santhi | On the effect of parity-check weights in iterative decoding[END_REF]. It is given by the number of non zero coefficients of the equation. It is thus fundamental to study these parity check equations for Gold sequences. In this paper, we first provide a synthesis of Gold sequence properties from the viewpoint of coding theory. A Gold sequence is a codeword of a cyclic linear code characterized by the generator polynomials of m-sequences x and y. For the decoding procedure, we are interested in the properties of the dual code, since it defines the parity check equations used for decoding. This work will be helpful for evaluating the number of parity check equations of weight t = 3, 4 or 5. This tells us, if these equations at least even exist and if yes, how many can be used for decoding. The goal is to use parity check equations having the smallest weight t for decoding.

The number of parity check equations of weight t = 3 and 4 has already been computed by Kasami in [START_REF] Kasami | Some results on cyclic codes which are invariant under the affine group and their applications[END_REF]. In this paper we provide an analytical expression for the number of parity check equations of weight t = 5 when the degree of the generator polynomial r is odd. To the best of our knowledge, this has not been given in the literature yet. Knowing this number is important because there is no parity check equation of weight t < 5 when r is odd. Then, we have measured the probability of missed detection as a function of t and the number of equations used for decoding. This highlights the decisive impact of selecting an even or an odd degree r.

The paper is organized as follows. Section I details the generation of Gold sequences and the selection of the "preferred pair" of m-sequences used for generating a Gold sequence. Section II recalls some properties of linear cyclic codes and apply them to Gold codes. The number of parity check equations of weight t = 3, 4 or 5, when r is even or odd, is also given. Section III details the message-passing algorithm used for decoding. Section IV presents the decoding performance as a function of the degree r, the weight t and the length of the message at the input of the decoder. Eventually, Section V concludes this paper.

Notations: a sequence will be written with upper case with the bipolar representation (Z(k) ∈ {-1, +1}) and with lower case with the binary representation (z(k) ∈ {0, 1}). x mod n is the value of x modulo n. The index of a sequence is computed modulo the sequence's length N : s(k) = s(k mod N ). The modulo 2 binary addition is noted with symbol ⊕.

I. GENERATION OF GOLD SEQUENCES

A Gold sequence z is obtained by the binary addition of a "preferred pair" of m-sequences x and y [START_REF] Gold | Optimal binary sequences for spread spectrum multiplexing[END_REF] :

z(k) = x(k) ⊕ y(k) (1) 
We will first review the main properties of m-sequences and then explain the meaning of "preferred pair".

A m-sequence is generated with a Linear Feedback Shift Register (LFSR) sequence generator. The feedback taps are given by the generator polynomial g(x) = r k=0 g k x k . It is primitive for a m-sequence, so that the sequence has the largest period among all the sequences that can be generated with a LFSR having the same number of registers. This is why they are named maximal length sequences, and in short msequences. If the primitive polynomial g(x) has degree r, the period is n = 2 r -1. There exist two structures for generating these sequences: Galois and Fibonacci generators [START_REF] Peterson | Introduction to spreadspectrum communications[END_REF]. They are depicted in Fig. 1 and Fig. 2. These two generators give sequences which are simply shifted with respect to each other. For instance, if the shift registers of the two generators are loaded with the same values, the Fibonacci architecture will generate sequence x(0), . . . , x(n -1), while the Galois one will generate sequence x(i), . . . , x(n -1), x(0), . . . , x(i -1) for some i > 0.

There exists a decimation factor d between any two msequences x and y having the same length [START_REF] Mceliece | Finite fields for computer scientists and engineers[END_REF] : y(k) = x(dk).

A "preferred pair" of m-sequences is such that d = 2 e + 1 and e satisfies [START_REF] Gold | Optimal binary sequences for spread spectrum multiplexing[END_REF] : gcd(2 e + 1, 2 r -1) = 1. This condition is met if:

r = 0 mod(4) ⇔ r is odd or r = 2 mod(4) (2) 
and gcd(e,r) = 1 if r is odd

2 if r = 2 mod(4) (3) 
Let SR x (i) be the content of the i th shift-register of sequence x. The state of sequence x is the vector

A x = (SR x (0) • • • SR x (r -1)
). With the Fibonacci generator, the initial state of a sequence x is given by its first r chips :

x(0) = SR x (0), • • • , x(r -1) = SR x (r -1
). This property is not valid for the Galois generator. 
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II. DECODING OF GOLD SEQUENCES

A. Cyclic code properties

We will first recall some useful definitions concerning cyclic codes. They can be found in chapters 1 and 7 of [START_REF] Macwilliams | The theory of error-correcting codes[END_REF]. A linear code [n, k] transforms an input vector u

= (u 0 , • • • , u k-1 ) containing the information message into a codeword c = (c 0 , • • • , c n-1 )
. It is specified either by its generating or parity check matrices G and E :

c = u G Ec T = 0 (4) 
In this article, we will often use the polynomial representation of a codeword. This will be very useful to handle parity check equations. It is defined as follows : each code-

word c = (c 0 , • • • , c n-1 ) is associated with the polynomial c(x) = c 0 + c 1 x + • • • + c n-1 x n-1 .
In the sequel, we use the conventional and polynomial representations indistinctly. Assume that f (x) is the generator polynomial of code C, then every codeword c(x) is a multiple of f (x) modulo x n -1.

A cyclic code C fulfills the following property : if

(c 0 , • • • , c n-1 ) ∈ C then (c n-1 , c 0 , • • • , c n-2 ) ∈ C.
As a consequence, shifting one bit of the codeword c is represented by the polynomial xc(x). Hamming, BCH, simplex and Gold codes belongs to this family of linear cyclic codes.

Let C be a linear code [n, k], its dual C ⊥ is the set of vectors orthogonal to every codeword of C :

C ⊥ = {u | u.v = 0 for all v ∈ C} (5) 
u.v is the conventional scalar product between vectors u and v.

When c ∈ C ⊥ , c(x) is referred as a parity check polynomial of C. The weight of a codewords is defined by the number of non-zero elements (Hamming weight). By extension, this is also used for parity check polynomials. The dual code of a cyclic code is also cyclic. Assume that f (x) is the generator polynomial of code C, the check polynomial of C is defined by: h(x) = (x n -1)/f (x). The generator polynomial of C ⊥ is the reciprocal of the check polynomial : f ⊥ (x) = x r h(x -1 ).

B. Gold sequence coding properties

In the domain of error correcting codes, a m-sequence is a codeword of a simplex code [START_REF] Macwilliams | The theory of error-correcting codes[END_REF]. A simplex code S x is a cyclic linear code [n = 2 r -1, k = r] which check polynomial is g x (x). A Gold code is also a cyclic linear code [n = 2 r -1, k = 2r]. The information bits are loaded at initialization in the r shift registers of the 2 m-sequences x and y. The codeword is the generated sequence of length n = 2 r -1 bits. The dual of a Gold code is the intersection of the dual codes of the two simplex codes S x and S y used to generate the sequences x and y:

S ⊥ z = S ⊥ x ∩ S ⊥ y .
It is known from the literature that the dual code of simplex code S x is the Hamming code [START_REF] Macwilliams | The theory of error-correcting codes[END_REF]. Let α denote the primitive root of polynomial g x (x). If c(x) ∈ S ⊥

H x = [n = 2 r -1, k = 2 r -r -1] generated by g(x)
x , it must verify c(α) = 0 [START_REF] Macwilliams | The theory of error-correcting codes[END_REF]. Now, let's consider the case of c(x) ∈ S ⊥ z . Due to the decimation property between sequences x and y, the primitive root of g y (x) is β = α d . Thus, we shall have c(α) = c(α d ) = 0. α and β being primitive roots of g x (x) and g y (x), c(x) must be a multiple of g x (x)g y (x). As a conclusion, S ⊥ z is the set of codewords which polynomial is a multiple of g z (x) = g x (x)g y (x).

C. Number of parity check equations

Let define N * t the total number of parity check equations of weight t. Since S ⊥ z is a cyclic code, it is sufficient to enumerate only the parity check equations having a constant term equal to 1. The others are obtained by a simple cyclic shift. We note N t the number of equations having a constant term. It is related to N * t by the following equation [START_REF] Maitra | Results on multiples of primitive polynomials and their products over GF(2)[END_REF] :

N t = t 2 r -1 N * t (6)
Let A j denote the number of Gold sequences of weight j. The Pless equality links A j and N * j by the following equation [START_REF] Pless | Power moment identities on weight distributions in error correcting codes[END_REF]:

N j=0 (N -j) t A j = t j=0 γ j N * j (7) 
where

γ j = t k=0 k!S(t, k)2 2r-k N -j N -k (8) 
S(t, k) is a Stirling number of the second kind:

S(t, k) = 1 k! k i=1 (-1) k-i k i i t (9) 
If the A j 's are known, N * t are computed by solving iteratively the set of t equations:

γ t N * t = N j=0 (N -j) t A j - t-1 j=0 γ j N * j ( 10 
)
Since the all '0' codeword belongs to S z , we have A 0 = N * 0 = 1. Moreover N * 1 = 0 otherwise the Gold sequence would be equal to the all '0' vector whatever the initial state. Similarly, N * 2 = 0 otherwise, due to the "add and shift" property of msequences, their should exist a τ such that x(k)⊕y(k +τ ) = 0 for all k. This is not possible because sequences x and y are generated by distinct primitive polynomials.

Coefficients A j have been evaluated by Kasami when he studied the cross-correlation properties of m-sequences. If δ = gcd(r, e) = gcd(r, 2e), then [START_REF] Kasami | Some results on cyclic codes which are invariant under the affine group and their applications[END_REF]:

A 0 = 1 A 2 r-1 -2 (r+δ)/2-1 = (2 r-δ-1 + 2 (r-δ)/2-1 )N A 2 r-1 +2 (r+δ)/2-1 = (2 r-δ-1 -2 (r-δ)/2-1 )N A 2 r-1 = (2 r -2 r-δ + 1)N A j = 0 elsewhere (11)
It is remarkable that these numbers do not depend on the choice of the preferred pair of m-sequences. It is sufficient to satisfy the decimation property defined for selecting a preferred pair (see Section I).

Practically, δ is defined as follows:

• if r = 2 mod (4): δ = 2 • if r is odd : δ = 1
Inserting ( 11) in [START_REF] Noes | Blind identification of the scrambling code of a reverse link CDMA 2000 transmission[END_REF], we have the following results:

• if r is odd : N 3 = N 4 = 0
• If r is even and r = 2 mod (4):

N 3 = 1 and N 4 = (2 r -4)/3 (12) 
These results have been already obtained by Kasami using a different approach [START_REF] Kasami | Some results on cyclic codes which are invariant under the affine group and their applications[END_REF].

When r is odd, there is no parity check equation of weight t < 5. This has an impact on the decoding performance which are better for smaller t [START_REF] Santhi | On the effect of parity-check weights in iterative decoding[END_REF].

We will now derive a theoretical formula of N 5 when r is odd.

To do so, we need to solve [START_REF] Noes | Blind identification of the scrambling code of a reverse link CDMA 2000 transmission[END_REF] with t = 5. Considering that N * 0 = 1 and N * 1 = N * 2 = N * 3 = N * 4 = 0, this reduces to:

N * 5 = 1 γ 5   N j=0 (N -j) 5 A j -γ 0   (13) 
It is thus required to compute the 3 terms : γ 5 , γ 0 and N j=0 (N -j) 5 A j . Applying directly (8), we get:

γ 5 = 5!2 2r-5 γ 0 = 2 2r-5 (N 5 + 10N 4 + 15N 3 -10N 2 ) (14) 
The third term is equal to:

N j=0 (N -j) 5 A j = a 5 (2 2r -1) + 5a 4 (2 2r-1 -2 r-1 ) +10a 3 (2 r-2 -2 2r-2 ) +10a 2 (2 3r+δ-3 -2 2r+δ-3 ) +5a(2 4r+δ-4 -2 3r+δ-4 ) +N 5 + 2 4r+2δ-5 -2 3r+2δ-5 (15) where a = 2 r-1 -1
The powers of a and N need to be expanded to compute N * 5 . We eventually obtain:

N * 5 = 2 5r-5 -11 2 4r-5 + 26 2 3r-5 -16 2 2r-5 5!2 2r-5 (16) 
Finally, N 5 is given by:

N 5 = (2 r-1 -1)(2 r-1 -4) 6 (17) 
Table I summarizes the values of N 3 , N 4 and N 5 according to the primitive polynomial degree r. 

N3 N4 N5 r = 2 mod 4 1 (2 r -4)/3 - r is odd 0 0 (2 r-1 -1)(2 r-1 -4) 6
In addition, the only parity check polynomial existing for t = 3 and r even is known :

h 3 (x) = x 2(2 r -1)/3 + x (2 r -1)/3 + 1 (18) 
Indeed, if r is even, h 3 (x) is divisible by every primitive polynomial of length r [START_REF] Huber | Some comments on zech's logarithms[END_REF]. This means that h 3 (α) = h 3 (α d ) = 0 and, invoking the minimal property of g x (x) and g y (x), h 3 (x) is a multiple of g x (x)g y (x). It is thus the polynomial representation of the only parity check equation of weight t = 3. This confirms the parity check polynomial found in [START_REF] Principe | Performance evaluation of message-passing-based algorithms for fast acquisition of spreading codes with application to satellite positioning[END_REF] for the Gold sequence used in the GPS.

Table II shows the number of parity check equations of weight t = 4 or t = 5, depending on r. For r even, only N 4 has been computed since there are obviously enough parity check equations of weight t = 4. Using an exhaustive search strategy, these theoretical values have been validated for r 11. One observes that there are plenty of parity check equations available. This will not be a limiting factor. 

III. ITERATIVE MESSAGE-PASSING DECODING

A. Iterative message-passing algorithm

The principle for the decoding of a Gold sequence is to build a sparse parity check matrix E and then apply an iterative message passing algorithm on the induced Tanner graph [13][12][22]. This provides an approximation of the MAP decoding of the sequence.

The received sequence is noted z and R(i) = (-1) z(i) + w(i) is the observation of variable z(i) at the decoder input. w(i) is an additive white gaussian noise of variance σ 2 0 . It is assumed the receiver observes M elements of the sequence: R(0), • • • , R(M -1). For practical reasons, the decoder implements a Min-Sum (MS) algorithm [START_REF] Wiberg | Codes and decoding on general graphs[END_REF] since it is known to be insensitive to a uniform scaling of input variables R(i)'s.

B. Parity check matrix

Let consider a sparse parity check polynomial of degree m: c(x) = m k=0 c k x k . Since the dual code is cyclic, all the codewords x i c(x) belong to S ⊥ z and are parity check equations of S z . It is thus easy to build a parity check matrix based on c(x).

Assuming the entire sequence is observed, the parity check matrix is circulant and square (M = n) : 

E =               c 0 • • • • • • c m 0 • • • • • • 0 0 c 0 • • • • • • c m 0 • • • 0 . . . .
0 0 • • • • • • 0 c 0 • • • • • • c m c m • • • • • • • • • 0 c 0 • • • c m-1 . . . . . . • • • • • • 0 . . . . . . . . . c 1 • • • c m 0 • • • • • • 0 c 0               (19) 
In order to improve decoding performance, an usual design strategy is to increase the column weight of the parity check matrix, while keeping the row weight constant. Having a large degree improves the probability to correct an error on that variable because it receives more information from its neighboring nodes. This is achieved by concatenating parity check matrices such as [START_REF] Maitra | Results on multiples of primitive polynomials and their products over GF(2)[END_REF], generated by different parity check polynomials. The overall parity check matrix becomes:

E eq =     E 0 E 1 . . . E Neq-1     (20) 
where N eq is the number of different parity check polynomials used for decoding.

C. Initial state estimation

The overall decoding operation is modeled as a function dec(.) that produces a status indicator I c and the estimated initial state of sequence z ( Âz ) :

{I c , Âz } = dec(R(0), R(1), • • • , R(M -1)) (21) 
I c is the indication function of the decoder. It outputs a 1 if the decoder finds a valid codeword :

I c = 1, if all parity check equations are satisfied 0, otherwise (22) 
If the decoding is successful (I c = 1), the soft decision output of the decoder is converted into a binary value (0 or 1) with a hard decision rule. Then, according to the Fibonacci representation of Fig. 1, the first 2r bits of the codeword represent the state of the shift registers of sequence z at initialization.

There exists a transposition matrix T Gold between the state of sequences z and x and y. It is defined by (27) in the Appendix. However, it is valid only with the Galois representation.

It is thus required to first defined the transposition matrix T F G between a Fibonacci and a Galois representation. It is defined by [START_REF] Penzhorn | Computation of low-weight parity checks for correlation attacks on stream ciphers[END_REF] in the Appendix. Eventually, the initial state of sequences x and y with the Fibonacci representation are obtained as follows :

Âx = T -1 F G,x [I r 0 r ]T -1 Gold T F G,z Âz Ây = T -1 F G,y [0 r I r ]T -1 Gold T F G,z Âz (23) 

IV. SIMULATION RESULTS

The performance of the algorithm is measured by the probability of missed detection P m , defined as follows : The decoder stops when either all the parity check equations are satisfied or the maximum number of iteration N iter = 60 is reached. The Gold sequence used for the evaluation are noted with the octal representation of the generator polynomials of sequence x and y (e.g. : 2157-3515). The parity check equations used for decoding are listed in tables III and IV. We have used the following notation: c l (x) = x m +x i +x j +x k +1 for t = 5 and c l (x) = x m + x i + x j + 1 for t = 4. For r = 10, the parity check equation of weight t = 3 is given by (18) : c(x) = x 682 + x 341 + 1.

Fig. 3 shows the probability of missed detection as a function of the number of parity check polynomials used for decoding for r = 10. One observed a large improvement from N eq = 2 to 4, then the gain decreases. The overall gain from N eq = 2 to 10 is about 4.5 dB at P m = 0.01. For N eq > 8 the complexity of the decoder increases with the number of parity checks and there will be a trade-off between complexity and performance. We also plot the probability of missed detection measured for the Gold sequence (2011 -3515) with N eq = 10. One can observe that performances are identical. It means that from the decoding perspective, all Gold sequences of the same degree r can be decoded with the same probability of detection. Fig. 4 shows the probability of missed detection measured with the Gold sequence (4005,4445) of degree r = 11. We also observe a gain when N eq increases. Compared to Fig. 3, one can observe a loss of more than 2 dB for N eq = 10. This is due to the weight of the parity check polynomials t = 5, which degrades the performance. In this paper we have investigated the iterative decoding of Gold sequences. This allows to perform a blind estimation of the initial state of the sequence if the generator polynomials are known. We detailed the coding properties of Gold codes and gave the number of parity check equations of weight t = 3, 4 or 5. This could be used for estimating the least degree of parity check equations of weight t [START_REF] Maitra | Results on multiples of primitive polynomials and their products over GF(2)[END_REF]. This is a very valuable information for the search of parity check equations [START_REF] Penzhorn | Computation of low-weight parity checks for correlation attacks on stream ciphers[END_REF] [START_REF] Chose | Fast correlation attacks: An algorithmic point of view[END_REF]. Simulation results show that increasing the number of parity check polynomials improves noticeably the probability of detection. The selection of the degree r of the generator polynomial has a significant impact on the decoding performance. When r is odd, there are only parity check polynomials of weight t ≥ 5. This degrades the decoding performance compared to configurations with t = 3 and 4 obtained when r is even.

APPENDIX

A. Conversion between Galois and Fibonacci generator initial states

Let a Gal (k) and a F ib (k) be the state of the k th register with the Galois and Fibonacci's representations. They are linked as follows [17, page 106] :

a Gal (k) = k i=0 a F ib (i)g(k -i) k = 0, . . . , r -1
This can also be written with a matrix-vector notation. Let A Gal and A F ib be the vectors containing the state of the shift registers according to the Galois and Fibonacci representations. They are related by a transposition matrix T F G : A Gal = T F G A F ib . The elements of matrix T F G are defined by :

T F G (i, j) = g(i -j) if j ≤ i 0 if j > i (24) 
On the other hand, the transposition from the Galois to the Fibonacci representation is obtained by the inversion of matrix T F G :

T GF = T -1 F G

B. Initial state of a Gold sequence

In this section, the relation existing between the initial state of a Gold sequence z and its preferred pair of m-sequences x and y is established. This relies on the property of LFSR sequence with the Galois representation. This is why sequences are designated with a subscript 'Gal' in the remaining part of this section.

Let SR z Gal (k) be the state of the k th shift-register of sequence z Gal with the Galois representation and K z Gal (x) = 2r-1 k=0 SR z Gal (k)x k be its polynomial representation. Likewise K x Gal (x) = r-1 k=0 SR x Gal (k)x k and K y Gal (x) = r-1 k=0 SR y Gal (k)x k are the equivalent representations for sequence x Gal and y Gal .

Let also define x Gal (x) = x Gal (0)+x(1) Gal x+• • •+x Gal (N -1)x N -1 as the polynomial representation of sequence x Gal . Likewise, y Gal (x) is the polynomial representation of sequence y Gal . With the Galois representation, the sequence polynomial is the result of the following division [START_REF] Peterson | Introduction to spreadspectrum communications[END_REF] :

x Gal (x) = K x Gal (x) g x (x)
Since z Gal (k) = x Gal (k) ⊕ y Gal (k), we have:

z Gal (x) = K x Gal (x) g x (x) + K y Gal (x) g y (x) = g x (x)K y Gal (x) + g y (x)K x Gal (x) g x (X)g y (x)
This means that sequence z Gal can be generated with polynomial g z (x) = g x (x)g y (x), and the initial state is related to the ones of sequences x Gal and y Gal by :

K z Gal (x) = g x (x)K y Gal (x) + g y (x)K x Gal (x) (25) 
Let define A z Gal = (SR z Gal (0) • • • , SR z Gal (2r -1)) T , A x Gal = (SR x Gal (0) • • • , SR x Gal (r -1)) T and A y Gal = (SR y Gal (0) • • • , SR y Gal (r-1)) T , the initial state of sequences z Gal , x Gal and y Gal .

Rewritting [START_REF] Chose | Fast correlation attacks: An algorithmic point of view[END_REF], A z Gal , A x Gal and A y Gal are linked by :

A z Gal = T Gold (A T x Gal A T y Gal ) T ( 26 
)
T Gold is the state transposition matrix defined by :

T Gold = [T y T x ] (27) 
with T x (resp. T y ) being defined as follows: 

T x =           g x (0) 0 • • • 0 . . .
0 0 • • • g x (r)           (28) 
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TABLE II .

 II NUMBER OF PARITY CHECK EQUATIONS OF WEIGHT t = 4AND 5.

	r	6	7	9	10	11	18
	N4	20	0	0	10710	0	173910
	N5	-	630	10710	-	173910	-

TABLE III

 III 

	.	PARITY CHECK EQUATIONS FOR SEQUENCE (2157,3515).
			sequence (2157,3515)	sequence (2011,3515)
			m	i	j	m	i	j
	c1		171	106	54	111	106	65
	c2		185	166	4	131	32	31
	c3		205	168	28	151	102	73
	c4		222	77	22	194	179	166
	c5		230	98	31	222	212	130
	c6		258	180	133	244	163	6
	c7		271	255	189	256	248	25
	c8		293	101	15	262	64	62
	c9		307	42	7	288	173	87
	c10	314	229	219	298	159	84

TABLE IV .

 IV PARITY CHECK EQUATIONS FOR SEQUENCE (4005,4445).

				m	i	j	k			
			c1	114	78	49	37			
			c2	116	55	23	21			
			c3	127	58	33	5			
			c4	130	127	80	11			
			c5	141	109	59	36			
			c6	141	121	101	17			
			c7	150	101	75	25			
			c8	155	79	51	39			
			c9	178	164	159	5			
			c10	183	161	149	2			
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